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Abstract
We study the long-time asymptotic behavior of oscillatory Riemann–Hilbert problems
(RHPs) arising in the mKdV hierarchy (reducing from the AKNS hierarchy). Our
analysis is based on the idea of ∂̄-steepest descent. We consider RHPs generated from
the inverse scattering transform of the AKNS hierarchy with weighted Sobolev initial
data. The asymptotic formula for three regions of the spatial- and temporal-dependent
variables is presented in details.

Keywords MKdV hierarchy · Painlevé II hierarchy · Long-time asymptotics ·
Dbar-steepest descent

Mathematics Subject Classification 37K10 · 35Q15

1 Introduction

The long-timebehavior of solutions of the initial-value problem for nonlinear evolution
integrable PDEs has been studied extensively. It is well known that the long-time
asymptotic analysis for the integrable PDEs can be, via inverse scattering, formulated
as a problem of finding asymptotics of certain oscillatory RHPs. A countless number
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of papers [see, e.g., Do (2010), Varzugin (1996) and the references therein] have been
devoted to studying the asymptotic behavior of a certain type of oscillatory 2 by 2
matrix RHPs, which is also the main subject of the current study. The most influential
is the nonlinear steepest descent method (or the Deift–Zhou method), which was
published in Annals of mathematics in 1993 (Deift and Zhou 1993). Before the Deift–
Zhou work, Its (1981) proposed a direct method, via an isomonodromic deformation,
to study the asymptotics of a RHP arising in studying the long-time behavior of the
nonlinear Schrödinger (NLS) equation. Ten years after the Deift–Zhou method was
published,Deift andZhou extended theirmethod to study the long-time behavior of the
defocusing NLS equation on someweight Sobolev space. Between 1993 and 2003, the
Deift–Zhou method had been applied to not only the long-time behavior of integrable
systems, but also equilibriummeasure for logarithmic potentials (Deift et al. 1998), the
strong asymptotics of orthogonal polynomials (Deift et al. 1999) andmany other fields
in mathematical physics. Shortly after the Deift–Zhou 2003 paper, McLaughlin and
Miller (2004) proposed another generalization to theDeift–Zhoumethod: the so-called
∂̄-steepest descent. Thismethodwasfirst applied to studying the long-time asymptotics
of the defocusing NLS equation in 2008 (Dieng and McLaughlin 2008), see also its
extension version (Dieng et al. 2018). Comparing to the Deift–Zhou method, the ∂̄-
steepest descent method provides a more elementary way and more tractable way of
analyzing the error terms. Since then, the ∂̄-steepest descentmethod has been applied to
many long-time asymptotic studies for nonlinear integrable PDEs, such as the focusing
NLS equation (Borghese et al. 2018), the KdV equation (Giavedoni 2017), the mKdV
equation (Chen and Liu 2019), the sine-Gordon equation (Chen et al. 2020), the fifth
order mKdV equation (Liu et al. 2019) and many others. It is worth mentioning that
the mKdV and fifth-order mKdV equations belong to the mKdV hierarchy we will
consider in the current work. In fact, by carefully checking Chen and Liu (2019) and
Liu et al. (2019), we find there are many similar analyses which motivate us to study
the whole mKdV hierarchy at once.

In the current paper, we will study an oscillatory 2 by 2 matrix RHP arising in
studying the long-time asymptotics of the mKdV hierarchy. We will discuss the defo-
cusing case (i.e., without solitons). The focusing case will be treated somewhere else
in the future. The main analysis is based on the idea of ∂̄-steepest descent (Dieng and
McLaughlin 2008; McLaughlin and Miller 2004).

In the study of Cauchy initial-value problems of integrable systems by means of
inverse scattering, the following RHP appears:

Riemann–Hilbert problem 1.1 Looking for a 2 by 2 matrix-valued function m(z) such
that

(1) m is analytic off the real line R;
(2) for z ∈ R, we have

m+ = m−vθ (z), z ∈ R, (1)
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where m±(z) = limε→0+ m(z ± iε), z ∈ R, and the jump reads

vθ (z) =
(
1 − |R(z)|2 −R̄(z)e−2i tθ

R(z)e2i tθ 1

)
, (2)

where R(z) is the reflection coefficient in performing inverse scattering with given
initial data, see, e.g., (19), and θ = θ(z; x/t) is a polynomial of z with coefficients
depends on x/t;

(3) m(z) = I + O(z−1), z → ∞.

In this paper, we consider the following defocusing mKdV type reduction of the
AKNS hierarchy (shortly, we call it the mKdV hierarchy): Fixing n as a positive odd
integer, we consider

ψx (x, t; z) =
(
i zσ3 +

(
0 q(x, t)

q(x, t) 0

))
ψ(x, t; z),

ψt (x, t; z) =
(

n∑
k=0

Qk(x, t)z
k

)
ψ(x, t; z),

(3)

where σ3 = diag(1,−1), q(x, t) is the potential which solves a certain 1+ 1 dimen-
sional integrable equation, and Qk is determined by certain recursion relation [for
details, see Ablowitz and Clarkson (1991)].

In the case of the mKdV hierarchy, Qn(x, t) is a constant with respect to x, t . The
corresponding nonlinear integrable PDE isworked out by the zero-curvature condition,
which is also equivalent to ψxt = ψt x . In this paper, we will study the Cauchy initial-
value problem for integrable PDEs generated from the defocusing mKdV hierarchy,
with the initial data belonging to Hn−1,1(R) = { f ∈ L2| f (s) ∈ L2, s = 1, . . . n −
1, x f ∈ L2}. Due to Zhou’s result (Zhou 1998), after direct scattering, the reflection
coefficient R(z, t = 0) belongs to H1,n−1(R). By performing the time evolution, we
arrive at the RHP 1.1. The first part (oscillating region) of the analysis is slightly more
general than the one in the AKNS hierarchy, by making the following assumptions on
the phase function:

(1) θ is a real polynomial of degree n with respect to z, with coefficients depends on
x/t ;

(2) θ ′(z j ) = 0, θ ′′(z j ) �= 0 for j = 1, . . . , l, where l denotes the number of real
stationary phase points.

Remark 1.2 For the defocusing mKdV hierarchy case, n in the first assumption cor-
responds to the n−1

2 th member of the hierarchy. Since in mKdV hierarchy, n is an
odd number, say n = 2k − 1, k ∈ Z+, we will only need to study the phase function
of the type: c1z + c2z2k+1, k ∈ Z+ and c1, c2 are some constants. The purpose of
the second assumption includes the case of linear combination of several members in
the mKdV hierarchy, which is again integrable. In such situation, we will see that a
generic polynomial of z with coefficients depends on x/t .
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1.1 Main Results

Before we establish the main results, we first introduce some notations. Let us denote
the weighted Sobolev space by

Hk, j (R) := { f (x) ∈ L2(R) : ∂sx f ∈ L2(R), s = 1, . . . , k, x j f (x) ∈ L2(R)},

with norm

‖ f ‖Hk, j :=
⎛
⎝‖ f ‖2L2 +

k∑
l=1

‖∂ lx f ‖2L2 +
j∑

m=1

‖xm f ‖2L2

⎞
⎠

1/2

.

Next, we define the meaning of the long-time behavior in the three regions we are
concerned with as follows.

(1) Long-time behavior of the potential in the oscillating region means taking the
t → ∞ limit of q(x, t) along the ray x = −ct, c > 0, t → ∞.

(2) Long-time behavior of the potential in the fast decaying region means taking the
t → ∞ limit of q(x, t) along the ray x = ct, c > 0, t → ∞.

(3) Long-time behavior of the potential in the Painlevé regionmeans taking the t → ∞
limit of q(x, t) along the curve x = c(nt)1/n, c �= 0, t → ∞, where n is the degree
of the polynomial phase function θ .

Theorem 1.3 For each n ∈ N, in the oscillating region, provided that the initial data1

q(x, 0) ∈ Hn−1,1(R, dx), and it evolves to satisfy the compatibility conditions for (3),
then the long-time behavior for the potentials q(x, t) is given by

q(x, t) = qas(x, t) + O(t−3/4), t → ∞, (4)

where

qas(x, t) = −2i
l∑

j=1

|η(z j )|1/2√
2tθ ′′(z j )

eiϕ(t),

ϕ(t) = −3π

4
− arg
(−iη(z j ))

− 2tθ(z j ) − η(z j )

2
log |2tθ ′′(z j )| + 2 arg(δ j ) + arg(R j ),

and the phase function θ will depend only on z along any ray in the oscillating region,
{z j }lj=1 are the simple real stationary phase points of the phase function, and

1 Due to Zhou’s theorem (Zhou 1998), R(z) belongs to H1,n−1(dz), then the time evolving reflection
coefficient R(z)e±2i tθ will stay in H1,1(dz) since the degree of θ is n.
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δ(z) = exp

(
1

2π i

∫
D−

log(1 − |R(s)|2)
s − z

ds

)
, z ∈ C\D−,

D− = {z ∈ R : θ ′(z) < 0},
η(z) = − 1

2π
log(1 − |R(z)|2),

R j = R(z j ), j = 1, . . . , l,

δ j = lim
z=z j+ρeiφ,

ρ→0,
fixφ∈(0,π/2)

δ(z)(z − z j )
iη(z j ).

Here, R(z) is the reflection coefficient generated from the standard inverse scattering
procedure, see Eq. (19).

Corollary 1.4 For the case of the AKNS hierarchy, in the oscillating region, the phase
function θ(z) = x

t z + czn, c > 0, n is odd number and has just two real stationary

phase points: z± = ± ∣∣− x
nct

∣∣ 1
n−1 , and then the long-time asymptotics for the potentials

in the AKNS hierarchy are merely a special case of Theorem 1.3.

Theorem 1.5 In the fast decay region, the potential which belongs to the defocusing
mKdV flow has the following long-time asymptotic behavior:

q(x, t) = O(t−1), t → ∞. (5)

Theorem 1.6 For each n ∈ N, in the Painlevé region, the potential which belongs to
the defocusing mKdV flow has the following long-time asymptotic behavior:

q(x, t) = (nt)−
1
n un(x(nt)

− 1
n ) + O(t−

3
2n ), t → ∞, (6)

where un solves the nth member of the Painlevé II hierarchy.

1.2 Outline

In Sect. 2, we simply review the inverse scattering for the AKNS hierarchy. In Sect. 3,
we summarize the idea of the ∂̄-steepest descent method following Dieng et al. (2018)
and Chen and Liu (2019). In the following sections, we first discuss the long-time
behavior of the potential in the oscillating region. The general workflow is shown in
Fig. 5. The first step (see Sect. 4) is so-called conjugation by which one can simul-
taneously factorize the jump matrix to lower/upper triangle and upper/lower triangle.
The next step (see Sect. 5) is so-called lenses opening. In each interval where θ is
monotonic, we can deform those intervals into new contours which are off the real
line and the exponential terms will decay as t goes to infinity on the new contours. The
core idea of this step of the ∂̄-steepest descent is to use Stokes’ theorem to transfer
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contour integrals to double integrals, while in the original Deift–Zhou’s method, this
step is done by first performing rational approximation then analytic continuation.
After lenses opening, we will end up at a mixed ∂̄-RHP. Next, from Sects. 6 and 7, we
will first approximate the pure RHP. Three main steps of approximating the pure RHP
are so-called localization, phase reduction and contribution separation, which lead to
an exact solvable model RHP (also called its isomonodromy problem). Due to the
exact solvability of the model RHP and the small norm theory, one can establish the
existence and uniqueness of the pure RHP part of the mixed ∂̄-RHP. The last step (see
Sect. 8) is to estimate the errors by analyze the pure ∂̄-problem which dominates the
errors generated by approximating the pure RHP. Undo all the steps, we will eventu-
ally prove Theorem 1.3. Then, in Sect. 10, we will study the long-time behavior of the
potential in the fast decaying region. Following similar analysis, we end up proving
Theorem 1.5. The final section (see Sect. 11) is devoted to proving Theorem 1.5. In
that section, we first give an algorithm to generate the Painlevé II hierarchy. Following
the method of ∂̄-steepest descent, we represent the long-time behavior of the potential
by the solution to a member of the Painlevé II hierarchy.

2 Inverse Scattering Transform and Riemann–Hilbert Problem in L2

In this section, we simply review the inverse scattering transform for the AKNS hier-
archy in a certain weighted L2 Sobolev space. For more details, we direct readers to
Zhou’s paper (Zhou 1998).

The AKNS hierarchy is the integrable hierarchy associated with the following
spectral problem:

ψx (x, t; z) = (i zσ3 + Q(x, t))ψ(x, t; z), (7)

where σ3 =
(
1 0
0 −1

)
and Q(x, t) =

(
0 q(x, t)

r(x, t) 0

)
.

In the current paper, we only consider the defocusing type reduction:

r(x, t) = q(x, t) ∈ R,

andwe assume q(x, t = 0) ∈ Hn−1,1(R, dx).2 For t = 0, we are looking for solutions
(so-called Jost solutions) of equation (7) in H1,1(R, dx), which satisfy the following
boundary conditions at infinity:

ψ± = eixzσ3 + o(1), x → ±∞. (8)

2 This guarantees the time evolving of the initial data will stay in H1,1. Roughly speaking, from Zhou’s
work, we know q(x, 0) ∈ Hn−1,1 ⊂ H1,1 is mapped to R(z) ∈ H1,n−1. Time evolution of the reflection
coefficient gives R(z)eitz

n
, which belongs to H1,1 due to the fact that R(z) ∈ H1,n−1, and then the inverse

scattering leads to q(x, t) ∈ H1,n−1.
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The scattering matrix S(z) is then defined as

S(z) := ψ−1− ψ+. (9)

It is well known that S enjoys the following properties: for z ∈ R,

S(z) =
(
a(z) b̄(z)
b(z) ā(z)

)
, (10)

where a, b can be represented in terms of the initial data and the eigenfunctions ψ . To
find such representations, we consider

μ(±) = ψ±e−i zxσ3 . (11)

Then, the spectral problem (7) becomes:

(μ(±))x = i z[σ3, μ(±)] + Qμ(±). (12)

Due to the initial setting of the potential matrix Q, the standard inverse scattering
theory tell us that one can analytically extend the first column μ(+) and the second
columnμ(−) to the upper half plane while the first columnμ(−) and the second column
μ(+) to the lower half plane. Moreover, the reflection coefficients enjoy the following
representations:

a(z) = μ
(+)
11 (x → −∞) = 1 −

∫
R

q(y)μ(+)
21 (y, z)dy, (13)

b(z) = μ
(+)
12 (x → −∞) = −

∫
R

e2iyzq(y)μ(+)
22 (y, z)dy. (14)

From the above representations, it is straightforward to show thata(z) = 1+O(1/z)
and b(z) = O(1/z) as z → ∞, and a(z) can be analytically extended to the upper
half plane.

Now, with the analyticity of the column solutions to equation (12), by setting

m+(x, z) = (μ
(+)
1 (x, z)/a(z), μ(−)

2 (x, z)), Im z ≥ 0, (15)

m−(x, z) = (μ
(−)
1 (x, z), μ(+)

2 (x, z)/ā(z)), Im z ≤ 0, (16)

we can then define the jump matrix on the real line by

v(z) = e−i zx adσ3(m−1− m+). (17)

A direct computation shows

v(z) =
(
1 − |R(z)|2 −R̄(z)

R(z) 1

)
, (18)
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where

R(z) = b(z)

a(z)
. (19)

It also worth mentioning that (again from standard inverse scattering theory) |a|2 −
|b|2 = 1, from where we have

0 ≤ |R(z)| < 1. (20)

The deformation of the spectral problem (7) with respect to t is governed by the
following equation:

ψt (x, t; z) =
(

n∑
k=0

Qk(x, t)z
k

)
ψ(x, t; z). (21)

To generate isospectral flow, ψ need to satisfy the compatibility condition, i.e., ψxt =
ψt x . By this condition, one can uniquely determine Qk if the integration constants are
assumed to be all zeros. One can systematically determines the Qk’s via associated
Lie algebra techniques, see for example Ma (2013). Through the Lie algebra, one can
show the AKNS hierarchy is integrable, i.e., there are infinite many conservation laws.
Moreover, using the powerful trace identity (Tu 1989), one can easily show the bi-
Hamiltonian structure of the AKNS hierarchy. Moreover, under the same framework,
one can show that any linear combinations of the time-evolution problem are also
integrable.

The compatibility condition of (7) and (21) generates integrable PDEs, including
the defocusing nonlinear Schrödinger equation, the modified KdV equation, the fifth-
order modified KdV equation. Due to the decaying of the potential Q, it is easy to
show the time evolution of the jump matrix v is trivial. In fact, if the potential decays
as |x | → ∞, then ψ±eQnznt will be the simultaneous fundamental solution to the
system (3). By the time-evolution condition in (3), one get the t - differential equation
for the Jost solution ψ± as follows:

∂

∂t
ψ± = Vψ± − ψ±Qnz

n .

Now by the definition of the scattering matrix, we have

∂S

∂t
= (ψ−1− ψ+)t

= ψ−1− (−ψ+Qnz
n + Vψ+) − ψ−1− (−ψ−Qnz

n + Vψ−)ψ−1− ψ+
= [Qnz

n, S]
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It is of our current interest that Qn = −icσ3 for some positive constant c. Therefore,
we have the time evolution for the scattering matrix

S(z; t) = e−iczn t ad σ3 S(z; t = 0), (22)

where e ad σ3(·) := eσ3(·)e−σ3 . This implies the time evolution of the jumpmatrix v(z)
[see (18)], and we have

vθ (z) := e−i tθ(z;x,t) ad σ3v(z), (23)

where (in the case of the defocusing AKNS hierarchy) θ(z; x, t) = x
t z+czn for some

positive constant c.
Finally, we formulate the inverse scattering problem as a Riemann–Hilbert problem

as follows:

Riemann–Hilbert problem 2.1 Looking for a 2 by 2matrix-valued functionsm(z; x, t)
such that

(1) m(z) is analytic in C\R;
(2) m+ = m−vθ , z ∈ R;
(3) m = I + m1(x, t)/z + O(1/z2), z → ∞;

where vθ is defined in Eq. (23) and m± = limε↓0 m(z ± iε).

From Eq. (12), and the definition of the jump matrix v, we can recover the potential
by

q(x, t) = −2i lim
z→∞[z(m − I )]12

= −2i(m1(x, t))12.
(24)

In the following sections, we will perform the ∂̄-steepest descent method and study
the asymptotic behavior for t being sufficiently large.

3 Overview of the Strategies

In this section, we will simply review the idea of Deift–Zhou’s nonlinear steepest
descent method and its variation, the ∂̄-steepest descent method. In general, the key
step in both methods is to deform the RHP. After the deformation, the new RHP is
expected to be approximable locally as t goes to ∞. Next, we will explain the main
ideas of both methods. The notations in this section are used in this section only.

Let us consider the following RHP on R+:

M+(z) = M−(z)e−i tθ(z) ad σ3V (z), z ∈ R+,

M(z) → I , z → ∞.
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Fig. 1 Contour deformation

O

Σ1

Ω+

Σ2

Ω−

Ω

The main idea3 of Deift–Zhou’s method is to find a factorization of V (z), say, V (z) =
V−(z)V+(z), such that V±(z) can be approximated by Ṽ±(z) which are analytic in the
sectors �+ and �− respectively, see Fig. 1.

By introducing a new analytic function M̃ as follows:

M̃|� = M,

M̃ |�+ = MṼ−1+ ,

M̃ |�− = MṼ−,

we arrive at a new RHP:

M̃+ = M̃−Ṽ , z ∈ R+ ∪ �1 ∪ �2,

Ṽ =

⎧⎪⎨
⎪⎩
Ṽ+, z ∈ �1,

Ṽ−, z ∈ �2,

Ṽ−1− V−V+Ṽ−1+ , z ∈ R+.

Also,wewant to guarantee that based on the signatures of the phase functionRe (iθ(z))
in each sector, the new jumps converge rapidly to the identity away from O as t → ∞.
Usually, one needs to deform the RHP several times. Eventually, the initial RHP can
be approximated locally by the following fairly simple model RHP:

M�
+ = M�

−e−i t θ̃ (z) ad σ3V (0), z ∈ R+,

M� → I , z → ∞,

where θ̃ (z) is a certain rational approximation to θ(z) near z = 0. This model RHP
can be solved explicitly and by undoing all deformations, one can track all errors in
the middle steps.

The Deift–Zhou method of analyzing errors is heavily based on the harmonic anal-
ysis for the Cauchy operators on contours; however, the ∂̄-steepest descent method
transfers the error estimation to some fairly simple estimations of certain double inte-
grals. A natural way of connecting the contour integrals to the double integrals is to

3 A good summary of this method can be found in Deift et al. (1993).
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use Stokes’ theorem (or the Cauchy–Green theorem): for any C1(R2 → C) function
f (z) := f (z, z̄), we have

∫
∂�

f (z)dz = 2i
∫

�

∂ f (z)

∂ z̄
dxdy,

where z = x + iy. So in the ∂̄-steepest descent theory, we try to find an interpolation,
say E(z), between the old contour and the new one. Such an E satisfies

E(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V+(0), z ∈ �−
1 ,

V−(0), z ∈ �+
2 ,

V+(z), z ∈ R
++,

V−(z), z ∈ R
−+,

I , z ∈ �+
1 ∪ �−

2 ,

where all contours are orientated from O to ∞ and 
± mean the limit from left/right,
and it is C1 in �+ ∪ �−. Also, we want eit θ̃ (z) ad σ3V±(0) go to I as t → ∞. Now,
let us set M̂ = M(z)E(z), we obtain the so-called ∂̄-RHP:

1. (The RHP) M̂+ = M̂−e−i tθ(z) ad σ3 V̂ (z), z ∈ �1 ∪ �2, where

V̂ (z) =
{
e−i tθ(z) ad σ3V+(0), z ∈ �1,

e−i tθ(z) ad σ3V−(0), z ∈ �2.

2. (The ∂̄-problem) For any z ∈ C, we have

∂̄ M̂ = M̂ E−1∂̄E .

The deformation of the RHP follows from Deift–Zhou’s method, but the error estima-
tions here are transferred to a dbar problem, which turns out to be equivalent to some
singular integral equation with respect to the area measure. Then through some fairly
simple estimates on the double integrals, one will obtain the same error estimates as
the Deift–Zhoumethod. In the following sections, wewill apply the ∂̄-steepest descent
to the defocusing mKdV type reduction of the AKNS hierarchy.

4 Conjugation

In this section, we will factorize the jump matrix (as defined by Eq. (2)) in a way that
it can be used for deforming the RHP. It is easy to see that the jump matrix enjoys the
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following two kinds of factorization:

vθ (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 −R̄(z)e−2i tθ

0 1

)(
1 0

R(z)e2i tθ 1

)
,

(
1 0

R(z)
1−|R(z)|2 e

2i tθ 1

)
(1 − |R|2)σ3

(
1 − R̄(z)

1−|R|2 e
−2i tθ

0 1

)
.

(25)

In the light of the main ideas we described in the last section, we want to remove
the middle term in the second factorization. By doing so, we can eventually find the
proper factorization based on the signatures of the Re(iθ). Due to our assumptions
on θ , near a stationary phase point (say |z − z j | < ε, for some small positive ε),

θ = θ(z j )+ θ ′′(z j )
2 (z− z j )2 +O(|z− z j |3). If θ ′′(z j ) > 0, then Re(iθ(z)) is negative

in the line (I): {z = z j + reiα, r ∈ (−ε, ε) with fixed α ∈ (0, π/2)}, and it is positive
in the line (II): {z = z j + reiα, r ∈ (−ε, ε) with fixed α ∈ (−π/2, 0)}. On the line
(I), notice that e2i tθ decays to 0 as t → ∞, we can deform the jump on the contour
right to the stationary phase point using the first factorization.With the same argument
on the line (II), we can deform the jump on the contour left to the stationary phase
point using the second factorization. If θ ′′(z j ) < 0, notice now e2i tθ decays to 0 as
t → ∞ on the line (II), and thus we need the second factorization for the jump on the
contour right to the stationary phase point and the first factorization for the jump on
the contour left to the stationary phase point. Motivated by the above arguments, we
denote D± = {z ∈ R : ±θ ′(z) > 0}

To eliminate the diagonal matrix in the second factorization, we introduce a scalar
RHP:

δ+ = δ−[(1 − |R|2)χD− + χD+], z ∈ R,

δ(z) = 1 + O(z−1), z → ∞.
(26)

Then by conjugating the initial RHP, we arrive at a new RHP:

Riemann–Hilbert problem 4.1 Looking for a 2 by 2 matrix-valued function
m[1](z; x, t) such that

(1) m[1]
+ = m[1]

− δ
σ3− vθδ

−σ3+ , z ∈ R;
(2) m[1] = I + O(z−1), z → ∞.

By denoting v
[1]
θ := δ

σ3− vθ δ
−σ3+ , the new jump matrix reads

v
[1]
θ (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 −R̄(z)δ2(z)e−2i tθ

0 1

)(
1 0

R(z)δ−2e2i tθ 1

)
, z ∈ D+,

(
1 0

R(z)δ−2− e2i tθ

1−|R|2 1

)(
1 − R̄(z)δ2+(z)e−2i tθ

1−|R|2
0 1

)
, z ∈ D−.

(27)
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The scalar RHP (26) has been carefully studied in the literature [see for example
Beals et al. (1988, Lemma 23.3), Deift and Zhou (2003), Varzugin (1996) and Do
(2010)]. Here, we just list some of the properties. First, the solution to the RHP (26)
can be represented as follows:

log (δ(z)) = (CD−(log(1 − |R|2)))(z), z ∈ C\D−, (28)

where the Cauchy operator (CD− f )(z) = 1
2π i

∫
D−

f (s)
s−z ds . Since the initial data are

within Hn−1,1(R, dx), we have R(z) ∈ H1,n−1
1 (R, dz) = H1,1 ∩ { f : | f | < 1}

[see also Eq. (20)]. Thus, one can show log(1 − |R|2) is in H1,0, and then by the
Sobolev embedding, we know it is also Hölder continuous with index 1/2. Then, by
the Privalov–Plemelj theorem, which says that Cauchy operator perseveres Hölder
continuity with index less than 1, one can show log(δ(z)) is Hölder continuous with
index 1/2 except for the end points. Next, we study the behavior near those points.

Let us denote

η(z) = − 1

2π
log(1 − |R(z)|2), z ∈ R. (29)

We will prove the following proposition.
First, we define a tent function supported on the interval [−ε, ε],

sε(z) =

⎧⎪⎨
⎪⎩
0, |z| ≥ ε

− 1
ε
z + 1, 0 < z < ε,

1
ε
z + 1, −ε < z ≤ 0.

(30)

Proposition 4.2 For each ε > 0, and ε ≤ 1
3 min j �=k |z j − zk |, there exists a neighbor-

hood I = I (ε) such that the identity

log(δ(z)) = i
∫
D−\I

η(s)

s − z
ds + i

l∑
j=1

[
η(z j )(1 + log(z − z j ))

]
ε j

+ i
l∑

j=1

∫
I∩D−

η(s) − η j (s)

s − z
ds

+ i
l∑

j=1

1

ε
η(z j )[(z−z j ) log(z−z j ) − (z − z j +ε jε) log(z − z j +ε jε)]

is true, where ε j = sgn(θ ′′(z j )),η j (z) = η(z j )sε(z−z j ) and see (29) for the definition
ofη. As for the logarithm function, the branch is chosen such that argument ∈ (−π, π).
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Proof Let I = ∪l
j=1(I j+ ∪ I j−), where I j± = {z : 0 < ±(z − z j ) < ε}. Now we

have

log(δ(z)) = i
∫
D−\I

η(s)

s − z
ds

+ i
l∑

j=1

(

∫
I j−∩D−

+
∫
I j+∩D−

η(s)

s − z
ds).

For each j , we have

∫
I j−

η(s)

s − z
ds =

∫
I j−

η(s) − η j (s)

s − z
ds +

∫
I j−

η j (s)

s − z
ds.

The first integral on the right hand side is the non-tangential limit as z → z j and
the second one generates a logarithm singularity near z j . In fact, direct computation
shows

∫
I j−

η j (s)

s − z
ds=η(z j )+ 1

ε
[(z − z j ) log(z − z j ) − (z − z j +ε) log(z − z j +ε)]η(z j )

+ η(z j ) log(z − z j ).

Similarly, for I j+,

∫
I j+

η j (s)

s − z
ds = −η(z j ) + 1

ε
[(z − z j ) log(z − z j ) − (z − z j − ε) log(z − z j − ε)]

− η(z j ) log(z − z j ).

And note that only one of the I j± ∩ D− is nonempty, which depends on the sign of
the second derivative of the phase function θ . By assembling all together, the proof is
done. ��

Remark 4.3 The proposition tells us how the function δ(z) behavior near the saddle
points. Near the saddle points z j , δ(z) has amild singularity (z−z j )iη(z j ). Fortunately,
those singularities are bounded along any ray off R, and hence, in some sense they
do not affect asymptotics much. It is worth mentioning that one can ignore the mild
singularity by introducing an auxiliary function, see Lemma 3.1 in Dieng et al. (2018).

5 Lenses Opening

The purpose of lens opening is to deform the RHP on the real line to a new RHP on
new contours such that jumps on the new contours will rapidly decay to I as t → ∞.
We first study the signature of Im θ near the saddle point z j .
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θ′ = 0

zj Ij+Ij−
α

Σj,1Σj,2

Σj,3 Σj,4

Ωj,1Ωj,3

Ωj,4 Ωj,6

Ωj,2

Ωj,5

Fig. 2 Notations for studying signatures of Im(θ(z)) near z j

Let us denote I j+ = [z j , z j+z j+1
2 ] and I j− = [ z j+z j−1

2 , z j ]. Two cases need to be
discussed. The first case is θ ′′(z j ) > 0, and so we have I j± ⊂ D±. The second case
is θ ′′(z j ) < 0, and then we have I j± ⊂ D∓.

Recall the factorization of the conjugated jumpmatrix v
[1]
θ , to deform it from I j+ to

� j,1, we need make sure the exponential term e2i tθ(z) decays rapidly to I on� j,1, and
thus, we need to discuss Re(iθ) on � j,1. Considering a Taylor approximation of θ(z)

near z j , we have θ(z) = θ(z j ) + ε j A j (z − z j )2 + O(|z − z j |3), where A j =
∣∣∣ θ ′′(z j )

2

∣∣∣
and ε j = sgn{θ ′′(z j )}.

Let z = z j + u + iv = z j + ρeiφ . Then, Im(θ(z)) = ε j A jρ
2 sin(2φ) + O(ρ3),

where φ ∈ (0, α] is fixed. Now we define the regions� j,n, n = 1, . . . , 6, as follows:

� j,1 =
{
z = z j + ρeiφ, φ ∈ (0, α], ρ ∈

(
0,

|z j − z j+1|
2 cosα

)
,Re z ∈ I

ε j
j+
}

,

� j,3 =
{
z = z j + ρeiφ, φ ∈ [π − α, π), ρ ∈

(
0,

|z j − z j−1|
2 cosα

)
,Re z ∈ I

ε j
j−
}

,

� j,2 = C
+\(� j,1 ∪ � j,3),

� j,4 =
{
z = z j + ρeiφ, φ ∈ (π, π + α], ρ ∈

(
0,

|z j − z j−1|
2 cosα

)
,Re z ∈ I

ε j
j−
}

,

� j,6 =
{
z = z j + ρeiφ, φ ∈ [−α, 0), ρ ∈

(
0,

|z j − z j+1|
2 cosα

)
,Re z ∈ I

ε j
j+
}

,

� j,5 = C
−\(� j,4 ∪ � j,6),

(31)

where

I
ε j
j± =

{
I j±, ε j = 1,

I j∓, ε j = −1.

123



10 Page 16 of 46 Journal of Nonlinear Science (2022) 32 :10

Since the number of real saddle points is finite, we can always choose a sufficiently
small α, such that for each j , e2i tθ decays to 0 in � j,1 ∪ � j,4 and e−2i tθ decays to 0
in � j,3 ∪ � j,6.

Nowwe are in the position to open the lenses. First, we introduce a bounded smooth
function K defined on R such that

K(0) = 1,

K(α) = 0,

Period of K isπ,

K is even function.

(32)

Consider ε j = 1 first. Then, the ∂̄ extension functions are as follows. Let z − z j =
u + iv = ρeiφ ,and for the case ε j = 1, we set

E j,1 (z) = K (φ) R
(
u + z j

)
δ−2 (z)

+ [1 − K (φ)]R (z j ) δ−2
j

(
z − z j

)−2iε jη(z j) , z ∈ � j,1,

E j,3 (z) = K (π − φ)

(
− R̄

(
u + z j

)
1 − |R (u + z j

) |2 δ2+ (z)

)

+ [1 − K (π − φ)]
(

− R̄
(
z j
)

1 − |R (z j ) |2 δ2j
(
z − z j

)2iε jη(z j)

)
, z ∈ � j,3,

E j,4 (z) = K (π + φ)

(
R
(
z j + u

)
1 − |R (z j + u

) |2 δ−2− (z)

)

+ [1 − K (π + φ)]
(

R
(
z j
)

1 − |R (z j ) |2 δ−2
j

(
z − z j

)−2iε jη(z j)

)
, z ∈ � j,4,

E j,6 (z) = K (−φ)
(
−R̄

(
z j + u

)
δ2 (z)

)

+ [1 − K (−φ)]
(
−R̄

(
z j
)
δ2j
(
z − z j

)2iε jη(z j)
)

, z ∈ � j,6,

(33)

where

δ j = lim
z=z j+ρeiφ,

ρ→0,
φ∈(0,π/2)

δ(z)(z − z j )
iη(z j ).

For the case ε j = −1, one only needs to switch the index 1 with 3 and 4 with 6.
For the sake of simplicity, in what follows, we focus just on the case ε j = 1. The
extension functions can be considered as interpolations between jumps on the old and
new contours. Using the extension functions E j,k, k = 1, 3, 4, 6, we can construct the
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lens-opening matrices O(z) as follows:

O(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Oj,n(z) =
(

1 0

(−1)n E j,ne2i tθ(z) 1

)
, z ∈ � j,n, n = 1, 4,

Oj,m(z) =
(
1 (−1)mE j,me−2i tθ(z)

0 1

)
, z ∈ � j,m, m = 3, 6,

Oj,k(z) = I , z ∈ � j,k, k = 2, 5.
(34)

Then lens opening is performed by multiplying O(z) to the right of the matrix m[1].
Let us denote m[2](z) = m[1](z)O(z), z ∈ C\R. Due to the lacking of analyticity of
O(z) (in fact, since we only assume R(z) ∈ C1(R), O(z) is also just in C1(R2)4), we
arrive at the following mixed ∂̄-Riemann–Hilbert problem(∂̄-RHP):

Mixed ∂̄-Riemann–Hilbert problem 5.1
Looking for a 2 by 2 matrix-valued function m[2] such that

(1) The RHP

• m[2](z) ∈ C1(R2�);
• m[2]

+ = m[2]
− v

[2]
θ , z ∈ ∪ j=1,...,l,k=1,2,3,4� j,k, where the jump matrices read

v
[2]
θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O−1
j,1, z ∈ � j,1,

O−1
j,3, z ∈ � j,2,

Oj,4, z ∈ � j,3,

Oj,6, z ∈ � j,4;
(35)

• m[2](z) = I + O(z−1), z → ∞.

(2) The ∂̄-problem
For z ∈ C, we have

∂̄m[2](z) = m[2](z)∂̄O(z). (36)

To close this section, we state a bound estimate for ∂̄E j,k , which will be used in
later sections.

Lemma 5.2 For j = 1 . . . l, k = 1, 2, 3, 4, and z ∈ � j,k, u = Re(z − z j ),

|∂̄E j,k(z)| ≤ c(|z − z j |−1/2 + |R′(u + z j )|). (37)

4 Here, R(z) ∈ C1(R) means R(z) is a function defined on the real line with continuous first-order
derivative. While since O(z) is a matrix-valued function defined on the complex plan, so O(z) ∈ C1(R2)

means all the entries have continuous first-order derivatives with respect to z and z̄.
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Proof In the polar coordinates, ∂̄ = eiφ
2 (∂ρ + iρ−1∂φ). For z in any ray starting from

z j and off the real line, we have

∂̄E j,1(z) = ieiφK′(φ)

2ρ
[R(u + z j )δ

−2(z) − R(z j )δ
−2
j (z − z j )

−2iη(z j )]
+ K(φ)R′(u + z j )δ

−2(z).

From Proposition 4.2, we know |δ(z)− δ j (z− z j )iη(z j )| ≤ c|z− z j |1/2. Also since

δ(z)−1 = e−CD− (log (1−|R|2)),

it is evident that δ(z)−1 is bounded. Therefore,

|δ−2(z) − δ−2
j (z − z j )

−2iη(z j )| ≤ c|z − z j |1/2.

And we have5

|R(u + z j )δ
−2(z) − R(z j )δ

−2
j (z − z j )

−2iη(z j )|
≤ |R(u + z j ) − R(z j )||δ−2(z)|

+ |δ−2(z) − δ−2
j (z − z j )

−2iη(z j )||R(z j )|

≤ c|
∫ u+z j

z j
R′(s)ds| + c|z − z j |1/2

by Cauchy−Schwartz inequality

≤ c‖R′‖L2 |z − z j |1/2 + c|z − z j |1/2
≤ c|z − z j |1/2.

Therefore

|∂̄E j,1(z)| ≤ cρ−1|z − z j |1/2 + c|R′(u + z j )|
≤ c(|z − z j |−1/2 + |R′(u + z j )|).

(38)

Here, we have use the fact that u ≤ ρ, which implies |z−z j |1/2/ρ = u1/2/ρ ≤ u−1/2.
Noting also that sup |R| < 1, we have R

1−|R|2 ≤ R
1−sup |R| , and thus all the estimates

for E j,1 can be smoothly moved to E j,k, k = 3, 4, 6. ��

6 Separate Contributions and Phase Reduction

The RHP and themixed ∂̄-RHPwe have discussed above are global. In this section, we
shall approximate the global RHP by performing two steps: (1) separate contributions

5 In the middle steps, c means a generic positive constant.
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zj zj+1zj+ 1
2

Σj+ 1
2

Ωj,1 Ωj+1,3

Ωj,2 Ωj+1,2
Σj,1 Σj+1,2

Fig. 3 Jumps in a small triangular region

from each stationary phase point, (2) phase reduction. Before that, let us first consider
two saddle points z j , z j+1, and discuss ε j = 1 = −ε j+1 for example. We will first
remove the vertical segments, see Fig. 3:

� j+ 1
2

:= � j,1 ∩ � j+1,3 ∪ � j,6 ∩ � j+1,4\R,

where � j,·’s are defined in 31.
Recall the constructions of E j,1 and E j+1,3 [see (33)], the boundary value ofm[2](z)

on � j+ 1
2
from � j,1 is

m[1](z j+1/2 + iv)Oj,1(z j+1/2 + iv),

while from � j+1,3 it is

m[1](z j+1/2 + iv)Oj+1,3(z j+1/2 + iv).

Both correspond to locally increasing parts of the phase function, and thus corre-
spond to an upper/lower factorization. So the jump on the new contour � j+1/2 is
Oj+1,3O

−1
j,1(z), z = z j+ 1

2
+ iv, where the nontrivial entry is [regarding the property

of K and definitions of those matrix Oj,k , see (32) and (34)]:

(1 − K(φ))[R(z j )δ
−2
j (z j+1/2 − z j + iv)−2iη(z j )

− R(z j+1)δ
−2
j+1(z j+1/2 − z j+1 + iv)−2iη(z j+1)]e2i tθ(z j+1/2+iv),

with v ∈ (0, (z j+1/2 − z j ) tan(α)) and φ = arg (z − z j ).
Note that

|(z j+1/2 − z j + iv)−2iη(z j )| = e2η(z j )φ ≤ e2η(z j )α.

and

|e2i tθ(z j+1/2+iv)| ≤ ce−2tdv, d = (z j+1 − z j )/2.

Thus we have, for any z ∈ � j+ 1
2
,

Oj+1,3O
−1
j,1 − I = O(e−ct Im z), t → ∞,
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where c is some generic positive constant. Since the jump is close to I , by a small
norm theory, the solution will also be close to I . In fact, we have the following estimate
for the potential

| lim
z→∞ z(m[2] − I )|
= | lim

z→∞ zC�
j+ 1

2
(m[2])|

≤ 1

2π

∫ d tan (α)

0

∣∣∣m[2]
− (z j+1/2 + is)

∣∣∣
∣∣∣Oj+1,3O

−1
j,1(z j+1/2 + is) − I

∣∣∣ ds
≤ 1

2π

∫ d tan (α)

0

∣∣∣m[2]
− (z j+1/2 + is)

∣∣∣ e−2tsdds

≤ 1

2π
‖m[1]|�

j+ 1
2 ,3

‖∞‖Oj+1,3‖∞
∫ d tan (α)

0
e−2tsdds

= O(t−1),

where C�
j+ 1

2
(·) means the Cauchy transform of a function over the contour � j+1/2.

Also, here we have assumed m[2], as a solution to the conjugated RHP, exists.6 So
it is analytic in a neighborhood of � j+ 1

2
, and hence, it is bounded on � j+ 1

2
. By the

definition (see (33)) of Oj+1,3, it is continuous in � j+ 1
2
and does not blow up at the

endpoints of � j+ 1
2
. So ‖Oj+1,3‖∞ is also finite.7 Therefore, we can remove all those

vertical segments by paying a price of error O(t−1), which will be dominated by the
error generated by the ∂̄-problem (it is O(t−3/4), we will show it in a moment.) Let
us denote the new RHP by m̃[2]. To make it clear, we note that the jumps for m̃[2] are

ṽ[2](z) =
{

v[2](z), z ∈ ∪ j=1,...,l,k=1,2,3,4� j,k,

I , z ∈ ∪ j=1,...,l� j+ 1
2

∪ R.

Next, we will show that the RHP for m̃[2] can be localized to each saddle point. For
example, near z j , along the segment � j,1 : z = z j + u + iv, arg z = α, we have

|E j,1e
2i tθ | ≤ ce−2t tan(α)u2

It is well known (Deift and Zhou 1993; Do 2010) that the |E j,1e2i tθ | ≤
ce−2t tan(α)u2 , where let u ≥ u0 > 0, and then, the jump matrix will go to I with
decaying rate at O(e−ct ), c > 0, as t → ∞. The RHP is localized in the small
neighborhoods of those stationary phase points. Note that near each z j , we have

θ(z) = θ(z0) + θ ′′(z0)(z − z0)2

2
+ O(|z − z j |3).

6 The existence and uniqueness will be discussed later.
7 Here the L∞(�) norm ‖ f (z)‖∞ means supz∈� | f (z)|, where | f (z)| = maxi, j=1,2,z∈� | fi, j (z)|.
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By a similar argument of Lemma 3.35 in Deift et al. (1993) or subsection 8.2 in Do
(2010) for the phase reduction, the error generated by reducing the phase function θ

to θ(z0) + θ ′′(z0)(z−z0)2

2 will be bounded by O(t−1). Both analyses of the mentioned
references are based on the analysis of the so-called Beals–Coifman operator (Beals
and Coifman 1984). Now we shall simply describe it here. For the sake of simplicity,
we only consider theRHPon the contour� j,1 (formore details,we direct the interested
reader to Deift and Zhou 2003):

Riemann–Hilbert problem 6.1 Looking for 2 by 2 matrix-valued function m̃[2] such
that

(1) m̃(z) is analytic off � j,1;
(2) m̃+ = m̃−v[2], z ∈ � j,1;
(3) m̃ = I + O(z−1), z → ∞.

Since E j,1|� j,1 is analytic near � j,1 for z away from z j , and enjoys a factorization:8

(I − w−)−1(I + w+),

where

w− = I − (v[2])−1 = (v[2]) − I ,

w+ = 0,

and the superscribes ± indicate the analyticity in the left/right neighborhood of the
contour.

Following the definition inBeals andCoifman (1984),we define theBeals–Coifman
operator, for any f ∈ L2(� j,1), as follows:

Cw( f ) = C+( f w−) + C−( f w+),

where C means the usual Cauchy operator, i.e.,

C f (z) = 1

2π i

∫
� j,1

f (s)

s − z
ds,

and C± means the non-tangential limits from left/right side.
The following proposition,which plays a fundamental role inDeift–Zhou’smethod,

is well known.

Proposition 6.2 (see also proposition 2.11 in Deift and Zhou (2003)). If μ ∈ I + L2

solves the singular integral equation:

μ = I + Cw(μ). (39)

8 (w−, w+) will be called the factorization data for the jump matrix.
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zj zj+1

Σo
j,1 Σo

j+1,2

Σo
j,4 Σo

j+1,3

Fig. 4 New contours, dashed line segments are those deleted parts

Then, the (unique) solution to the RHP for m̃ reads9

m̃ = I + C(μw). (40)

Then follow the localization principle in Deift and Zhou (1993), Do (2010) and
Varzugin (1996), and the simple argument on the vertical segments, we arrive at a new
RHP on the new contours: fixing ρ0 > 0 small, define

�o
j,1 := {z : z = z j + ρeiα, ρ ∈ (0, ρ0)},

�o
j,2 := {z : z = z j + ρei(π−α), ρ ∈ (0, ρ0)},

�o
j,3 := {z : z = z j − ρeiα, ρ ∈ (0, ρ0)},

�o
j,4 := {z : z = z j + ρei(α−π), ρ ∈ (0, ρ0)}.

Then with the new contour (see Fig. 4) �o = ∪ j=1,...,l,k=1,2,3,4�
o
j,k , the new RHP

reads as follows:

Riemann–Hilbert problem 6.3 Looking for a 2 by 2 matrix-valued function m̂[2] such
that

(1) m̂[2]
+ = m̂[2]

− v̂[2], z ∈ �o, with v̂[2] = ṽ[2]|�0;
(2) m̂[2] = I + O(z−1), z → ∞.

Moreover, since the potential of the mKdV hierarchy can be recovered by formula
(24), which can also be written as the Beals–Coifman solution:

qRHP(x, t) = − 1

2π i

∫
�

((I − Cw)−1 I )w(s)ds. (41)

Then, by localization, we have

∫
�

((I − Cw)−1 I )w(s)ds =
∫

�o
((I − Cw)−1 I )w(s)ds + O(t−1), t → ∞, (42)

9 Here, w = w+ + w−.
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where � is the contour before localization and w can be easily defined in each cross
since the jumps are all triangle matrices and all entries in the diagonal are one. Let us
denote

qoRHP(x, t) = − 1

2π i

∫
�o

((I − Cw)−1 I )w(s)ds. (43)

Then from the localization principal, we have

qRHP(x, t) = qoRHP(x, t) + O(t−1), t → ∞. (44)

Moreover, we define the RHP (m[3]) which corresponds to the local Beals–Coifman
solution (i.e., qoRHP) as follows:

Riemann–Hilbert problem 6.4 Looking for a 2 by 2 matrix-valued function m[3] such
that

(1) m[3]
+ = m[3]

− v[3](z), z ∈ �o, with jump matrix reads v[3] = v̂[2] ��o;
(2) m[3] = I + O(z−1), z → ∞.

However, the integral
∫
�o((I −Cw)−1 I )w(s)ds is still hard to compute, and following

the Deift–Zhou method, we need to separate the contributions from each stationary
phase point. Thus, we need the following important lemma.

Lemma 6.5 (see equation (3.64) or proposition 3.66 in Deift and Zhou (1993)). As
t → ∞,

∫
�o

((1 − Cw)−1 I )w =
l∑

j=1

∫
�o

j

((1 − Cw j )
−1 I )w j + O(t−1), (45)

where w j is the factorization data supported on �o
j = ∪4

k=1�
o
j,k , w = ∑l

j=1 w j and

�o = ∪l
j�

o
j .

Proof First, recall the following observation by Varzugin (1996),

(1 − Cw)

⎛
⎝1 +

∑
j

Cw j (1 − Cw j )
−1

⎞
⎠ = 1 −

∑
j �=k

Cw j Cwk (1 − Cwk )
−1.

With the hints from this observation, we need to estimate the norms of Cw j Cwk from
L∞ to L2 and from L2 to L2. Also from next section (with a small norm argument),
we know (1 − Cw j )

−1 are uniformly bounded in L2 sense. Now let us focus on
the contour �o

j,1, and ε = 1. Then, the nontrivial entry of the factorization data is

E j,1(z)e−2i tθ(z), z ∈ �o
j,1, and thus we have

|w j ��o
j,1

| ≤ ce−2t tan(α)u2 ,
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which implies that ‖w j ��o
j,1

‖L1 = O(t−1/2) and ‖w j ��o
j,1

‖L2 = O(t−1/4). Then
following exactly the same steps in the proof of Deift and Zhou (1993, Lemma 3.5),
we have for j �= k

‖Cw j Cwk‖L2(�o) = O(t−1/2),

‖Cw j Cwk‖L∞→L2(�o) = O(t−3/4).

Then use the resolvent identities and the Cauchy–Schwartz inequality,

((1 − Cw)−1 I ) = I +
l∑

j=1

Cw j (1 − Cw j )
−1 I

+
⎡
⎣1 +

l∑
j=1

Cw j (1 − Cw j )
−1

⎤
⎦
⎡
⎣1 −

∑
j �=k

Cw j Cwk (1 − Cwk )
−1

⎤
⎦

−1

×
⎛
⎝∑

j �=k

Cw j Cwk (1 − Cwk )
−1

⎞
⎠ I

= I +
l∑

j=1

Cw j (1 − Cw j )
−1 I + ABDI ,

where

A := 1 +
l∑

j=1

Cw j (1 − Cw j )
−1,

B :=
⎡
⎣1 −

∑
j �=k

Cw j Cwk (1 − Cwk )
−1

⎤
⎦

−1

,

D :=
∑
j �=k

Cw j Cwk (1 − Cwk )
−1,

and thus

∣∣∣∣
∫

�o
ABDIw

∣∣∣∣ ≤ ‖A‖L2‖B‖L2‖D‖L∞→L2‖w‖L2

≤ ct−3/4t−1/4 = O(t−1).
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Then applying the restriction lemma (Deift and Zhou 1993, Lemma 2.56), we have

∫
�o

(I + Cw j (1 − Cw j )
−1 I )w ��o

j
=
∫

�o
j

(I + Cw j (1 − Cw j )
−1 I )w

=
∫

�o
j

((1 − Cw j )
−1 I )w j .

Therefore, the proof is done. ��

7 AModel Riemann–Hilbert Problem

In the previous section, we have reduce the global RHP to l local RHPs near each
stationary phase point due to Lemma 6.5. In fact, near each stationary phase point,
we need to compute the integral

∫
�o

j
((1−Cw j )

−1 I )w j , which is equivalent to a local

RHP. In this section, we will approximate the local RHPs by a model RHP which can
be solved explicitly by solving a parabolic-cylinder equation. Consider the following
RHP:

Riemann–Hilbert problem 7.1 Looking for a 2 by 2 matrix-valued function P(ξ ; R)

such that

(1) P+(ξ ; R) = P−(ξ ; R)J (ξ), ξ ∈ R, where

J (ξ) =
(
1 − |R|2 −R̄

R 1

)

is a constant matrix with respect to ξ and the constant R satisfies |R| < 1;

(2) P(ξ ; R) = (I+P1ξ−1+O(ξ−2))ξ iησ3e−i ξ2

4 σ3 , ξ → ∞, where P1 =
(
0 β

β̄ 0

)
.10

Then by Liouville’s argument, P ′P−1 is analytic and thus

P ′(ξ) =
(

− iξ

2
σ3 + i

2
[σ3, P1]

)
P(ξ), (46)

which can be solved in terms of the parabolic-cylinder equation, and apply the asymp-
totics formulas we can eventually determine that 11

β = −
√
2πeiπ/4e−πη/2

R
(−a)
, (47)

10 The fact is nontrivial, but the derivation is in Deift and Zhou (1993), see equation (4.47)
11 Compare with formulas (4.27) in Deift and Zhou (1993), we only differ by a sign, but since the sign
does not affect the parabolic-cylinder equation, we can pass the sign to (47), where we have borrowed the
result (4.45) in Deift and Zhou (1993).
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where

a = iη, (48)

with η = − 1
2π log (1 − |R|2).

The above result has been presented in the literature12 in many ways. Here, we
follow the representations in Deift and Zhou (1993). Next, we will connect this model
RHP to the original RHP. Recall, near stationary phase point z j , we need to estimate
integral

∫
�o

j
((1 − Cw j )

−1 I )(w j+ + w j−), which is equivalent to solve the following

RHP (m[3, j], j = 1, . . . , l):

(1) m[3, j]
+ (z) = m[3, j]

− (z)v[3, j](z), z ∈ �o
j . The jump matrix reads

v[3, j](z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

R�
j (z − z j )−2iη(z j )e−i tθ ′′(z j )(z−z j )2 1

)
, z ∈ �o

j,1,⎛
⎝1 − R̄�

j

1−|R�
j |2

(z − z j )2iη(z j )eitθ
′′(z j )(z−z j )2

0 1

⎞
⎠ , z ∈ �o

j,2,

⎛
⎝ 1 0

R�
j

1−|R�
j |2

(z − z j )2iη(z j )e−i tθ ′′(z j )(z−z j )2 1

⎞
⎠ , z ∈ �o

j,3,

(
1 −R̄�

j (z − z j )−2iη(z j )eitθ
′′(z j )(z−z j )2

0 1

)
, z ∈ �o

j,4,

(49)

where R�
j = R jδ

−2
j e−2i tθ(z j );

(2) m[3, j] = I + O(z−1), z → ∞.

Set ξ = (2tθ ′′(z j ))1/2(z − z j ) and by closing lenses, we arrive at an equivalent
RHP on the real line:

(1) m[4, j](ξ)+ = m[4]
− v[4, j](ξ), ξ ∈ �

p
j . The new jump is

v[4, j](ξ) = (2θ ′′(z j )t)−
iη(z j )

2 ad σ3ξ iη(z j ) ad σ3e− iξ2

4 ad σ3

(
1 − |R�

j |2 −R̄�
j

R�
j 1

)
;
(50)

(2) m[4, j] = I + O(ξ−1), ξ → ∞.

12 The first description of this model RHP was presented by Its Its (1981). Later examples of the model
can be find in Deift and Zhou (1993), Deift and Zhou (2003), Dieng and McLaughlin (2008), Do (2010),
Varzugin (1996), Ma (2019) and Ma (2020).
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Comparing with the model RHP, we observe thatm[4, j](ξ)(2θ ′′(z j )t)−
iη(z j )

2 σ3ξ iη(z j )σ3

e− iξ2

4 σ3 solves the model RHP, which leads to

m[4]
1,12 = −√

2πeiπ/4e−πη(z j )/2

R�
j
(−iη(z j ))

, (51)

m[4]
1,21 =

√
2πe−iπ/4e−πη(z j )/2

R̄�
j
(iη(z j ))

. (52)

Changing the variable ξ back to z, we have

m[3, j]
1,12 (t) = −(2tθ ′′(z j ))−

1
2− iη(z j )

2

√
2πeiπ/4e−πη(z j )/2

R�
j
(−iη(z j ))

,

m[3, j]
1,21 (t) = (2tθ ′′(z j ))−

1
2+ iη(z j )

2

√
2πe−iπ/4e−πη(z j )/2

R̄�
j
(iη(z j ))

.

Noting that R�
j = R jδ

−2
j e2i tθ(z j ), one can rewrite it in a neat way:

m[3, j]
1,12 (t) = |η(z j )|1/2√

2tθ ′′(z j )
eiϕ(t),

m[3, j]
1,21 (t) = |η(z j )|1/2√

2tθ ′′(z j )
e−iϕ(t),

where the phase is

ϕ(t) = −3π

4
− arg
(−iη(z j )) − 2tθ(z j )

− η(z j )

2
log |2tθ ′′(z j )| + 2 arg(δ j ) + arg(R j ).

Here, we have used the fact that |β|2 = η. Denoting

qas(x, t) = −2i
l∑

j=1

|η(z j )|1/2√
2tθ ′′(z j )

eiϕ(t), (53)

then the connection formula (43) and Lemma 6.5 lead to

qoRHP(x, t) = qas(x, t) + O(t−1), t → ∞. (54)
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8 Errors from the Pure @̄-Problem

In this section, we will discuss the error generated from the pure ∂̄-problem of m[2].
Let us denote

E(z) = m[2](m[2]
RHP)

−1, (55)

wherem[2]
RHP denotes the solution to the pure RHP part ofm

[2]. Assuming the existence
(which we will be provided in the next section), and by the normalization condition,
we have

E(z) = 1 + (m[2]
1 − m[2]

RHP,1)z
−1 + O(z−2), z → ∞. (56)

Due to the procedure of localization and separation of the contributions,we can approx-
imate m[2]

RHP by m̂[2], and the error of approximating the potential is of O(t−1) as
t → ∞. Thus, by the Eq. (24),

q(x, t) = qRHP(x, t) + O(t−1) + lim
z→∞ z(E − I ), t → ∞. (57)

Moreover, from this construction [Eq. (55)], there is no jump on the contours� j,k, k =
1, 2, 3, 4, but only a pure ∂̄-problem is left due to the non-analyticity. The ∂̄-problem
reads

∂̄E = EW , (58)

where

W (z) = m[2]
RHP∂̄O(z)(m[2]

RHP)
−1. (59)

From the normalization condition ofm[2]
RHP, we see it is uniformly bounded by c

1−sup R .
And to estimate the errors of recovering the potential, one actually needs to estimate
limz→∞ z(E − I ), where the limit can be chosen along any rays that are not parallel
to R. For simplicity, we will take the imaginary axis. The ∂̄-problem is equivalent to
the following Fredholm integral equation by a simple application of the generalized
Cauchy integral formula:

E(z) = I − 1

π

∫
C

E(s)W (s)

s − z
dA(s). (60)

In the following,wewill show for eachfixed z ∈ C,KW (E)(z) := ∫
C

E(s)W (s)
s−z dA(s) is

bounded and thenby the dominated convergence theorem,wewill show limz→∞ z(E−
I ) = O(t−3/4). First of all, since m[3] is uniformly bounded, upon setting z = z j +
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u + iv, we have

‖W‖∞ �
{

|∂̄E j,k |e−2tθ ′′(z j )uv, z ∈ � j,k, k = 1, 4,

|∂̄E j,k |e2tθ ′′(z j )uv, z ∈ � j,k, k = 3, 6,
, (61)

where 0 ≤ a � b means there exists C > 0 such that a ≤ Cb. Then, we have

KW (E) ≤ ‖E‖∞
∫
C

‖W (s)‖∞
|s − z| dA(s). (62)

We claim the following lemma:

Lemma 8.1 Let � = {s : s = ρeiφ, ρ ≥ 0, φ ∈ [0, π/4]}, and z ∈ �. Then,

∫
�

|u2 + v2|−1/4e−tuv

|u + iv − z| dudv = O(t−1/4). (63)

Proof Since there are two singularities of the integrand at z and (0, 0). In the first case,
set z �= 0, and let d = dist(z, 0). We split � into three parts: �1 ∪ �2 ∪ �3, where
�1 = {s : |s| < d/3} ∩ � , �2 = {s : |s − z| < d/3} ∩ � and �3 = �\(�1 ∪ �2).
In the region �1, |s − z| ≥ 2d/3, and thus

∣∣∣∣
∫

�1

|u2 + v2|−1/4e−tuv

|u + iv − z| dudv

∣∣∣∣ ≤ 3

2d

∫ ∞

0

∫ u

0

e−tuv

(u2 + v2)1/4
dvdu

substituted v = wu

≤ 3

2d

∫ ∞

0

∫ 1

0

e−tu2w

(1 + w2)1/4
u1/2dwdu

≤ 3

2d

∫ ∞

0

∫ 1

0
e−tu2wu1/2dwdu

= 3

2d

∫ ∞

0

1 − e−tu2

tu3/2
du

= 3

2d

1

2
t−3/4

∫ ∞

0

1 − e−u

u5/4
du

= 3

d

(3/4)t−3/4.

(64)
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In the region �2, |s|−1/2 ≤ (2d/3)−1/2, we have

∣∣∣∣
∫

�1

|u2 + v2|−1/4e−tuv

|u + iv − z| dudv

∣∣∣∣ ≤
√

3

2d

∫
�2

e−tuv

((u − x)2 + (v − y)2)1/2
dvdu

≤
√

3

2d

∫ d/3

0

∫ 2π

0
e−t(x+ρ cos(θ))(y+ρ sin(θ))dθdρ

≤ 2π

3

√
3d

2
e−t xy .

While in the region �3,

∣∣∣∣
∫

�3

|u2 + v2|−1/4e−tuv

|u + iv − z| dudv

∣∣∣∣ ≤
∫ ∞

0

∫ u

0
e−tuvdvdu = O(t−1).

Now consider z = 0. We have

∣∣∣∣
∫

�

e−tuv

(u2 + v2)3/4
dA(u, v)

∣∣∣∣ =
∫ ∞

0

∫ u

0

e−tuv

(u2 + v2)3/4
dvdu

=
∫ ∞

0

∫ 1

0

e−tu2w

(1 + w2)3/4u1/2
dwdu

≤
∫ ∞

0

∫ 1

0

e−tu2w

u1/2
dwdu

=
∫ ∞

0

1 − e−tu2

tu5/2
du

=
∫ ∞

0

1 − e−u

tt−5/4u5/4
t−1/2 1

2
u− 1

2 du

= 1

2
t−1/4

∫ ∞

0

1 − e−u

u7/4
du

= 3

8
t−1/4
(1/4).

By assembling all together, the proof is done. ��
Remark 8.2 The essential fact that makes the above true is the rapid decay of the expo-
nential factor in the region. And the lemma also tells us that those mild singularities,
which have rational order growth, can be absorbed by the exponential factor. Back
to our situation, after some elementary transformations (translation and rotation), the
estimation of

∫
C

‖W (s)‖∞
|s−z| dA(s) will eventually reduce to a similar situation discussed

in the above lemma.

Based on Lemma 8.1, we know that when t is sufficiently large, ‖KW‖ < 1 and thus
the resolvent is uniformly bounded, and we obtain the following estimate by taking a
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standard Neumann series, for some sufficiently large t0,

‖E − I‖∞ = ‖KW (1 − KW )−1 I‖∞ ≤ ct−1/4

1 − ct−1/4 ≤ ct−1/4, t > t0. (65)

Now since for each z ∈ � j,k , we have |∂̄E j,k(z)| ≤ c(|z − z j |−1/2 + |R′(u + z j )|),
and apply the dominated convergence theorem, we have

lim
z→∞ |z(E − I )| ≤ 1

π

l∑
j=1

4∑
k=1

‖E‖L∞
∫

� j,k

‖W‖∞ds,

and use Lemma 8.1 again, we will eventually have:

E1 = lim
z→∞ |z(E − I )| = O(t−3/4). (66)

9 Asymptotics Representation

First, we summarize all the steps as following (see Fig. 5):

(1) Initial RHP m[0] = m, see RHP 2.1.
(2) Conjugate initial RHP to obtain m[1] = m[0]δσ3 , see RHP 4.1.
(3) Open lenses to obtain a mixed ∂̄-RHP 5.1.
(4) Approximate the RHP partm[2]

RHP ofm
[2] by removing� j+ 1

2
(see RHP 6.1), local-

ization (see RHP 6.3), reducing the phase function and separating the contributions
(see RHP 6.4). The error term is O(t−1). Note those exponential decaying errors
are absorbed by O(t−1).

(5) Comparing m[2] andm[2]
RHP and computing the error by analysis a pure ∂̄-problem.

The error term is O(t−3/4).

Now by undoing all the steps, we arrive at:

m[0](z) = E(z)m[2]
RHP(z)O

−1(z)δ−σ3 .

From the definition of the lens-opening matrices, it is easy to see (e.g., Dieng et al.
2018, Lemma 3.2) that O(z) = I + o(1/z) as z → ∞ along any straight line except
the real line (that is fine since when we recover the potential, we can choose the limit
of z → ∞ not along the real line.). Also, since δ−σ3 is a diagonal matrix, they do not
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m[0] = m

m[1] = m[0]δσ3

Conjugation

m[2] = m[1]O(z)

Open lenses

Mixed ∂-RHP

∂-Problem m
[2]
RHP

Remove Σj+1/2

m̃[2]

m̂[2]

Localization

m[3]

Reduce phase & separate contributions

Existence

Small norm
(for large t)

E = m[2]
(
m

[2]
RHP

)−1

Error

ErrorO t−1)

O
(
t−3/4

)

Fig. 5 Steps of the ∂̄-steepest method

affect the recovering of the potential. Thus, we obtain

q(x, t) = −2i(m[2]
RH P,1,12 + E1,12)

= qRHP(x, t) − 2i E1,12

by (44), (54)

= qas(x, t) + O(t−1) − 2i E1,12

by (66)

= qas(x, t) + O(t−1) + O(t−3/4)

= qas(x, t) + O(t−3/4),

where qas(x, t) is given by Eq. (53).

Remark 9.1 Note that due to the analysis in section 7, according to Proposition 2.6
and Proposition 2.11 of Deift and Zhou (2003), together with the small norm theory,
the existence and uniqueness of the model RHP implies, via the estimates of the
corresponding Beals–Coifman operators, the existence and uniqueness of RHP 6.4.
Similarly, we obtain the existence and uniqueness of m̃[2], m̂[2] and eventually m[2]

RHP.
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Remark 9.2 From Eq. (53), we know qas is O(t−1/2) as t → ∞ in the region x < 0
and consider the limit along the ray x = −ct for some positive constant c.

10 Fast Decaying Region

In this section and the next section, we will focus only on the case of the defocusing
mKdV flow. In this case, the phase function reads

θ(z; x, t) = x

t
z + czn, n is an odd positive integer.

In the previous sections, we have derived the asymptotic solutions to the defocusing
mKdV flow in the oscillating region, namely along the ray x = −νt, ν > 0, t → ∞.
In this section, we consider the long-time behavior along the ray x = νt, ν > 0, t →
∞, which we call it the fast decaying region as we will soon prove in this region, the
solution decay like O(t−1), which is faster than the leading term in the oscillating
region, i.e., O(t−1/2), as t → ∞.

In the fast decaying region, the phase function enjoys the following properties:

(1) There exits ε = ε(n, ν) > 0 such that ± Im(θ) > 0 in the strips {z : ± Im(z) ∈
(0, ε)}, respectively.

(2) There exits M ∈ (0, 1/ε) such that Im(θ) ≥ nvun−1 for |u| ≥ Mε and Im(θ) ≥
v(1 − (Mε)2) for |u| ≤ Mε. Here z = u + iv.

First, we will formulate the RHP as follows:

Riemann–Hilbert problem 10.1 Given R(z) ∈ H1,1(R), looking for a 2 by 2 matrix-
value function m such that

(1) m+ = m−e−i tθ(z) ad σ3v(z), z ∈ R, where the jump matrix is given by

v(z) =
(
1 − |R|2 −R̄

R 1

)
=
(
1 −R̄
0 1

)(
1 0
R 1

)
; (67)

(2) m = I + O(z−1), z → ∞.

Theorem 10.2 For the above RHP, the solution m enjoys the following asymptotics as
t → ∞:

m1(t) = O(t−1). (68)

where m = I + m1(t)/z + O(z−2), z → ∞.
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Fig. 6 ∂̄-extension for the case of the fast decaying region. Here, we only draw the case when n = 5. For
generic odd n, there are n−1

2 curves of Im θ = 0 in the upper and in the lower half plane

Proof In the light of ∂̄-steepest descent, to open the lens,wemultiple a smooth function
O(z) to m, where O(z) is given by

O(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−R(Re z)e2i tθ(z)

1+(Im z)2
1

)
, z ∈ �1,

(
1 R̄(Re z)e−2i tθ(z)

1+(Im z)2

0 1

)
, z ∈ �∗

1,

I , z ∈ C\(�1 ∪ �∗
1),

where (see Fig. 6)

�1 = {z : Im z ∈ (0, ε)},
�∗

1 = {z : Im z ∈ (−ε, 0)}.

Let us denote �1 = {z : Im z = ε}, see Fig. 6, and let

m̃ = mO, z ∈ C.

Now as usual, we obtain a ∂̄-RHP, due to the exponential decaying of the off-
diagonal term, and the jump matrix of the RHP part will approach I . Hence by a small
norm argument, we know the solution will close to I as z → ∞. Denote the solution
to the pure RHP by m�, and small norm theory leads to m� = I +O(e−c(ε)t ), c(ε) >

0, z → ∞. Next, consider

E = m̃(m�)−1. (69)

By direct computation, one can show E does not have any jump on �1 and it satisfies
a pure ∂̄-problem:

∂̄E = EW , (70)

123



Journal of Nonlinear Science (2022) 32 :10 Page 35 of 46 10

where

W =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0 m�e−2i tθ(z)∂̄(

R̄(Re z)
1+(Im z)2

)(m�)−1

0 0

)
, z ∈ �1,

(
0 0

m�e2i tθ(z)∂̄(
−R(Re z)
1+(Im z)2

)(m�)−1 0

)
, z ∈ �∗

1,

0, z ∈ C\(�1 ∪ �∗
1),

where ∂̄ = 1
2 (∂Re z + i∂Im z).

Since R, R̄ ∈ H1,1, ∂̄(
R̄(Re z)

1+(Im z)2
), ∂̄(

−R(Re z)
1+(Im z)2

) are uniformly bounded by some

nonnegative L2(R) function f (Re z). Note thatm� is uniformly close to I , and setting
z = u + iv, and considering z ∈ �1 first, we have

‖W‖∞ ≤ f (u)e−t Im θ(u,v),∀u ∈ R, v ∈ (0, ε).

By the same procure as the one in section 8, the error of approximating m by the
identity matrix is given by the following integral (since there is only one nontrivial
entry of W ):

� :=
∫ ε

0

∫
R

f (u)e−t Im θdudv. (71)

Split the u into two regions: (1) |u| ≤ Mε, (2) |u| ≥ Mε. And denote them by �1,
�2 respectively. Then, � = �1 + �2. And

�1 ≤
∫ ε

0

∫ Mε

−Mε

f (u)e−tv(1−M2ε2)dudv

by Cauchy−Schwartz

≤ ‖ f ‖L2(R)(2Mε)1/2
1 − e−tε(1−M2ε2)

t(1 − M2ε2)

= O(t−1).

On the other hand,

�2 ≤
∫ ε

0

∫
|u|≥Mε

f (u)e−ntvun−1
dudv

=
∫

|u|≥Mε

f (u)

∫ ε

0
e−ntvun−1

dvdu

≤ t−1‖ f ‖L2(

∫
|u|≥Mε

(
1 − e−ntvun−1

nun−1

)2

du)1/2

≤ t−1‖ f ‖L2
n

n − 2
(Mε)−(n−2)
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= O(t−1).

Similarly, we can prove that for z ∈ �∗
1, we also have the error estimate O(t−1).

Assembling all together, we conclude that the error term isO(t−1), andm1 = O(t−1),
as t → ∞. ��

11 Painlevé Region

In this section, we first derive the Painlevé II hierarchy based on some RHP. Then, we
will connect the long-time behavior of the mKdV hierarchy in the so-called Painlevé
region to solutions of the Painlevé II hierarchy.

11.1 Painlevé II Hierarchy

As mentioned in Ablowitz and Segur (1977), the mKdV equation is can be transferred
to the Painlevé II equation. The authors in Ablowitz and Segur (1977) also suggest the
connectionbetween integrablePDEswithPainlevé equations. InClarkson et al. (2006),
the authors explicitly derived the Painlevé II hierarchy from self-symmetry reduction
of the mKdV hierarchy [see page 59 of Clarkson et al. (2006). And also Clarkson et al.
(1999)]. In this section, we will provide a slight different [as comparing to Clarkson
et al. (1999)] algorithm based on Riemann–Hilbert problems to generate the Painlevé
II hierarchy. Let us denote �(x, z) = xz + c

n z
n , and suppose Y solves the following

RHP:

Y+ = Y−ei�σ3v0e
−i�σ3 , z ∈ �n,

Y = I + O(z−1), z → ∞.

where the contour�n consists of all stokes lines {z : Im�(z) = 0} and v0 is a constant
2 by 2 matrix that is independent of x, z.

Now let Ỹ = Yei�σ3 , and we arrive at a new RHP:

Ỹ+ = Ỹ−v0, z ∈ �n,

Ỹ = (I + O(z−1))ei�σ3 , z → ∞.

Since v0 is constant, it is easily to check, by Louisville’s argument, that both ∂z Ỹ Ỹ−1

and ∂x Ỹ Ỹ−1 are polynomial of z. Hence, we obtain the following two differential
equations:

∂x Ỹ Ỹ
−1 = A(x, z), (72)

∂z Ỹ Ỹ
−1 = B(x, z). (73)
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If we assume

Y = I +
n−1∑
j=1

Y j (x)z
− j + O(z−n), z → ∞, (74)

Y = Y−1 = I +
n−1∑
j=1

Y j (x)z
− j + O(z−n), z → ∞, (75)

then a direct computation shows

A = i[Y1, σ3] + i zσ3,

B = i xσ3 + iczn−1σ3 + iczn−2[Y1, σ3]

+
n−1∑
k=2

iczn−1−k

⎛
⎝Ykσ3 + σ3Y k +

k−1∑
j=1

Yk− jσ3Y j

⎞
⎠ .

Since Yx,z = Yz,x , we have

Az − Bx + [A, B] = 0. (76)

Set

Y j =
(
p j (x) u j (x)
v j (x) q j (x)

)
, j = 1, . . . , n − 2, (77)

where p j , q j , u j , v j are smooth functions of x . To guarantee (76), all the coefficients
of zmust vanish. Those equations can be solved recursively. Eventually, by eliminating
u j , v j , j = 2, . . . , n − 2, and let v1 = u1, we will arrive at a nonlinear ODE of u1,13

which turns out to be a member of the hierarchy of Painlevé II equations . We list the
first few of them:

n = 3 : −8cu3 + cuxx − 4xu = 0,

n = 5 : −24cu5 + 10cu2uxx + 10cuu2x − c

4
uxxxx − 4xu = 0,

n = 7 : −80cu7 + 70cu4uxx + 140cu3u2x − 7cu2uxxxx
2

+
(

−21

2
cu2xx − 14cuxuxxx − 4x

)
u + c

16
uxxxxxx − 35

2
cu2xuxx = 0.

In the current article, we focus only on the odd members. In fact, n = 3 corresponds
to the mKdV equation, n = 5 corresponds to the 5th order mKdV, and so on. In the
following subsection,wewill showhow to connect the long-time asymptotics behavior
of the mKdV hierarchy to the solutions to the Painlevé II hierarchy.

13 Surprisingly, the dependence on p j , q j will disappear.
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11.2 Painlevé Region

Recall the phase functions of the AKNS hierarchy of mKdV type equations are

θ(z; x, t) = xz + ctzn, n is odd. (78)

By the Painlevé region we mean a collection of all the curves x = s(nt)1/n, s �= 0, by

rescaling z → (nt)− 1
n ξ , we have

�(ξ) = sξ + c

n
ξn . (79)

Now the modulus of the stationary phase points of (78) is

|z0| =
∣∣∣− x

ct

∣∣∣
1

n−1 = O
(
t−

1
n

)
,

and however, after scaling, the modulus of the stationary phase points of �(ξ) is

ξ0 = |z0|t 1
n , (80)

which is fixed as t → ∞. A direct computation shows for any odd n, one can always
perform lens opening to the rays {z ∈ R : |z| > |ξ0|}, due to the signature of Re(iθ),
see Fig. 7.

Note that

e−iθ(z) ad σ3v(z) = e−i�(ξ) ad σ3v(ξ)

=
(
1 − |R|2 −R̄e−2i�

Re2i� 1

)

=
(
1 −R̄e−2i�

0 1

)(
1 0

Re2i� 1

)
.

We can deform the contour {z ∈ R : |z| > |ξ0|} as before and get the deformed contour
as follows (see Fig. 8): Fix a positive constant α < π

n ,
14

�0 = {z ∈ R : −ξ0 ≤ z ≤ ξ0},
�1 = {z : z = ξ0 + ρeiα, ρ ∈ (0,∞)},
�2 = {z : z = −ξ0 + ρe−iα, ρ ∈ (−∞, 0)},
�3 = {z : z = −ξ0 + ρeiα, ρ ∈ (−∞, 0)},
�4 = {z : z = ξ0 + ρe−iα, ρ ∈ (0,∞)},

14 Such a choice of α guarantees that the new contours will stay within the regions where the corresponding
exponential term will decay (considering Fig. 7).
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Fig. 7 Signature of Re(iθ). The green region: Re(iθ) > 0 when x < 0; The red region: Re(iθ) > 0 when
x > 0; The yellow region: the overlapping region of red and green; The white region: Re(iθ) < 0. Here,
we only plot the signatures of Re (iθ) for n = 9. Other odd n, the region plot looks very similar (Color
figure online)

ξ0−ξ0

Σ1Σ2

Σ3 Σ4

Σ0

Ω1
Ω2

Ω3

Ω4

Ω5

Ω6

Fig. 8 Contour for ∂̄-RHP

and we define the regions as follows:

�1 = {z : z = ξ0 + ρeiφ, ρ ∈ (0,∞), φ ∈ (0, α)},
�2 = C

+\(�1 ∪ �3),

�3 = {z : z = −ξ0 + ρe−iφ, ρ ∈ (−∞, 0), φ ∈ (−α, 0)},
�4 = {z : z = −ξ0 + ρeiφ, ρ ∈ (−∞, 0), φ ∈ (0, α)},
�5 = C

−\(�4 ∪ �6),

�6 = {z : z = ξ0 + ρeiφ, ρ ∈ (0,∞), φ ∈ (−α, 0)}.
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As before, set the original RHP asm[1] with jump e−iθ(z) ad σ3v(z). After re-scaling
and ∂̄-lenses opening, we set m[2](ξ) = m[1]O(γ ), where the lenses opening matrix
is

O(γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−E+e2i�(γ ) 1

)
, γ ∈ �1 ∪ �3,

(
1 −E−e−2i�(γ )

0 1

)
, γ ∈ �4 ∪ �6,

I , γ ∈ �2 ∪ �5,

(81)

where

E+(γ ) = K(φ)R
(
(nt)−

1
n ξ
)

+ (1 − K(φ))R(ξ̃0(nt)
− 1

n ),

E−(γ ) = E+(γ ),

γ =
{

ξ0 + ρeiφ, if γ ∈ �1 ∪ �6,

−ξ0 + ρeiφ, if γ ∈ �3 ∪ �4,

ξ = Re(γ ),

ξ̃0 =
{

ξ0, if γ ∈ �1 ∪ �6,

−ξ0, if γ ∈ �3 ∪ �4.

Now we arrive at the following ∂̄-RHP:

Mixed ∂̄-Riemann–Hilbert problem 11.1
Looking for a 2 by 2 matrix-valued function m[2] such that

(1) The RHP:
(1.a) m[2](γ ) ∈ C1(R2\�) and m[2](z) = I + O(γ −1), γ → ∞;
(1.b) the jumps on �1 and �2 are e−i�(ξ) ad σ3v+, and the jumps on �3 and �4
are e−i�(ξ) ad σ3v−, where

v=
(
1 R̄
0 1

)
, v+ =

(
1 0
R 1

)
.

The jump on �0 is e−i� ad σ3v((nt)− 1
n ξ),, and the jumps on {z ∈ R : |z| > |ξ0|}

is I .
(2) The ∂̄-problem:

For z ∈ C, we have

∂̄m[2](ξ) = m[2](ξ)∂̄O(ξ). (82)

Again, we will need the following lemma in order to estimate errors from the
∂̄-problem.
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Lemma 11.2 For γ ∈ �1,3,4,6, ξ = Re γ ,

|∂̄E±(γ )| ≤ (nt)−
1
n |(nt)− 1

n (ξ − ξ0)|− 1
2 ‖R‖H1,0 + (nt)−

1
n |R′((nt)−

1
n ξ)|. (83)

Proof For brevity, we only prove for the region �1. Using the polar coordinates, we
have

|∂̄E+(γ )|=
∣∣∣∣ ie

iφ

2ρ
K′(φ)

[
R
(
(nt)−

1
n ξ
)
−R(ξ0(nt)

− 1
n )
]
+K(φ)R′ ((nt)−1

n ξ
)

(nt)−
1
n

∣∣∣∣
by Cauchy−Schwartz inequality

≤
∣∣∣∣∣
‖R‖H1,0 |(nt)− 1

n ξ − ξ0(nt)−
1
n |1/2

γ − ξ0

∣∣∣∣∣+ (nt)−
1
n

∣∣∣R′ ((nt)− 1
n ξ
)∣∣∣

≤ (nt)−
1
n |(nt)− 1

n (ξ − ξ0)|− 1
2 ‖R‖H1,0 + (nt)−

1
n |R′((nt)−

1
n ξ)|.

Similarly, we can prove for other regions. ��
Next, consider a pure RHP m[3] which satisfies exactly the RHP part of ∂̄-

RHP(m[2]). m[3] can be approximated by the RHP corresponding to a special solution
of the Painlevé II hierarchy.15 Since for γ ∈ �1,

∣∣∣(R(ξ(nt)−
1
n ) − R(0)

)
e2i�(γ )

∣∣∣ ≤ |ξ(nt)−
2
n | 12 ‖R‖H1,0e2Re i�(γ )

≤ (nt)−
1
n |Re γ | 12 ‖R‖H1,0e2Re i�(γ ),

it is evident that

‖Re2i� − R(0)e2i�‖L∞∩L1∩L2 ≤ c(nt)−
1
n . (84)

Let m[4] solves the RHP formed by replacing R(±ξ0(nt)−1/n) and its complex con-
jugate in the jumps of m[3] along �k, k = 1, 2, 3, 4 by R(0) and R̄(0) respectively.
Then, by the small norm theory, the errors between the corresponding potential are
given by

error3,4 = lim
γ→∞ |γ (m[4]

12 − m[3]
12 )|

≤ c
∫

�

|(R(Re(s)(nt)−
1
n ) − R(0))e2i�(s)|ds

≤ c(nt)−
1
n .

Then since now the jumps are all analytic, we can perform an analytic deformation
and arrive at the green contours as show in Fig. 9. Let us denote the new RHP by
m[5](γ ), and we arrive at the following RHP:

15 As for the existence of the RHP m[3], which is not completely trivial due to the fact that solutions to the
Painlevé II equations have poles, we refer the readers to the book (Fokas et al. 2006) for the details
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|ξ0|−|ξ0|

Σ1Σ[5]
1Σ2 Σ[5]

2

Σ3 Σ[5]
3 Σ4Σ[5]

4

Fig. 9 Contour for m[4](Green part) (Color figure online)

Riemann–Hilbert problem 11.3 Looking for a 2 by 2 matrix-valued function m[5] such
that

(1) m[5] is analytic off the contours ∪k=1,2,3,4�
[5]
k ;

(2) m[5]
+ = m[5]

− v[5], z ∈ ∪k=1,2,3,4�
[5]
k , where

v[5] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

R(0)e2i�(γ ) 1

)
, γ ∈ �

[5]
1 ∪ �

[5]
2 ,

(
1 R̄(0)e−2i�(γ )

0 1

)
, γ ∈ �

[5]
3 ∪ �

[5]
4 .

Here the new contours (see Fig. 9) are

�
[5]
1 = {z : z = ρeiα, ρ ∈ (0,∞)},

�
[5]
2 = {z : z = ρe−iα, ρ ∈ (−∞, 0)},

�
[5]
3 = {z : z = ρeiα, ρ ∈ (−∞, 0)},

�
[5]
4 = {z : z = ρe−iα, ρ ∈ (0,∞)}.

Then according to the previous subsection, the (1, 2) entry of the solution m[5],
similarly the solution m[4], is the solution to the Painlevé II hierarchy, i.e.,

m[4]
12 (γ ) = m[5]

12 (γ ), (85)

Hence we have P I I
k (s) = limγ→∞ γm[5]

12 where P I I
k solves the kth equation in the

Painlevé II hierarchy, where k = n−1
2 .

Now let us consider the error generated from the ∂̄-extension. Recall that the error
E satisfies a pure ∂̄-problem:

∂̄E = EW ,

W = m[3]∂̄O(m[3])−1.
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As before, the ∂̄-equation is equivalent to an integral equation which reads

E(z) = I + 1

π

∫
C

E(s)W (s)

z − s
dA(s) = I + K(E).

As before, we can show that the resolvent always exists for large t . So we only need
to estimate the true error which is: limz→∞ z(E − I ). In fact, we have

lim
z→∞ |z(E − I )| = |

∫
C

EWds|

≤ c‖E‖∞
∫

�

|∂̄O|ds.

For the sake of simplicity, we only estimate the integral on the right hand side in the
region of the top right corner. Note there is only one entry which is nonzero in ∂̄O ,
which is one of the E± and we split the integral into two parts in the obvious way, i.e.,

∫
�

|∂̄O|ds ≤ I1 + I2

=
∫

�

(nt)−
1
2n |Re s − ξ0|‖R‖H1,0e2Re i�(s)ds

+
∫

�

(nt)−
1
nt |R′((nt)−

1
n s)|e2Re i�(s)ds.

As we know from previous sections, eRe 2i�(s) ≤ ce−2|�′′(ξ0)|uv in the region {z =
u + iv : u > ξ0, 0 < v < αu} for some small α , where s = u + iv + ξ0. Then, we
have

I1 ≤ (nt)−
1
2n

∫
�

|Re s − ξ0|−1/2e−cuvdudv

≤ (nt)−
1
2n

∫ ∞

0

∫ αu

0
u−1/2e−cuvdudv

≤ C(nt)−
1
2n

∫ ∞

0

1 − e−2α|�′′(ξ0)|

u3/2
du

= O
(
(nt)−

1
2n

)
,
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and

I2 ≤ (nt)−
1
n

∫
|R′((nt)−

1
2n Re s)|e−cuvdudv

by Cauchy−Schwartz inequality

≤ (nt)−
1
n ‖R‖H1,0

∫ ∞

0
(

∫ ∞

αv

e−2cuvdu)1/2dv

≤ (nt)−
1
n ‖R‖H1,0

∫ ∞

0

e−cαv2

√
2αcv

dc

= O((nt)−
1
n ).

Thus, we arrive at

∂̄Error = O((nt)−
1
2n ). (86)

And we undo all the deformations, we obtain

m[1] ((nt)− 1
n γ
)

= m[2](γ )O−1(γ )

=
⎛
⎝1 +

O
(
t

1
2n

)
γ

⎞
⎠m[3](γ )O−1(γ )

=
⎛
⎝1 +

O
(
t

1
2n

)
γ

⎞
⎠
⎛
⎝1 +

O
(
t

1
2n

)
γ

⎞
⎠m[4](γ )O−1(γ )

=
⎛
⎝1 +

O
(
t

1
2n

)
γ

⎞
⎠
⎛
⎝1 +

O
(
t

1
2n

)
γ

⎞
⎠m[5](γ )O−1(γ ).

It can also be rewritten in terms of the variable z:

m[1](z) =
(
1 + O(t−1/(2n))

z(nt)1/n

)
m[5]((nt)1/nz) + O(z−2), z → ∞.

Since m[5] corresponds to the RHP for the Painlevé II hierarchy, we have

m[5](γ ) = I + m[5]
1 (s)

γ
+ O(γ −1),

where γ = z(nt)1/n .
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Thus,

m[1](z) =
(
1 + O(t− 1

2n )

z(nt)1/n

)(
1 + m[5]

1 (s)

z(nt)1/n
+ O(z−2)

)

= I + m[5]
1 (s)

z(nt)1/n
+ O(t− 1

2n )

z(nt)1/n
+ O(z−2).

Since m[5]
1 (s) is connected to solutions of the Painlevé II hierarchy, we conclude that

q(x, t) = lim
z→∞ z(m[1] − I )

= (nt)−
1
n un(x(nt)

− 1
n ) + O(t−

3
2n ),

where un solves the n−1
2 th equation of the Painlevé II hierarchy. The odd integer n

corresponds to the n−1
2 th member in the mKdV hierarchy.

Remark 11.4 As for the asymptotics for the Painlevé II equation, we refer the readers
to the classical book (Fokas et al. 2006). There are also some recent works related to
Painlevé II hierarchy, see for example Miller and Sheng (2017), Claeys et al. (2010)
and Cafasso et al. (2019).
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