
Nonlinear Dyn (2025) 113:21725–21741
https://doi.org/10.1007/s11071-025-11268-z

RESEARCH

Integrability characteristics and exact solutions of an
extended (3 + 1)-dimensional variable-coefficient shallow
water wave model

Yi Wang · Xing Lü · Wen-Xiu Ma

Received: 3 March 2025 / Accepted: 17 April 2025 / Published online: 27 May 2025
© The Author(s), under exclusive licence to Springer Nature B.V. 2025

Abstract This paper is concerned with an extended
(3+1)-dimensional shallow water wave equation with
variable coefficients,which is used to describe the inter-
action of nonlinear waves in ocean dynamics, shal-
low water waves, etc. Hereby, it is of further value
to investigate the integrability characteristics of this
model. Firstly, we conduct the Painlevé analysis and
find it can pass the Painlevé test. Then, the one-
and two-soliton solution are obtained by virtue of the
Hirota bilinear method. Bäcklund transformation, Lax
pair and infinitely many conservation laws are derived
through theHirota bilinearmethod andBell polynomial
approach. Particularly, we generate two type of inter-
action solutions in terms of a combination of quadratic
function, exponential function and trigonometric func-
tion, namely, the lump-kink solution and the periodic
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lump solution. Finally, dynamics characteristics and
evolution behaviors are exhibited for the obtained solu-
tion waves through particular plots with proper choices
of different values for the parameters.
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1 Introduction

Nonlinear evolution equations (NLEEs) are used to
simulate a variety of frequent phenomena in the phys-
ical world. The equations have been used in numerous
fields, including fluids mechanics, condensed matter
physics, atmospheric physics, and a variety of scien-
tific fields [1–10]. The dynamics and derivation of exact
solutions for NLEEs play a significant role in the the-
ory of solitons. There are many efficient ways to find
the exact solutions as the long wave limit method [11],
the (G ′/G)-expansion [12], the Hirota bilinear method
[13], the tanh-coth [14], the exp-function [15], the
Wronskian formulation [16]. These techniques allow
for the calculation of NLEEs solutions in many dif-
ferent forms. The Hirota bilinear method is a simple
and direct method that has been widely and success-
fully used to solve NLEEs and obtain their multiple
soliton solutions, lump solutions, interaction solutions,
Bäcklund transformations (BTs) and so on [17,18].
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Shallow water wave equations are one of the impor-
tant models of NLEEs, which have been used to sim-
ulate the dynamic behavior of water wave propagation
in the field of oceanography and the atmosphere [19].
In the shallow water wave equations, the water depth is
substantially less than the wavelength of the free sur-
face disturbance [20]. The shallow water wave equa-
tions, along with their exact solutions, serve as power-
ful tools for investigating various aspects of water wave
dynamics, for understanding internal waves within the
ocean and gor studying the characteristics and interac-
tions of waves near beaches, such as velocity, wave-
length and amplitude. Studying these exact solutions
can reveal the essential phenomena associated with
nonlinear waves, including their propagation charac-
teristics, interactions, stability, and responses to dis-
turbances [21–24]. In 1990, Ref. [25] has discussed a
(2 + 1)-dimensional shallow water wave equation, is
shown to be integrable and has an equivalent Lax repre-
sentation. The symmetry reductions and exact solutions
for two cases of the (2+1)-dimensional shallow water
wave equation have been studied by Ref. [26]. Ref.
[27] has obtained the Grammian and Pfaffian solutions
for a (3 + 1)-dimensional generalized shallow water
equation in the Hirota bilinear form. The lump-type
solutions and their interaction solutions with one- or
two-stripe solutions have been generated and the ana-
lyticity and localization of the resulting solutions in
the space have been analyzed [28]. And Ref. [29] has
obtained spatiotemporal breather soliton solutions and
exact extended breather wave solutions byBell polyno-
mial method for the shallow water equation with vari-
able coefficients.

Ref. [30] has studied two new extended (3+1)-
dimensional shallow water wave equations with con-
stant coefficients and time-dependent coefficients.
Active researches on the equations have been done.
For the constant-coefficient equation, the hyperbolic
cosine-function solution and cosine-function solution
have been obtained and five linear superposition for-
mulas have been proved [31]. Ref. [32] has investi-
gated rational and exponential traveling wave solu-
tions to obtain kink and singular kink solitons. Based
on the polynomial-expansion method and the Hirota
method, travelling-wave, mixed-lump-kink andmixed-
rogue-wave-kink solutions have been obtained [33].
In addition, an auto-Bäcklund transformation for the
variable-coefficient equation has been derived in Ref.
[34], the breather and lump wave solutions have been

analyzed [35], and the similarity reductions have been
constructed out [36].

This paper will investigate the extended (3 + 1)-
dimensional variable-coefficient shallow water wave
equation:

uyt + α1(t)uxxxy + βα1(t)(uxy)x + γα1(t)uxx

+ α2(t)uyy + α3(t)uxy + α4(t)uyz = 0, (1)

where u = u(x, y, z, t) are analytic functions of the
three scaled spatial variables x , y, z and time vari-
able t . The functions αi (t) (i = 1, 2, 3, 4) demon-
strate the influence of time-varying disturbances on dis-
persion along distinct spatial directions [37]. Models
incorporating time-dependent variable coefficients are
uniquely equipped to capture the temporal evolution
of a system. This capability enables them to track how
various factors within the system develop and inter-
act over time, rather than being confined to spatial
variations alone. Additionally, the variable coefficients
and the random constants β, γ represent bit deeper
physical meaning and more possible cases in nonlin-
ear shallow water wave. Equation (1) includes several
key features: nonlinear terms, dispersion effects, and
mass and energy conservation.It is a simulation tool
that is applied to the propagation of water waves in dif-
ferent scenarios, including floods, tsunami prediction,
weather simulations, tidal waves, river and irrigation
flows [38–40].

Consider the transformation

u = 6

β
(ln f )x , (2)

Eq. (1) has been converted into the following bilinear
form

(DyDt + α1(t)D
3
x Dy + γα1(t)D

2
x

+ α2(t)D
2
y + α3(t)Dx Dy

+ α4(t)DyDz) f · f = 0, (3)

with the D-operator defined as,

Dn1
x Dn2

t Dn3
y Dn4

z ( f · g)
=

( ∂

∂x
− ∂

∂x ′
)n1( ∂

∂t
− ∂

∂t ′
)n2

( ∂

∂y
− ∂

∂y′
)n3
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( ∂

∂z
− ∂

∂wz′
)n4

f (x, t, y, z)g(x ′, t ′, y′, z′)
∣∣∣
x ′=x,t ′=t,y′=y,z′=z,

where f (x, y, z, t) and g(x ′, t ′, y′, z′) are differen-
tiable functions, and n1, n2, n3 and n4 are nonnegative
integers.

We will pay attention to the integrability of Eq. (1)
via applying the Painlevé analysis, Hirota bilinear
method and Bell polynomials approach. The paper is
organized as follows. In Sect. 2, the Painlevé analysis
will prove that Eq. (1) possesses the Painlevé prop-
erty. In Sect. 3, we will derive the soliton solutions
through the Hirota bilinear method including one- and
two-soliton ones. In Sect. 4, the Lax pair and two kinds
of BT, including the bilinear BT and Bell-polynomial-
typed BT, will be constructed via the Hirota bilinear
method and Bell polynomials. In Sect. 5, the infinite
conservation laws will be derived with the aid of the
Lax pair. In Sect. 6, the lump-kink solution and peri-
odic lump solutions for Eq. (1) will be constructed and
analyzed, respectively. Finally, Sect. 7 wil give some
discussions.

2 Painlevé analysis

A NLEE has the Painlevé property when its general
solution is single-valued about all the movable singu-
larity manifold [41,42]. We assume that Eq. (1) has the
solutions as the Laurent expansions about a singular
manifold φ,

u =
∞∑
j=0

u jφ
j+α, (4)

where α is a negative integer, φ(x, y, z, t) and u j

(x, y, z, t) are analytic functions near a singularity
manifold φ(x, y, z, t) = 0. Using the leading order
analysis, we assume the leading terms in the form of

u ∼ u0φ
α, (5)

and obtain α = −1 and u0 = 6
β
φx .

Substituting

u ∼ u0φ
−1 + u jφ

j−1 (6)

into Eq. (1) and make the coefficient of φ j−5 to zero,
leading to

( j + 1)( j − 1)( j − 4)( j − 6) α1(t)u jφyφ
3
x = 0. (7)

It can obtain that j = −1, 1, 4, 6 are the resonance
points from Eq. (7). The resonance at j = −1 corre-
sponds to the arbitrariness of φ, which describes the
singular hypersurface. By computation, u2, u3 and u5
can be expressed explicitly, u1, u4 and u6 are arbitrary
functions, which shows that Eq. (1) passes the Painlevé
test and hence possess the Painlevé integrability.

3 Soliton solutions

There are many effective methods for solving soliton
solutions. In Ref. [43], a series of optical soliton solu-
tions were obtained by The generalized Kudryashov
method. the Exp(−φ(ξ))-expansion method in Ref.
[44] is practical for the determination of soliton solu-
tions of high-dimensional equations with conformable
time fractional derivative. By applying the general-
ized auxiliary equation method [45], a series of soliton
solutions are generated for the derived equations. New
soliton solutions can also be obtained from the auto-
Bäcklund transformation derived from the homoge-
nous balance technique [46]. We will focus on the
soliton solutions including one- and two-soliton ones
with the Hirota bilinear method. For obtaining the one-
soliton solution, f is given by

f = 1 + eη1 , (8)

where η1 = p1x + q1y + r1z + 	1(t) + η01, p1, q1, r1
and η01 are constants, and the dispersion relation is

	1(t) + p1

∫ (
p1(p1 + γ

q1
)α1(t)

+ α3(t)

)
dt + q1

∫
α2(t) dt

+ r1

∫
α4(t) dt = 0. (9)

Based on the transformation (2), the one-soliton solu-
tion to Eq. (1) is shown as

u = 6p1
β

ep1x+q1y+r1z+	1(t)+η01

1 + ep1x+q1y+r1z+	1(t)+η01
. (10)
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Fig. 1 One-soliton solution (10) with β = 3, γ = 2, α1(t) = cos(t), α2(t) = t, α3(t) = cos(t) sin(t), α4(t) = sin(t), t = π,

p1 = 1, 11 = −1, r1 = 2: a three-dimensional plots and density plots in the (x, y)-plane; b in the (x, t)-plane; c in the (y, t)-plane

Fig. 2 Two-soliton solutions (12) with β = 3, γ = 2, α1(t) = t, α2(t) = t2, α3(t) = t2 + t, α4(t) = 2t, p1 = 1, p2 = 3, q1 =
r2 = −1, r1 = q2 = 2: a t = −2; b t = 0; c t = 3

Assuming that

f = 1 + eη1 + eη2 + a12e
η1+η2 ,

ηi = pi x + qi y + ri z + 	i (t) + η0i (i = 1, 2), (11)

the two-soliton solution to Eq. (1) is derived as

u = 6

β

p1eη1 + p2eη1 + a12(p1 + p2)eη1+η2

1 + eη1 + eη1 + a12eη1+η2
,

a12 = −3 p1 p2q1q2(q1 − q2)(p1 − p2) + γ (p1q2 − q1 p2)
2

−3 p1 p2q1q2(q1 + q2)(p1 + p2) + γ (p1q2 − q1 p2)2
,

(12)

where	i (t) = −pi
∫ (

pi (pi+ γ
qi

)α1(t)+α3(t)

)
dt−

qi
∫

α2(t) dt−ri
∫

α4(t) dt , pi , qi , ri and η0i (i = 1, 2)
are constants.

Figures 1 and 2 present a visual analysis of the
one-soliton (10) and two-soliton (12) solutions, respec-
tively, through three-dimensional plots and correspond-
ing density plots. Figures 1a reveals spatial structure
and amplitude, which is maintained at 2. The plot high-
lights the kink soliton’s distinct shape and the distribu-
tion of its density across the (x, y)-plane. The veloc-
ity of one-soliton solution is given by (vx = −t +
sin(t)(cos(t)+2)−cos(t), vy = −vx ). Figures 1b and
c show the plots in the (x, t)- and (y, t)-planes, respec-
tively, offering a temporal perspective on the soliton’s
propagation. For the two-soliton solution, the velocity
of the two solitary waves is (vx = 4t, vy = −4t) and

(vx = 5t2+37t
3 , vy = 5t2+37t

2 ). The interaction gener-
ates platforms resembling steps with distinct heights,
characteristic of kink solitons interactions.
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Fig. 3 The propagation of
the one-soliton solution (10)
and the two-soliton
solutions (12) a Time
evolution plot of the
one-soliton solution
(10); b Characteristic lines
of the two-soliton solutions
(12) at corresponding time

Figures 3 show the propagation of the one-soliton
(10) and the two-soliton (12). It can be seen from the
time evolution plot that the single kink wave always
maintains its amplitude. The Angle of the correspond-
ing characteristic lines of the two kink waves does not
change before and after the collision, which means that
the shape of the kink waves is unchanged. Thus, inter-
actions between solitons result in elastic collisions.

4 Bäcklund transformation and Lax pair

By establishing a relationship between binary Bell
polynomials and Hirota bilinear operators, Bell-
polynomial-typedBTs canbe effectively converted into
bilinear forms. This transformation process is pivotal
for advancing the study and application of nonlinear
dynamical systems. [47]. In this section, we will con-
struct BTs and Lax pair for Eq. (1) via the Hirota bilin-
ear method and Bell polynomials.

4.1 Bilinear BT and Lax pair

In this subsection, we construct the bilinear BT for
Eq. (1). First of all, we list several bilinear identities
as follows:

[DyDt f · f ] f ′2 − f 2[DyDt f
′ · f ′]

= 2Dy(Dt f · f ′) · f f ′,

[D2
x f · f ] f ′2 − f 2[D2

x f
′ · f ′]

= 2Dx (Dt f · f ′) · f f ′,

[Dx Dy f · f ] f ′2 − f 2[D2
x f

′ · f ′]
= 2Dx (Dy f · f ′) · f f ′,

[D3
x Dy f · f ] f ′2 − f 2[D3

x Dy f
′ · f ′]

= 2Dy(D
3
x f · f ′) · f f ′

− 6Dx (Dx Dy f · f ′) · (Dx f · f ′),
Dx (Dy f · f ′) · f f ′ = Dy(Dx f · f ′) · f f ′,
Dx (Dx f · f ′) · f f ′ = −Dx ( f f

′)(Dx f · f ′). (13)

Theorem 1 If f is a solution of Eq. (3) and satisfies
the following relationships,

B1 f · f ′ = (Dt + α1(t)D
3
x + α2(t)Dy

+ α3(t)Dx + α4(t)Dz + μ1(t)) f · f ′,
B2 f · f ′ = (3Dx Dy + γ + μ2Dx ) f · f ′,

where μ1(t) is undetermined function and μ2 is an
arbitrary constant, f and f ′ are real functions of vari-
ables x, y, z and t. Then, f ′ is also a solution of Eq. (3)
and B j ( j = 1, 2) are the bilinear Bäcklund transfor-
mation of Eq. (1).

Proof Considering the equation

P = [(DyDt + α1(t)D
3
x Dy + γα1(t)D

2
x

+α2(t)D
2
y+α3(t)Dx Dy+α4(t)DyDz) f · f ] f ′2

− f 2[(DyDt + α1(t)D
3
x Dy + γα1(t)D

2
x

+ α2(t)D
2
y + α3(t)Dx Dy + α4(t)DyDz) f

′ · f ′],
(14)

123



21730 Y. Wang et al.

and setting P = 0. Using identities (13), we have

P = 2Dy[(Dt + α1(t)D
3
x + α2(t)Dy + α3(t)Dx

+ α4(t)Dz) f · f ′] · f f ′

− 2α1(t)Dx [(3Dx Dy + γ ) f · f ′] · (Dx f · f ′),
= 2Dy[(Dt + α1(t)D

3
x + α2(t)Dy + α3(t)Dx

+ α4(t)Dz + μ1(t)) f · f ′] · f f ′

− 2α1(t)Dx [(3Dx Dy + γ

+ μ2Dx ) f · f ′] · (Dx f · f ′),
= 2Dy[B1 f · f ′] · f f ′

− 2α1(t)Dx [B2 f · f ′] · (Dx f · f ′). (15)

So the bilinear BT for Eq. (1) is
⎧⎪⎨
⎪⎩

(Dt + α1(t)D
3
x + α2(t)Dy + α3(t)Dx

+ α4(t)Dz + μ1(t)) f · f ′ = 0,

(3Dx Dy + γ + μ2Dx ) f · f ′ = 0.

(16)

This completes the proof. ��
According to the rational transformation ψ = f ′

f

and u = 6
β
(ln f )x , Eq. (16) is equivalent to

⎧⎪⎨
⎪⎩

ψt + α1(t)ψxxx + βα1uxψx + α2(t)ψy

+ α3(t)ψx + α4(t)ψz + μ1(t) = 0,

3ψxy + βuyψ + γψ + μ2ψx = 0.

(17)

Introducing two linear differential operators L1 and L2,
we can cast Eq. (17) into
⎧⎪⎨
⎪⎩

L1(ψ) = ∂t + α1(t)∂x
3 + βα1ux∂x + α2(t)∂y

+ α3(t)∂x + α4(t)∂z + μ1(t) = 0,

L2(ψ) = 3∂xy + βuy + γ + μ2∂x = 0,

(18)

Actually, the compatibility condition [L1, L2] =
L1L2 − L2L1 = 0, leads to

(
uyt − α1(t)uxxxy + βα1(t)(uxy)x

+ γα1(t)uxx + α2(t)uyy

+ α3(t)uxy + α4(t)uyz
)
βψ = 0, (19)

and the linear operators form the Lax pair of Eq. (1).

4.2 Bell-polynomial-typed BT

Considering f = f (x1, x2, . . . , xs) is a C∞ multi-
variable function and the multi-dimensional general-
ization with the variables fr1x1,r2x2,...,rs xs = ∂

r1
x1∂

r2
x2

· · · ∂rsxs f , the multi-dimensional Bell polynomials is
defined as

Yk1x1,k2x2,...,ks xs ( f ) ≡ Yk1,k2,...,ks ( fr1x1,r2x2,...,rs xs )

= e− f ∂k1x1 ∂
k2
x2 · · · ∂ksxs e f , (20)

where ki are arbitrary integers and ri = 0, . . . , ki (1 ≤
i ≤ s). With the new C∞ functions v = v(x1, x2,
. . . , xs) and w = w(x1, x2, . . . , xs), the multi-
dimensional binary Bell polynomials will be shown as

Yk1x1,k2x2,...,ks xs (v, w)

≡ Yk1,k2,...,ks ( f )∣∣∣∣
fr1x1,r2x2,...,rs xs =

⎧
⎨
⎩

vr1x1,r2x2,...,rs xs , if r1 + · · · + rs is odd,

wr1x1,r2x2,...,rs xs , if r1 + · · · + rs is even,

(21)

When
∑s

i=1 ki is even, in the special case of v = 0 and
w = q, even-order Y-polynomials are defined as the
P-polynomials

Pk1x1,k2x2,...,ks xs (q)

= Yk1x1,k2x2,...,ks xs (0, q). (22)

when q = q(x, y), the P-polynomials are

P2x (q) = qxx , Px,y(q) = qxy,

P3x,y(q) = q3x,y + 3q2xqxy, . . . (23)

Setting v = ln( F
G ) and w = ln(FG), the bilinear

term (FG)−1Dk1
x1D

k2
x2 · · · Dks

xs F · G can be written as
the Bell polynomial

Yk1x1,k2x2,...,ks xs (v,w)

= (FG)−1Dk1
x1D

k2
x2 · · · Dks

xs F · G, (24)

where
∑s

i=1 ki ≥ 1. Specifically, by substituting F =
G into formula (24), we obtain

Pk1x1,k2x2,...,ks xs (q = 2ln(F))

= (F)−2Dk1
x1D

k2
x2 · · · Dks

xs F · F. (25)

Setting u = cqx , substituting it into Eq. (1) and
integrating twice with respect to x , Eq. (1) is converted
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into the P-polynomials form

E(q) = qyt + α1(t)qxxxy + 3α1qxxqxy + γα1qxx

+ α2(t)qyy + α3(t)qxy + α4(t)qyz

= Py,t (q) + α1(t)P3x,y(q) + γα1P2x (q)

+α2(t)P2y(q)+α3(t)Px,y(q)+α4(t)Py,z(q)

= 0, (26)

with the assumption c = 3
β
. In the case of q = 2ln f ,

Eq. (26) is equivalent to the bilinear equation (3). Set-
ting two new variables v = q ′−q

2 = ln g
f , w = q ′+q

2 =
ln(g f ), where q ′ = 2lng is another solution to Eq. (26).

The so-called two-field condition between q and q ′
can be derived as

E(q ′) − E(q) = (q ′ − q)yt + α1(t)(q
′ − q)xxxy

+ 3α1(t)

2

[
(q ′ − q)xx (q

′ + q)xy

+ (q ′ − q)xy(q
′ + q)xx

]

+ γα1(t)(q
′ − q)xx + α2(t)(q

′ − q)yy

+ α3(t)(q
′ − q)xy + α4(t)(q

′ − q)yz

= 2vyt + 2α1(t)v3x,y + 6α1(t)(vxxwxy

+ vxywxx ) + γα1(t)vxx + α2(t)vyy

+ α3(t)vxy + α4(t)vyz

= 2∂y
(Yt (v,w) + α1(t)Y3x (v,w)

+ α2(t)Yy(v,w) + α3(t)Yx (v,w)

+ α4(t)Yz(v,w) + μ1(t)
)

− 6α1(t)Wronskian[Yx,y(v,w)

+ γ

3
,Yx (v,w)]

= 0, (27)

where μ1(t)is a function of t .
Taking 3Yx,y(v,w) + γ = −μ2Yx (v,w), where

μ2 is an constant. Thus, the Bell-polynomial-typed BT
for Eq. (1) is

⎧
⎪⎨
⎪⎩

Yt (v,w) + α1(t)Y3x (v,w) + α2(t)Yy(v,w)

+α3(t)Yx (v,w)+α4(t)Yz(v,w)+μ1(t)=0,(28a)

3Yx,y(v,w) + γ + μ2Yx (v,w) = 0, (28b)

which can lead to the bilinear BT (16).

5 Infinite conservation laws

The conservation laws are basic laws which make sure
givenphysical quantities donot change in time. Further,
conservation laws gives a way to prove the integrabil-
ity of NLEEs and conduct some important analysis of
solutions [48]. In this section, we will use the binary
Bell polynomials to derive infinite conservation laws
of Eq. (1).

By introducing potential function η = vx , the Y-
polynomial (28a) and (28b) become

ηt + α2(t)ηy + α4(t)ηz

+ (α1(t)ηxx + 3α1(t)ηηx + βα1(t)ηux

+ α1(t)η
3 + α3(t)η)x = 0, (29)

3ηy + βuy + 3∂−1
x ηy + γ + μ2η = 0. (30)

Substituting

η = ε +
∞∑
n=1

In(u, ux , . . .)ε
−n, μ2 = −γ ε−1 (31)

into Eq. (30) and setting the coefficients of the each
power of ε be zero, the recurrence relationships of con-
servation laws density In are obtained

I1 = −β

3
ux ,

I2 = β

3
uxx ,

I3 = −β

3
uxxx − β2

9
∂−1
y (uxuy)x − βγ

9
∂−1
y uxx ,

. . . ,

In+1 = −In −
n∑

i=1

∂−1
y (Ii∂

−1
x In−i,y)x

+ γ

3
∂−1
y In−1,x , (n = 2, 3, . . .). (32)

According to Eq. (29), the infinite conservation laws
are obtained

Ln,t + Mn,x + Nn,y + Kn,z = 0, n = 1, 2, . . . ,
(33)
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where the conversed densities Ln (n = 1, 2, . . .) are
represented by In

Ln = In, n = 1, 2, . . . . (34)

The first fluxes Mn (n = 1, 2, . . .) are

M1 = −α1(t)
β

3
uxxx − α3(t)

β

3
ux

− α1(t)
β2

3
∂−1
y (uxuy)x

− α1(t)
βγ

3
∂−1
y uxx ,

M2 = α1(t)
β

3
uxxxx + α3(t)

β

3
uxx

+ α1(t)
β2

3
∂−1
y (uxuy)xx

+ α1(t)
βγ

3
∂−1
y uxxx ,

. . . ,

Mn = α1(t)In,xx + 3α1(t)In+1,x

+ 3α1(t)
n∑

i=1

Ii In−i,x

+ (βα1(t)ux + α3(t))In + 3α1(t)In+2

+ 3α1(t)
n+1∑
j=1

I j In+1, j

+ α1(t)
n∑

k=1

( n−k∑
l=1

Ik Il In−k−l

)
, n = 3, 4, . . . ,

(35)

the second fluxes Nn (n = 1, 2, . . .) are

Nn = α2(t)In, n = 1, 2, . . . , (36)

and the third fluxes Kn (n = 1, 2, . . .) are

Kn = α4(t)In, n = 1, 2, . . . . (37)

We present recursion formulas (34)–(37) for gener-
ating an infinite sequence of conservation laws. And
the relations between the first two conservation laws
and Eq. (1) are given by

L1,t + M1,x + N1,y + K1,z

= −β

3
∂x∂

−1
y (uyt + α1(t)uxxxy

+ βα1(t)(uxy)x + γα1(t)uxx + α2(t)uyy

+ α3(t)uxy + α4(t)uyz)

= 0, (38)

L2,t + M2,x + N2,y + K2,z

= β

3
∂2x ∂

−1
y (uyt + α1(t)uxxxy

+ βα1(t)(uxy)x + γα1(t)uxx + α2(t)uyy

+ α3(t)uxy + α4(t)uyz)

= 0. (39)

Refs. [49–51] utilize Noether’s theorem and the
Euler-Lagrange equations to derive conservation laws
for several types of equations with constant coeffi-
cients, in which the densities and fluxes of the con-
servation laws are related to the constant coefficients.
For the variable coefficient shallow water wave equa-
tion (1) presented in this paper, we first obtained the
Bell-polynomial-typed BT and used binary Bell poly-
nomials to derive the infinite conservation laws. The
results indicate that the three types of fluxes Mn , Nn ,
Kn vary with the changes in the variable coefficient
functions αi (t) (i = 1, 2, 3, 4), and this dependency
highlights the complex integrability characteristics of
the equation, which is conducive to gaining a further
understanding of its structural properties. In conclu-
sion, Eq. (1) is completely integrable in the sense that
it admits bilinear BT, Bell-polynomial-typed BT, Lax
pair and infinite conservation laws.

6 Interaction solutions

In the process of studying nonlinear evolution equa-
tions, the combination of quadratic functions with
exponential, trigonometric, or hyperbolic functions is
used to explain the nature of the collision between kink,
lump, rogue, and periodic waves. This approach helps
produce solutions such as lump-kink, rogue-kink, peri-
odic solitons, periodic lump, and periodic rogue-kink
interactions [52,53]. In this section, we will use test
functions to construct the interaction solutions, includ-
ing lump-kink and periodic lump solutions for Eq. (1),
which will be computed explicitly through symbolic
computations using Maple.
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Fig. 4 The plots of the lump-kink solutions (42) for z = 1 at times a1 t = 0; a2 t = 1; a3 t = 1.8; a4 t = 3; b Time evolution plot

6.1 Lump-kink solution

Wewill investigate the interaction between a lump solu-
tion and a kink soliton for Eq. (1), by taking the function
f in the following form

f = k2 + h2 + a13(t)e
η + a14(t), (40)

with k = a1x + a2y + a3z + a4(t), h = a5x + a6y +
a7z+a8(t) and η = a9x+a10y+a11z+a12(t), where
ai (i = 1, 2, 3, 5, 6, 7, 9, 10, 11) are real parameters
to be determined, ai (t) (i = 4, 8, 12, 13, 14) are func-
tions and a14(t) > 0. Substituting Eq. (40) into Eq. (3),
we obtain a set of constraining equations for parameters

{
a1 = 0, ai = ai (i = 3, 5, 7, 9, 10, 11), a12(t)

= a12(t), a2 = a5 a10Q

2 a9 γ
, a6 = a10 a5W

2 a9 γ
,

a4(t) = −
∫ t

0

(−Qα1 (t) a5 a92γ + Qα2 (t) a5 a102

2 a10 a9 γ

+ a3α4(t)

)
dt + δ1,

a8(t) = −
∫ t

0

(
a92a5γ α1(t)W + a5a210α2(t)W

2 a10 a9γ

+ α4(t)a7 + α3(t)a5

)
dt + δ2,

a13(t)

= e
− ∫ t

0 (α1(t)a92(a9+ γ
a10

)+a9 α3(t)+a11 α4(t)+a10 α2(t)+a′
12(t))dt+δ3 ,

a14(t) = 2a52W

a92(W + 2γ )

}
,

Q = √−3 a9 a10 (3 a9 a10 + 4 γ ),

W = 3 a9 a10 + 2 γ. (41)

where ai (i = 3, 5, 7, 9, 10, 11) and δi (i = 1, 2, 3) are con-
stants, while

a10 a9 
= 0, a9 a10 (3 a9 a10 + 4 γ )
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< 0, 1 − 2γ

(3 a9 a10 + 4 γ )
> 0.

Selecting the parameters as a3 = a9 = a10
2 =

a11 = 1, a5 = a7 = −1, β = 3, γ = −4, a12(t) =
t2, δ1 = δ2 = δ3 = 0, α1(t) = −α2(t) = 2t, α3(t) =
−α4(t) = −t , we obtain the corresponding lump-kink
solution to Eq. (1) as

u = 4t2 + 4x + 2y+4z+2e3t
2+x+2y+z

(√
15 y
2 +z− t2

2

)2
+(−x− y

2 − z − t2
)2+e3t2+x+2y+z+ 2

5

.

(42)

Figures 4 show the spatial structure of lump-kink
solution (42) in the (x, y)-plane at different times,
which include three-dimensional plots and the corre-
sponding density plots. Combining the time evolution
plot, we can see that one lump soliton and one kink
soliton gradually fuse into one kink soliton over time.
These visualizations collectively provide a detailed

account of the lump-kink interaction process. It can
be seen from the shape and amplitude of the final kink
soliton that lumpwaves do not return to the state before
the collision, which reflects the inelastic characteristics
of the interaction.

6.2 Periodic lump solution

Then, we will investigate the interaction between
a lump solution and trigonometric function sin for
Eq. (1), by taking the function f in the following form

f = k2 + h2 + a13sin(η) + a14(t), (43)

with k = a1x+a2y+a3z+a4(t), h = a5x+a6y+a7z+
a8(t) and η = a9x+a10y+a11z+a12(t), where ai (i =
1, 2, 3, 5, 6, 7, 9, 10, 11, 13) are real parameters to be
determined, ai (t) (i = 4, 8, 12, 14) are functions and
a14(t) > 0. SubstitutingEq. (43) intoEq. (3), we obtain
the constraints between the parameters, which can be
classified into the following cases.

Case I
{
ai = ai (i = 2, 3, 7, 9, 10, 11, 13),

a1 = −a2a9 (3 a9 a10 − 2 γ )

2 a10 γ
,

a5 = Ma9 a2
2 a10 γ

, a6 = 0,

a4(t) = −
∫ t

0

(
a2a92α1(t)N + a10a2 a9α3(t)(6 γ − 3a9 a10)

2 γ a102

+ a3α4(t) + a2α2(t)

)
dt + σ1,

a8(t) = −
∫ t

0

−Ma9 a2
(
3α1 (t) a10 a92 − 2α1 (t) a9 γ − a10 α3 (t)

) + 2γα4 (t) a7 a102

2 γ a102

dt + σ2, a12(t) = −
∫ t

0

−α1 (t) a10 a93 + λ α1 (t) a92 + a102α2 (t) + α4 (t) a11 a10 + a9 a10 α3 (t)

a10

dt + σ3, a14(t) = γ (a104a132 + 4 a24) − 6 a24a10 a9
a102a22 (3 a9 a10 − 4 γ )

}
,

M = √
3a9 a10 (−3 a9 a10 + 4 γ ), N = a10

2a9
2 − 12 a9 a10 γ + 2γ 2. (44)
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where ai (i = 2, 3, 7, 9, 10, 11, 13) and σi (i =
1, 2, 3) are constants, while

a10 
= 0, a9 a10 (−3 a9 a10 + 4 γ ) > 0,

γ (a104a132 + 4 a24) − 6 a24a10 a9
(3 a9 a10 − 4 γ )

> 0.

Selecting the parameters as a2 = 1, a3 = a7 =
1
3 , a9 = 2, a10 = a11 = −1, a13 = − 1

2 , β = 3, γ =
−2, a12(t) = t + 2, σ1 = σ2 = σ3 = 0, α1(t) =
t, α2(t) = 2t, α3(t) = t−1, α4(t) = t+2, we obtain
the corresponding periodic lump solution to Eq. (1) as

u =
−2 cos

(
2 x − y − z + t2

2 + 4 t
)

+
(−2 t2−8 t+4 z

)√
3

3 + 10 t2
3 + 40 t

3 + 16 x + 4 y + 4 z
3

(
x + y + z

3 − 11 t2
3 + t

3

)2 +
(√

3x + z
3 +

(
3

√
3− 1

3

)
t2

2 + √
3t − 2 t

3

)2

−
sin

(
2x−y−z+ t2

2 +4t

)

2 + 7
4

. (45)

Case II

{
ai = ai (i = 2, 3, 9, 10, 11, 13), a1 = a2a9γ

3a10(−a10a9 + γ )
,

a5 =
√
3a2a9γ Q

9a10P(a10a9 − γ )(3a10a9 − γ )
,

a6 =
√
3a2P(3a10a9 − γ )

9a9a10(a10a9 − γ )
, a7 =

√
3a3Q

3P(−3a10a9 + γ )
,

a4(t) = −
∫ t

0

(
a2a9γ (a9γα1(t) − a10α3(t))

3a102(a10a9 − γ )
+ a3α4(t) + a2α2(t)

)
dt + δ1,

a8(t) = √
3P

∫ t

0

(
(3a10a9 − γ )a2α2(t)

9a9a10(a10a9 − γ )
+ a3α4(t)

3a9a10

−
a2γ

(
a9γα1(t) + a10α3(t)

)

9a103(a10a9 − γ )

)
dt + δ2,

a12(t) =
∫ t

0

α1(t)a10a93 − γα1(t)a92 − a102α2(t) − α4(t)a11a10 − a9a10α3(t)

a10
+ δ3,

a14(t) = 729a106a92a132(a10a9 − γ )4 − 32γ 5a24(3a10a9 − 2γ )

108a9a103γ 2a22(a10a9 − γ )2(3a10a9 − 4γ )

}
,

P = √
a9 a10 (−3 a9 a10 + 4 γ ),

Q = 9a10
2a9

2 − 15a10a9γ + 4γ 2. (46)

where ai (i = 2, 3, 9, 10, 11, 13) and δi (i =
1, 2, 3) are constants, while

a9, a10, (a10a9 − γ ), (3a10a9 − 4γ )


= 0, a9 a10 (−3 a9 a10 + 4 γ ) > 0,

32γ 5a2
4(3a10a9 − 2γ )

> 729a10
6a9

2a13
2(a10a9 − γ )4.

Selecting the parameters as a2 = a3 = a11 =
1, a9 = 2, a10 = β = 3, a13 = 1

3 , γ = 5, a12(t) =
t + 2, δ1 = δ2 = δ3 = 0, α1(t) = t, α2(t) =
2t, α3(t) = t − 1, α4(t) = −t , we obtain the corre-
sponding periodic lump solution to Eq. (1) as
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Fig. 5 Periodic lump solution (45) at time t = 0: a 3-D in (x, z)-plane; b 3-D in (x, y)-plane; c 3-D in (y, z)-plane; d Contour in
(x, z)-plane; e Contour in (x, y)-plane; f Contour in (y, z)-plane

u =
120000

(
− 47.5t2 − 7.29 cos(−2x − 3y − z + 17

6 t
2 − 2t) − 30t − 30x + 36y + 27z

)

(
−10x
9 + y + z − 97t2

54 − −10t
9

)2

+
(

−10x
27 + 13y

9 + z
3 − 77t2

162 − 10t
27

)2

−
sin

(
−2 x−3 y−z+ 17 t2

6 −2 t

)

3 + 140951
72900

.

(47)
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Fig. 6 Periodic lump solution (47) at time t = 0: a 3-D in (x, z)-plane; b 3-D in (x, y)-plane; c 3-D in (y, z)-plane; d Contour in
(x, z)-plane; e Contour in (x, y)-plane; f Contour in (y, z)-plane

Case III

{
ai = ai (i = 2, 3, 7, 9, 10, 11, 13), a1 = 0, a5 = −2 γ a2 a9√

3Pa10
a6 = Sa2√

3P
,

a4(t) =
∫ t

0

a2a92γα1(t) − a102α4(t)a3 − a2a102α2(t)

a102
dt + τ1,

a8(t) =
∫ t

0
a2

((
− Sα1(t)a29γ − 2γ a10a9α3(t)

)

3a210P
− α2(t)(3a10a9 + 2γ )

3P
− a7α4(t)

3

)
dt + τ2,

a12(t) =
∫ t

0

α1(t)a10a93 − γα1(t)a92 − a102α2(t) − α4(t)a11a10 − a9a10α3(t)

a10
+ τ3,

a14(t) = −9a132a106a92(−3a9a10 + 4γ )2 − 32γ 3a24S

12a9a103γ a22(−3a9a10 + 4γ )2

}
,

S = 3a9a10 − 2γ. (48)
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Fig. 7 Periodic lump solution (49) at time t = 0: a 3-D in (x, z)-plane; b 3-D in (x, y)-plane; c 3-D in (y, z)-plane; d Contour in
(x, z)-plane; e Contour in (x, y)-plane; f Contour in (y, z)-plane

where ai (i = 2, 3, 7, 9, 10, 11, 13) and σi (i =
1, 2, 3) are constants, while

a9, a10, (3a10a9 − 4γ ) 
= 0,

a9 a10 (−3 a9 a10 + 4 γ ) > 0,⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

32γ 3a2
4S < −9a13

2a10
6a9

2(−3a9a10 + 4γ )2,

a9a10γ > 0

32γ 3a2
4S > −9a13

2a10
6a9

2(−3a9a10 + 4γ )2,

a9a10γ < 0.

Selecting the parameters as a2 = a13 = −1, a3 =
a7 = a9 = a10 = γ = 1, a11 = 4, β = 3, a12 =
t + 2, τ1 = τ2 = τ3 = 0, α1(t) = t, α2(t) =
2t, α3(t) = t − 1, α4(t) = −t , we obtain the corre-
sponding periodic lump solution to Eq. (1) as

u = −48
√
3t2 − 48 t2 − 192 t − 192 x + 96 y − 96

√
3z + 72 cos(x + y + 4 z + 1

2 t
2 + t)

(
t2 − y + z

)2

+
(

2
√
3x
3 −

√
3y
3 + z − (−√

3−1)
√
3t2

6 + 2
√
3t

3

)2

− sin

(
x + y + 4z + t2

2 + t) + 23
12

. (49)

Figures 5, 6 and 7 illustrate the spatial structures of
the periodic lump solutions (45), (47) and (49) at time
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t = 0, respectively. Under the influence of trigonomet-
ric function, periodic lump solution takes the form of
periodic wave in a certain plane. If trigonometric func-
tions are not included in f , the periodic lump solution
degenerates to a single lump wave in all three planes.

Specifically, Figs. 5, 6 and 7(a) and (d) display the
three-dimensional plost, density plots and contour plots
in the (x, z)-plane with y = 0. Similarly, (b) and (e)
present the three-dimensional plost, density plots and
contour plots in the (x, y)-plane with z = 0. Finally,
(c) and (f) depict the three-dimensional plost, density
plots and contour plots in the (y, z)-plane with x =
0. These visualizations provide a comprehensive view
of the solution’s behavior in the dimensions, revealing
the structural complexity and density variations. Each
set of plots-3-D, density, and contour-complements the
others, providing a multifaceted view of the periodic
lump solutions in different planes. This comprehensive
visualization aids in analyzing the spatial dynamics and
structural properties of the solutions.

7 Conclusions

In this work, we have delved into the integrability of
the extended (3 + 1)-dimensional variable-coefficient
shallow water equation (1), confirming its integrabil-
ity through the Painlevé test. Using the hirota bilinear
method, we successfully derived both one-soliton and
two-soliton solutions, which are fundamental in under-
standing the dynamic behaviors of the system. Further-
more, we reported on bilinear BT, Bell-polynomial-
typed BT, Lax pair, and infinite conservation laws, with
the conserved densities and fluxes explicitly depending
on the variable coefficient functions. This dependency
highlights the equation’s complex integrability charac-
teristics and offers a deeper insight into its structural
properties.

Additionally, based on test functions, the lump-kink
solution and periodic lump solutions have been con-
structed. In more detail, one lump soliton and one kink
soliton fuse to one kink soliton, and the final kink soli-
ton preserves its shape and amplitude in Fig. 4. The
periodic lump solutions, as shown in Figs. 5, 6 and
7. The combination of 3-D plots and contour plots
offers a comprehensive analysis of the solutions’ spa-
tial dynamics and structural properties, enhancing our
understanding of the integrability characteristics of the
equation (1). These solutions not only demonstrate the

equation’s capability to support complex wave interac-
tions but also provide a basis for predicting and man-
aging wave dynamics in practical applications.

Overall, our findings enhance the understanding of
the integrability characteristics of this model and con-
tribute to the broader study of nonlinear wave interac-
tions in various physical systems. The results obtained
from this research could have significant implications
for the study of soliton theory and its applications in
fluid dynamics, nonlinear optics, and other fields where
soliton solutions play a crucial role.
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