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together with a few concrete examples.
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1. Introduction

There has been a great interest in finding exact solutions to nonlinear differential equations in mathematical physics.
Exact solutions help us understand the mechanism that governs physical phenomena in plasma physics, optical fibers,
biology, solid state physics, chemical physics, and others [1–7]. Integrability theory of nonlinear partial differential equations
tells how and when exact solutions can be obtained [8–10]. Due to the nonlinearity of differential equations, it is often
difficult to present exact solutions to nonlinear PDEs.

The Hirota bilinear technique is a powerful tool to investigate integrability of differential equations and it is applied
to many integrable equations including integrable couplings by perturbation [11], for which N-soliton solutions are ob-
tained [12–14]. The existence of N-soliton solutions often implies the integrability of differential equations by quadratures.
Wronskian and Casoratian solutions [15–19] and quasi-periodic solutions [20–22] can also be presented systematically
based on Hirota bilinear forms. In [23], linear superposition principles of hyperbolic and trigonometric functions solutions
to Hirota bilinear equations were analyzed and specific classes of N-soliton solutions were constructed, following studies
on linear superposition principles [24,25].

In this paper, we would like to find necessary and sufficient conditions to guarantee existence of linear subspaces of
hyperbolic and trigonometric function solutions to generalized bilinear equations. Generalized bilinear equations were
introduced by adopting a newway of assigning symbols for derivatives [26,27]. Based on an equality established in [27], we
will present a condition, being sufficient andnecessary, for the linear superposition principle of hyperbolic and trigonometric
function solutions.
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The rest of this paper is arranged as follows. In Section 2, we study the linear superposition principle of hyperbolic and
trigonometric function solutions, aiming to construct a specific class of N-wave solutions. In Section 3, a few illustrative
examples will be computed, as applications of the linear superposition principle established in the previous section. Finally,
some conclusions will be provided.

2. Linear superposition principle

Let us begin with a bilinear equation with generalized bilinear derivatives:

P

Dp,x1 ,Dp,x2 , . . . ,Dp,xM


f · f = 0, (2.1)

where P is a polynomial in the indicated variables and Dp,xi , 1 ≤ i ≤ M , are generalized differential operators [26,27]
defined by


Dn
p,xf · g


(x) = (∂x + α∂x′)

n f (x)g(x′)

x′=x =

n
i=0


n
i


αi ∂n−i

x f

(x)


∂ i
xg


(x) , n ≥ 1, (2.2)

in which the powers of α are determined by

αi
= (−1)r(i) , where i = r(i) mod p with 0 ≤ r(i) < p, i ≥ 0. (2.3)

Now introduce N wave variables:

ηi = ki · x = k1,ix1 + k2,ix2 + · · · + kM,ixM , 1 ≤ i ≤ N, (2.4)

and exponential wave functions

fi = eηi = ek1,ix1+k2,ix2+···+kM,ixM , 1 ≤ i ≤ N, (2.5)

where the kj,i’s are real constants, and a wave related vector ki and the dependent variable vector x are

ki =

k1,i, k2,i, . . . , kM,i


, 1 ≤ i ≤ N, x = (x1, x2, . . . , xM) . (2.6)

Take a linear combination

f = ε1f1 + ε2f2 + · · · + εN fN =

N
i=1

εifi =

N
i=1

εieηi , (2.7)

where εi, 1 ≤ i ≤ N , are arbitrary constants. It is known [27] that a linear combination f of N exponential wave solves a
generalized bilinear equation (2.1) if and only if the following condition

P

k1,i + αk1,j, . . . , kM,i + αkM,j


+ P


k1,j + αk1,i, . . . , kM,j + αkM,i


= 0, 1 ≤ i ≤ j ≤ N, (2.8)

is satisfied.

2.1. Linear superposition principle of hyperbolic function solutions

We take fi = chηi =
1
2


eηi + e−ηi


, 1 ≤ i ≤ N , be hyperbolic function solutions to (2.1). Set

f = ε1f1 + ε2f2 + · · · + εN fN =

N
i=1

εichηi =

N
i=1

εi
1
2


eηi + e−ηi


, (2.9)

which is a general linear combination of hyperbolic function solutions. The following identity holds for exponential functions
under generalized bilinear derivatives [27]:

P

Dp,x1 , . . . ,Dp,xl


eηi · eηj = P


k1,i + αk1,j, . . . , kM,i + αkM,j


eηi+ηj , 1 ≤ i, j ≤ N. (2.10)

Based on (2.10), we can compute that

P

Dp,x1 , . . . ,Dp,xM


f · f

= P

Dp,x1 , . . . ,Dp,xM

 N
i=1

εichηi ·

N
j=1

εjchηj

=

N
i,j=1

εiεjP

Dp,x1 , . . . ,Dp,xM

 1
2


eηi + e−ηi


·
1
2


eηj + e−ηj


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=
1
4

N
i,j=1

εiεjP

Dp,x1 , . . . ,Dp,xM

 
eηi · eηj + eηi · e−ηj + e−ηi · eηj + e−ηi · e−ηj


=

1
4

N
1≤i<j≤N

εiεj


P


k1,i + αk1,j, . . . , kM,i + αkM,j


eηi+ηj + P


k1,i − αk1,j, . . . , kM,i − αkM,j


eηi−ηj

+ P

−k1,i + αk1,j, . . . ,−kM,i + αkM,j


e−ηi+ηj +P


−k1,i − αk1,j, . . . ,−kM,i − αkM,j


e−ηi−ηj


+

1
4

N
1≤i>j≤N

εiεj


P


k1,i + αk1,j, . . . , kM,i + αkM,j


eηi+ηj + P


k1,i − αk1,j, . . . , kM,i − αkM,j


eηi−ηj

+ P

−k1,i + αk1,j, . . . ,−kM,i + αkM,j


e−ηi+ηj + P


−k1,i − αk1,j, . . . ,−kM,i − αkM,j


e−ηi−ηj


+

1
4

N
1≤i=j≤N

εiεj


P


k1,i + αk1,j, . . . , kM,i + αkM,j


eηi+ηj

+ P

k1,i − αk1,j, . . . , kM,i − αkM,j


eηi−ηj

+ P

−k1,i + αk1,j, . . . ,−kM,i + αkM,j


e−ηi+ηj +P


−k1,i − αk1,j, . . . ,−kM,i − αkM,j


e−ηi−ηj


=

1
4

N
1≤i<j≤N

εiεj

P


k1,i + αk1,j, . . . , kM,i + αkM,j


+ P


αk1,i + k1,j, . . . , αkM,i + kM,j


eηi+ηj

+

P


k1,i − αk1,j, . . . , kM,i − αkM,j


+ P


αk1,i − k1,j, . . . , αkM,i − kM,j


eηi−ηj

+

P


−k1,i + αk1,j, . . . ,−kM,i + αkM,j


+ P


−αk1,i + k1,j, . . . ,−αkM,i + kM,j


e−ηi+ηj

+

P


−k1,i − αk1,j, . . . ,−kM,i − αkM,j


+ P


−αk1,i − k1,j, . . . ,−αkM,i − kM,j


e−ηi−ηj


+

1
4

N
1≤i≤N

ε2
i


P


k1,i + αk1,i, . . . , kM,i + αkM,i


e2ηi + P


k1,i − αk1,i, . . . , kM,i − αkM,i


+ P


−k1,i + αk1,i, . . . ,−kM,i + αkM,i


+P


−k1,i − αk1,i, . . . ,−kM,i − αkM,i


e−2ηi


. (2.11)

From (2.11), it is obvious that a linear combination function f of the N hyperbolic function solutions fi = chηi =
1
2


eηi + e−ηi


, 1 ≤ i ≤ N , solves the generalized bilinear equation (2.1) if and only if the following conditions:

P

k1,i + αk1,j, . . . , kM,i + αkM,j


+ P


αk1,i + k1,j, . . . , αkM,i + kM,j


= 0, 1 ≤ i ≤ j ≤ N,

P

k1,i − αk1,j, . . . , kM,i − αkM,j


+ P


αk1,i − k1,j, . . . , αkM,i − kM,j


= 0, 1 ≤ i ≤ j ≤ N,

P

−k1,i + αk1,j, . . . ,−kM,i + αkM,j


+ P


−αk1,i + k1,j, . . . ,−αkM,i + kM,j


= 0, 1 ≤ i < j ≤ N,

P

−k1,i − αk1,j, . . . ,−kM,i − αkM,j


+ P


−αk1,i − k1,j, . . . ,−αkM,i − kM,j


= 0, 1 ≤ i ≤ j ≤ N, (2.12)

are satisfied.
With the aid of this result, we can obtain the following theorem.

Theorem 1. Let P(x1, x2, . . . , xM) be a polynomial and the N wave variable be defined by ηi = ki · x = k1,ix1 + k2,ix2 +

· · · + kM,ixM , 1 ≤ i ≤ N, where the kj,i’s are real constants. Then any linear combination of the hyperbolic function solutions
fi = chηi =

1
2


eηi + e−ηi


, 1 ≤ i ≤ N, solves the generalized bilinear equation (2.1) if and only if the system (2.12) is satisfied.

This theorem tells when a linear superposition of hyperbolic function solutions is still a solution of a given generalized
bilinear equation. Furthermore, it also introduces a way to construct N-wave solutions to generalized bilinear equations.
The system (2.12) is a key condition that a solution needs to satisfy. If we are able to solve the system (2.12), then we can
present an N-wave solution, formed by (2.9), to a generalized bilinear equation.

2.2. Linear superposition principle of trigonometric function solutions

We take fi = cos ηi =
1
2


eIηi + e−Iηi


, 1 ≤ i ≤ N , where ηi = ki · x, 1 ≤ i ≤ N, I =

√
−1, be trigonometric function

solutions to (2.1). Set

f = ε1f1 + ε2f2 + · · · + εN fN =

N
i=1

εi cos ηi =

N
i=1

εi
1
2


eIηi + e−Iηi


, (2.13)
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which is a general linear combination of trigonometric function solutions. Similarly, a linear combination function f of
the N trigonometric function solutions in (2.13) solves the generalized bilinear equation (2.1) if and only if the following
conditions:

P

Ik1,i + αIk1,j, . . . , IkM,i + αIkM,j


+ P


αIk1,i + Ik1,j, . . . , αIkM,i + IkM,j


= 0, 1 ≤ i ≤ j ≤ N,

P

Ik1,i − αIk1,j, . . . , IkM,i − αIkM,j


+ P


αIk1,i − Ik1,j, . . . , αIkM,i − IkM,j


= 0, 1 ≤ i ≤ j ≤ N,

P

−Ik1,i + αIk1,j, . . . ,−IkM,i + αIkM,j


+ P


−αIk1,i + Ik1,j, . . . ,−αIkM,i + IkM,j


= 0, 1 ≤ i < j ≤ N,

P

−Ik1,i − αIk1,j, . . . ,−IkM,i − αIkM,j


+ P


−αIk1,i − Ik1,j, . . . ,−αIkM,i − IkM,j


= 0, 1 ≤ i ≤ j ≤ N, (2.14)

are satisfied. Thus we have the following theorem.

Theorem 2. Let P(x1, x2, . . . , xM) be a polynomial and the N wave variable defined by ηi = ki · x = k1,ix1 + k2,ix2 + · · · +

kM,ixM , 1 ≤ i ≤ N, where the kj,i’s are real constants. Then any linear combination of the trigonometric function solutions
fi = cos ηi, 1 ≤ i ≤ N, solves the generalized bilinear equation (2.1) if and only if the system (2.14) is satisfied.

This theorem tells when a linear superposition of trigonometric function solutions is still a solution of a given generalized
bilinear equation. Furthermore, it also introduces away to constructN-wave solutions to generalized bilinear equations. The
system (2.14) is a key condition that a solution needs to satisfy. If we are able to solve the system (2.14), thenwe can present
an N-wave solution, formed by (2.13), to a generalized bilinear equation.

3. Applications

Example 1. Let us introduce the weights of independent variables:

(w(x), w(y), w(z), w(t)) = (1, 2, 3, 4) , (3.1)

and consider a polynomial being homogeneous in weight 7:

P = c1xy3 + c2xz2 + c3x3t + c4y2z + c5xyt + c6x2yz, (3.2)

where c1, c2, c3, c4, c5, c6 are constants. Assume that the wave variables are

ηi = kix + b1k2i y + b2k3i z + b3k4i t, 1 ≤ i ≤ N, (3.3)

where ki, 1 ≤ i ≤ N , are arbitrary constants, but b1, b2 and b3 are constants to be determined.
A simple direct computation shows that the corresponding generalized bilinear equation reads

P

D3,x,D3,y,D3,z,D3,t


f · f = 6c1fyyfyx + 2c2fxzz f + 6c3fxxfxt + 2c4fyyz f

+ 2c5fxyt f + 2c6fxxfyz + 4c6fxyfxz
= 0 (3.4)

which has the linear subspaces of N-wave solutions defined by

f =

N
i=1

εifi =

N
i=1

εichηi =

N
i=1

εich

kix + b1k2i y + b2k3i z + b3k4i t


, (3.5)

or

f =

N
i=1

εifi =

N
i=1

εi cos ηi =

N
i=1

εi cos

kix + b1k2i y + b2k3i z + b3k4i t


, (3.6)

where b1, the εi’s and the ki’s are arbitrary, and b2 and b3 satisfy

b2 = −
3b21c1
2c6

, b3 =
b31c1
2c3

, (3.7)

when the coefficients of the polynomial P satisfy

9c1c2c3 = 2c6 (3c4c3 − c5c6) . (3.8)

Example 2. Let us introduce the weights of independent variables:

(w(x), w(y), w(z), w(t)) = (1, 3, 5, 7) , (3.9)
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and consider a polynomial being homogeneous in weight 8:

P = c1x8 + c2x5y + c3x3z + c4yz + c5xt, (3.10)

where c1, c2, c3, c4, c5 are constants. Assume that the wave variables are

ηi = kix + b1k3i y + b2k5i z + b3k7i t, 1 ≤ i ≤ N, (3.11)

where ki, 1 ≤ i ≤ N , are arbitrary constants, but b1, b2 and b3 are constants to be determined.
A simple direct computation shows that the corresponding generalized bilinear equation reads

P

D5,x,D5,y,D5,z,D5,t


f · f = 70c1f 2xxxx + 20c2fxxfxxxy + 10c2fxyfxxxx − 20c2fxxxfxxy

+ 2c3ffxxxz − 2c3fz fxxx − 6c3fxfxxz + 6c3fxxfxz
+ 2c4ffyz − 2c4fyfz + 2c5ffxt − 2c5fxft

= 0 (3.12)

which possesses the linear subspace of N-wave solutions determined by

f =

N
i=1

εifi =

N
i=1

εichηi =

N
i=1

εich

kix + b1k3i y + b2k5i z + b3k7i t


, (3.13)

where the εi’s and the ki’s are arbitrary, and b1, b2 and b3 satisfy

b1 = −
7c1
c2

, b2 =
70c1
3c3

, b3 = −
70c1
c5

(3.14)

when the coefficients of the polynomial P satisfy

7c1c4 = −2c3c2. (3.15)

Similarly, (3.12) has the linear subspace of N-wave solutions defined by

f =

N
i=1

εifi =

N
i=1

εi cos ηi =

N
i=1

εi cos

kix + b1k3i y + b2k5i z + b3k7i t


, (3.16)

where the εi’s and the ki’s are arbitrary, and b1, b2 and b3 satisfy

b1 =
7c1
c2

, b2 =
70c1
3c3

, b3 =
70c1
c5

(3.17)

when the coefficients of the polynomial P satisfy

7c1c4 = −2c3c2. (3.18)

Example 3. Let us introduce the weights of independent variables:

(w(x), w(y), w(z), w(t)) = (1, 3, −1, −3) , (3.19)

and consider a polynomial being homogeneous in weight 4:

P = c1x4 + c2xy + c3x5z + c4x7t, (3.20)

where c1, c2, c3, c4 are constants. Assume that the wave variables are

ηi = kix + b1k3i y + b2k−1
i z + b3k−3

i t, 1 ≤ i ≤ N, (3.21)

where ki, 1 ≤ i ≤ N , are arbitrary constants, but b1, b2 and b3 are constants to be determined.
A simple direct computation shows that the corresponding generalized bilinear equation reads

P

D5,x,D5,y,D5,z,D5,t


f · f = 2c1ffxxxx − 8c1fxxxfx + 6c1f 2xx + 2c2ffxy

− 2c2fxfy + 20c3fxxfxxxz + 10c3fxz fxxxx
− 20c3fxxxfxxz + 70c4fxxxxfxxxt

= 0 (3.22)
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which possesses the linear subspace of N-wave solutions determined by

f =

N
i=1

εifi =

N
i=1

εichηi =

N
i=1

εich

kix + b1k3i y + b2k−1

i z + b3k−3
i t


, (3.23)

where the εi’s and the ki’s are arbitrary, and b1, b2 and b3 satisfy

b1 = −
c1
c2

, b2 = −
3c1
10c3

, b3 =
3c1
70c4

. (3.24)

Similarly, (3.22) has the linear subspace of N-wave solutions defined by

f =

N
i=1

εifi =

N
i=1

εi cos ηi =

N
i=1

εi cos

kix + b1k3i y + b2k−1

i z + b3k−3
i t


, (3.25)

where the εi’s and the ki’s are arbitrary, and b1, b2 and b3 satisfy

b1 =
c1
c2

, b2 =
3c1
10c3

, b3 =
3c1
70c4

. (3.26)

4. Conclusion

For generalized bilinear equations, we analyzed linear combinations of hyperbolic or trigonometric function solutions
and we presented linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear
equations. A few illustrative examples were presented, by applying an algorithm using weights.
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