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A B S T R A C T   

In this article, we consider a (3 + 1)-dimensional Sharma–Tasso–Olver-like (STOL) model 
describing dynamical propagation of nonlinear dispersive waves in inhomogeneous media. 
Applying Hirota’s bilinear technique and a trial function, we explore nonlinear dynamical 
properties of basic solutions to the STOL model. We find that the fission fusion pattern occurs in 
the collision between the lump and kink waves, the collision between the lump and periodic 
waves, and the collision among the lump, kink and periodic waves, which is a novel fascinating 
collision pattern. We also observe that a large value of the coefficient in the periodic function 
produces a hybrid lump wave by fission in the collision solution. To better understand the dy
namic properties of the obtained collision solutions, we plot a number of 3D and contour dia
grams by choosing suitable parametric values with the aid of the computational software Maple 
18.   

1. Introduction 

Nonlinear evolution equations (NLEEs) applicable not only the areas of mathematical physics, but also other branches of nonlinear 
science for instance optics, plasma physics, atmospheric, geochemistry and oceanic sciences etc. [1-4]. Complication of NLEES and 
challenges in their analytical study has engrossed a lots of effort from renowned scientists who are involved with nonlinear dynamics. 
As a result, exploration of exact solutions of NLEEs is a vital anxiety for dynamical researchers. There are diverse categories of exact 
solutions mainly soliton, multi-soliton, rational, periodic, breather line, breather kinky, lump and rogue wave solutions [5-12]. For 
investigating the characteristics of solitary waves, there are various reliable and fruitful approaches such as inverse scattering scheme 
[13], tanh function method [14], exp-function method [15,16], Darboux method [17], direct algebraic method [18], first integral 

* Corresponding author. 
E-mail addresses: harun_math@pust.ac.bd (H.-O. Roshid), mawx@cas.usf.edu (W.-X. Ma).  

Contents lists available at ScienceDirect 

Chinese Journal of Physics 

journal homepage: www.sciencedirect.com/journal/chinese-journal-of-physics 

https://doi.org/10.1016/j.cjph.2020.10.009 
Received 11 April 2020; Received in revised form 12 September 2020; Accepted 25 October 2020   

mailto:harun_math@pust.ac.bd
mailto:mawx@cas.usf.edu
www.sciencedirect.com/science/journal/05779073
https://www.sciencedirect.com/journal/chinese-journal-of-physics
https://doi.org/10.1016/j.cjph.2020.10.009
https://doi.org/10.1016/j.cjph.2020.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cjph.2020.10.009&domain=pdf
https://doi.org/10.1016/j.cjph.2020.10.009


Chinese Journal of Physics 68 (2020) 699–711

700

method [19, 20], exp ( − ϕ(ξ))expansion method [21], Hirota’s bilinear method [22-24] etc. Though, soliton should have elastic 
property yet fission-fusion type non-elastic properties have been existed in few nonlinear models and investigated by many researchers 
[12, 23-25]. 

In mathematical physics, the interaction of rogue wave with other soliton/periodic wave is a kind of remarkable task in nonlinear 
sciences which are localized both in position and time, while lump wave is localized in every spaces only. Recently, combination of 
positive quadratic polynomial functions with the exponential/trigonometric functions i.e. collision of kink, lump, rogue and periodic 
waves produce kinky-lump, kinky-rogue, periodic-lump wave, periodic-rogue waves and kinky-periodic rogue wave for the NLEEs and 
their nonlinear dynamics concerned a lot of interest [26-41]. In the existed literature, we observed that interactions as mixed 
lump-kink [27, 28], lump solitons and the interaction phenomena [29-36], lump-stripe soliton solutions [37-38], non-elastic fusion 
phenomena of multi-solitons [39], N th-order rogue waves [40], two lump solitons [41] are studied by recent dynamical researchers. 
But it is still unexplored that both bright and dark kinks give the fission phenomena even produce hybrid lump waves, double 
kinky-periodic-lump type wave exhibits as hybrid lump wave, fission and fusion properties exist in presence and without presence of 
sinusoidal function and produces hybrid lump waves, both fission-fusion phenomena occurrences in both x-and y-periodic lump waves 
into a double kink wave and produce hybrid lump waves, annihilations of lump-kink wave. 

Motivated by the above works and new properties, we would like to derive novel higher order collision solutions which are not 
reported in the previous literature for the (3 + 1)-dimensional classical STOL equation [42, 43]: 

ut + a
[(

3uux + u3)

x + uxxx
]
+ b

[(
2uuy + ux∂− 1

x uy + u2∂− 1
x uy

)

x + uxxy
]

+c
[(

2uuz + ux∂− 1
x uz + u2∂− 1

x uz
)
+ uxxz

]
= 0.

(1)  

with real function u(x,y, z, t)and real constants a,b, c. Here ∂− 1
x indicate integral operator and inverse of ∂x. 

In this article, our main goal is to construct more novel exact collision among lump, periodic and kinky wave solutions that 
degenerate into periodic line breather waves, kinky periodic waves, double kinky periodic waves, periodic lump waves, double kinky 
lump waves, kinky periodic lump waves, hybrid lump waves and fission fusion properties of the Eq. (1). 

2. Interaction solutions and dynamics of the solutions for STOL equation 

Through the relation u = (lnf)x, the Eq. (1)can be expressed as the form 

affxxxx + bffxxxy + cffxxxz − afxfxxx − bfxfxxy − cfxfxxz + ffxt − fxft = 0, (2)  

with real function f(x,y, z, t)to be determined. When fsatisfies Eq. (2), u = (lnf)xdirectly generates a solution of the main Eq. (1). 
In order to evaluate fexplicitly, we assume an ansatz of the following form 

f = (m1x + m2y + m3z + m4t + m5)
2
+ (m6x + m7y + m8z + m9t + m10)

2

+m11 + l1cos(m12x + m13y + m14z + m15t + m16)

+l2cosh(m17x + m18y + m19z + m20t + m21),

(3)  

where m1,m2,m3,......m16, l1and l2are real free constants, m17, ......m21are real/completely imaginary constants. Inserting Eq. (3) to Eq. 
(2), collect every coefficients of x,y,z,t,cos,sin,cosh,sinhtogether and setting each of these expression equal to zero, we gain a system of 
equations in m1,m2,m3, ......m21, l1and l2. Solving this system of algebraic equations by using Maple 18, we obtain the following four 

Fig. 1.. (Color online) Outlook of lump wave solution u1of the Eq. (6) (For interpretation of the references to color in the text, the reader is referred 
to the web version of this article.). 
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results, 
Case 1: 

l1 = 0, l2 = 0,m4 = 0,m9 = 0, mi = mi(i= 1, 2, 3, 5, 6, 7, 8, 10, 11,⋯, 21). (4) 

Inserting Eq. (4) into the Eq. (3), we obtain 

f = (m1x + m2y + m3z + m5)
2
+ (m6x + m7y + m8z + m10)

2
+ m11. (5) 

Using the relation u = (lnf)x, Eq. (5)offers the result 

u1 = [2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6]/[
(m1x + m2y + m3z + m5)

2
+ (m6x + m7y + m8z + m10)

2
+ m11

]
.

(6) 

The result Eq. (6) contains nine free arbitrary constants and exhibits lump wave with the condition m11 > 0 in the xyplane. The line 
soliton solution that is definitely dissimilar starting a moving line soliton, arise very quickly and disappear in the constant background 
within tiny time but in the intermediate time it gives highest peak. It is well known that u → 0as the two quadratic functions tend to 

positive or negative infinity. It maximum minimum amplitude occurs at the points 
(

m2m10 − m5m7
m1m7 − m2m6

±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m11
m12+m62

√
,m5m6 − m1m10

m1m7 − m2m6

)

when z = 0. The 

Fig.1 represents stretch of the lump wave solution Eq. (6), consists of one deep hole and one high crest for the particular values m1 = 2,
m2 = 3,m3 = 2,m5 = 1,m6 = 5,m7 = 1,m8 = 5,m10 = 1,m11 = 10, in the xyplane with t = 0,z = 0. The peak of the lump wave locates 

at 
(

− 2
13 +

̅̅̅̅̅̅
290

√

29 , − 3
13

)

, the valley locates at 
(

− 2
13 −

̅̅̅̅̅̅
290

√

29 , − 3
13

)

and maximum amplitude is 
̅̅̅̅̅̅
290

√

10 and deep is equal distance i.e. −
̅̅̅̅̅̅
290

√

10 . 

Case 2: 

l1 = 0,m4 = 0,m9 = 0, m20 = − m2
17(am17 + bm18 + cm19)

l2 = l2,mi = mi (i = 1, 2, 3, 5, 6, 7, 8, 10, 11, 17, 18, 19, 21),
(7)  

where a,band ccan take arbitrary values. 
Inserting Eq. (7) into the Eq. (3), we emerge to 

Fig. 2.. (Color online) Fission-fusion profiles of the lump wave get into a duel kinky waves for the solutions Eq. (9) with l2 = a = b = 1,c = − 1,m1 

= 3,m2 = − 146,m3 = − 4.4,m5 = 4,m6 = 3,m7 = − 3.9,m8 = 10.24,m10 = 1,m11 = 8.82,m17 = 1.05,m18 = 2.1,m19 = 4.6,m21 = 0at z =
0(For interpretation of the references to color in the text, the reader is referred to the web version of this article.). 
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f = (m1x + m2y + m3z + m5)
2
+ (m6x + m7y + m8z + m10)

2
+ m11

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}
.

(8) 

Using the relation u = (lnf)x, Eq. (8)provides the result 

u2 =

[
2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6

+l2m17sinh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

]
/

⎡

⎣
(m1x + m2y + m3z + m5)

2
+ (m6x + m7y + m8z + m10)

2
+ m11

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎦.

(9) 

In the solutions Eq. (9), we explore collision of the lump and a double kink waves through demonstration of the Fig. 2. It is seen that 
only a double kink waves is visible in Fig. 2(a) at the time t = − 16and a small wave initiate at the lower kink (see from contour plot of 
Fig. 2(a)) but in its propagation a lump wave come out at the time t = − 6from the lower kink (see Fig. 2(b)). So, the fission phe
nomenon of lower kink is happened. As time goes, it moves to the upper kink and then get highest amplitude at t = 0as well as lump 
reach in the middle of the two kinks (see Fig. 2(c)). After then the lump wave goes to the upper kink and amplitude of lump decreases 
again as time increases (see Fig. 2(d)) and finally diminished to the upper kink at t = 16(see Fig. 2(e)). So, the fusion phenomenon of 
upper kink is occurred. From the overall observation, we see the height of the double kink waves remain same in the overall prop
agation before and after the collision. 

Case 3: 

l2 = 0,m4 = 0,m9 = 0,m15 = m2
12(am12 + bm13 + cm14)

l1 = l1,mi = mi (i = 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16),
(10)  

where a,band ccan take arbitrary real values. 
Setting Eq. (10) to the Eq. (3), we acquire 

f = (m1x + m2y + m3z + m5)
2
+ (m6x + m7y + m8z + m10)

2
+ m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}
.

(11) 

Using the relationu = (ln f)x, Eq. (11)offers the result 

Fig. 3.. (Color online) Diagrams of collision solution u3of Eq. (12) for the values a = 3,b = 3,c = − 4,m1 = − 1,m2 = 1,m3 = − 2,m5 = − 0.1,m6 

= 1,m7 = 1,m8 = 2,m10 = 0.1,m11 = 1,m12 = 0,m13 = 1,m14 = − 2,m16 = 0(For interpretation of the references to color in the text, the reader is 
referred to the web version of this article.). 
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u3 =

[
2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6

− l1m12sin
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}
m12

]
/

⎡

⎣
(m1x + m2y + m3z + m5)

2
+ (m6x + m7y + m8z + m10)

2
+ m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

⎤

⎦.

(12) 

For l1 = 0, u3reduces to single lump only like case-1 but for l1 ∕= 0, u3comes in-terms of two quadratic polynomials and a sinusoidal 
function (i.e. collision of lump and periodic wave), as depicted in the Figs. 3–5. Here, three sub cases are arising in the followings.  

(i) When m12 = 0and m13 ∕= 0, u3reduces to collision solution with following dynamics: 

It is well-known that the lump form with a crest and a trough (observe Fig. 3(a)). But as the value of l1increases, the collision of 
lump and periodic waves create a fission of lump wave i.e. a crest and a trough progressively split into two crests and two troughs 
having the same height (observe Fig. 3(b)–3(d)) and propagate along y-direction initially. Thus the fission of lump wave is happened. 
We also observe that fission of the lump wave is continuous process as for large values of l1 = 355, the lump wave again generate 
fission and split into four lump waves propagate along both in the xand y-directions, even if for l1 = 1045, it gives six lump (hybrid 
lump) waves (see Fig.3(e, f)) and so on.  

(ii) When m12 ∕= 0and m13 = 0, u3reduces to collision solution with following dynamics: 

It gives the similar collision solution (fission of lump) in the figures Fig. 4(b)–4(f) and produces more lump waves propagate 
periodically toward the x-axis and also the extreme amplitude of the crests and the troughs gradually enlarges as l1increases. In 
contrast the Fig. 3 with Fig. 4, we observe that the lump wave in the collision solution locates toward the y-axis in Fig. 3but the lump 
wave in the collision solution locates toward the x-axis in the Fig. 4.  

(iii) When m12 ∕= 0and m13 ∕= 0, u3reduces to collision solution with following dynamics: 

In fact, some interesting phenomenon can also be observed when both m12 ∕= 0and m13 ∕= 0and the value of coefficient l1increases 
the trigonometric function that dominate on the values of coefficients in quadratic functions (lump wave) as depicted in Fig. 5(a)-(d). 
We display the corresponding 3D plot (3D as in upper and contour plot as in lower), density and 2D profile in the xyplane (for y = − 3,
0,3in Fig. 5(c)) of the lump-periodic wave. Anyone can see that at y = 0amplitude of the lump gives highest peak (observe Fig. 5(c)). 
On the other hand, another periodic-rogue wave can be observed in xtplane as in the Fig. 5(d). 

Case 4: 

Fig. 4.. (Color online) Diagrams of the collision solution u3of Eq. (12) for the values a = 3,b = 3,c = − 4, m1 = − 1,m2 = 1,m3 = − 2,m5 = −

0.1,m6 = 1,m7 = 1,m8 = 2,m10 = 0.1,m11 = 1,m12 = 1,m13 = 0,m14 = − 2,m16 = 0(For interpretation of the references to color in the text, the 
reader is referred to the web version of this article.). 
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m4 = 0,m9 = 0,m15 = m2
12(am12 + bm13 + cm14),m20 = − m2

17(am17 + bm18 + cm19)

l1 = l1, l2 = l2,mi = mi (i = 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21),
(13)  

where a,band ccan take any arbitrary values. 
Putting Eq. (13) into the Eq. (3), offers the result 

f = (m1x + m2y + m3z + m5)
2
+ (m6x + m7y + m8z + m10)

2
+ m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}
.

(14) 

Using the relationu = (lnf)x, Eq. (14)offers the result 

u4 =

⎡

⎢
⎢
⎢
⎣

2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6

− l1m12sin
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2m17sinh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎥
⎥
⎥
⎦

/

⎡

⎢
⎢
⎢
⎣

(m1x + m2y + m3z + m5)
2
+ (m6x + m7y + m8z + m10)

2
+ m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎥
⎥
⎥
⎦
.

(15) 

In the solution Eq. (15), comes in terms of two quadratic polynomials, a periodic and a hyperbolic function which exhibits double 
kinky-periodic-lump type wave propagation forl2 ∕= 0, l1 ∕= 0. In this case, three clusters are arising in the followings. 

Cluster-1 - Taking l2very small asl2 → 0: 
Taking l2very small, a dynamical situation viewed in the Figs.6–7 for the values a = 5,b = 1,c = − 1,m3 = m5 = m8 = m10 = m11 

= m14 = 1,m16 = 0.1,m19 = 7,m21 = 1at z = 0. The solution u4provides double kinky-periodic lump wave in which somex-periodic- 

Fig. 5.. (Color online) Profile of the collision of lump and periodic waves solution u3of Eq. (12) for l1 = 15,a = 1,b = 2,c = − 4,m1 = 0.5,m2 = −

1,m3 = 1,m5 = − 0.5,m6 = − 0.25,m7 = − 3,m8 = − 3.5,m10 = 1,m11 = 20,m12 = 1
3,m13 = 4

15,m14 = − 0.8,m16 = 0: (a) the 3D plot, (b) the 
density plot and (c) the similar curve plot at z = 0, t = 0; (d) Periodic rogue wave at z = 0,y = 0(For interpretation of the references to color in the 
text, the reader is referred to the web version of this article.). 
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lump with period 2π/m12get into the double kink and kinky wave moves through xaxis with time increases for the values as depicted in 
the Fig. 6(a)-(c). In this case number of lump wave remains same with the same value of l2 = 0.0001. But whenl2 → 0, the number of 
lump wave gradually increases as the values of l2decreases (observe Fig. 6(d)-(e)), even if, kink vanishes and only periodic lump exist 
for l2 = 0(observe Fig. 6(f)) at t = 0.Actually, changing different parametric constraint of the solution Eq. (15) distinguish charac
teristics again exhibits in Fig. 7(a)-(d) as y − periodic lump with period 2π/m13get into the kink that arises with a constant background 
and decay go back to the same previous background at a longer time. On the other hand, same behavior can be observed in line soliton 
in the Fig. 7(e)-(h). Interesting characteristics can also be experienced when constant coefficients vanishes (i.e., m5 =m10 =m11 = m16 
= m21 = 0) as depicted in the Fig.8(a)-(c) that behaved y − periodic bright-dark lump waves get into the double kink waves with 
period 2π/m13. The bright lumps get into the lower kink and dark lumps get into the upper kink. Both kinks give the fission phenomena 
and produce hybrid lump waves in which height and number of lump increases as l1increase (observe Fig. 8(a)-(c)). These novel 
nonlinear phenomena are the first reported for the (3 + 1)-dimension STOL equation. 

Cluster-2 - Taking l2not so small: 
Taking l2not so small, a dynamical situation viewed to the solutionu4, provides double kinky waves in which two lump waves 

periodically get into the kink waves and exhibits fission fusion phenomena. Solution Eq. (15), exhibits fission-fusion phenomena as 
depicted in the Figs.9(a)-(f) and 10(a)-(f) which are similar to the fission-fusion phenomena of the Fig. 2. But the only different is that 
yperiodic two lumps causes fission from the upper kink and then fused into the lower kink when m12 = 0, m13 ∕= 0(observe Fig. 9(a)- 
(e)) and xperiodic two lumps causes fission from the upper kink and then fused into the lower kink when m12 ∕= 0, m13 = 0(observe 
Fig. 10(a)-(f)). Both the figures Figs. 9(a)-(f) and 10(a)-(f) are sketch with specific parameters l1 = 16,l2 = 0.5,a = − 3,b = 2,c = 1,m1 
= − 1,m2 = 1,m3 = − 2,m5 = 0,m6 = 1,m7 = 1,m8 = 4,m10 = 0,m11 = 1,m14 = 1,m16 = 0,m17 = 1,m18 = 0,m19 = 2,m21 = 0at z 
= 0. These novel nonlinear phenomenon is the first reported for the (3 + 1)-dimension STOL equation. 

Cluster-3 - Taking lump vanish (i.e., mi = 0; i = 1,2,3,5,6,7,10): 
When mi = 0 (i = 1, 2, 3, 5,6, 7, 10); lump waves being diminished and then collision between the kinky and periodic wave are 

appeared in the solution Eq. (15), then we find 

f = m11 + l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}
.

(16) 

The solution Eq. (16) can convert to diverse collision solutions, selecting the constants m17, m18, m19,m21are real/purely imaginary 

Fig. 6.. (Color online) Profiles of collision solution u4of Eq. (15) for the parameters m1 = m6 = m13 = m18 = 0,m2 = m7 = m12 = m17 = 1, l1 =

0.5: (a)-(c) the periodic lump get into the double kinky wave for l2 = 10− 4; (d)-(e) increases of periodic lump into the double kinky wave for l2 → 0; 
(f) x- periodic lump wave for l2 = 0(For interpretation of the references to color in the text, the reader is referred to the web version of this article.). 
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Fig. 7.. (Color online) Annihilation properties of collision solution u4of Eq. (15) for l1 = 0.5, l2 = 10− 4at z = 0; (a)-(d) y − periodic lump wave get 
into the kinky wave for m2 = m7 = m12 = m18 = 0,m1 = m6 = m13 = m17 = 1; (e)-(h) x- periodic lump get into the kink wave for m2 = m7 = m13 

= m18 = 0, m1 = m6 = m12 = m17 = 1(For interpretation of the references to color in the text, the reader is referred to the web version of 
this article.). 

Fig. 8.. (Color online) Profiles of collision solution u4of Eq. (15) for l2 = 10− 4,a = 5,b = 1,c = − 1,m1 = m6 = m12 = m18 = 0,m19 = 7,m2 = m3 =

m7 = m8 = m13 = m14 = m17 = 1at t = 0,z = 0(For interpretation of the references to color in the text, the reader is referred to the web version of 
this article.). 
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value.  

(i) For m17, m18, m19, m21are real valued, we acquire a collision wave of the Eq. (1) using the relation u = (lnf)xas: 

u5 =

⎡

⎣
− l1m12sin

{
m12x + m13y + m14z + m2

12(am12 + bm13 + cm14)t + m16
}

+l2m17sinh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎦
/

⎡

⎣
m11 + l1cos

{
m12x + m13y + m14z + m2

12(am12 + bm13 + cm14)t + m16
}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎦.

(17)   

Characteristics of the solution u5for the Eq. (17) are explained for diverse choose of the involve parametric values in the figure 
Fig. 11 and corresponding contour line of the diagram are drawn bellow of the figures in Fig. 11(a)–11(d). For l1 = 0, u5reduces to 
double kinky waves (see Fig. 11(a)) but for l1 ∕= 0, u5is collision of a y- kinky periodic breather wave (see Fig. 11(b)–(d)). Evidently, as 
tchanges the collision wave moves toward the x − axis and the phase of the periodic wave changes after 2π

m13
along y-axis. 

In this case, we also observe that changing different parametric constraint in the solution Eq. (17) distinguish characteristics again 
exhibits which are periodic line breather waves proceed in various directions as depicted in the Fig. 11(e)-(h), (i)-(l), (m)-(p). Each 
group of periodic line breather waves begins with a constant background and decay return to the same previous background at a longer 
time.  

(i) For m17, m18, m19,m21are pure imaginary valued, i.e., m17 = im̃17,m18 = im̃18,m19 = im̃19,m21 = im̃21with m̃17, m̃18, m̃19and 
m̃21are real valued, we acquire a collision of two breather waves of the Eq. (1) using the relation u = (lnf)xas: 

Fig. 9.. (Color online) Fission-fusion profile of y-periodic lump wave with the double kink wave of solution Eq. (15)for m13 = 1(For interpretation 
of the references to color in the text, the reader is referred to the web version of this article.). 
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ũ5 =

⎡

⎣

− l1m12sin
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

− l2m̃17sin
{

m̃17x + m̃18y + m̃19z + m̃2
17

(

am̃17 + bm̃18 + cm̃19

)

t + m̃21

}

⎤

⎦
/

⎡

⎣

m11 + l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cos
{

m̃17x + m̃18y + m̃19z + m̃2
17

(

am̃17 + bm̃18 + cm̃19

)

t + m̃21

}

⎤

⎦.

(18)   

Lastly, the solution represented by Eq. (18) are different periodic waves for different chooses of parameters in ̃u5. When l1 = 0, ̃u5is 
a one periodic wave that confine in the position and time directions (observe Fig. 12(a)). Otherwise, when l1 ∕= 0, then ũ5exhibits the 
dual periodic waves in both xyand xz- planes (observe Fig. 12(b) and (c)). 

3. Conclision 

In summary, interaction solutions of the (3 + 1)-dimensional STOL equation have been determined successfully. With the aid of 
Maple software, a test function is carefully used to derive different nonlinear dynamical properties. As a result, some novel collision 
solutions among the lump, periodic and kinky waves are derived of the STOL model. We also established fission fusion properties for 
the collision of lump and kink waves, lump and periodic waves and among the collision of lump, kink and periodic waves. We also 
observed that fission and fusion properties exist in presence and without presence of sinusoidal function and produces hybrid lump 
waves. By taking purely imaginary values of some parameters, we derived line breather and double periodic breather wave solutions. 
To better understand the dynamic natures of the obtained collision solutions, we depict adequate 3d plots and contour diagrams by 
choosing suitable parametric values with the aid of computational software Maple 18. It is expected that our achieved solutions can 
improve the dynamical characteristics of the other higher order models. 

Fig. 10.. (Color online) Fission-fusion profile of x-periodic lump wave with the double kink wave of solution Eq. (15)for m12 = 1(For interpretation 
of the references to color in the text, the reader is referred to the web version of this article.). 
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Fig. 11.. (Color online) Annihilation properties of the collision solution u5of Eq. (17)for a = 1,b = − 2,c = 3,m11 = 1500,m14 = − 2,m16 = 1,m17 

= 1,m19 = − 1/12,m21 = 1and l2 = 100: (a) double kinky waves for l1 = m12 = m18 = 0,m13 = 1; (b)-(d) y- periodic and double kinky waves for 
l1 = 1000,m12 = m18 = 0, m13 = 1; (e)-(h) x- periodic and double kinky waves for l1 = 1000,m13 = m18 = 0,m12 = 1; (i)-(l) (x,y)- periodic and 
double kinky waves for l1 = 1000,m18 = 0,m12 = m13 = 1; (m)-(p) (x,y)- periodic and double kinky waves for l1 = 1000,m12 = m13 = m18 = 1(For 
interpretation of the references to color in the text, the reader is referred to the web version of this article.). 
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