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ARTICLE INFO ABSTRACT

Keywords: In this article, we consider a (3 + 1)-dimensional Sharma-Tasso-Olver-like (STOL) model
Sharma-Tasso-Olver-like (STOL) equation describing dynamical propagation of nonlinear dispersive waves in inhomogeneous media.
Soliton

Applying Hirota’s bilinear technique and a trial function, we explore nonlinear dynamical

Lump wave properties of basic solutions to the STOL model. We find that the fission fusion pattern occurs in
rogue wave .. . . o

kinky periodic wave the collision between the lump and kink waves, the collision between the lump and periodic
PACS Nos: waves, and the collision among the lump, kink and periodic waves, which is a novel fascinating
02,30 ) collision pattern. We also observe that a large value of the coefficient in the periodic function
02.70.Wz produces a hybrid lump wave by fission in the collision solution. To better understand the dy-
05.45.Yv namic properties of the obtained collision solutions, we plot a number of 3D and contour dia-
94.05.Fg grams by choosing suitable parametric values with the aid of the computational software Maple

18.

1. Introduction

Nonlinear evolution equations (NLEEs) applicable not only the areas of mathematical physics, but also other branches of nonlinear
science for instance optics, plasma physics, atmospheric, geochemistry and oceanic sciences etc. [1-4]. Complication of NLEES and
challenges in their analytical study has engrossed a lots of effort from renowned scientists who are involved with nonlinear dynamics.
As a result, exploration of exact solutions of NLEEs is a vital anxiety for dynamical researchers. There are diverse categories of exact
solutions mainly soliton, multi-soliton, rational, periodic, breather line, breather kinky, lump and rogue wave solutions [5-12]. For
investigating the characteristics of solitary waves, there are various reliable and fruitful approaches such as inverse scattering scheme
[13], tanh function method [14], exp-function method [15,16], Darboux method [17], direct algebraic method [18], first integral
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Fig. 1.. (Color online) Outlook of lump wave solution u; of the Eq. (6) (For interpretation of the references to color in the text, the reader is referred
to the web version of this article.).

method [19, 20], exp (— ¢(£))expansion method [21], Hirota’s bilinear method [22-24] etc. Though, soliton should have elastic
property yet fission-fusion type non-elastic properties have been existed in few nonlinear models and investigated by many researchers
[12, 23-25].

In mathematical physics, the interaction of rogue wave with other soliton/periodic wave is a kind of remarkable task in nonlinear
sciences which are localized both in position and time, while lump wave is localized in every spaces only. Recently, combination of
positive quadratic polynomial functions with the exponential/trigonometric functions i.e. collision of kink, lump, rogue and periodic
waves produce kinky-lump, kinky-rogue, periodic-lump wave, periodic-rogue waves and kinky-periodic rogue wave for the NLEEs and
their nonlinear dynamics concerned a lot of interest [26-41]. In the existed literature, we observed that interactions as mixed
lump-kink [27, 28], lump solitons and the interaction phenomena [29-36], lump-stripe soliton solutions [37-38], non-elastic fusion
phenomena of multi-solitons [39], N th-order rogue waves [40], two lump solitons [41] are studied by recent dynamical researchers.
But it is still unexplored that both bright and dark kinks give the fission phenomena even produce hybrid lump waves, double
kinky-periodic-lump type wave exhibits as hybrid lump wave, fission and fusion properties exist in presence and without presence of
sinusoidal function and produces hybrid lump waves, both fission-fusion phenomena occurrences in both x-and y-periodic lump waves
into a double kink wave and produce hybrid lump waves, annihilations of lump-kink wave.

Motivated by the above works and new properties, we would like to derive novel higher order collision solutions which are not
reported in the previous literature for the (3 4+ 1)-dimensional classical STOL equation [42, 43]:

u + a[(3uuk + uz)x + um] +b [(2uuy + uxd;luy + uzd;luy)x + um]

-1 25-1 (€))
-"-C[(Zuuz +u 0, u, +uo, uz) + um] =0.

with real function u(x,y, z,t)and real constants a,b, c. Here 9 'indicate integral operator and inverse of .

In this article, our main goal is to construct more novel exact collision among lump, periodic and kinky wave solutions that
degenerate into periodic line breather waves, kinky periodic waves, double kinky periodic waves, periodic lump waves, double kinky
lump waves, kinky periodic lump waves, hybrid lump waves and fission fusion properties of the Eq. (1).

2. Interaction solutions and dynamics of the solutions for STOL equation

Through the relation u = (Inf),, the Eq. (1)can be expressed as the form
aﬁxxxx + bﬁxxxy + Cﬁ:rxxz - afxfrxx - bf)(fxxv - Cf)(fxxz +ﬁcxl 7f<f; = 07 (2)

with real function f(x,y, z,t)to be determined. When fsatisfies Eq. (2), u = (Inf), directly generates a solution of the main Eq. (1).
In order to evaluate fexplicitly, we assume an ansatz of the following form

f = (mx+myy + msz + myt + m5)2 + (mex + myy + mgz + mot + mlo)2
+myy + Licos(mipx + myzy + myaz + myst + myg) 3)
+lcosh(myzx + mygy + myoz + magt + myy ),

where my,my,ms,...... My, Liand lrare real free constants, my 7, ...... my; are real/completely imaginary constants. Inserting Eq. (3) to Eq.
(2), collect every coefficients of x,y,z,t,cos,sin,cosh,sinhtogether and setting each of these expression equal to zero, we gain a system of
equations in my,my,ms,......My1, land L. Solving this system of algebraic equations by using Maple 18, we obtain the following four

700



M.S. Ullah et al. Chinese Journal of Physics 68 (2020) 699-711

d)t=6

Fig. 2.. (Color online) Fission-fusion profiles of the lump wave get into a duel kinky waves for the solutions Eq. (9) withl, =a =b =1,c = — 1,m;
= 3,m2 = — 146,"13 = — 4.4,m5 = 4,m6 = 3,TTI7 = — 3.9,m3 = 10.24,"‘!10 = l,mu = 8.82,”’117 = 1.05,m18 = 2.1,"119 = 4.6,"‘!21 =0atz =
O(For interpretation of the references to color in the text, the reader is referred to the web version of this article.).

results,
Case 1:
L=0,l=0,m=0,m=0, m=m(i=1273,567,8,10,11,,21). )
Inserting Eq. (4) into the Eq. (3), we obtain
f = (mux + moy + maz + ms)* 4 (mex + myy + mgz + mig)” + my. 5)
Using the relation u = (Inf),, Eq. (5)offers the result

uy = [2(myx 4+ myy + maz + ms)my + 2(mex + myy 4 mgz + myg)ms|/ ®)
[(m1x + may + msz 4 ms)* + (mex + may + mgz -+ myo)* +myy].

The result Eq. (6) contains nine free arbitrary constants and exhibits lump wave with the condition m;; > 0 in the xyplane. The line
soliton solution that is definitely dissimilar starting a moving line soliton, arise very quickly and disappear in the constant background
within tiny time but in the intermediate time it gives highest peak. It is well known that u — Oas the two quadratic functions tend to

mymy —mame 12+me? ) mymz —mame

positive or negative infinity. It maximum minimum amplitude occurs at the points (’”2'”10 e e e '”10) when z = 0. The

Fig.1 represents stretch of the lump wave solution Eq. (6), consists of one deep hole and one high crest for the particular valuesm; =2,
my =3,m3 =2ms =1,mg =5m; =1,mg =5m;y =1,my; =10, inthe xyplane witht = 0,2 = 0. The peak of the lump wave locates

at (f Z+v2e 1%) , the valley locates at ( —Z v %) and maximum amplitude is ¥2%and deep is equal distance i.e. — Y22
Case 2:

I, =0,my =0,my =0, myy = 7mf7(am17 + bmyg + cmyg)

7
L=b,m=m(i=12735,678,10,11,17,18,19,21), @)

where a,band ccan take arbitrary values.
Inserting Eq. (7) into the Eq. (3), we emerge to

701



M.S. Ullah et al. Chinese Journal of Physics 68 (2020) 699-711

¥
) 1, =16 (e) I, =355 (f) 1, =1045
Fig. 3.. (Color online) Diagrams of collision solution uzof Eq. (12) for the valuesa =3,b =3,c = —4,m; = —1,my =1,m3 = —2,ms = —0.1,me
=1m; =1mg =2,mpo =0.1,m; =1,m2 =0,m3 =1,my4 = — 2,mye = O(For interpretation of the references to color in the text, the reader is

referred to the web version of this article.).

f = (mx+my+mz+ m5)2 + (mex + mzy + mgz + I’l’llo)2 + myy

(8)
+lzcosh{m17x + mygy + mjez — mf7(am17 + bmyg + leg)t + my; }
Using the relation u = (Inf),, Eq. (8)provides the result
2(myx + mayy + maz 4+ ms)my + 2(mex + myy + mgz + mig)me
Uy = .
+lzm17smh{m17x + mgy + moz — mf7 (amy7 + bmyg + cmyo)t + mzl}
©)

(myx + myy + maz + ms)’ + (mex + myy + mgz + myg)” + my

+lzcosh{m17x + mygy + myoz — mf7(am17 + bmyg + cmyo)f + m21} ’

In the solutions Eq. (9), we explore collision of the lump and a double kink waves through demonstration of the Fig. 2. It is seen that
only a double kink waves is visible in Fig. 2(a) at the time t = — 16and a small wave initiate at the lower kink (see from contour plot of
Fig. 2(a)) but in its propagation a lump wave come out at the time t = — 6from the lower kink (see Fig. 2(b)). So, the fission phe-
nomenon of lower kink is happened. As time goes, it moves to the upper kink and then get highest amplitude at t = Oas well as lump
reach in the middle of the two kinks (see Fig. 2(c)). After then the lump wave goes to the upper kink and amplitude of lump decreases
again as time increases (see Fig. 2(d)) and finally diminished to the upper kink at t = 16(see Fig. 2(e)). So, the fusion phenomenon of
upper kink is occurred. From the overall observation, we see the height of the double kink waves remain same in the overall prop-
agation before and after the collision.

Case 3:
L, =0,my =0,my=0,ms= mfz(amlz + bmyz + cmyy) 10)
L=1l,m=m(i=12356781011,12,13,14,16),
where a,band ccan take arbitrary real values.
Setting Eq. (10) to the Eq. (3), we acquire
/= (mx+my+mz+ ms)2 + (mex + myy + mgz + mm)2 + my an

+Hicos{mix + mysy + muz + miy (amiy + bmiz + cmy)t + nig )

Using the relationu = (Inf),, Eq. (11)offers the result
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Fig. 4.. (Color online) Diagrams of the collision solution uszof Eq. (12) for the valuesa =3,b =3,c = —4, m; = —1,my =1,m3 = —2;ms = —
0.1,mg =1,m; =1,mg =2,myo =0.1,m; =1,mz =1,m3 =0,m4 = — 2,mye = O(For interpretation of the references to color in the text, the

reader is referred to the web version of this article.).

2(myx + may + msz + ms)my + 2(mex + myy + mgz + myo)me
Uz = .
—llmlzsm{mux +mpzy + mygz + m%z(amu + bmys + cmyg)t + ml(,}mlz
(12)
(myx + myy + msyz +ms)* + (mex + mayy + msz + myg)* + myy

+hcos{mpx + mizy + myz + my, (amyy + bmyz + cmig)t + myg } '

Forl; =0, usreduces to single lump only like case-1 but for [; # 0, uzcomes in-terms of two quadratic polynomials and a sinusoidal
function (i.e. collision of lump and periodic wave), as depicted in the Figs. 3-5. Here, three sub cases are arising in the followings.

(i) When m;, = O0and m;3 # 0, uzreduces to collision solution with following dynamics:

It is well-known that the lump form with a crest and a trough (observe Fig. 3(a)). But as the value of [; increases, the collision of
lump and periodic waves create a fission of lump wave i.e. a crest and a trough progressively split into two crests and two troughs
having the same height (observe Fig. 3(b)-3(d)) and propagate along y-direction initially. Thus the fission of lump wave is happened.
We also observe that fission of the lump wave is continuous process as for large values of [; = 355, the lump wave again generate
fission and split into four lump waves propagate along both in the xand y-directions, even if for [; = 1045, it gives six lump (hybrid
lump) waves (see Fig.3(e, f)) and so on.

(ii) When my5 # Oand my3 = 0, usreduces to collision solution with following dynamics:

It gives the similar collision solution (fission of lump) in the figures Fig. 4(b)-4(f) and produces more lump waves propagate
periodically toward the x-axis and also the extreme amplitude of the crests and the troughs gradually enlarges as L increases. In
contrast the Fig. 3 with Fig. 4, we observe that the lump wave in the collision solution locates toward the y-axis in Fig. 3but the lump
wave in the collision solution locates toward the x-axis in the Fig. 4.

(iii) When m;5 # Oand my3 # 0, usreduces to collision solution with following dynamics:

In fact, some interesting phenomenon can also be observed when both m;5 # 0and m;3 # Oand the value of coefficient [; increases
the trigonometric function that dominate on the values of coefficients in quadratic functions (lump wave) as depicted in Fig. 5(a)-(d).
We display the corresponding 3D plot (3D as in upper and contour plot as in lower), density and 2D profile in the xyplane (fory = — 3,
0,3in Fig. 5(c)) of the lump-periodic wave. Anyone can see that at y = Oamplitude of the lump gives highest peak (observe Fig. 5(c)).
On the other hand, another periodic-rogue wave can be observed in xtplane as in the Fig. 5(d).

Case 4:
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Fig. 5.. (Color online) Profile of the collision of lump and periodic waves solution usof Eq. (12) for; =15,a =1,b =2,c = —4,m; =0.5,my; = —
1,mg3 =1,ms = —05,mg = — 0.25;my = — 3,mg = — 3.5,m9 = 1,my; = 20,my, :%,mlg = %,mu = — 0.8,m6 = 0: (a) the 3D plot, (b) the
density plot and (c) the similar curve plot at z = 0,t = 0; (d) Periodic rogue wave at z = 0,y = O(For interpretation of the references to color in the
text, the reader is referred to the web version of this article.).

_ _ _ 2 I
my = 0,my = 0,ms = mi,(amy + bmyz + cmyy), myg = —mi;(amyq + bmyg + cmyo)

13
h=h,b=>lm=m(i=12356781011,12,13,14,16,17,18,19,21), (13)

where a,band ccan take any arbitrary values.
Putting Eq. (13) into the Eq. (3), offers the result

f = (mx + myy + myz +ms)* + (mex + myy + msz 4+ myo)* + my,
+lcos{miax + myzy + myz + my, (amiz + bmiz + cmyg)t + mie § 14
+lzcosh{m17x + mugy + mioz — m2,(amy; + bmyg + cmyg)t + my }

Using the relationu = (Inf),, Eq. (14)offers the result

2(myx + mayy + maz + ms)my + 2(mex + myy + mgz + mig)me
Uy = —llmlzsiﬂ{mlzx +mpzy + myz + mfz(amlz + bmyz + cmyg)t + mlG} /

+lzm17sinh{m17x + mygy + mjez — mf7 (amn + bmls + leg)t -+ my }
(15)
(myx + myy + msyz +ms)* + (mex + mayy + msz + myp)” + myy

+llcos{m12x + myzy + mz + mfz(amlz + bmys + cmyg)t + mlﬁ}
+lzcosh{m17x + mygy + myoz — mf7(am17 + bmyg + cmyo)f + m21}
In the solution Eq. (15), comes in terms of two quadratic polynomials, a periodic and a hyperbolic function which exhibits double
kinky-periodic-lump type wave propagation forl, # 0, I; # 0. In this case, three clusters are arising in the followings.
Cluster-1 - Taking ,very small asl, — 0:

Taking lpvery small, a dynamical situation viewed in the Figs.6-7 for the valuesa =5,b =1,c = —1,m3 =ms =mg =myo =my;
=my4 =1,me =0.1,m9 =7,my = latz = 0. The solution usprovides double kinky-periodic lump wave in which somex-periodic-
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20 10 o -10

X X
-7 —
(d) 7, =10 f1,=0
Fig. 6.. (Color online) Profiles of collision solution usof Eq. (15) for the parameters m; =mg =my3 =mg =0,my =my =myx =my; =1, =

0.5: (a)-(c) the periodic lump get into the double kinky wave for I, = 10~*; (d)-(e) increases of periodic lump into the double kinky wave for I, — 0;
(f) x- periodic lump wave for [, = O(For interpretation of the references to color in the text, the reader is referred to the web version of this article.).

lump with period 27/mi,get into the double kink and kinky wave moves through xaxis with time increases for the values as depicted in
the Fig. 6(a)-(c). In this case number of lump wave remains same with the same value of [, = 0.0001. But whenl, — 0, the number of
lump wave gradually increases as the values of l;decreases (observe Fig. 6(d)-(e)), even if, kink vanishes and only periodic lump exist
for Iy = O(observe Fig. 6(f)) at t = 0.Actually, changing different parametric constraint of the solution Eq. (15) distinguish charac-
teristics again exhibits in Fig. 7(a)-(d) asy — periodic lump with period 2z/m;sget into the kink that arises with a constant background
and decay go back to the same previous background at a longer time. On the other hand, same behavior can be observed in line soliton
in the Fig. 7(e)-(h). Interesting characteristics can also be experienced when constant coefficients vanishes (i.e., ms =mjo =mj; =mys
= mg; = 0) as depicted in the Fig.8(a)-(c) that behaved y — periodic bright-dark lump waves get into the double kink waves with
period 27/my3. The bright lumps get into the lower kink and dark lumps get into the upper kink. Both kinks give the fission phenomena
and produce hybrid lump waves in which height and number of lump increases as [;increase (observe Fig. 8(a)-(c)). These novel
nonlinear phenomena are the first reported for the (3 + 1)-dimension STOL equation.

Cluster-2 - Taking l;not so small:

Taking lxnot so small, a dynamical situation viewed to the solutionuy, provides double kinky waves in which two lump waves
periodically get into the kink waves and exhibits fission fusion phenomena. Solution Eq. (15), exhibits fission-fusion phenomena as
depicted in the Figs.9(a)-(f) and 10(a)-(f) which are similar to the fission-fusion phenomena of the Fig. 2. But the only different is that
yperiodic two lumps causes fission from the upper kink and then fused into the lower kink when m;> = 0, m;3 # O(observe Fig. 9(a)-
(e)) and xperiodic two lumps causes fission from the upper kink and then fused into the lower kink when m;, # 0, m;3 = O(observe
Fig. 10(a)-(f)). Both the figures Figs. 9(a)-(f) and 10(a)-(f) are sketch with specific parametersl; =16,l =0.5,a = —3,b =2,c =1,m

= — l,mz = 1,m3 = — 2,m5 :O,m(, = 1,m7 = 1,mg :4,m10 :O,mn = 1,m14 = 1,m16 :0,m17 = 1,m18 IO,mlg = 2,m21 =0atz
= 0. These novel nonlinear phenomenon is the first reported for the (3 + 1)-dimension STOL equation.

Cluster-3 - Taking lump vanish (i.e., m; =0;i =1,2,3,5,6,7,10):

Whenm; =0(i=1,2,3,5,6,7,10); lump waves being diminished and then collision between the kinky and periodic wave are
appeared in the solution Eq. (15), then we find

f=my + llcos{mlzx +mpzy +mpz + mfz(amlz + bmz + cm14)t + m15}

(16)
+lzcosh{m17x + mgy + mygz — mf7(am17 + bmyg + cmyo)t + my; }

The solution Eq. (16) can convert to diverse collision solutions, selecting the constants m;;, mg, m;9,my; are real/purely imaginary
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(d) =50

-0 20 3

(€)1 = —50 ® =0 (@ 1=5 (h 1 =50

Fig. 7.. (Color online) Annihilation properties of collision solution usof Eq. (15) for; = 0.5, = 10~*at z = 0; (a)-(d) y — periodic lump wave get
into the kinky wave for my =m; =mjy =mg =0,m; =mg = my3 = my; = 1; (e)-(h) x- periodic lump get into the kink wave for my =my; =m3
=mg = 0,m; = mg = myz = my; = 1(For interpretation of the references to color in the text, the reader is referred to the web version of
this article.).

=
v —
J

o

AR FTEE P

=}

@l =5 (b) 1, =50 () [, =500

Fig. 8.. (Color online) Profiles of collision solution usof Eq. (15) forly =107*a =5b =1,c = —1,m; =mg =myz =myg=0,mg =7,my =m3 =
m; =mg =m3 =my4 =my; = latt =0,z = O(For interpretation of the references to color in the text, the reader is referred to the web version of
this article.).
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-l0g 6 y

d) t=4 (e) 1=8 (f) 1=16

Fig. 9.. (Color online) Fission-fusion profile of y-periodic lump wave with the double kink wave of solution Eq. (15)for m;3 = 1(For interpretation
of the references to color in the text, the reader is referred to the web version of this article.).

value.

(i) For my7, myg, mig, mp;are real valued, we acquire a collision wave of the Eq. (1) using the relation u = (Inf),as:

—llmlzsin{mux + myzy + muaz + mfz(amlz + bm13 + cm14)t =+ m15}
Us = .
+l2m17smh{m.7x + mgy + mygz — mf7(am17 + bmyg + cmyo)t + m21}
17
my + llcos{mlzx +mpzy + mpz + mfz(amlz + bm13 + cm14)t + m16}

+lzcosh{m17x + mgy + mygz — mf7(am17 + bmyg + cmg)t + my; }

Characteristics of the solution usfor the Eq. (17) are explained for diverse choose of the involve parametric values in the figure
Fig. 11 and corresponding contour line of the diagram are drawn bellow of the figures in Fig. 11(a)-11(d). For ; = 0, usreduces to
double kinky waves (see Fig. 11(a)) but for I; # 0, usis collision of a y- kinky periodic breather wave (see Fig. 11(b)-(d)). Evidently, as
tchanges the collision wave moves toward the x — axis and the phase of the periodic wave changes after nzl—:’aalong y-axis.

In this case, we also observe that changing different parametric constraint in the solution Eq. (17) distinguish characteristics again
exhibits which are periodic line breather waves proceed in various directions as depicted in the Fig. 11(e)-(h), (i)-(1), (m)-(p). Each
group of periodic line breather waves begins with a constant background and decay return to the same previous background at a longer
time.

(l) For my7, myg, Mpg, Myjare pure imaginary valued, i.e., myy; = l'ﬁl17,m13 = iﬁlls,mlg = iﬁl]g,mgl = iﬁ'lz]With ﬁl17,ﬁl18,ﬁl193nd
my; are real valued, we acquire a collision of two breather waves of the Eq. (1) using the relation u = (Inf) as:
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Fig. 10.. (Color online) Fission-fusion profile of x-periodic lump wave with the double kink wave of solution Eq. (15)for m;» = 1(For interpretation
of the references to color in the text, the reader is referred to the web version of this article.).

—llmlzsin{mux + myzy + miaz + mfz(amlz + bmys + cmyg)t + mlﬁ}
us = ~ ~ )
7lzm17sin{m17x + mygy + myoz + mj, (aﬁm + binyg + C"hll))t + 1y }

2 (18)
my + llcos{mux +mpzy + mpz + mlz(amlz + bmyz + cm14)t + m16}

+lzcos{rh17x + mgy + mygz + ﬁﬁ7 (arhn + binyg + cﬁ119> t + my, }

Lastly, the solution represented by Eq. (18) are different periodic waves for different chooses of parameters in is. When l; =0, usis
a one periodic wave that confine in the position and time directions (observe Fig. 12(a)). Otherwise, when I; # 0, then usexhibits the
dual periodic waves in both xyand xz- planes (observe Fig. 12(b) and (c)).

3. Conclision

In summary, interaction solutions of the (3 + 1)-dimensional STOL equation have been determined successfully. With the aid of
Maple software, a test function is carefully used to derive different nonlinear dynamical properties. As a result, some novel collision
solutions among the lump, periodic and kinky waves are derived of the STOL model. We also established fission fusion properties for
the collision of lump and kink waves, lump and periodic waves and among the collision of lump, kink and periodic waves. We also
observed that fission and fusion properties exist in presence and without presence of sinusoidal function and produces hybrid lump
waves. By taking purely imaginary values of some parameters, we derived line breather and double periodic breather wave solutions.
To better understand the dynamic natures of the obtained collision solutions, we depict adequate 3d plots and contour diagrams by
choosing suitable parametric values with the aid of computational software Maple 18. It is expected that our achieved solutions can
improve the dynamical characteristics of the other higher order models.
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(m)  =-50 m) =0 (o) t=5 (p) t =50

Fig. 11.. (Color online) Annihilation properties of the collision solution usof Eq. (17)fora =1,b = — 2,c =3,m;; =1500,mi4 = — 2,m6 = 1,m17
=1,m¢ = —1/12,my; = land l, = 100: (a) double kinky waves for l; =mj2 =mg = 0,m;3 = 1; (b)-(d) y- periodic and double kinky waves for
I, =1000,m;3 = mig = 0, m3 = 1; (e)-(h) x- periodic and double kinky waves for [; = 1000,m;3 = myg = 0,m12 = 1; (i)-(1) (x,y)- periodic and
double kinky waves for I; =1000,m;g = 0,m12 =my3 = 1; (m)-(p) (x,y)- periodic and double kinky waves for l; =1000,m;2 =m;3 =mg = 1(For
interpretation of the references to color in the text, the reader is referred to the web version of this article.).
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-107 -0 X

(a) y=0,z=0
Fig. 12.. (Color online) Diagrams of the collision solution tisof Eq. (18) fora = —1,b =1,c = — 0.6,m1; = 1,mi2 =0,m3 =2,my4 = — 2,y =
1,1, =01 and myy; = 1,My3 = — 0.25,Mm19 = — 1/12,my; = 1: (a) one periodic wave at I; = 0; (b)-(c) dual periodic wave at [; = 0.1(For

interpretation of the references to color in the text, the reader is referred to the web version of this article.).
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