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The Schamel–Korteweg-de Vries (S-KdV) model is used to predict the influence of sur-

face for deep water in the presence of solitary waves. The aim of the study is to study
the governing model analytically by employing the extended modified auxiliary equa-

tion mapping approach and the extended FAN sub-equation method. The 3D, 2D and
contour plots are drawn to demonstrate the physical nature of the nonlinear model for
a set of parameters. As a result, dark solitons, light solitons, solitary waves, periodic
solitary waves, rational functions, and elliptic function solutions are established. Fur-
thermore, the the developed results are verified with the aid of latest computing tool

such as Mathematica or Maple. The applied strategy appears to be a more powerful and
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efficient scheme for achieving exact solutions to a number of diversified contemporary

models of recent eras.

Keywords: Schamel–Korteweg-de Vries equation; analytical solutions; the extended mod-
ified auxiliary equation mapping method; extended FAN sub-equation method.

1. Introduction

Nonlinear evolution equations (NLEEs) are of key importance due to their sig-

nificant role in diverse disciplines of science and technology. The nonlinear wave

structures have fascinated many researchers in recent decades due to their diverse

properties observed in various disciplines of contemporary sciences. In the pres-

ence of solitary waves, the nonlinear evolution models are utilized to simulate the

effect of surface for deep water and weakly nonlinear dispersive long waves. There-

fore, the exact solutions of such models play a vital role of study of dynamical

structures and further properties of physical phenomenon occurring several fields to

name a few, electromagnetism, physical chemistry, geophysics, ionized physics, elas-

tic medium, fluid motion, fluid mechanics, elastic medium, nuclear physics, electro-

chemistry, optical fibers, energy physics, chemical mechanics, gravity, biostatistics,

statistical and natural physics.1–10

With the recent developments in various contemporary analytical methodolo-

gies, solitons play a key role to understand the nonlinear phenomenon of many

crucial structures in an exceptional way. The major feature of solitons is that they

have nearly the same forms and speeds after colliding; also, the production of opti-

cal solitons is linked to optical frequency. Kink solutions are asymptotic waves that

ascend or descend from one asymptotic state to the next, and they also approach a

constant at infinity. Kink solutions, like classical particles, have a constant shape;

nevertheless, their widths shrink, which can change. Solitons are transmitted as

dark ones in the normal dispersion domain, but as bright ones in the anomalous

dispersion domain. With the rapid advancement of information technology and

telecommunications, the optical solitons play an important rule in understanding

the dynamics of nonlinear wave propagation through a variety of wave-guides. The

polarization of pulse propagation over trans-oceanic and trans-continental distances

is an inherent problem with the dynamics of pulse propagation.11–20

To analyze various properties of electrostatic waves is especially significant

because of their potential applications in the improvement of new theories of chem-

ical physics, nuclear physics, astrophysics, dusty plasma, fluid dynamics, optical

physics, fluid mechanics, geophysics and distinctive other fields of applied physics.

For the better understanding of nonlinear models also further uses in everyday life,

it is crucial to get their exact traveling wave solution. To attain the exact solu-

tions of nonlinear models there are powerful and effective techniques such as the

Hirota bilinear method,21–23 the Sine-Cosine method,24 Adomian decomposition
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methods,25 generalized Riccati equation expansion method,26,27 homotopy anal-

ysis method,28 extended Kurdyashov method,29 residual power series method,30

modified simple equation method,31 (G
′

G ,
1
G )-expansion method,32 extended simple

equation methods,33,34 the Hirota method,35 modified Kudryashov method,36

extended Sinh–Gordon equation expansion method,37 extended generalized Ric-

cati equation mapping method,38 homotopy perturbation method,39 multiple exp-

function method40,41 and many more.42–51

The Gardner equation originated by an American mathematician Clifford Gard-

ner in 1968 to disseminate KdV equation and modified KdV equation. The Gardner

equation has applications in quantum field theory, plasma physics and hydrody-

namics. The generalized Gardner equations52 is read as

ut + (qun + ru2n + p)ux + uxxx = 0, n ≥ 0. (1)

The S-Kdv equation is a special case of the generalized Gardner equations. For

p = 0 and n = 1
2 in Eq. (1), we have the S-Kdv equation.

In 1973, a German Mathematician Hans Schamel first derived Schamel–

Korteweg-de Vries equation53 to express the outcomes of electron entrapment in

plasma physics to study the ion acoustic solitons and it also describes the electro-

static potential for a specific electron scattering in velocity space.54 The Schamel-

KdV equation is also used to study the wave properties in dusty space plasma

containing positively and negatively charged particles as well as non-isothermal

electrons. The most common type of plasma in our Solar System is dusty plasma.

In fact, it is hard to find a plasma environment free of dust particles anywhere in

the Solar System.

In the recent past, the Schamel–Korteweg-de Vries equation (S-KdV) as been

studied by various renowned scholars by applying diverse analytical approaches

such as the Exp-function method,60 the extended (G′/G)-expansion method,61 the

simplest equation method and the Kudryashov method,62 classical Khater and the

modified Khater approaches,63 the modified Kudrayshov scheme64 and more. The

main focus of our work is to extract some new traveling wave solutions to the S-KdV

model55 by utilizing the extended modified auxiliary equation mapping (AEM)

method56,57 and the extended FAN sub-equation method, which reads

ut + (αu
1
2 + βu)ux + δuxxx = 0, (2)

where the variables β, α and δ correspond to the activation convection, trapping,

and dispersion coefficients, respectively. Furthermore, Eq. (2) reduces to the classi-

cal KdV equation58 and the Schamel equation59 for α = 0 and β = 0, respectively.

In this work, Sec. 1 includes the brief introduction of S-Kdv model, while in

Sec. 2, the extended modified AEM and the extended FAN sub-equation techniques

are successfully implemented to demonstrate different solitary wave structures. In

Sec. 3, the physical interpretation of the obtained solutions is represented by 3D,

2D and contour graphs. At the end, the concluding remarks are given.
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2. Mathematical Analysis

Consider the wave transformation

u(x, t) = Ω(x, t)2, (3)

where

Ω(x, t) = Ω(ξ), ξ = κx− tω. (4)

Equation (2) transforms to nonlinear ode of the form

−ωΩΩ′ + κΩ′(βΩ3 + αΩ2) + δκ3(Ω
′′′

Ω + 3Ω′Ω′′) = 0. (5)

2.1. Applications of the modified AEM method

By the homogenous balance principle from Eq. (5), we find the positive integer

n = 1, the solution is of the form65

Ω(ξ) = a0 + a1ψ(ξ) +
b1
ψ(ξ)

+
d1ψ

′(ξ)

ψ(ξ)
, (6)

where a0, a1, b1 and d1 are to be determined and ψ satisfies

ψ′(ξ)2 = χ1ψ(ξ)2 + χ2ψ(ξ)3 + χ3ψ(ξ)4, (7)

χi (i = 0, 1, 2, 3, 4) are real constants.

Putting Eq. (20) along with its desired derivatives into Eq. (5), by collecting

the coefficients of ψ
′
(η) ψ(η) and equating them to zero we obtain the following

algebraic system:

3a0βb
2
1d1κχ1 + αb21d1κχ1 +

3

2
βb31d1κχ2 = 0,

2αa0b1d1κχ1 + 3a1βb
2
1d1κχ1 + 3a20βb1d1κχ1 +

9

2
a0βb

2
1d1κχ2

+
3

2
αb21d1κχ2 + 2βb31d1κχ3 − 5b1δd1κ

3χ2
1 − b1d1χ1ω = 0,

2αa1b1d1κχ1 + 3αa0b1d1κχ2 + 6a0a1βb1d1κχ1

+
9

2
a1βb

2
1d1κχ2 +

9

2
a20βb1d1κχ2 + 6a0βb

2
1d1κχ3

+αa20d1κχ1 + a30βd1κχ1 − 2a0δd1κ
3χ2

1 − a0d1χ1ω

+ 2αb21d1κχ3 −
27

2
b1δd1κ

3χ1χ2 −
3

2
b1d1χ2ω = 0,

3αa1b1d1κχ2 + 4αa0b1d1κχ3 + 3a21βb1d1κχ1 + 9a0a1βb1d1κχ2

+ 6a1βb
2
1d1κχ3 + 6a20βb1d1κχ3 + 2αa0a1d1κχ1 +

3

2
αa20d1κχ2

+ 3a20a1βd1κχ1 +
3

2
a30βd1κχ2 + a1δd1κ

3χ2
1 −

9

2
a0δd1κ

3χ1χ2
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− a1d1χ1ω −
3

2
a0d1χ2ω − 9b1δd1κ

3χ2
2 − 16b1δd1κ

3χ1χ3 − 2b1d1χ3ω = 0,

4αa1b1d1κχ3 +
9

2
a21βb1d1κχ2 + 12a0a1βb1d1κχ3 + αa21d1κχ1

+ 3αa0a1d1κχ2 + 2αa20d1κχ3 + 3a0a
2
1βd1κχ1 +

9

2
a20a1βd1κχ2

+ 2a30βd1κχ3 −
1

4
9a0δd1κ

3χ2
2 +

9

2
a1δd1κ

3χ1χ2

− 4a0δd1κ
3χ1χ3 −

3

2
a1d1χ2ω − 2a0d1χ3ω − 21b1δd1κ

3χ2χ3 = 0,

6a21βb1d1κχ3 +
3

2
αa21d1κχ2 + 4αa0a1d1κχ3

+ a31βd1κχ1 +
9

2
a0a

2
1βd1κχ2 + 6a20a1βd1κχ3

+
9

2
a1δd1κ

3χ2
2 + 8a1δd1κ

3χ1χ3 − 3a0δd1κ
3χ2χ3

− 2a1d1χ3ω − 12b1δd1κ
3χ2

3 = 0,

2αa21d1κχ3 +
3

2
a31βd1κχ2 + 6a0a

2
1βd1κχ3 + 15a1δd1κ

3χ2χ3 = 0,

αa20a1κ+ αa21b1κ+ 3a0a
2
1βb1κ

+ 9a1βb1d
2
1κχ2 + 12a0βb1d

2
1κχ3 + 6a0b1δκ

3χ3 + a30a1βκ

+ 2αa1d
2
1κχ1 + 3αa0d

2
1κχ2 + 6a0a1βd

2
1κχ1 +

9

2
a20βd

2
1κχ2

+ a0a1δκ
3χ1 − a0a1ω + 4αb1d

2
1κχ3 − 18δd21κ

3χ1χ2 −
3

2
d21χ2ω = 0,

−3a0βb
3
1κ− αb31κ = 0,

−2αa0b
2
1κ− 2a1βb

3
1κ− 3a20βb

2
1κ+ 3βb21d

2
1κχ1 + 8b21δκ

3χ1 + b21ω = 0,

−αa1b21κ− αa20b1κ− 3a0a1βb
2
1κ− a30βb1κ+ 6a0βb1d

2
1κχ1

+ 5a0b1δκ
3χ1 + a0b1ω + 2αb1d

2
1κχ1 +

9

2
βb21d

2
1κχ2 +

21

2
b21δκ

3χ2 = 0,

6a1βb1d
2
1κχ1 + 9a0βb1d

2
1κχ2 + 6a0b1δκ

3χ2 + 2αa0d
2
1κχ1 + 3a20βd

2
1κχ1

+ 3αb1d
2
1κχ2 + 6βb21d

2
1κχ3 + 12b21δκ

3χ3 − 8δd21κ
3χ2

1 − d21χ1ω = 0,

2αa0a
2
1κ+ 2a31βb1κ+ 12a1βb1d

2
1κχ3 + 3a20a

2
1βκ+ 3αa1d

2
1κχ2

+ 4αa0d
2
1κχ3 + 3a21βd

2
1κχ1 + 9a0a1βd

2
1κχ2 + 6a20βd

2
1κχ3 + 4a21δκ

3χ1

+ 3a0a1δκ
3χ2 − a21ω − 9δd21κ

3χ2
2 − 16δd21κ

3χ1χ3 − 2d21χ3ω = 0,
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αa31κ+ 3a0a
3
1βκ+ 4αa1d

2
1κχ3 +

9

2
a21βd

2
1κχ2

+ 12a0a1βd
2
1κχ3 +

15

2
a21δκ

3χ2 + 6a0a1δκ
3χ3 − 12δd21κ

3χ2χ3 = 0,

a41βκ+ 6a21βd
2
1κχ3 + 12a21δκ

3χ3 = 0,

αa21d1κ+
9

2
a1βd

3
1κχ2 + 6a0βd

3
1κχ3 + 3a0a

2
1βd1κ

+ 3a1δd1κ
3χ2 + 12a0δd1κ

3χ3 + 2αd31κχ3 = 0,

−9a0βb
2
1d1κ− 3αb21d1κ = 0,

−4αa0b1d1κ− 6a1βb
2
1d1κ− 6a20βb1d1κ

+ 3βb1d
3
1κχ1 + 28b1δd1κ

3χ1 + 2b1d1ω = 0,

−2αa1b1d1κ− 6a0a1βb1d1κ− αa20d1κ+ 3a0βd
3
1κχ1 − a30βd1κ

+ 8a0δd1κ
3χ1 + a0d1ω +

9

2
βb1d

3
1κχ2 + 33b1δd1κ

3χ2 + αd31κχ1 = 0,

3a1βd
3
1κχ1 +

9

2
a0βd

3
1κχ2 + 9a0δd1κ

3χ2 + 6βb1d
3
1κχ3

+ 36b1δd1κ
3χ3 +

3

2
αd31κχ2 = 0,

6a1βd
3
1κχ3 + 2a31βd1κ+ 12a1δd1κ

3χ3 = 0,

−6βb21d
2
1κ− 12b21δκ

3 = 0,

−9a0βb1d
2
1κ− 6a0b1δκ

3 − 3αb1d
2
1κ = 0,

−6a1βb1d
2
1κ− 2αa0d

2
1κ− 3a20βd

2
1κ+ βd41κχ1 + 20δd21κ

3χ1 + d21ω = 0,

−αa1d21κ− 3a0a1βd
2
1κ+

3

2
βd41κχ2 +

45

2
δd21κ

3χ2 = 0,

2βd41κχ3 + 24δd21κ
3χ3 = 0,

−4βb1d
3
1κ− 24b1δd1κ

3 = 0,

−3a0βd
3
1κ− 6a0δd1κ

3 − αd31κ = 0,

−βd41κ− 12δd21κ
3 = 0.

The following cases arise by solving the above system:

Family I:

ψ(ξ) = − 4χ1e
ξ
√
χ1

χ2
2(−e2ξ

√
χ1) + 2χ2eξ

√
χ1 + 4χ1χ3e2ξ

√
χ1 − 1

.
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Case I: a0 = 0, a1 = λ, b1 = 0, d1 = 0, χ1 = ω
4δκ3 , χ2 = − 2αa1

15δκ2 , χ3 = − a21β
12δκ2 .

u1(x, t) =
λ2ω2eξ

√
ω
δκ3

δ2κ6
(
− 4α2λ2e

ξ
√

ω
δκ3

225δ2κ4 − 4αλe
1
2
ξ
√

ω
δκ3

15δκ2 − βλ2ωe
ξ
√

ω
δκ3

12δ2κ5 − 1
)2 . (8)

Case II: a0 =
−
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = 30δδ2κ

3

√
6
√
κ(6α2κ+25βω)+2ακ

, b1 = 0, d1 =

0, χ1 =
−

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 = λ, χ3 = − a21β
12δκ2 .

u2(x, t) =

(
30δκ3λψ(ξ)√

6
√
κ(6α2κ+ 25βω) + 2ακ

+
−
√

6
√

6α2κ2 + 25βκω − 6ακ

10βκ

)2

.

(9)

Case III: a0 =
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = − 30δχ2κ

3

√
6
√
κ(6α2κ+25βω)−2ακ

, b1 = 0, d1 =

0, χ1 =

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 = λ, χ3 = − a21β
12δκ2 .

u3(x, t) =

(√
6
√

6α2κ2 + 25βκω − 6ακ

10βκ
− 30δκ3λψ(ξ)√

6
√
κ(6α2κ+ 25βω)− 2ακ

)2

.

(10)

Case IV: a0 =
−
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = λ, b1 = 0, d1 = 0, χ3 = − a21β

12δκ2 , χ1 =

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 =

√
6a1

√
κ(6α2κ+25βω)

κ +2αa1
30δκ2 .

u4(x, t) =

(
−
√

6
√

6α2κ2 + 25βκω − 6ακ

10βκ
+ λψ(ξ)

)2

. (11)

Case V: a0 =
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = λ, b1 = 0, d1 = 0, χ3 = − a21β

12δκ2 , χ1 =

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 =
2αa1−

√
6a1

√
κ(6α2κ+25βω)

κ

30δκ2 .

u5(x, t) =

(√
6
√

6α2κ2 + 25βκω − 6ακ

10βκ
− 30δκ3λψ(ξ)√

6
√
κ(6α2κ+ 25βω)− 2ακ

)2

.

(12)

Family II:

ψ(ξ) =
4χ1e

ξ
√
χ1

−2χ2eξ
√
χ1 + e2ξ

√
χ1 + χ2

2 − 4χ1χ3
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Case I: a0 = 0, a1 = λ, b1 = 0, d1 = 0, χ1 = ω
4δκ3 , χ2 = − 2αa1

15δκ2 , χ3 = − a21β
12δκ2 .

u6(x, t) =
225λ2ω2eξ

√
ω
δκ3

4α2κ2
(
75βλ2ω
16α2κ − 2λe

1
2 ξ
√

ω
δκ3 + eξ

√
ω
δκ3 + λ2

)2 . (13)

Case II: a0 =
−
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = 30δδ2κ

3

√
6
√
κ(6α2κ+25βω)+2ακ

, b1 = 0, d1 =

0, χ1 =
−

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 = λ, χ3 = − a21β
12δκ2 .

u7(x, t) =

(
30δκ3λψ(ξ)√

6
√
κ(6α2κ+ 25βω) + 2ακ

+
−
√

6
√

6α2κ2 + 25βκω − 6ακ

10βκ

)2

.

(14)

Case III: a0 =
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = − 30δχ2κ

3

√
6
√
κ(6α2κ+25βω)−2ακ

, b1 = 0, d1 =

0, χ1 =

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 = λ, χ3 = − a21β
12δκ2 .

u8(x, t) =

(√
6
√

6α2κ2 + 25βκω − 6ακ

10βκ
− 30δκ3λψ(ξ)√

6
√
κ(6α2κ+ 25βω)− 2ακ

)2

.

(15)

Case IV: a0 =
−
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = λ, b1 = 0, d1 = 0, χ3 = − a21β

12δκ2 , χ1 =

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 =

√
6a1

√
κ(6α2κ+25βω)

κ +2αa1
30δκ2 .

u9(x, t) =

(
−
√

6
√

6α2κ2 + 25βκω − 6ακ

10βκ
+ λψ(ξ)

)2

. (16)

Case V: a0 =
√
6
√

6α2κ2+25βκω−6ακ
10βκ , a1 = λ, b1 = 0, d1 = 0, χ3 = − a21β

12δκ2 , χ1 =

√
6α
√
κ(6α2κ+25βω)

β − 6α2κ
β −25ω

50δκ3 , χ2 =
2αa1−

√
6a1

√
κ(6α2κ+25βω)

κ

30δκ2 .

u10(x, t) =

(√
6
√

6α2κ2 + 25βκω − 6ακ

10βκ
+ λψ(ξ)

)2

. (17)

2.2. Applications of the extended FAN sub-equation method

By the homogenous balance principle from Eq. (5) we find the positive integer

n = 1, the solution is of the form66

Ω = ζ0 + ζ1ψ(ξ), (18)

2250137-8
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where a0, a1 are to be determined and ψ satisfies(
dψ(ξ)

dξ

)2

= `0 + `1ψ(ξ) + `2ψ
2(ξ) + `3ψ

3(ξ) + `4ψ
4(ξ), (19)

`i (i = 0, 1, 2, 3, 4) are real constants.

Inserting Eq. (18) along Eq. (19) in Eq. (5) and picking the coefficients of φjφ(k),

2αζ20κ+ 2ζ30βκ+ 3ζ1δ`1κ
3 + 2ζ0ζ1δ`2κ

3 − 2ζ0ω = 0,

4αζ0ζ1κ+ 6ζ20ζ1βκ+ 2ζ1(ζ1 + 3)δ`2κ
3 + 6ζ0ζ1δ`3κ

3 − 2ζ1ω = 0,

6ζ0ζ
2
1βκ+ ζ1κ(2αζ1 + 3(2ζ1 + 3)δ`3κ

2) + 12ζ0ζ1δ`4κ
3 = 0,

2ζ1κ(ζ21β + 6(ζ1 + 1)δ`4κ
2) = 0.

We select variables suitably which gives

ζ0 = ± 1

12β`4(3β − 4δ`4κ2)

×
[
`4

(
4α
(√

3
√
δ`4κ2(3δ`4κ2 − 2β)− 3β

)
+ 3δ`3κ

2
(
4
√

3
√
δ`4κ2(3δ`4κ2 − 2β)− 9β

))
+ 12δ`24κ

2(α+ 3δ`3κ
2)− 9

√
3β`3

√
δ`4κ2(3δ`4κ2 − 2β)

]
, (20)

ζ1 = ±
√

3
√

3δ2`24κ
4 − 2βδ`4κ2 − 3δ`4κ

2

β
. (21)

Thus, we have following collection of soliton solutions for the given model:

Case I. If `0 = ϑ23, `1 = 2ϑ1ϑ3, `2 = 2ϑ2ϑ3 + ϑ21, `3 = 2ϑ1ϑ2, `4 = ϑ22, there may

exist parameters ϑ1, ϑ2, satisfy ϑ3, the solutions of (2) are φIη, (η = 1, 2, . . . , 24).

Some of important solitons are listed below.

Type I: when γ21 − 4γ2γ3 > 0, γ1γ2 6= 0, γ2γ3 6= 0. We obtain the dark optical

solitons in the form as follows

uI1(x, t) =

[
ζ0 − ζ1

{√
γ21 − 4γ2γ3 tanh

(
1
2ξ
√
γ21 − 4γ2γ3

)
+ γ1

2γ2

}]2
. (22)

We obtain the combined bright-dark optical soliton in the form as follows

uI3(x, t) =

[
ζ0 − ζ1

{√
γ21 − 4γ2γ3

(
i sech

(
ξ
√
γ21 − 4γ2γ3

)

+ tanh
(
ξ
√
γ21 − 4γ2γ3

))
+ γ1

}]2
. (23)

2250137-9



November 18, 2022 23:0 147-mplb S0217984922501378 page 10

2nd Reading

K. U. Tariq, A. Ahmed & W.-X. Ma

We obtain the combined dark-singular optical solitons in the form as follows:

uI5(x, t) =

[
ζ0 − ζ1

{√
γ21 − 4γ2γ3

(
tanh

(
1

4
ξ
√
γ21 − 4γ2γ3

)

+ coth

(
1

4
ξ
√
γ21 − 4γ2γ3

))
+ γ1

}]2
. (24)

The family of solitons is obtained as

uI10(x, t) =

[
ζ0 − ζ1

{(
2 cosh

(
ξ
√
γ21 − 4γ2γ3

))
×
(√

γ21 − 4γ2γ3 sinh
(
ξ
√
γ21 − 4γ2γ3

)
−
(
γ1 cosh

(
ξ
√
γ21 − 4γ2γ3

)
± i
√
γ21 − 4γ2γ3

))−1}]2
. (25)

Type II: when γ21−4γ2γ3 < 0, γ1γ2 6= 0, γ2γ3 6= 0. The following families of periodic

solitons are obtained

uI13(x, t) =

[
ζ0 − ζ1

{√
4γ2γ3 − γ21 tan

(
1
2ξ
√

4γ2γ3 − γ21
)
− γ1

2γ2

}]2
. (26)

uI20(x, t) =

[
ζ0 − ζ1

{
2γ3 cos

(
1
2ξ
√

4γ2γ3 − γ21
)√

4γ2γ3 − γ21 sin
(
1
2ξ
√

4γ2γ3 − γ21
)

+ γ1 cos
(
1
2ξ
√

4γ2γ3 − γ21
)

}]2
. (27)

ΦI
24(x, t) =

[
ζ0 − ζ1

{
4r sin

(
1

4
ξ
√

4γ2γ3 − γ21
)

cos

(
1

4
ξ
√

4γ2γ3 − γ21
))

×
(

2
√

4γ2γ3− γ21 cos2
(

1

4
ξ
√

4γ2γ3− γ21
)
− 2γ1 sin

(
1

4
ξ
√

4γ2γ3− γ21
)

× cos

(
1

4
ξ
√

4γ2γ3 − γ21
)
−
√

4γ2γ3 − γ21
))−1}]2

. (28)

Case II. If `0 = γ23 , `1 = 2γ1γ3, `2 = 0, `3 = 2γ1γ2, `4 = γ22 , u is one of the uIIη ,

(η = 1, 2, . . . , 12). A family of dark optical soliton is obtained

uII1 (x, t) =

[
ζ0 − ζ1

{√
−6γ2γ3 tanh

(
1
2ξ
√
−6γ2γ3

)
+
√
−2γ2γ3

2γ2

}]2
, (29)
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another form of dark-singular optical soliton is obtained

uII5 (x, t) =

[
ζ0 − ζ1

{√
−6γ2γ3

(
tanh

(
1

4
ξ
√
−6γ2γ3

)

+ coth

(
1

4
ξ
√
−6γ2γ3

))
+ 2
√
−2γ2γ3

}]2
. (30)

Case III. If `0 = `1 = 0, we have the following solution of (2) in the form uIIIη ,

(η = 1, 2, . . . , 10) :

Type I: `2 = 1, `3 = −2κ3

κ1
, `4 =

κ2
3−κ

2
2

κ2
1

, where κ1,κ2,κ3 are arbitrary constants.

uIII1 (x, t) =

[
ζ0 − ζ1

(
κ1 sech(ξ)

κ2 sech(ξ) + κ3

)]2
. (31)

Type II: `2 = 1, `3 = −2κ3

κ1
, `4 =

κ2
3+κ2

2

κ2
1

, where κ1,κ2,κ3 are arbitrary constants.

uIII2 (x, t) =

[
ζ0 − ζ1

(
κ1 csch(ξ)

κ2 csch(ξ) + κ3

)]2
. (32)

In particular, if we take κ2 = 0 in Eqs. (31) and (32). We obtain the families of

bright and singular optical solitons as follows:

uIII1 (x, t) =

[
ζ0 − ζ1

(
κ1 sech(ξ)

κ3

)]2
, (33)

uIII2 (x, t) =

[
ζ0 − ζ1

(
κ1 csch(ξ)

κ3

)]2
. (34)

Type III: `2 = 4, `3 = − 4(2κ2+κ4)
κ1

, `4 =
4κ2

2+4κ4κ2+κ2
3

κ2
1

, where κ1,κ2,κ3,κ4 are

arbitrary constants.

uIII3 (x, t) =

[
ζ0 − ζ1

(
κ1 sech2(ξ)

κ2 tanh(ξ) + κ3 + κ4 sech2(ξ)

)]2
. (35)

Type IV: `2 = 4, `3 = 4(κ4−2κ2)
κ1

, `4 =
4κ2

2−4κ4κ2+κ2
3

κ2
1

, where κ1,κ2,κ3,κ4 are arbi-

trary constants.

uIII4 (x, t) =

[
ζ0 − ζ1

(
κ1 csch2(ξ)

κ2 coth(ξ) + κ3 + κ4 csch2(ξ)

)]2
. (36)

In particular, if we consider κ2 = κ4; another family of dark and singular optical

solitons are obtained as follows:

uIII4 (x, t) =

[
ζ0 − ζ1

(
κ1 csch2(ξ)

κ2 coth(ξ) + κ3 + κ2 csch2(ξ)

)]2
. (37)
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Type V: `2 = −1, `3 = 2κ3

κ1
, `4 =

κ2
3−κ

2
2

κ2
1

, where κ1,κ2,κ3 are arbitrary constants.

uIII6 (x, t) =

[
ζ0 +

ζ1
κ3

(κ1(sinh(κ1ξ) + cosh(κ1ξ))(sinh(κ1ξ) + cosh(κ1ξ) + κ2))

]2
.

(38)

Type VI: `2 = 4, `3 = −2κ3

κ1
, `4 =

κ2
3−κ

2
2

κ2
1

, where κ1,κ2,κ3 are arbitrary constants.

uIII8 (x, t) =

[
ζ0 − ζ1

(
κ1 csc(ξ)

κ2 csc(ξ) + κ3

)]2
. (39)

Type VII: `2 = −4, `3 = 4(2κ2+κ4)
κ1

, `4 = − 4κ2
2+4κ4κ2−κ2

3

κ2
1

, where κ1,κ2,κ3,κ4 are

arbitrary constants.

uIII9 (x, t) =

[
ζ0 − ζ1

(
κ1 sec2(ξ)

κ2 tan(ξ) + κ3 + κ4 sec2(ξ)

)]2
. (40)

Case IV. If `1 = `3 = 0, we have the following solution of (2) in the form uIVη ,

(η = 1, 2, . . . , 16).

For `0 = 1
4 , `2 = 1−2m2

2 , `4 = 1
4 , the solutions of (2) is of the form

uIV3 (ξ) = (ζ0 − ζ1(cnξ))2, (41)

gives the bright optical soliton for m→ 1,

uIV3 (ξ) = (ζ0 − ζ1 sech(ξ))2, (42)

and the periodic singular solutions for m→ 0,

uIV3 (ξ) = (ζ0 − ζ1 cos(ξ))2, (43)

for `0 = 1
4 , `2 = 1−2m2

2 , `4 = 1
4 , the solutions of (2) is of the form

uIV13 (ξ) = (ζ0 − ζ1(nsξ ± csξ))2, (44)

gives the combined dark-singular wave solutions for m→ 1,

uIV13 (ξ) = (ζ0 − ζ1(coth(ξ) + csch(ξ)))2, (45)

and the periodic singular solutions for m→ 0,

uIV13 (ξ) = (ζ0 − ζ1(cot(ξ) + csc(ξ)))2. (46)
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3. Discussion and Results

In this section, the graphical visualization of S-Kdv model have been illustrated

with the assist of latest scientific tools. A variety of solitary wave solutions are

observed with the aid of the extended modified AEM method and the extended

FAN sub-equation method for a set of parameters. The 3D, contour and 2D graphs

visualize the physical behavior of nonlinear waves constructed from Eq. (2) for

various paymasters viz. the activation convection β, the trapping value α, the dis-

persion coefficients δ. When the results from Ref. 64 are compared, it can be seen

that this study showed a variety of new wave patterns while some of the solutions

showed the same behaviors, such as dark solitons as seen in Figs. 7 and 12.

Figures 1 and 9 represent periodic solitary wave |u2(x, t)| and |uI13(x, t)| when

α = 5, β = 3, ω = −0.5, λ = −2, δ = 3, κ = 1 while Fig. 2 µ-shaped periodic

soliton for |u4(x, t)| when α = 5, β = 3, ω = −0.5, λ = −2, δ = 3, κ = 1 whereas

Figs. 3, 4 and 13 depict the bell-shaped bright soliton for |u5(x, t)|, |u6(x, t)| and

|uIV3 (x, t)| when α = 5, β = 3, ω = −0.5, λ = −2, δ = 3, κ = 1, respectively.

Fig. 1. (Color online) 3D, Contour and 2D plots for |u2(x, t)| when α = 5, β = 3, ω = −0.5, λ =

−2, δ = 3, κ = 1.
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Fig. 2. (Color online) 3D, Contour and 2D plots for |u4(x, t)| when α = 5, β = 3, ω = −0.5, λ =

−2, δ = 3, κ = 1.
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Fig. 3. (Color online) 3D, Contour and 2D plots for |u5(x, t)| when α = 5, β = 3, ω = −0.5, λ =

−2, δ = 3, κ = 1.
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Fig. 4. (Color online) 3D, Contour and 2D plots for |u6(x, t)| when α = 5, β = 3, ω = −0.5, λ =

−2, δ = 3, κ = 1.
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Fig. 5. (Color online) 3D, Contour and 2D plots for |u7(x, t)| when α = 5, β = 3, ω = −0.5, λ =

−2, δ = 3, κ = 1.
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Fig. 6. (Color online) 3D, Contour and 2D plots for |u8(x, t)| when α = 5, β = 3, ω = −0.5, λ =

−2, δ = 3, κ = 1.
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Fig. 7. (Color online) 3D, Contour and 2D plots for |uI1(x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.
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Fig. 8. (Color online) 3D, Contour and 2D plots for |uI5(x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.

2250137-20



November 18, 2022 23:0 147-mplb S0217984922501378 page 21

2nd Reading

On some soliton structures to the Schamel–Korteweg-de Vries model

Fig. 9. (Color online) 3D, Contour and 2D plots for |uI13(x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.
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Fig. 10. (Color online) 3D, Contour and 2D plots for |uI24(x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.
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Fig. 11. (Color online) 3D, Contour and 2D plots for |uII1 (x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.
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Fig. 12. (Color online) 3D, Contour and 2D plots for |uIII1 (x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.
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Fig. 13. (Color online) 3D, Contour and 2D plots for |uIV3 (x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.

2250137-25



November 18, 2022 23:0 147-mplb S0217984922501378 page 26

2nd Reading

K. U. Tariq, A. Ahmed & W.-X. Ma

Fig. 14. (Color online) 3D, Contour and 2D plots for |uIV13 (x, t)| when α = 5, β = 3, ω = −0.5, λ =
−2, δ = 3, κ = 1.
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Similarly, Fig. 5 visualizes a W -shaped solitary wave for |u7(x, t)| when α = 5, β =

3, ω = −0.5, λ = −2, δ = 3, κ = 1 while Figs. 6, 11 and 14 display singular wave

for |u8(x, t)|, |uII1 (x, t)| and |uIV13 (x, t)| when α = 5, β = 3, ω = −0.5, λ = −2, δ =

3, κ = 1 whereas Figs. 7 and 12 illustrate dark soliton structures for |uI1(x, t)| and

|uIII1 (x, t)| when α = 5, β = 3, ω = −0.5, λ = −2, δ = 3, κ = 1 whilst Figs. 8 and

10 display the solitary wave structure for |uI5(x, t)| and |uI24(x, t)| when α = 5, β =

3, ω = −0.5, λ = −2, δ = 3, κ = 1.

4. Conclusion

In a cold-ion plasma, the Schamel equation regulates the propagation of ion-acoustic

waves where certain electrons do not behave isothermally throughout the wave’s

passage but are imprisoned. On the other hand, the KdV equation is a mathe-

matical description of shallow water waves. To predict the influence of surface for

deep water in the presence of solitary waves, the Schamel-KdV model is consid-

ered. This is a general model of weakly nonlinear long waves that contains leading

order nonlinearity and dispersion. The extended modified AEM method and the

extended FAN sub-equation method are successfully employed to demonstrate the

behavior of the nonlinear wave structure by visualizing the 3D, contour and 2D

graphical solutions respectively. Mathematica 11.0 is utilized to authenticate the

computations and to visualize various wave structures. For a different set of param-

eters we attained different graphical interpretation of the obtained solutions such as

bright, dark, singular, explicit, periodic, combined and peakon type solitary waves.

The results established in Ref. 64 are compared and it is observed that this study

displayed various new wave structures while some of the solutions have displayed

the identical behaviors such as the dark solitons |uI1(x, t)|, |uIII1 (x, t)| represented in

Fig. 7, 12.
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