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The Schamel-Korteweg-de Vries (S-KdV) model is used to predict the influence of sur-
face for deep water in the presence of solitary waves. The aim of the study is to study
the governing model analytically by employing the extended modified auxiliary equa-
tion mapping approach and the extended FAN sub-equation method. The 3D, 2D and
contour plots are drawn to demonstrate the physical nature of the nonlinear model for
a set of parameters. As a result, dark solitons, light solitons, solitary waves, periodic
solitary waves, rational functions, and elliptic function solutions are established. Fur-
thermore, the the developed results are verified with the aid of latest computing tool
such as Mathematica or Maple. The applied strategy appears to be a more powerful and
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efficient scheme for achieving exact solutions to a number of diversified contemporary
models of recent eras.

Keywords: Schamel-Korteweg-de Vries equation; analytical solutions; the extended mod-
ified auxiliary equation mapping method; extended FAN sub-equation method.

1. Introduction

Nonlinear evolution equations (NLEEs) are of key importance due to their sig-
nificant role in diverse disciplines of science and technology. The nonlinear wave
structures have fascinated many researchers in recent decades due to their diverse
properties observed in various disciplines of contemporary sciences. In the pres-
ence of solitary waves, the nonlinear evolution models are utilized to simulate the
effect of surface for deep water and weakly nonlinear dispersive long waves. There-
fore, the exact solutions of such models play a vital role of study of dynamical
structures and further properties of physical phenomenon occurring several fields to
name a few, electromagnetism, physical chemistry, geophysics, ionized physics, elas-
tic medium, fluid motion, fluid mechanics, elastic medium, nuclear physics, electro-
chemistry, optical fibers, energy physics, chemical mechanics, gravity, biostatistics,
statistical and natural physics.! ™19

With the recent developments in various contemporary analytical methodolo-
gies, solitons play a key role to understand the nonlinear phenomenon of many
crucial structures in an exceptional way. The major feature of solitons is that they
have nearly the same forms and speeds after colliding; also, the production of opti-
cal solitons is linked to optical frequency. Kink solutions are asymptotic waves that
ascend or descend from one asymptotic state to the next, and they also approach a
constant at infinity. Kink solutions, like classical particles, have a constant shape;
nevertheless, their widths shrink, which can change. Solitons are transmitted as
dark ones in the normal dispersion domain, but as bright ones in the anomalous
dispersion domain. With the rapid advancement of information technology and
telecommunications, the optical solitons play an important rule in understanding
the dynamics of nonlinear wave propagation through a variety of wave-guides. The
polarization of pulse propagation over trans-oceanic and trans-continental distances
is an inherent problem with the dynamics of pulse propagation.'~20

To analyze various properties of electrostatic waves is especially significant
because of their potential applications in the improvement of new theories of chem-
ical physics, nuclear physics, astrophysics, dusty plasma, fluid dynamics, optical
physics, fluid mechanics, geophysics and distinctive other fields of applied physics.
For the better understanding of nonlinear models also further uses in everyday life,
it is crucial to get their exact traveling wave solution. To attain the exact solu-
tions of nonlinear models there are powerful and effective techniques such as the
Hirota bilinear method,?' 23 the Sine-Cosine method,?* Adomian decomposition
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methods,?® generalized Riccati equation expansion method,?®:27 homotopy anal-
ysis method,?® extended Kurdyashov method,?” residual power series method,3°
modified simple equation method,3! (%, é)—expansion method,3? extended simple
equation methods,?*3* the Hirota method,?® modified Kudryashov method,3¢
extended Sinh-Gordon equation expansion method,?” extended generalized Ric-
cati equation mapping method,?® homotopy perturbation method,3® multiple exp-
function method*®*! and many more.251

The Gardner equation originated by an American mathematician Clifford Gard-
ner in 1968 to disseminate KdV equation and modified KdV equation. The Gardner
equation has applications in quantum field theory, plasma physics and hydrody-

namics. The generalized Gardner equations®? is read as

wp + (qu + e + plug + gy =0, 1 >0, (1)

The S-Kdv equation is a special case of the generalized Gardner equations. For
p=0and n= % in Eq. (1), we have the S-Kdv equation.

In 1973, a German Mathematician Hans Schamel first derived Schamel—
Korteweg-de Vries equation®® to express the outcomes of electron entrapment in
plasma physics to study the ion acoustic solitons and it also describes the electro-
static potential for a specific electron scattering in velocity space.’®* The Schamel-
KdV equation is also used to study the wave properties in dusty space plasma
containing positively and negatively charged particles as well as non-isothermal
electrons. The most common type of plasma in our Solar System is dusty plasma.
In fact, it is hard to find a plasma environment free of dust particles anywhere in
the Solar System.

In the recent past, the Schamel-Korteweg-de Vries equation (S-KdV) as been
studied by various renowned scholars by applying diverse analytical approaches
such as the Exp-function method,%" the extended (G’/G)-expansion method,%! the
simplest equation method and the Kudryashov method,%? classical Khater and the
modified Khater approaches,®® the modified Kudrayshov scheme® and more. The
main focus of our work is to extract some new traveling wave solutions to the S-KdV
model® by utilizing the extended modified auxiliary equation mapping (AEM)
method®%%7 and the extended FAN sub-equation method, which reads

where the variables 3, and ¢ correspond to the activation convection, trapping,
and dispersion coefficients, respectively. Furthermore, Eq. (2) reduces to the classi-
cal KAV equation®® and the Schamel equation® for o = 0 and 3 = 0, respectively.

In this work, Sec. 1 includes the brief introduction of S-Kdv model, while in
Sec. 2, the extended modified AEM and the extended FAN sub-equation techniques
are successfully implemented to demonstrate different solitary wave structures. In
Sec. 3, the physical interpretation of the obtained solutions is represented by 3D,
2D and contour graphs. At the end, the concluding remarks are given.
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2. Mathematical Analysis
Consider the wave transformation
u(z,t) = Qx,t)?, (3)
where
Qz,t) = Q(8), &=rkr—lw. (4)
Equation (2) transforms to nonlinear ode of the form

—wQY + k(B 4 a?) + 653 (7 Q + 30'Q") = 0. (5)

2.1. Applications of the modified AEM method

By the homogenous balance principle from Eq. (5), we find the positive integer
n = 1, the solution is of the form%®

B b1 d1v' (&)
where ag,a1,b; and d; are to be determined and ) satisfies
V(€)= x19(€)* + x2(€)* + xa(€)", (7)

xi (1 =0,1,2,3,4) are real constants.

Putting Eq. (20) along with its desired derivatives into Eq. (5), by collecting
the coefficients of 9 (1) 1(n) and equating them to zero we obtain the following
algebraic system:

3
3a0ﬁb%dmxl + ab%dmxl + iﬁbi’dmxg =0,
9
2aagbidikx1 + 3@15[)%6[1/{)(1 + 3agﬁb1dmx1 + iaoﬁb%dﬂ@(g
+§ab2d 28b3d — 5b16d1 kX2 — bid =0
501 1KX2 + 141KX3 1041K7X] 111w =0,
2aa1bi1di kX1 + 3aagbidikx s + 6agar Bbidikx
9 9
+ 561151)%611’@(2 + iagﬁhdm){z + 6aoBbid1 kX3
+ ozagdlnxl + agﬁdlnxl — 2a05dlﬁ3xf — apgd1 1w
9 27 3 3
+204b1d1l€X3 — ?blédﬂi X1X2 — §b1d1X2w =0,
3aa1b1d1 RX2 + 4aa0b1d1nxg + 3a%ﬂb1d1nxl + 9a0a15b1d1/<zxg

3
+ 6alﬁbfd1/£)(3 + 6a3[3b1d1/1)(3 + 2aapardi k)1 + §aagd1 KX2

3 9
+3a(2)a16dmxl + iagﬁdmxg + a15d1ﬁ3xf — §a06d1n3xlxg
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3 ) )
—ardix1w — §aod1X2w — 9b16d1 K3 X3 — 16b15d1 K> X135 — 2b1d1 3w = 0,
9 4 2
daarbidikys + §a15b1dmx2 + 12apa1Bb1d1 kx5 + aaidikX1
2 2 9 5
+ 3aapardikx2 + 20agdikxs + 3agaiBdikx1 + iaoalﬂdlnxg
3 1 3.2 9 3
+2ap08d1kx3 — Z9a06dm X5 + §a1(5d1/<a X1X2
3 3 3
74&056[1/% X1X3 — 5&16[1)(2&] — 2a0d1X3w — 21b15d1H X2X3 = 0,
2 3 4
6aipbidikxs + §aa1dmxg + daagardi kX3
3 9 5 2
+aifdikx1 + §a0015dll€X2 + 6agai SdikXs

+ galédm?’xg + 8a10d1 k31 X3 — 3aoddi k3 xaxs
—2a1dyx3w — 12b15d1/£3x§ =0,
204@%(11&)(3 + ga‘?ﬁdmxg + 6a0a§6dmx3 + 15a16d1 K3 x2x3 = 0,
aagalﬁ + aa%bln + 3a0afﬂb1/-i
+ 9a1[3b1d%nxg + 12a05b1dfnxg + 6a0b15/£3)(3 + a%alﬂﬁ

9
+ QOéald%Iin + 304(10d%/€)(2 + 6a0a1ﬁd%m><1 + iagﬁd%ﬁxg

+aga1dk’x1 — agaiw + 4ab1d%/<;><3 — 185d%/{3X1X2 — ;d%)@w =0,
—3a0Bb3k — abk = 0,
—2aaobk — 2a18b3k — 3a3Bbik + 3BbId kX1 + 876K x1 + biw = 0,
—aalb%ﬁ — aagblm — 3a0a16b%/€ — agﬁblm + 6a05b1d%.%xl

+5agb10K3x1 + aghiw + 2ab1d%mxl + gﬂb%d%/{XQ + %b%é/ﬁg’)@ =0,
6a18b1dikx1 4 9aoBbidirxa + 6agb10k3 X2 + 2aaodi kX1 + 3a2Bd3 kX1

+3abidikxs + 68b3dikxs + 12030K% x5 — 80d3 K>3 — dixiw = 0,
Qaaoa%n + 2a§ﬁblm + 12a16b1d%n><3 + 3aga§6n + 3aa1d§mxg

+ 4aa0d%/{x3 + 3a%ﬁd%mx1 + 9a0a1ﬂd%/ix2 + Gagﬁd%/ixg + 4a%6n3X1

+ 3aga10K3x2 — a%w — 9(5d%lﬂ;3X§ — 16(5d§f{3X1X3 - Zd%Xg,w =0,
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9
a3k + 3apad Br + daaydikxs + ia%ﬂd%nxg

+ 12@0@15(1%5)(3 + 12—5(1%653)(2 + 6agai0k3ys — 12(5d?l€3X2X3 =0,
aiBk + 6a3Bdikxs + 12a36k3y3 = 0,
aa%dlm + galﬁd‘;’f@xg + 6aoﬁd:f/£x3 + 3a0a%6d1/§
+3a10d1 K3 x2 + 12a00d1 k33 + 2adi’/<cxg =0,
—9apBbidyk — 3abidik = 0,
—4aaghdik — 6a1 Bb3dik — 6a2Bbidik
+38b1d3kx1 + 28b10d, K31 + 2bidiw = 0,
—2aa1b1dyk — 6agay Sbidik — Oza%dlli + 3aoﬂdi’mxl — agﬂdln

9
+ 8a05d1ﬁ3X1 + apdiw + §ﬁb1d:{’/@x2 + 33b1(5d1n?’x2 + ozd?/-exl =0,
3 9 3 Sd 3 3
3a18dikx1 + Zaoﬁdez + 9a0ddi K”x2 + 68b1diKX3

+36b10d1 k33 + gad‘z’ﬁxg =0,
6a1 Bds ks 4 2a3Bdyk 4 12a,6d1 k3 x5 = 0,
—68b3d3k — 12b36K% = 0,
79a06b1df/i — 6agh0K> — 3ab1d%/<; =0,
—6a,Bbid2k — 20agdik — 3alBd3k + Bdikx1 + 208d3k3x, + diw = 0,
—ozaldff@' — 3a0a1,8d%fi + gﬂd‘fﬁxg + %&ifﬁ?’xg =0,
26d3rxs + 246d3 k3 x5 = 0,
—4Bbyd3 K — 24b16d1 K3 = 0,
—3a06d?/<; — 6agddi K> — ad:fﬁ; =0,
—Bdik — 120d3K> = 0.

The following cases arise by solving the above system:
Family I:

Ay eSVXT
X3(—€2VAT) o+ 2xpeS VAT dxy xae® VX — 10

(&) = -
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2
e an — — — — — —_2 ___ap
Case I: ao—O,a1 —/\,bl —O,d1 —07X1 = 4(;*;3,)(2——1%(?2,)(3——12(1%2.

A2w2e8V5eE

u1($7t): E\/I le, /oo e /o 2" (8)
62/{/6 j te?AZe 55 B dade? Sr3 _ BA2we 5K3 —1
3955717 150r7 12027

—V61/602K2+25B8Kw—6aurs :

Case II: a9 = 108x g ,a1 = — 200, b1 = 0,d1 =

V6y/r(6a2r+258w)+2ak
0 7 *%W*GQT%7%M — )\ _ _ a8
y X1 = 500k3 yX2 = A X3 = 126K7

() = 305K\ (€) . —VB/Ba%R? £ 35 — G |
25T\ VB /k(6a2r + 25Bw) + 20m 108k '
(9)

. - V64/602Kk2+258kw—6ak _ 305X2W3 _ _
Case III: ag = 05 ,a1 = \/6\/K(6a2m+255w)72a/{’b1 = 0,dy =
\/6@\/&(60@;@4»25/3«1)76(12,‘-725“) 2
0,x1 = £ 500R3 = s X2 = A, X3 = _13(1352'
2
(2.1) V61/602kK2 + 258kw — bk 306K3 AP (€)
usz\x, = -
108k V6./k(602K + 256w) — 2k
(10)
Case TV: _ —V64/602k24+25Bkw—6ak —\b =0.d =0 o aip _
ase IV: qp = 108r a1 = A, 01 = U, a1 = U, X3 = — 1552, X1 =
\/ga\/w_ﬁa;ﬁ_st . \/gal\/w+2aal
5063 X2 = 30012 :

—61/602K2 4 25Bkw — 6ak ’
uy(z,1) = +A(E) | - (11)

108k
V64/6a2Kk24+258kw—6ak a2
Case V: a9 = 1O+ﬁﬁﬂ ,ap = Abp = 0,dy = 0,x3 = —%Jﬂ =
Voo /(6P 355) _so?n s, sy — Y81 V/EGaZ R 2550
50053 X2 = 300r2 :
2
s () = V61/602kK2 + 258kw — 6ok 3 306K3 AP (€)
5\ 108k V6./k(602k + 256w) — 2k
(12)
Family II:
Ay eSVXT

Y(&) = —2)@65\/71 + e26vX1 4 X% —4x1X3
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2
Case I: apg = 0,&1 = /\,bl = O,d1 = 07X1 = 74(;*;3,)(2 = —712%7;2,)(3 = —1(21(1;52.
(.1) 9295)\202e5V 50T 13)
U\ T, = = @ :
4a2m2(771566;‘22:’ —e2éVas + VT 4 /\2)2
Case II: a9 = V66022 4255 ke —Gan a1 = 3088, bi = 0,dy =
- %0 = 108k &1 = \/6\/n(6a2m+25[3w)+2an’ L= O =
_ \/ga\/m_ﬁ_gg, 2
0,x1= 505 - = X2 = A xs = *1;352'
2
wn (1) = 306K3 A (€) N —V6+/602K2 + 25BKkw — 6ak
’ V6/K(602K + 25Bw) + 2ak 108k
(14)
. o V64/6a2Kk2+258kw—6ak _ 308x2k°> _ _
Case 1Il: ap = 10Br = \/6\/n(6a2n+25ﬁw)—2an’b1 = 0,dy =
\/éa\/m(6a2n+25/3w)76a72,i725w 2
07X1 = 2 500K3 2 s X2 = >\7 X3 = — 13(1552 .
) 2
(1) V61/602kK2 + 258kw — bk 305K3 M) (€)
us\x, = —
108K V6+/K(602K + 258w) — 20k
(15)
—V/64/602k2+258kw—6 2
Case IV: apg = e ?OBK Prow M,al = /\,bl = 0,d1 = 0,X3 = —%,Xl =
VBay/ ~(6<Z2»:+255w) 76%2&725“) VBay\/r(6a2r+258w) L 20a,
506r3 X2 = 3062 .
2
—6+/602K2 + 258Kkw — 6ak
t) = A . 16
us (2,1 ( o £ 2(6) (16)
\/60% K2 +25Brw— i
Case Vi ap = YOVOOIBmocton o 3 = 0,dy = 0,xs = —qabe,xa =
V6ay/ n(6z2N+25ﬁw) _%_25“} 200aq — V6ai\/rk(6a2k+258w)
50053 X2 = 306:2 :

V61/602K2 + 258kw — 6ak
ulo(x, t) =

e - w(&)) . (1)

2.2. Applications of the extended FAN sub-equation method

By the homogenous balance principle from Eq. (5) we find the positive integer

n = 1, the solution is of the form%6

Q=G+ Qu(s), (18)
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where ag, a1 are to be determined and v satisfies

(Chfzif)) = Lo+ 019 () + L9 (€) + L9 (€) + La* (€), (19)

4; (1=0,1,2,3,4) are real constants.
Inserting Eq. (18) along Eq. (19) in Eq. (5) and picking the coefficients of ¢/ ¢(*),

202k + 2(3 Bk + 3C1601K3 + 2601642k — 2¢ow = 0,

4aCoCik + 665¢1 AR + 21 (Cr + 3)8l2rk” + 600(10¢3K° — 2w = 0,
6CoCE Bk + Crr(2als + 3(2¢1 + 3)003K%) + 12¢0¢1044K> = 0,
2¢1k(CEB + 6(C1 + 1)844K7) = 0.

We select variables suitably which gives

1

=2 12830,(33 — 4604x2)

X [64 (4a (\/g\/(%m? (36042 — 28) — 3ﬂ)

+ 300352 (4V/3/60512(300,1% — 2) — 95))

+1260252 (o + 3603K2) — 9V/3BU31/504k2(30L4K2 — 25)] , (20)
G = i\/g\/352&21/€4 — 2B604K2% — 3564,%2' (21)

B

Thus, we have following collection of soliton solutions for the given model:

Case I. If go = 19%,61 = 2191193,62 = 2192193 + 19%,63 = 2’[91192,64 = 19%, there may
exist parameters 1,9, satisfy 93, the solutions of (2) are gb%, (n=1,2,...,24).
Some of important solitons are listed below.

Type I: when 72 — 4v573 > 0, 172 # 0, 7273 # 0. We obtain the dark optical
solitons in the form as follows
2

I B Vi — 4y2ys tanh (56477 — 4y2y3) +m
Uq (I, t) = Co — Cl 272 (22)
We obtain the combined bright-dark optical soliton in the form as follows
uy(z,t) = o — Cl{\/ 77— 4y2y3 (Z SeCh(§ 7 - 47273)
2
+ tanh (€2 — 49273 ) ) + %} (23)

2250137-9
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We obtain the combined dark-singular optical solitons in the form as follows:

1
o — G { \/ 7 — 4y <tanh <4§ 2 — 472’)’3)
. 2
+ coth <4£ i - 47273)) + 71}

The family of solitons is obtained as

ué(m,t) =

uyo(z,t) = {Co - Cl{ (2 cosh (f vi - 47273))
X (msinh (f\ /73 — 472'y3>
_ (71 cosh (f\/ﬂyf - 47273) + z\/fy% _ 472%) ) -1 H 2' (25)

Type II: when 77 — 47573 < 0, 7172 # 0, Y273 # 0. The following families of periodic

solitons are obtained

- _ ) ] ) 2
uls(x,t) = [Co — Cl{ 47ypy3 — 71 tan (;j;/m) o’ H | "
ul (z,t) = _Co —G 23 cos (%gm) 2. -
o vz =97 sin (3¢v/ 4278 —17)

+ 71 cos (3€v/ 47273 —73)

[ /1 1
by (z,t) = | (o — C1{4T sin <4§ dyoy3 — ’712) cos <4§ dyoy3 — ’712>>
2 2 1 2 : 1 2
X | 24/ 42773 — 77 cos 15 dyoy3 =7 | —271sin 15 dyoy3 — i
1 - 1°
X cos (45\/472% - 712) - \/47273 - 712)) H : (28)

CaseIl. If ¢y = 7%,61 = 2v173,02 = 0,03 = 27v172, 44 = 73, u 1is one of the u}ll,

(n=1,2,...,12). A family of dark optical soliton is obtained

uIII (.%', t) =

Co— Cl{ v/ —67273 tanh (55\2/726’72’73) +v—27273 }1 27 (29)

2250137-10
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another form of dark-singular optical soliton is obtained

Co — 41{\/ —67273 (tanh (if\/ —67273>

2

u?(x, t) =

(30)

1
+ coth <4§\/—67273)> + 24/ —2’7273}]
Case II1. If ¢y = ¢; = 0, we have the following solution of (2) in the form u%H,

(n=1,2,...,10) :

2 _2 .
Type I: by = 1,03 = === (4 = ”3%2”2, where 51, 19, 523 are arbitrary constants.
1

2
1

ui(z,t) = {Co -G (mseeh(@ﬂg. (31)

29 sech(§) + 3

2 2
Type II: 4y = 1,03 = _3?3,&1 = %3:%”2, where 31, 36, 23 are arbitrary constants.

uy(z,t) = {Co -G (Jm)r (32)

In particular, if we take s = 0 in Egs. (31) and (32). We obtain the families of
bright and singular optical solitons as follows:

ui! (2, t) = [Co -G (J{lseCh(E)HZ (33)

>3
s1 csch(€ 2
o) = |- 6 (M) (34)
53
Type III: ly = 4,03 = —4(2”;73’”4),&1 = 4%%4'4’;7@%2%, where 271, 209, 303, 32, are
1

arbitrary constants.
2

s (1) = {CO G (%2 tanh(szrszh—i(z sechQ(g)ﬂ ' (35)

(34 —2 4524 2 .
Type IV: 0y = 4,03 = (%4%71%’“)764 = %fﬁ%“, where 221, 209, 223, 324 are arbi-
1

trary constants.
2

1 eseh? () )}

1 — o —
uf(z,t) = [Co G (%2 coth(€) + se3 + 54 csch?(€)

(36)

In particular, if we consider »5 = s¢4; another family of dark and singular optical
solitons are obtained as follows:
2

uy(z, 1) = [Co -G ( = csch(¢) )] : (37)

sy coth(€) + 23 + 325 csch?(€)

2250137-11
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2 2

Type V: by = —1,03 = 2}%13,& = %72 where 5, s, 63 are arbitrary constants.
1
¢ 2
ugl(x, t)=|C + %—1(%1 (sinh(561€) + cosh(5¢1£)) (sinh(561€) + cosh(51£) + 2))
3
(38)

2 2

Type VI: by = 4,05 = _Z‘3,€4 = %3;%%2, where s, 32, 53 are arbitrary constants.

g (z,t) = [Co -G (wc(OHQ (39)

9 csc(§) + 3

4(2 45344 —3
Type VIL: €y = —4, 0y = 2Z22tz) p _  Dodden = whare s, 50, 53, 54 are

P22 Eo

arbitrary constants.

a1z, ) = [co G ( 41 5ec(6) (£>>r‘ (10)

3 tan(&) + se3 + s24 sec?

Case IV. If /1 = {5 = 0, we have the following solution of (2) in the form u]",

(n=1,2,...,16).
2
For ¢y = i,fg =1=2m- 4 — i, the solutions of (2) is of the form

2
¥ (€) = (o = Gu(eng))?, (41)
gives the bright optical soliton for m — 1,
uz’ (€) = (Go — G1 sech(€))?, (42)
and the periodic singular solutions for m — 0,

ug’ () = (¢o — 1 cos(€))*, (43)

for bp = 1,05 = %,64 = 1, the solutions of (2) is of the form
uty (€) = (Co — Gi(nsé £ es€))?, (44)

gives the combined dark-singular wave solutions for m — 1,

ur} (€) = (Co — i (coth(€) + esch(§)))?, (45)

and the periodic singular solutions for m — 0,

uzy (€) = (Go — Gi(cot(§) + esc(€)))*. (46)
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3. Discussion and Results

In this section, the graphical visualization of S-Kdv model have been illustrated
with the assist of latest scientific tools. A variety of solitary wave solutions are
observed with the aid of the extended modified AEM method and the extended
FAN sub-equation method for a set of parameters. The 3D, contour and 2D graphs
visualize the physical behavior of nonlinear waves constructed from Eq. (2) for
various paymasters viz. the activation convection 3, the trapping value «, the dis-
persion coefficients . When the results from Ref. 64 are compared, it can be seen
that this study showed a variety of new wave patterns while some of the solutions
showed the same behaviors, such as dark solitons as seen in Figs. 7 and 12.
Figures 1 and 9 represent periodic solitary wave |ug(x,t)| and |uls(z,t)| when
a=5p=3w=-05X= -2 =3k =1 while Fig. 2 pu-shaped periodic
soliton for |uy(z,t)| when o = 5,8 = 3,w = —0.5,A = —2,6 = 3,k = 1 whereas
Figs. 3, 4 and 13 depict the bell-shaped bright soliton for |us(z,t)|, |ue(z,t)| and
|ulV(z,t)] when @ = 5,8 = 3,w = —0.5,\ = —2,6 = 3,k = 1, respectively.

()

Fig. 1. (Color online) 3D, Contour and 2D plots for |ua(x,t)| when a = 5,8 = 3,w = —0.5,\ =
—2,6=3,k=1.
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(c)

Fig. 2. (Color online) 3D, Contour and 2D plots for |usa(x,t)| when a = 5,8 = 3,w = —0.5,\ =
—2,0 =3,k =1.
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Fig. 3. (Color online) 3D, Contour and 2D plots for |us(z,t)| when o = 5,8 = 3,w = —0.5,\ =
2.5 =3,k=1.
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Fig. 4. (Color online) 3D, Contour and 2D plots for |ug(z,t)| when o = 5,8 = 3,w = —0.5,\ =
2,5 =3r=1.
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(c)

Fig. 5. (Color online) 3D, Contour and 2D plots for |u7(z,t)| when a=5,8=3,w=—0.5,A=
—2,0 =3,k = 1.
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Fig. 6. (Color online) 3D, Contour and 2D plots for |ug(z,t)| when o = 5,8 = 3,w = —0.5,\ =
—2,0 =3,k =1.
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Fig. 7. (Color online) 3D, Contour and 2D plots for |ul (z,t)| when a = 5,8 = 3,w = —0.5,\ =
2.5 =3,k=1.
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Fig. 8. (Color online) 3D, Contour and 2D plots for |ul(z,t)| when o = 5,8 =3,w = —0.5,A =
—-2,0=3,k=1.
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Fig. 9. (Color online) 3D, Contour and 2D plots for [ul;(z,t)| when a = 5,8 =3,w = —0.5,A =
-2,0=3,k=1.
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Fig. 10. (Color online) 3D, Contour and 2D plots for |ub, (z,t)| when a = 5,8 = 3,w = —0.5,\ =
-2,0=3,k=1.
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Fig. 11. (Color online) 3D, Contour and 2D plots for |ul}(z,t)] when a = 5,8 = 3,w = —0.5,\ =
-2,0=3,k=1.
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(a) (b)

Fig. 12. (Color online) 3D, Contour and 2D plots for |ull(z,t)| when a = 5,8 = 3,w = —0.5,\ =
-2,0=3,k=1.
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Fig. 13. (Color online) 3D, Contour and 2D plots for [u}Y (z,t)| when a = 5,8 = 3,w = —0.5, A =
2.5 =3,k=1.
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Fig. 14. (Color online) 3D, Contour and 2D plots for [ulY (z,t)| when a = 5,8 = 3,w = —0.5, A =
-2,0=3,k=1.
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Similarly, Fig. 5 visualizes a W-shaped solitary wave for |uz(z,t)| when o =5, =
3,w=—05X= -2 =3,k =1 while Figs. 6, 11 and 14 display singular wave
for |ug(x,t)], |ull(z,t)| and |ul¥(z,t)| when a = 5,8 = 3,w = —0.5,\ = =2, =
3,k = 1 whereas Figs. 7 and 12 illustrate dark soliton structures for |u}(z,¢)| and
[ul(z,t)] when a = 5,8 = 3,w = —0.5,\ = —2,6 = 3,k = 1 whilst Figs. 8 and
10 display the solitary wave structure for |ul(z,t)| and |u,(x,t)| when a = 5,8 =
3,w=—05A=-26=3r=1.

4. Conclusion

In a cold-ion plasma, the Schamel equation regulates the propagation of ion-acoustic
waves where certain electrons do not behave isothermally throughout the wave’s
passage but are imprisoned. On the other hand, the KdV equation is a mathe-
matical description of shallow water waves. To predict the influence of surface for
deep water in the presence of solitary waves, the Schamel-KdV model is consid-
ered. This is a general model of weakly nonlinear long waves that contains leading
order nonlinearity and dispersion. The extended modified AEM method and the
extended FAN sub-equation method are successfully employed to demonstrate the
behavior of the nonlinear wave structure by visualizing the 3D, contour and 2D
graphical solutions respectively. Mathematica 11.0 is utilized to authenticate the
computations and to visualize various wave structures. For a different set of param-
eters we attained different graphical interpretation of the obtained solutions such as
bright, dark, singular, explicit, periodic, combined and peakon type solitary waves.
The results established in Ref. 64 are compared and it is observed that this study
displayed various new wave structures while some of the solutions have displayed
the identical behaviors such as the dark solitons |u} (z,?)|, |ul"(z,t)| represented in
Fig. 7, 12.
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