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1. Introduction

Soliton equations are one special kind of nonlinear partial differential equations, which are characterized by the existence
of solitary wave solutions. It is challenging to obtain explicit solutions to most nonlinear partial differential equations. One
well known soliton equation is the Korteweg-de Vries (KdV) equation, which can go back to the observation by Russell. After
the celebrated inverse scattering method was constructed in the 1960s, the area of soliton equations and integrable systems
grew very rapidly, and have deeply influenced many branches of mathematics and physics. Compared with the analytical
approach, the Hirota bilinear method is more straightforward and easily handled to get the explicit soliton solutions. Fur-
thermore, the beauty of algebra hidden in the soliton equations is found by M. Sato, who got his s function and Grassman-
nian solutions from the Hirota bilinear form.

The (3 + 1)-dimensional Jimbo–Miwa equation
uxxxy þ 3uxxuy þ 3uxuxy þ 2uyt � 3uxz ¼ 0 ð1:1Þ
was firstly investigated by Jimbo–Miwa and its soliton solutions were obtained in [11]. It is the second member in the entire
KP hierarchy and it was studied in a series of papers [12–16]. Ma [15] proposed a direct approach to solve Eq. (1.1). Wazwaz
[16] employed the Hirota’s bilinear method to obtain multiple-soliton solutions.

We recall Hirota’s bilinear operators [17] defined by
DxDyf � g ¼ ð@x0 � @y0 Þð@y0 � @x0 Þf ðx0; y0Þgðx0; y0Þ
��

x0¼x;y0¼y ¼ @x0@y0 f ðxþ x0; yþ y0Þgðx� x0; y� y0Þ
��

x0¼y0¼0: ð1:2Þ
For instance, we have
Dx f � g ¼ fxg � fgx; DxDtf � g ¼ fxtg � fxgt � ftgx þ fgxt:
Consider the Cole–Hopf transformation
u ¼ 2ðln f Þx; ð1:3Þ
. All rights reserved.
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we get the Hirota bilinear form of Eq. (1.1)
ðD3
x Dy þ 2DyDt � 3DxDzÞf � f ¼ ðfxxxy þ 2f yt � 3f xzÞf � fxxxfy � 3f xxyfx � 2f yft þ 3f xfz þ 3f xxfxy ¼ 0: ð1:4Þ
Notice that the following (3 + 1)-dimensional nonlinear evolution equation
3wxz � ð2wt þwxxx � 2wwxÞy þ 2 wx@
�1
x wy

� �
x ¼ 0 ð1:5Þ
has the same Hirota bilinear equation (1.4) as Eq. (1.1) under a dependent variable transformation
u ¼ �3ðln f Þxx: ð1:6Þ
This equation is widely studied by many authors in [5,18,19], our results also provide two new solutions to this equation.
The Wronskian technique is a useful tool to construct exact solutions to bilinear differential equations [1–4]. It has been

applied to many soliton equations such as MKdV, NLS, derivative NLS, sine-Gordon and other equations [5–10]. In the pro-
cess of utilizing Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions,
which are not unique. In [5,19], the authors presented different linear differential conditions for the N-th order Wronskian
determinant solutions of Eq. (1.4). In [20], the Wronskian determinant solutions of Eq. (1.4) under a set of linear differential
conditions were obtained.

In this paper, we get another two new linear differential conditions for the N-th order Wronskian determinant solutions of
Eq. (1.4). Our results show that Eq. (1.4) has diverse Wronskian determinant solutions under different linear differential con-
ditions, and there is a promise that we can find a broader class of linear differential conditions for Eq. (1.4).

2. The first Wronskian conditions for Eq. (1.4)

We use the Wronskian technique in the compact notation introduced by Freeman and Nimmo [1, 21]:
ð/1;/2; . . . ;/NÞ ¼ dN� 1
��� ��� ¼

/ð0Þ1 /ð1Þ1 � � � /ðN�1Þ
1

/ð0Þ2 /ð1Þ2 � � � /ðN�1Þ
2

..

. ..
. . .

. ..
.

/ð0ÞN /ð1ÞN � � � /ðN�1Þ
N

�����������

�����������
; N P 1; ð2:1Þ
where
/ðjÞi ¼
@j

@xj
/i; 0 6 j 6 N � 1; 1 6 i 6 N: ð2:2Þ
Solutions determined by f ¼ j dN� 1j to Eq. (1.4) are called Wronskian determinant solutions.

Theorem 2.1. Let a set of functions /i ¼ /iðx; y; z; tÞ; 1 6 i 6 N satisfy the following linear conditions:
/i;xx ¼
PN
j¼1

kij/j; ð2:3Þ

/i;y ¼ k/i;x;

/i;t ¼ /i;xx;

/i;z ¼ 4k
3 /i;xxx þ 2k

3 /i;xx;

8><
>: ð2:4Þ
where the coefficient matrix A ¼ ðkijÞ16i;j6N is an arbitrary real constant matrix and k is an arbitrary nonzero constant. Then the
Wronskian determinant f ¼ j dN� 1j defined by (2.1) solves Eq. (1.4).

The proof of Theorem 2.1 need the following two Lemmas, which can be derived by straight computation.

Lemma 2.1 [1]. Set aj; j ¼ 1;2; . . . ;N to be an N-dimensional column vector, and bj; j ¼ 1;2; . . . ;N to be a real constant but not to
be zero. Then we have
PN
i¼1

bija1; a2; . . . ; aN j ¼
PN
j¼1
ja1; a2; . . . ; baj; . . . ; aNj;
where baj ¼ ðb1a1j; b2a2j; . . . ; bNaNjÞT .
Lemma 2.2 [22]. Under the condition (2.3) and Lemma 2.1, the following equalities hold:
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ð dN� 1Þ
PN
i¼1

kii
PN
i¼1

kiið dN� 1Þ
� �

¼
PN
i¼1

kiij dN� 1j
� �2

¼ �j dN� 3;N � 1;Nj þ j dN� 2;N þ 1j
� �2

¼ j dN� 1j j dN� 5;N � 3;N � 2;N � 1;Nj � j dN� 4;N � 2;N � 1;N þ 1j
�

þ2j dN� 3;N;N þ 1j�j dN� 3;N � 1;N þ 2j þ j dN� 2;N þ 3j
�
:

Proof of Theorem 2.1. Under the properties of the Wronskian determinant and the conditions (2.3) and (2.4), we can com-
pute various derivatives of the Wronskian determinant f ¼ j dN� 1j with respect to the variables x; y; z; t as follows:
fx¼j dN�2;Nj; f xx¼j dN�3;N�1;Njþj dN�2;Nþ1j;

fxxx¼j dN�4;N�2;N�1;Njþ2j dN�3;N�1;Nþ1jþj dN�2;Nþ2j;

fy¼kj dN�2;Nj; f xy¼kðj dN�3;N�1;Njþj dN�2;Nþ1jÞ;

fxxy¼kðj dN�4;N�2;N�1;Njþ2j dN�3;N�1;Nþ1jþ j dN�2;Nþ2jÞ;

fxxxy¼ kðj dN�5;N�3;N�2;N�1;Njþ3j dN�4;N�2;N�1;Nþ1jþ2j dN�3;N;Nþ1jþ3j dN�3;N�1;Nþ2jþ j dN�2;Nþ3jÞ;

ft¼j dN�2;Nþ1j� j dN�3;N�1;Nj;

fyt ¼kðj dN�2;Nþ2j� j dN�4;N�2;N�1;NjÞ;

fz¼
4k
3
ðj dN�4;N�2;N�1;Nj� j dN�3;N�1;Nþ1jþ j dN�2;Nþ2jÞþ2k

3
ðj dN�2;Nþ1j� j dN�3;N�1;NjÞ;

fxz¼
4k
3
ðj dN�5;N�3;N�2;N�1;Nj� j dN�3;N;Nþ1jþ j dN�2;Nþ3jÞþ2k

3
ðj dN�2;Nþ2j� j dN�4;N�2;N�1;NjÞ;
Therefore,
ðfxxxyþ2f yt�3f xzÞf ¼3kð�j dN�5;N�3;N�2;N�1;Njþ j dN�4;N�2;N�1;Nþ1jþ2j dN�3;N;Nþ1jþ j dN�3;N�1;Nþ2j� j dN�2;Nþ3jÞj dN�1j;

� fxxxfy�3f xxyfx�2f yftþ3f xfz ¼�12kj dN�3;N�1;Nþ1jj dN�2;Nj;

3f xxfxy ¼3kðj dN�3;N�1;Njþ j dN�2;Nþ1jÞ2 ¼3kð�j dN�3;N�1;Njþ j dN�2;Nþ1jÞ2þ12kj dN�3;N�1;Njj dN�2;Nþ1j;
Thus we obtain by using Lemma 2.2,
D3
x Dy þ 2DyDt � 3DxDz

� �
f � f

¼ 12kðj dN� 3;N;N þ 1jj dN� 1j � j dN� 3;N � 1;N þ 1jj dN� 2;Nj þ j dN� 3;N � 1;Njj dN� 2;N þ 1jÞ ¼ 0: ð2:5Þ
This last equality is nothing but the Plücker relation for determinants:
jB;A1;A2jjB;A3;A4j � jB;A1;A3jjB;A2;A4j þ jB;A1;A4jjB;A2;A3j ¼ 0; ð2:6Þ
where B denotes an N � ðN � 2Þ matrix, and Ai;1 6 i 6 4 are four N-dimensional column vectors. Therefore, we have shown
that f ¼ j dN� 1j solves Eq. (1.4) under the linear differential conditions (2.3) and (2.4).

The corresponding solution of Eq. (1.1) is
u ¼ 2ðln f Þx; f ¼ j dN� 1j;
and the corresponding solution of Eq. (1.5) is
u ¼ �3ðln f Þxx; f ¼ j dN� 1j:
From the linear differential conditions (2.3) and (2.4) as well as the transformation (1.3), we can compute the exact
Wronskian solutions including rational solutions, solitons, negatons and positons of Eq. (1.1).

For example, if we let the coefficient matrix A ¼ ðkijÞ16i;j6N in Theorem 2.1 has the following form of matrix (cf.
[10,20,22,23] for details)
A ¼

Jðk1Þ 0
0 Jðk2Þ

. .
. . .

.

0 0 JðkmÞ

0
BBBB@

1
CCCCA

N�N

ð2:7Þ
and
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Jðk1Þ ¼

k1 0
0 k1

. .
. . .

.

0 0 k1

0
BBBB@

1
CCCCA

k1�k1

; ð2:8Þ
where k1 – 0. Using the same method as that in [20], we can compute that two 1-solitons of zero-order for Eq. (1.1)
u¼2@x ln cosh
4k
3

k
3
2
1zþ2k

3
k1zþk

ffiffiffiffiffi
k1

p
yþ

ffiffiffiffiffi
k1

p
xþk1tþc1

� �� �
¼2

ffiffiffiffiffi
k1

p
tanh

4k
3

k
3
2
1zþ2k

3
k1zþk

ffiffiffiffiffi
k1

p
yþ

ffiffiffiffiffi
k1

p
xþk1tþc1

� �
ð2:9Þ
and
u¼2@x ln sinh
4k
3

k
3
2
1zþ2k

3
k1zþk

ffiffiffiffiffi
k1

p
yþ

ffiffiffiffiffi
k1

p
xþk1tþc1

� �� �
¼2

ffiffiffiffiffi
k1

p
coth

4k
3

k
3
2
1zþ2k

3
k1zþk

ffiffiffiffiffi
k1

p
yþ

ffiffiffiffiffi
k1

p
xþk1tþc1

� �
; ð2:10Þ
with c1 being a constant and k being an arbitrary nonzero number. It is obvious that solutions (2.9) and (2.10) are different to
the two 1-solitons (3.9) and (3.10) of zero-order in [20]. We can construct the other exact solutions of Eq. (1.1) in the same
way as in [20]. Using the linear differential conditions (2.3) and (2.4) as well as the transformation (1.6), we can also obtain
the exact Wronskian solutions to Eq. (1.5).

3. The second Wronskian conditions for Eq. (1.4)

In this section, we present another linear differential conditions to obtain one new Wronskian determinant solutions of
Eq. (1.4).

Theorem 3.1. Let a group of functions /i ¼ /iðx; y; z; tÞ;1 6 i 6 N, satisfy the following linear differential condition:
/i;xx ¼
PN
j¼1

kij/j; ð3:1Þ

/i;y ¼ k/i;x;

/i;t ¼ /i;xxx;

/i;z ¼ 2k/i;xxx;

8><
>: ð3:2Þ
where the coefficient matrix A ¼ ðkijÞ16i;j6N is an arbitrary real constant matrix and k is also an arbitrary nonzero constant. Then the
Wronskian determinant f ¼ j dN� 1j defined by (2.1) solves Eq. (1.4).
Proof. Under the properties of the Wronskian determinant and the conditions (3.1) and (3.2), we get partial derivatives of
the Wronskian determinant f ¼ j dN� 1j with respect to the variables x; y; z; t as follows
fx¼j dN�2;Nj; f xx¼j dN�3;N�1;Njþ j dN�2;Nþ1j;

fxxx¼j dN�4;N�2;N�1;Njþ2j dN�3;N�1;Nþ1jþ j dN�2;Nþ2j;

fy¼kj dN�2;Nj; f xy¼ kðj dN�3;N�1;Njþ j dN�2;Nþ1jÞ;

fxxy¼kðj dN�4;N�2;N�1;Njþ2j dN�3;N�1;Nþ1jþ j dN�2;Nþ2jÞ;

fxxxy¼kðj dN�5;N�3;N�2;N�1;Njþ3j dN�4;N�2;N�1;Nþ1jþ2j dN�3;N;Nþ1jþ3j dN�3;N�1;Nþ2jþ j dN�2;Nþ3jÞ;

ft¼ j dN�4;N�2;N�1;Nj� j dN�3;N�1;Nþ1jþ j dN�2;Nþ2j;

fyt ¼kðj dN�5;N�3;N�2;N�1;Nj� j dN�3;N;Nþ1jþ j dN�2;Nþ3jÞ;

fz¼2kðj dN�4;N�2;N�1;Nj� j dN�3;N�1;Nþ1jþ j dN�2;Nþ2jÞ;

fxz¼2kðj dN�5;N�3;N�2;N�1;Nj� j dN�3;N;Nþ1jþ j dN�2;Nþ3jÞ:
Therefore,
ðfxxxy þ 2f yt � 3f xzÞf ¼ 3kð�j dN� 5;N � 3;N � 2;N � 1;Nj þ j dN� 4;N � 2;N � 1;N þ 1j þ 2j dN� 3;N;N þ 1j

þ j dN� 3;N � 1;N þ 2j � j dN� 2;N þ 3jÞj dN� 1j;

� fxxxfy � 3f xxyfx � 2f yft þ 3f xfz ¼ �12kj dN� 3;N � 1;N þ 1jj dN� 2;Nj;

3f xxfxy ¼ 3kðj dN� 3;N � 1;Nj þ j dN� 2;N þ 1jÞ2

¼ 3kð�j dN� 3;N � 1;Nj þ j dN� 2;N þ 1jÞ2 þ 12kj dN� 3;N � 1;Njj dN� 2;N þ 1j;
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and further we obtain by using Lemma 2.2,
ðD3
x Dy þ 2DyDt � 3DxDzÞf � f ¼ 12kðj dN� 3;N;N þ 1jj dN� 1j � j dN� 3;N � 1;N þ 1jj dN� 2;Nj

þ j dN� 3;N � 1;Njj dN� 2;N þ 1jÞ ¼ 0:
Therefore, f ¼ j dN� 1j solves Eq. (1.4) under the conditions (3.1) and (3.2).
Similarly, using the linear differential conditions (3.1) and (3.2) as well as the transformation (1.3), we can also compute

the exact Wronskian solutions including rational solutions, solitons, negatons and positons of Eq. (1.1). For example, if we let
the coefficient matrix A has the following form of matrix
A ¼

Jðk1Þ 0
0 Jðk2Þ

. .
. . .

.

0 0 JðkmÞ

0
BBBB@

1
CCCCA

N�N

ð3:3Þ
and
Jðk1Þ ¼

0 0
1 0

. .
. . .

.

0 1 0

0
BBBB@

1
CCCCA

k1�k1

: ð3:4Þ
Using the same method as that in [20], we can compute a rational solution of zero-order and a rational solution of first-order
for Eq. (1.1)
u ¼ 2
xþ ky

ð3:5Þ
and
u ¼ 2ðk2y2 þ 2kxyþ x2Þ
k2xy2 þ kx2yþ 1

3 x3 þ 1
3 k3y3 � 2kz� t � 1

; ð3:6Þ
with k being an arbitrary nonzero number. It is easy to see that solutions (3.5) and (3.6) are different to the rational solution
(3.2) of zero-order and the rational solution (3.3) of first-order in [20]. For the other exact solutions of Eq. (1.1), we omit here.
Similarly, using the linear differential conditions (3.1) and (3.2) as well as the transformation (1.6), we can also compute the
exact Wronskian solutions of Eq. (1.5).

4. Conclusion remarks

In this paper, we establish two new conditions consisting of systems of linear partial differential equations, which guar-
antee that the corresponding Wroskian determinant solves the (3 + 1)-dimensional Jimbo–Miwa Eq. (1.1). Moreover, these
conditions also work for Eq. (1.5). Our results are different from that in [5,19,20]. The question is how can we find a unified
way to derive a set of conditions, and what is the relation between them. There should be some more generalized conditions
involving combined equations for Wronskian solutions. Searching for such a generalized conditions is under way.
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