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1. Introduction

Wronskian formulations are a common feature for soliton equations, and it is a powerful tool to construct exact solutions
to the corresponding Hirota bilinear equations of the soliton equations [1–4]. The resulting technique has been applied to
many soliton equations such as the MKdV, NLS, derivative NLS, sine-Gordon and other equations [5–10]. Within Wronskian
formulations, soliton solutions and rational solutions are usually expressed as some kind of logarithmic derivatives of
Wronskian type determinants [11–14].

The (3 + 1)-dimensional Jimbo–Miwa equation
uxxxy þ 3uxxuy þ 3uxuxy þ 2uyt � 3uxz ¼ 0 ð1:1Þ

was firstly investigated by Jimbo–Miwa and its soliton solutions were obtained in [15]. It is the second member in the entire
Kadomtsev–Petviashvili hierarchy. Ma [16] proposed a direct approach to exact solutions of nonlinear partial differential
equation by using rational function transformations to solve Eq. (1.1). Wazwaz [17] employed the Hirota’s bilinear method
to this equation and confirmed that it is completely integrable and it admits multiple-soliton solutions of any order. In [18],
the traveling wave solutions of Eq. (1.1) expressed by hyperbolic, trigonometric and rational functions were constructed by
the G0/G-expansion method, where G = G(n) satisfies a second order linear ordinary differential equation.

A Hirota bilinear form of Eq. (1.1) is
D3
x Dy þ 2DyDt � 3DxDz

� �
f � f ¼ fxxxyf � fxxxfy � 3f xxyfx þ 3f xxfxy þ 2f ytf � 2f yft � 3f xzf þ 3f xfz

¼ f ðfxxxy þ 2f yt � 3f xzÞ þ ð�fxxxfy � 3f xxyfx � 2f yft þ 3f xfzÞ þ 3f xxfxy ¼ 0 ð1:2Þ
after the Cole–Hopf transformation
u ¼ 2ðln f Þx ¼ 2f x=f ;
where Dx, Dy, Dz and Dt are the Hirota operators [19].
. All rights reserved.
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In this paper, we aim to present the Wronskian determinant solutions of the above Eq. (1.1), which will particularly lead
to an approach for constructing rational solutions and solitons to the Eq. (1.1). Our results will also show the richness and
diversity of solution structures of the Eq. (1.1).

The paper is organized as follows. In Section 2, the Wronskian determinant solution is presented for the bilinear Eq. (1.2).
In Section 3, an approach for constructing exact solutions including rational solutions is furnished, and many examples of
solutions such as rational solutions, positons and negatons are provided. Finally, some conclusions are given in Section 4.

2. Wronskian formulation

The Wronskian technique is introduced by Freeman and Nimmo [1,20], they set
Wð/1;/2; . . . ;/nÞ ¼ ð dN� 1; UÞ ¼ ð dN� 1Þ ¼

/ð0Þ1 /ð1Þ1 � � � /ðN�1Þ
1

/ð0Þ2 /ð1Þ2 � � � /ðN�1Þ
2

..

. ..
. . .

. ..
.

/ð0ÞN /ð1ÞN � � � /ðN�1Þ
N

�����������

�����������
; N P 1; ð2:1Þ
where
U ¼ ð/1;/2; . . . ;/nÞ
T
;/ð0Þi ¼ /i; /ðjÞi ¼

@j

@xj
/i; j P 1; 1 6 i 6 N: ð2:2Þ
Solutions determined by u = 2(lnf)x with f ¼ ð dN� 1Þto the Eq. (1.1) are called Wronskian solutions.

Proposition 1. Assuming that /i = /i (x,y,z, t) (where t P 0,1 < x,y,z <1, i = 1,2, . . . , N) has continuous derivative up to any
order, and satisfies the following linear differential conditions
/i;xx ¼
XN

j¼1

kijðtÞ/j; ð2:3Þ

/i;y ¼ 3/i;x; ð2:4Þ
/i;z ¼ 4/i;xxx þ 2/i;x; ð2:5Þ
/i;t ¼ /i;x; ð2:6Þ
then f ¼ ð dN� 1Þ defined by (2.1) solves the bilinear Eq. (1.2).
Before proving the above results, we state the following three known useful Lemmas.

Lemma 1
jD; a; bjjD; c;dj � jjD; a; cjjjD; b;dj þ jD; a; djjD; b; cj ¼ 0; ð2:7Þ

where D is N � (N � 2) matrix, and a, b, c, d are n-dimensional column vectors.
Lemma 2. Set aj(j = 1, . . . ,n) to be an n-dimensional column vector, and bj (j = 1, . . . ,n) to be a real constant but not to be zero. Then
we have
XN

i¼1

bija1; a2; . . . ; aNj ¼
XN

j¼1

ja1; a2; . . . ; baj; . . . ; aNj; ð2:8Þ
where baj = (b1a1j,b2a2j, . . . , bNaNj)
T.
Lemma 3 [11]. Under the condition (2.3) and Lemma 2, the following equalities hold:
ð dN� 1Þ
XN

i¼1

kiiðtÞ
XN

i¼1

kiiðtÞð dN� 1Þ
 !

¼
XN

i¼1

kiiðtÞð dN� 1Þ
 !2

¼ ½ð dN� 3;N � 1;NÞ � ð dN� 2;N þ 1Þ�2

¼ ð dN� 5;N � 3;N � 2;N � 1;NÞ � ð dN� 4;N � 2;N � 1;N þ 1Þ

� ð dN� 3;N � 1;N þ 2Þ þ 2ð dN� 3;N;N þ 1Þ þ ð dN� 2;N þ 3Þ: ð2:9Þ
Proof of Proposition 1. Obviously, we always have
fx ¼ ð dN� 2;NÞ;

fxx ¼ ð dN� 3;N � 1;NÞ þ ð dN� 2;N þ 1Þ;

fxxx ¼ ð dN� 4;N � 2;N � 1;NÞ þ 2ð dN� 3;N � 1;N þ 1Þ þ ð dN� 2;N þ 2Þ:
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Using the conditions (2.4)–(2.6), we get that
fy ¼ 3ð dN� 2;NÞ; fyx ¼ 3ð dN� 3;N � 1;NÞ þ 3ð dN� 2;N þ 1Þ;

fxxy ¼ 3ð dN� 4;N � 2;N � 1;NÞ þ 6ð dN� 3;N � 1;N þ 1Þ þ 3ð dN� 2;N þ 2Þ;

fxxxy ¼ 3ð dN� 5;N � 3;N � 2;N � 1;NÞ þ 9ð dN� 4;N � 2;N � 1;N þ 1Þ

þ 6ð dN� 3;N;N þ 1Þ þ 9ð dN� 3;N � 1;N þ 2Þ þ 3ð dN� 2;N þ 3Þ;

fz ¼ 4ð dN� 4;N � 2;N � 1;NÞ � 4ð dN� 3;N � 1;N þ 1Þ þ 4ð dN� 2;N þ 2Þ þ 2ð dN� 2;NÞ;

fxz ¼ 4ð dN� 5;N � 3;N � 2;N � 1;NÞ � 4ð dN� 3;N;N þ 1Þ þ 4ð dN� 2;N þ 3Þ þ 2ð dN� 3;N � 1;NÞ þ 2ð dN� 2;N þ 1Þ;

ft ¼ ð dN� 2;NÞ;

fyt ¼ 3ð dN� 3;N � 1;NÞ þ 3ð dN� 2;N þ 1Þ:
Hence, we have
f ðfxxxy þ 2f yt � 3f xzÞ ¼ 9ð dN� 1Þ½�ð dN� 5;N � 3;N � 2;N � 1;NÞ þ ð dN� 4;N � 2;N � 1;N þ 1Þ

þ 2ð dN� 3;N;N þ 1Þ þ ð dN� 3;N � 1;N þ 2Þ � ð dN� 2;N þ 3Þ�;

ð�fxxxfy � 3f xxyfx � 2f yft þ 3f xfzÞ ¼ fxð�3f xxx � 3f xxy � 6f t þ 3f zÞ ¼ �36ð dN� 2;NÞð dN� 3;N � 1;N þ 1Þ;

3f xxfxy ¼ 9½�ð dN� 3;N � 1;NÞ þ ð dN� 2;N þ 1Þ þ 2ð dN� 3;N � 1;NÞ�2

¼ 9½�ð dN� 3;N � 1;NÞ þ ð dN� 2;N þ 1Þ�2 þ 36ð dN� 3;N � 1;NÞð dN� 2;N þ 1Þ:
Using Lemma 3, we obtain
D3
x Dy þ 2DyDt � 3DxDz

� �
f � f ¼ 9ð dN� 1Þ½�ð dN� 5;N � 3;N � 2;N � 1;NÞ þ ð dN� 4;N � 2;N � 1;N þ 1Þ

þ 2ð dN� 3;N;N þ 1Þ þ ð dN� 3;N � 1;N þ 2Þ � ð dN� 2;N þ 3Þ�

� 36ð dN� 2;NÞð dN� 3;N � 1;N þ 1Þ þ 9½�ð dN� 3;N � 1;NÞ

þ ð dN� 2;N þ 1Þ�2 þ 36ð dN� 3;N � 1;NÞð dN� 2;N þ 1Þ ¼ 36ð dN� 3;N;N þ 1Þð dN� 1Þ

� 36ð dN� 2;NÞð dN� 3;N � 1;N þ 1Þ þ 36ð dN� 3;N � 1;NÞð dN� 2;N þ 1Þ ¼ 0:
This shows that f ¼ ð dN� 1Þ solve the bilinear Eq. (1.2). The corresponding solution of Eq. (1.1) is
u ¼ 2
fx

f
¼ 2
ð dN� 2;NÞ
ð dN� 1Þ

:

Observation 1. From the compatibility conditions /i,xxt = /i,txx (i = 1, . . . ,N) of the conditions (2.3)–(2.6), we have
XN

j¼1

kij;tðtÞ/j ¼ 0; ði ¼ 1; . . . ;NÞ
and thus it is easy to see that the Wronskian determinant W(/1 ,/2, . . . ,/N) becomes zero if there is at least one entry kij sat-
isfying kij,t (t) – 0.
Observation 2. If the coefficient matrix A = (kij) is similar to another matrix M under an invertible constant matrix P, i.e., we
have A = P�1MP, then eU ¼ PU solves
eUxx ¼ M eU; eUy ¼ 3eUx; eUz ¼ 4eUxxx þ 2eUx; eUt ¼ eUx
and the resulting Wronskian solutions to the Eq. (1.1) are the same:
uðAÞ ¼ 2@x ln jUð0Þ;Uð1Þ; . . . ;UðN�1Þj ¼ 2@x ln jPUð0Þ; PUð1Þ; . . . ; PUðN�1Þj ¼ uðMÞ:
Based on Observation I, we only need to consider the reduced case of (2.3)–(2.6) under dA/dt = 0, i.e., the following
conditions:
/i;xx ¼
XN

j¼1

kij/j; /i;y ¼ 3/j;x; /i;z ¼ 4/i;xxx þ 2/i;x; /i;t ¼ /i;x; ð2:10Þ
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where A = (kij) is an arbitrary real constant matrix. Moreover, Observation II tells us that an invertible constant linear trans-
formation on U in the Wronskian determinant does not change the corresponding Wronskian solution, and thus, we only
have to solve (2.10) under the Jordan form of A.
3. Wronskian solutions

In principle, we can construct general solutions of the Eq. (1.2) by solving the linear conditions (2.10). But it is not easy. In
this section we will present a few special Wronskian solutions to the Eq. (1.2).

It is well known that the corresponding Jordan form of a real matrix
A ¼

Jðk1Þ 0
1 Jðk2Þ

. .
. . .

.

0 1 JðkmÞ

266664
377775

n�n
have the following two types of blocks:

I.
JðkiÞ ¼

ki 0
1 ki

. .
. . .

.

0 1 ki

266664
377775

ki�ki

;

II.
JðkiÞ ¼

Ai 0
I2 Ai

. .
. . .

.

0 I2 Ai

266664
377775

li�li

; Ai ¼
ai �bi

bi ai

� �
; I2 ¼

1 0
0 1

� �
;

where ki, ai and bi > 0 are all real constants. The first type of blocks have the real eigenvalue ki with algebraic multiplicity
kið
Pm

i¼1ki ¼ NÞ, and the second type of blocks have the complex eigenvalue k�i ¼ ai � bi

ffiffiffiffiffiffiffi
�1
p

with algebraic multiplicity li.
3.1. Rational solutions

Suppose A have the first type of Jordan blocks. Without loss of generality, let
Jðk1Þ ¼

k1 0
1 k1

. .
. . .

.

0 1 k1

266664
377775

k1�k1

:

In this case, if the eigenvalue k1 = 0, J(k1) becomes to the following form:
0 0
1 0

. .
. . .

.

0 1 0

266664
377775

k1�k1
from the condition (2.10), we get
/1;xx ¼ 0; /iþ1;xx ¼ /i; /i;y ¼ 3/i;x; /i;z ¼ 4/i;xxx þ 2/i;x; /i;t ¼ /i;x:i P 1: ð3:1Þ
Such functions /i(i P 1) are all polynomials in x, y, z and t, and a general Wronskian solution to the (3 + 1)-dimensional Jim-
bo–Miwa Eq. (1.1)
u ¼ 2@x ln Wð/1;/2; . . . ;/k1
Þ

is rational and is called a rational Wronskian solution of order k1.
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From (3.1), we solve /1,xx = 0,/1,y = 3/1,x, /1,z = 4/1,xxx + 2/1,x, /1,t = /1,x, and have
/1 ¼ c1ðxþ t þ 3yþ 2zÞ þ c2:
Similarly, by solving /i+1,xx = /i, /i+1,y = 3/i+1, x, /i+1,z = 4/i+1,xxx + 2/i+1,x, /i+1,t = /i+1,x, i P 2, then two special rational solutions
of lower-order are obtained after setting some integral constants to be zero.

1) Zero-order: when c1 = 1, c2 = 0, /1 = x + 3y + 2z + t, f = W(/1) = x + 3y + 2z + t,
u ¼ 2@x ln Wð/1Þ ¼
2

xþ 3yþ 2zþ t
: ð3:2Þ
2) First-order: /1 = x + 3y + 2z + t,
/2 ¼
1
6

t3 þ t2

2
ðxþ 3yÞ þ t

2
ðxþ 3yÞ2 þ 1

6
ðxþ 3yÞ3 þ 4z3

3
þ 2z2ðxþ 3yþ tÞ þ zðxþ 3yþ tÞ2 þ 4z;

f ¼Wð/1;/2Þ ¼ p;

u ¼ 2@x ln Wð/1;/2Þ ¼
2ðxþ 3yþ 2zþ tÞ2

p
; ð3:3Þ

where

p ¼ 1
3

t3 þ t2ðxþ 3yÞ þ tðxþ 3yÞ2 þ 1
3
ðxþ 3yÞ3 þ 8z3

3
þ 4z2ðxþ 3yþ tÞ þ 2zðxþ 3yþ tÞ2 � 4z:
2) Second-order: /1 = x + 3y + 2z + t,
/2 ¼
1
6

t3 þ t2

2
ðxþ 3yÞ þ t

2
ðxþ 3yÞ2 þ 1

6
ðxþ 3yÞ3 þ 4z3

3
þ 2z2ðxþ 3yþ tÞ þ zðxþ 3yþ tÞ2 þ 4z;

/3 ¼
t5

120
þ 5t4

120
ðxþ 3yÞ þ t3

12
ðxþ 3yÞ2 þ t2

12
ðxþ 3yÞ3 þ 5t

120
ðxþ 3yÞ4 þ 1

120
ðxþ 3yÞ5

þ 4z5

15
þ 2z4

3
ðxþ t þ 3yÞ þ 2z3

3
ðxþ t þ 3yÞ2 þ z2

3
ðxþ t þ 3yÞ3 þ z

12
ðxþ t þ 3yÞ4 þ 8z3

þ 8z2ðxþ t þ 3yÞ þ 2zðxþ t þ 3yÞ2

f ¼Wð/1;/2;/3Þ ¼ p1; u ¼ 2@x ln Wð/0;/1;/2Þ ¼
2q1

p1
; ð3:4Þ
where
p1 ¼
64z6

45
þ 64z5

15
ðxþ 3yþ tÞ þ 16z4

3
ðxþ 3yþ tÞ2 � 32

3
z4 þ 32z3

9
ðxþ 3yþ tÞ3

� 16z3ðxþ 3yþ tÞ þ 4z2

3
ðxþ 3yþ tÞ4 � 8z2ðxþ 3yþ tÞ2 � 16z2 þ 4z

15
ðxþ 3yþ tÞ5

� 4
3

zðxþ 3yþ tÞ3 þ 2t5

15
ðxþ 3yÞ þ t4

3
ðxþ 3yÞ2 þ 4t3

9
ðxþ 3yÞ3 þ t2

3
ðxþ 3yÞ4

þ 2t
15
ðxþ 3yÞ5 þ 1

45
ðxþ 3yÞ6 � x6

45
� 81y6

5
;

q1 ¼
64z5

15
þ 32z4

3
ðxþ 3yþ tÞ þ 32z3

3
ðxþ 3yþ tÞ2 � 16z3 � 16z2ðxþ 3yþ tÞ þ 4z

3
ðxþ 3yþ tÞ4

� 4zðxþ 3yþ tÞ2 þ 2t5

15
þ 2t4

3
ðxþ 3yÞ þ 4t3

3
ðxþ 3yÞ2 þ 4t2

3
ðxþ 3yÞ3 þ 2t

3
ðxþ 3yÞ4 þ 2

15
ðxþ 3yÞ5 � 2x5

15
:

3.2. Solitons, negatons and positons

If the eigenvalue k1 – 0, J(k1) becomes to the following form
k1 0
1 k1

. .
. . .

.

0 1 k1

266664
377775

k1�k1

:
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We start from the eigenfuction /1(k1), which is determined by
ð/1ðk1ÞÞxx ¼ k1/1ðk1Þ; ð/1ðk1ÞÞy ¼ 3ð/1ðk1ÞÞx;
ð/1ðk1ÞÞz ¼ 4ð/1ðk1ÞÞxxx þ 2ð/1ðk1ÞÞx; ð/1ðk1ÞÞt ¼ ð/1ðk1ÞÞx: ð3:5Þ
General solutions to this system in two cases of k1 > 0 and k1 < 0 are
/1ðk1Þ ¼ C1 sinhð
ffiffiffiffiffi
k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞÞ þ C2 coshð

ffiffiffiffiffi
k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞÞ; k1 > 0; ð3:6Þ

/1ðk1Þ ¼ C3 cosð
ffiffiffiffiffiffiffiffiffi
�k1

p
ð3yþ xþ 2ð2k1 þ 1Þzþ tÞÞ � C4 sinð

ffiffiffiffiffiffiffiffiffi
�k1

p
ð3yþ xþ 2ð2k1 þ 1Þzþ tÞÞ; for � 1

2
< k1 < 0;

ð3:7Þ

/1ðk1Þ ¼ �C3 cosð
ffiffiffiffiffiffiffiffiffi
�k1

p
ð3yþ xþ 2ð2k1 þ 1Þzþ tÞÞ þ C4 sinð

ffiffiffiffiffiffiffiffiffi
�k1

p
ð3yþ xþ 2ð2k1 þ 1Þzþ tÞÞ; for k1 < �

1
2
; ð3:8Þ
respectively, where C1, C2, C3 and C4 are arbitrary real constants. But obviously the solutions (3.7) and (3.8) have the opposite
sign, so we will only consider the solution (3.7) later. By an inspection, we find that
/1ðk1Þ
1
1!
@k1 /1ðk1Þ

..

.

1
ðk1�1Þ! @

k1�1
k1

/1ðk1Þ

2666664

3777775
xx

¼

k1 0
1 k1

. .
. . .

.

0 1 k1

266664
377775

k1�k1

/1ðk1Þ
1
1!
@k1 /1ðk1Þ

..

.

1
ðk1�1Þ! @

k1�1
k1

/1ðk1Þ

2666664

3777775

and
1
j!
@j

k1
/1ðk1Þ

� 	
y

¼ 3
1
j!
@j

k1
/1ðk1Þ

� 	
x

;

1
j!
@j

k1
/1ðk1Þ

� 	
z

¼ 4
1
j!
@j

k1
/1ðk1Þ

� 	
xxx

þ 2
1
j!
@j

k1
/1ðk1Þ

� 	
x

;

1
j!
@j

k1
/1ðk1Þ

� 	
t

¼ 1
j!
@j

k1
/1ðk1Þ

� 	
x

; 0 6 j 6 k1 � 1:
Therefore, through this set of eigenfunctions, we obtain a Wronskian solution to the Eq. (1.1):
u ¼ 2@x ln Wð/1ðk1Þ;
1
1!
@k1 /1ðk1Þ; . . . ;

1
ðk1 � 1Þ! @

k1�1
k1

/1ðk1ÞÞ;
which corresponds to the first type of Jordan blocks with a nonzero real eigenvalue.
When k1 > 0, we get negaton solutions, and whenk1 < 0, we get positon solutions.
If we suppose A have m different nonzero real eigenvalues, in which there are l positive real eigenvalues and m � l neg-

ative real eigenvalues, then more general negaton can be obtained by combining l sets of eigenfunctions associated with dif-
ferent ki > 0:
u ¼ 2@x ln W /1ðk1Þ;
1
1!
@k1 /1ðk1Þ; . . . ;

1
ðk1 � 1Þ! @

k1�1
k1

/1ðk1Þ; � � � ; /lðklÞ;
1
1!
@kl

/lðklÞ; . . . ;
1

ðkl � 1Þ! @
kl�1
kl

/lðklÞ
� 	

:

Similarly, more general positon can be obtained by combining m � l sets of eigenfunctions associated with different ki < 0:
u ¼ 2@x ln W /1ðk1Þ;
1
1!
@k1 /1ðk1Þ; . . . ;

1
ðk1 � 1Þ! @

k1�1
k1

/1ðk1Þ; � � � ; /m�lðkm�lÞ;
�

1
1!
@km�l

/m�lðkm�lÞ; . . . ;
1

ðkm�l � 1Þ! @
km�l�1
km�l

/m�lðkm�lÞ
	
:

This solution is called an n-negaton of order (k1 � 1,k2 � 1, . . . ,kl � 1) or n-positon of order (k1 � 1,k2 � 1, . . . ,km�l � 1). If
l = n or l = 0, we simply say that it is an n-negaton of order n or an n-positon of order n.

An n-soliton solution is a special n-negaton:
u ¼ 2@x ln Wð/1;/2; . . . ;/nÞ
with /i given by
/i ¼ cosh
ffiffiffiffi
ki

p
ðxþ 3yþ 2ð2ki þ 1Þzþ tÞ þ ci

� �
; i odd;

/i ¼ sinh
ffiffiffiffi
ki

p
ðxþ 3yþ 2ð2ki þ 1Þzþ tÞ þ ci

� �
; i even;
where 0 < k1 < k2 < � � � < kn and ci (1 6 i 6 n) are arbitrary real constants.
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Two kinds of special negatons of order k are
u ¼ 2@x ln Wð/; @k/; . . . ; @k�1
k /Þ; / ¼ coshð

ffiffiffi
k
p
ðxþ 3yþ 2ð2kþ 1Þzþ tÞ þ cÞ;

u ¼ 2@x ln Wð/; @k/; . . . ; @k�1
k /Þ; / ¼ sinhð

ffiffiffi
k
p
ðxþ 3yþ 2ð2kþ 1Þzþ tÞ þ cÞ;
where k > 0 and c is an arbitrary constant.
Two kinds of special positons of order k are
u ¼ 2@x ln Wð/; @k/; . . . ; @k�1
k /Þ;

/ðkÞ ¼ cosð
ffiffiffiffiffiffiffi
�k
p

ð3yþ xþ 2ð2kþ 1Þzþ tÞ þ cÞ; k < 0;

u ¼ 2@x ln Wð/; @k/; . . . ; @k�1
k /Þ;

/ðkÞ ¼ sinð
ffiffiffiffiffiffiffi
�k
p

ð3yþ xþ 2ð2kþ 1Þzþ tÞ þ cÞ; k < 0:
To understand the above results better, we shall give several exact solitons, positons and negatons of lower-order as follows:

(1) Two solitons of zero-order:
u ¼ 2@x ln Wð/1Þ ¼ 2@x lnðcoshð
ffiffiffiffiffi
k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1ÞÞ ¼ 2

ffiffiffiffiffi
k1

p
tanhðh1Þ; ð3:9Þ

u ¼ 2@x ln Wð/1Þ ¼ 2@x lnðsinhð
ffiffiffiffiffi
k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1ÞÞ ¼ 2

ffiffiffiffiffi
k1

p
cothðh1Þ; ð3:10Þ

where h1 ¼
ffiffiffiffiffi
k1
p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1; k1 > 0:

One soliton of first-order:

u ¼ 2@x ln Wðcoshðh1Þ; sinhðh2ÞÞ ¼
2ðk1 � k2Þðsinhðh1 þ h1Þ � sinhðh1 � h2ÞÞ

ð
ffiffiffiffiffi
k1
p
�

ffiffiffiffiffi
k2
p
Þ coshðh1 þ h2Þ � ð

ffiffiffiffiffi
k1
p
þ

ffiffiffiffiffi
k2
p
Þ coshðh1 � h2Þ

; ð3:11Þ

where hi ¼
ffiffiffiffi
ki
p
ðxþ 3yþ 2ð2ki þ 1Þzþ tÞ þ ci, ki > 0,i = 1,2.

(2) One negaton of first-order:
u ¼ 2@x ln WðcoshðhÞ; @k1 coshðhÞÞ ¼ 4
ffiffiffiffiffi
k1
p
ð1þ coshð2hÞÞ

2
ffiffiffiffiffi
k1
p
ðxþ 3yþ 12k1zþ 2zþ tÞ þ sinhð2hÞ

; ð3:12Þ

where h ¼ ð
ffiffiffiffiffi
k1
p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1Þ.
(3) Two positon of zero-order:
u ¼ 2@x ln Wð/1Þ ¼ 2@x lnðcosð
ffiffiffiffiffiffiffiffiffi
�k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1ÞÞ ¼ �2

ffiffiffiffiffiffiffiffiffi
�k1

p
tanðh3Þ: ð3:13Þ

u ¼ 2@x ln Wð/1Þ ¼ 2@x lnð� sinð
ffiffiffiffiffiffiffiffiffi
�k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1ÞÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
�k1

p
cotðh3ÞÞ: ð3:14Þ

where h3 ¼
ffiffiffiffiffiffiffiffiffi
�k1
p

ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1.
One positon of first-order:
u ¼ 2@x ln WðcosðhÞ; @k1 cosðhÞÞ ¼ 4
ffiffiffiffiffiffiffiffiffi
�k1
p

ð1þ cosð2hÞÞ
2
ffiffiffiffiffiffiffiffiffi
�k1
p

ðxþ 3yþ 12k1zþ 2zþ tÞ þ sinð2hÞ
; ð3:15Þ

where h ¼
ffiffiffiffiffiffiffiffiffi
�k1
p

ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ þ c1.
3.3. Interaction solutions

Let us assume that there are two sets of eigenfunctions
ð/1ðkÞ;/2ðkÞ; . . . ;/kðkÞ; w1ðlÞ; . . . ;wlðlÞÞ ð3:16Þ
associated with two different eigenvalues k andl, respectively. A Wronskian solution u = 2@xlnW(/1 (k),/2(k), . . . ,/k(k);w1

(l), . . . ,wl(l)) is said to be a Wronskian interaction solution between two solutions determined by the two sets of eigenfunc-
tions in (3.16). Of course, we can have more general Wronskian interaction solutions among three kinds of solutions such as
rational solutions, negatons, positons.
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In what follows, we shall show a few special Wronskian interaction solutions. Let us first choose different sets of special
eigenfunctions:
/rational ¼ xþ 3yþ 2zþ t;

/soliton ¼ coshð
ffiffiffiffiffi
k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞÞ;

/positon ¼ cosð
ffiffiffiffiffiffiffiffiffi
�k2

p
ðxþ 3yþ 2ð2k2 þ 1Þzþ tÞÞ;
where k1 > 0, k2 < 0 are constants.
Three Wronskian interaction determinants between any two of a rational solution, a single soliton and a single positon

are
Wð/rational;/solitonÞ ¼
ffiffiffiffiffi
k1

p
ðxþ 3yþ 2zþ tÞ sinhðh1Þ � coshðh1Þ; ð3:17Þ

Wð/rational;/positonÞ ¼ �
ffiffiffiffiffiffiffiffiffi
�k2

p
ðxþ 3yþ 2zþ tÞ sinðh2Þ � cosðh2Þ; ð3:18Þ

Wð/soliton;/positonÞ ¼ �
ffiffiffiffiffiffiffiffiffi
�k2

p
coshðh1Þ sinðh2Þ �

ffiffiffiffiffi
k1

p
cosðh2Þ sinhðh1Þ; ð3:19Þ
where h1 ¼
ffiffiffiffiffi
k1
p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ; h2 ¼

ffiffiffiffiffiffiffiffiffi
�k2
p

ðxþ 3yþ 2ð2k2 þ 1Þzþ tÞ.
Further, the corresponding Wronskian interaction solutions are
urs ¼ 2@x ln Wð/rational;/solitonÞ ¼
2k1ðxþ 3yþ 2zþ tÞ coshðh1Þffiffiffiffiffi

k1
p
ðxþ 3yþ 2zþ tÞ sinhðh1Þ � coshðh1Þ

; ð3:20Þ

urp ¼ 2@x ln Wð/rational;/positonÞ ¼
�2k2ðxþ 3yþ 2zþ tÞ cosðh2Þffiffiffiffiffiffiffiffiffi

�k2
p

ðxþ 3yþ 2zþ tÞ sinðh2Þ þ cosðh2Þ
; ð3:21Þ

usp ¼ 2@x ln Wð/soliton;/ positonÞ ¼
2ðk1 � k2Þ coshðh1Þ cosðh2Þffiffiffiffiffiffiffiffiffi

�k2
p

coshðh1Þ sinðh2Þ þ
ffiffiffiffiffi
k1
p

sinhðh1Þ cosðh2Þ
; ð3:22Þ
where h1 ¼
ffiffiffiffiffi
k1
p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ; h2 ¼

ffiffiffiffiffiffiffiffiffi
�k2
p

ðxþ 3yþ 2ð2k2 þ 1Þzþ tÞ.
The following is one Wronskian interaction determinant and solution involving the three eigenfunctions.
Wð/rational;/soliton;/positonÞ ¼ ðxþ 3yþ 2zþ tÞ k2

ffiffiffiffiffi
k1

p
sinhðh1Þ cosðh2Þ þ k1

ffiffiffiffiffiffiffiffiffi
�k2

p
coshðh1Þ sinðh2Þ

� �
þ ðk1 � k2Þ coshðh1Þ cosðh2Þ ¼ p2; ð3:23Þ

ursp ¼ 2@x ln Wð/rational;/soliton;/positonÞ ¼
2q2

p2
; ð3:24Þ
where
q2 ¼ ðxþ 3yþ 2zþ tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�k1k2

p
ðk1 � k2Þ sinhðh1Þ sinðh2Þ þ k1

ffiffiffiffiffi
k1

p
sinhðh1Þ cosðh2Þ þ k2

ffiffiffiffiffiffiffiffiffi
�k2

p
coshðh1Þ sinðh2Þ

� �
;

h1 ¼
ffiffiffiffiffi
k1

p
ðxþ 3yþ 2ð2k1 þ 1Þzþ tÞ; and h2 ¼

ffiffiffiffiffiffiffiffiffi
�k2

p
ðxþ 3yþ 2ð2k2 þ 1Þzþ tÞ:
When the corresponding Jordan form of a real matrix is the second type of block, the solutions of the Eq. (2.10) will become
very complicated, so we omit that here.
4. Conclusion

In sum, we gave the Wronskian determinant solutions of the (3 + 1)-dimensional Jimbo–Miwa equation through the
Wronskian technique. Moreover, we obtained some rational solutions, soliton solutions, positons and negatons of this equa-
tion by solving the resultant systems of linear partial differential equations which guarantee that the Wronskian determi-
nant solves the equation in the bilinear form. All these show the richness of the solution space of the (3 + 1)-dimensional
Jimbo–Miwa equation and the resulting solutions are expected to help understand wave dynamics in weakly nonlinear
and dispersive media.
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