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ARTICLE INFO ABSTRACT

Keywords: A set of sufficient conditions consisting of systems of linear partial differential equations is
(3 + 1)-dimensional Jimbo-Miwa equation obtained which guarantees that the Wronskian determinant solves the (3 + 1)-dimensional
Wronskian form Jimbo-Miwa equation in the bilinear form. Upon solving the linear conditions, the resulting
Rational solutions Wronskian formulations bring solution formulas, which can yield rational solutions, soli-
ll;](f;:ii(t)irsls tons, negatons, positons and interaction solutions.
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1. Introduction

Wronskian formulations are a common feature for soliton equations, and it is a powerful tool to construct exact solutions
to the corresponding Hirota bilinear equations of the soliton equations [1-4]. The resulting technique has been applied to
many soliton equations such as the MKdV, NLS, derivative NLS, sine-Gordon and other equations [5-10]. Within Wronskian
formulations, soliton solutions and rational solutions are usually expressed as some kind of logarithmic derivatives of
Wronskian type determinants [11-14].

The (3 + 1)-dimensional Jimbo-Miwa equation

Uy + 3Uxxlly + 3Uxllyy + 2Uy; — 3y, =0 (1.1)
was firstly investigated by Jimbo-Miwa and its soliton solutions were obtained in [15]. It is the second member in the entire
Kadomtsev-Petviashvili hierarchy. Ma [16] proposed a direct approach to exact solutions of nonlinear partial differential
equation by using rational function transformations to solve Eq. (1.1). Wazwaz [17] employed the Hirota’s bilinear method
to this equation and confirmed that it is completely integrable and it admits multiple-soliton solutions of any order. In [18],
the traveling wave solutions of Eq. (1.1) expressed by hyperbolic, trigonometric and rational functions were constructed by
the G'/G-expansion method, where G = G(¢) satisfies a second order linear ordinary differential equation.

A Hirota bilinear form of Eq. (1.1) is

(D3Dy +2D,D; = 3D.D; )f -f = fuf = Feody = 3ffe + ffiy + 2ef = 2,fi = 3 f +3F:
= flfewy + 2 e = 3fx) + (froudy = 3f oo = 21fe + 3fuf2) + 3fufy = 0 (12)
after the Cole-Hopf transformation
u=2(Inf), = 2f,/f,

where Dy, Dy, D, and Dy are the Hirota operators [19].
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In this paper, we aim to present the Wronskian determinant solutions of the above Eq. (1.1), which will particularly lead
to an approach for constructing rational solutions and solitons to the Eq. (1.1). Our results will also show the richness and
diversity of solution structures of the Eq. (1.1).

The paper is organized as follows. In Section 2, the Wronskian determinant solution is presented for the bilinear Eq. (1.2).
In Section 3, an approach for constructing exact solutions including rational solutions is furnished, and many examples of
solutions such as rational solutions, positons and negatons are provided. Finally, some conclusions are given in Section 4.

2. Wronskian formulation

The Wronskian technique is introduced by Freeman and Nimmo [1,20], they set
¢(]o> ¢(]1) N ¢(1N—1)
¢(20> (P(z]) . ¢(2N7])

Wby, ¢y i) =(N-1;0) = (N-1)=| * % , N>1, 2.1)
oA A
where
D= (brda b 60 =0 G0 = b, 21 1<i<N. 22)

Solutions determined by u = 2(Inf), with f = (N — 1)to the Eq. (1.1) are called Wronskian solutions.

Proposition 1. Assuming that ¢; = ¢i(X,y,z,t) (where t > 0,00 <X,y,z< o0, i=1,2,...,N) has continuous derivative up to any
order, and satisfies the following linear differential conditions

N
P = Y (), (2.3)
=
¢’i.y = 3¢i,x7 (24)
(/)i,z = 4¢i,xxx + Z(bi‘xv (25)
bie = dix, (2.6)

then f = (N/—\l) defined by (2.1) solves the bilinear Eq. (1.2).
Before proving the above results, we state the following three known useful Lemmas.

Lemma 1
|D,a,b||D,c,d| - ||D,a,c|||D,b,d| + |D,a,d||D,b,c| =0, (2.7)
where D is N x (N — 2) matrix, and a, b, ¢, d are n-dimensional column vectors.

Lemma 2. Setaj(j=1,...,n) to be an n-dimensional column vector, and b; (j = 1, . ..,n) to be a real constant but not to be zero. Then
we have

N N
Zbi|alya2~,-~-aaN| = Z|a17027---abaj7-~aaN‘7 (2.8)
i1 =

where ba; = (b,a;, b2ay;, . . ., byan;)".

Lemma 3 [11]. Under the condition (2.3) and Lemma 2, the following equalities hold:

2
(N=1) Z i(t) (Z Zi(t) (N =1 )) = (Z Zi(D(N=1 >) =[(N=3,N—1,N)= (N=2,N+ 1)
i=1 i=1 i=1

=(N-5N-3,N-2,N-1,N)—- (N—-4,N-2,N-1,N+1)
~(N=3,N-1,N+2)+2(N=3,N,N+ 1)+ (N=2,N +3). (2.9)

Proof of Proposition 1. Obviously, we always have
fe=(N=2,N),
foa=(N=3,N=1,N)+(N-2,N+1),
fox=(N—4,N-2N—1,N)+2(N-3,N-1,N+1)+ (N-2,N+2).
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Using the conditions (2.4)-(2.6), we get that

f,=3(N=2,N).fx=3(N=3,N—1,N) +3(N—-2,N + 1),
foy=3(N—4,N—2N—1N)+6(N—3,N-1,N+1)+3(N—2,N+2),
fooy =3(N—=5N-3 N—-2N—1,N)+9(N—4,N—-2,N—1,N+1)
+6(N=3,NNN+1)+9(N—-3,N-1,N+2)+3(N-2,N+3),
fi=4N—4,N-2N-1,N)—4N—-3,N-1,N+1)+4(N-2,N+2)+2(N-2,N),
fe=4(N-5N-3N-2N—1N)—4N-3,NN+1)+4N-2,N+3)+2(N-3,N—1,N)+2(N—2,N+1),
fi=(N=2,N),
fr=3(N=3,N=1,N)+3(N—2,N+1).
Hence, we have
F(Fooy +2fy = 3fie) =9(N—1)[<(N=5,N-3,N-2,N—1,N)+ (N-4,N-2,N-1,N+1)
+2(N=3,NNN+1)+(N-3,N-1,N+2) - (N-2,N +3)],

(=faody = 3 wpfx = 2 \ft + 3F4f2) = fx(=3fyx — 3y — 6 +3f,) = —36(N/—\2,N)(N/—\3,N -1,N+1),

3fufy =9-(N—3,N—1,N)+ (N=2,N+ 1)+ 2(N-3,N—1,N)?
=9[-(N=3,N—1,N)+ (N=2,N+ 1) +36(N—3,N—1,N)(N—2,N +1).
Using Lemma 3, we obtain
(DﬁDy +2D,D, — 3DXDZ)f~f =9(N-1)[-(N-=5,N-3,N-2,N—1,N)+ (N—4,N-2.N-1,N+1)
+2(N=3,NNN+1)+(N-3,N-1,N+2)— (N—2,N+3)]
—36(N—2,N)(N=3,N-1,N+1)+9[-(N-3,N—1,N)
+(N=2,N+1)P?+36(N-3,N—1,NY(N-=2,N+1)=36(N-3,N,N+ 1)(N—1)
—36(N—2,N)(N—=3,N—1,N+1)+36(N—-3,N—1,N)(N-2,N+1)=0.
This shows that f = (N/—\l) solve the bilinear Eq. (1.2). The corresponding solution of Eq. (1.1) is
N Z(N/—\Z,N)

u=

—

fmwN=y

Observation 1. From the compatibility conditions ¢;xx = ¢imx (i=1,...,N) of the conditions (2.3)-(2.6), we have
N
D i)y =0, (i=1,...,N)
=1

and thus it is easy to see that the Wronskian determinant W(¢+ , ¢2,. .., ¢n) becomes zero if there is at least one entry /; sat-
isfying 2, (£) # 0.

Observation 2. If the c~oefﬁcient matrix A = (4;) is similar to another matrix M under an invertible constant matrix P, i.e., we
have A=P~'MP, then @ = P& solves

a)xx:Még E)y:3§x, @2:45xxx+2$m a)t: 5x
and the resulting Wronskian solutions to the Eq. (1.1) are the same:
u(A) =20, In |0, @M . oV =29,1n [P, PeV) . POND| = uy(M).

Based on Observation I, we only need to consider the reduced case of (2.3)-(2.6) under dA/dt=0, i.e., the following
conditions:

N
(/)i,xx = Z ;“ij(/)jv (z’i.y = 3¢j.x7 ¢i,z = 4¢i.xxx + 2¢i,x7 ¢i.t = d)i,x: (210)

=
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where A = (4;) is an arbitrary real constant matrix. Moreover, Observation II tells us that an invertible constant linear trans-
formation on @ in the Wronskian determinant does not change the corresponding Wronskian solution, and thus, we only
have to solve (2.10) under the Jordan form of A.

3. Wronskian solutions

In principle, we can construct general solutions of the Eq. (1.2) by solving the linear conditions (2.10). But it is not easy. In
this section we will present a few special Wronskian solutions to the Eq. (1.2).
It is well known that the corresponding Jordan form of a real matrix

J(4) 0
L (C5Y
A=
0 Y JCm) J n

have the following two types of blocks:

I
M2 0
1 4
](;”i): k]
-0 1 )“i kixk;
I
[A; 0
Lo A o —Ppi 10
A) = A=|" N =
T C {ﬂi o } ’ {0 1}
-O 12 Ai Iixl;

where /; o; and g; > 0 are all real constants. The first type of blocks have the real eigenvalue /; with algebraic multiplicity
ki(>"1" ki = N), and the second type of blocks have the complex eigenvalue /" = o; + ;v/—1 with algebraic multiplicity I;.

3.1. Rational solutions

Suppose A have the first type of Jordan blocks. Without loss of generality, let

A 0
1 X4
J(a) =
0 1 A Ky xkq
In this case, if the eigenvalue 4, =0, J(1;) becomes to the following form:

0 0

10

0 1 0 ky xky

from the condition (2.10), we get
d’l,xx = Oa d)i+1.xx = ‘»bia (/)i‘y = 3¢i.x7 d)i,z = 4¢i.xxx + 2¢i.xa ¢i.t = d’i.x‘i =1 (3])

Such functions ¢;(i > 1) are all polynomials in x, y, z and t, and a general Wronskian solution to the (3 + 1)-dimensional Jim-
bo-Miwa Eq. (1.1)

u:Zaxan(qSl,qu,“.,d)h)

is rational and is called a rational Wronskian solution of order k;.
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From (31 )v we solve (pl,xx 0 ¢1 Y 3¢l X (Pl A 4¢l xoxx T 2¢1 X ¢1 t= (pl,x' and have
¢ =c1(x+t+3y+22)+ .
Similarly, by solving ¢is1 xx = @i, Pis1y = 3Pis1, 0 Pis12 = 4Pir1xxx + 2Pis10 Pis1r = Pir10 1 = 2, then two special rational solutions
of lower-order are obtained after setting some integral constants to be zero.

1) Zero-order: whenc;=1,c=0, ¢p1=x+3y+2z+t, f=W(p)=x+3y+2z+t,

2
u=20InW(¢) = XT3yt (3.2)
2) First-order: ¢;=x+3y+2z+t,
1, ¢ t 5, 1 3 47 ) )
by =gl +5 X+3Y) +5(X+3Y) +a(X+3y)" + -+ 227X+ 3y +1) +2(x + 3y +1)° + 4z,
f=W(¢1,¢2)=p
2(x+3y+2z+t)
u=20,InW(py,¢;) 2L (33)
where
15 5 2 1 ; , 82 2 2
ngt +t*(x 4+ 3y) + t(x + 3y) +§(x+3y) +T+4Z (x+3y+1t)+2z(x+3y+1t)” —4z
2) Second-order: ¢;=x+3y+2z+t,
1, t? t 2, 1 3 42 2 2
qsz:ét +§(x+3y)+§(x+3y) +é(x+3y) +T+22 (x+3y+1t)+z(x+ 3y +1t)" + 4z,
t° 5t4 r3 t? 5t 1
475 274 2
+%+7(x+t+3y)+§(x+r+3y>2+‘%(x+r+3y)3+%(x+r+3y)“+8z3
+ 822 (x+ t+3y) +2z(x + £+ 3y)°
2
[ = Wbr, 9262 =1, u =200 W (o, 61,92) = 51 (34)
where
6426 642° 16z 2 32, 3278
P1="35 745 (x +3y+t)+T(x+3y+ t) —?z +T(x+3y+t)
~1623(x +3y +1t) + %(x+3y+t) —82%(x + 3y +1t)* — 162 +;l—5(x+3y+t)5
4 2t° t £ t?
-3 z(x+3y+ 1) —5(x+3y) 3(x+3y)2+?(X+3y)3+§(x+3y)4
2t 5 1 X8 81y
642> 327% 327
ql—1—;+?(X+3y+t)+%(x+3y+t)2—1623—16z2(x+3y+t)+?z(x+3y+t)4
20 2t 4¢3 , 4t 3, 2t 2 2x°
—4z(x + 3y +t)° +ﬁ+?(x+3y)+?(x+3y) +?(x+3y) 3(x+3y) 5(x+3y) 15

3.2. Solitons, negatons and positons
If the eigenvalue 4; # 0, J(4;) becomes to the following form

A 0

0 1 )'1 ky xky
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We start from the eigenfuction ¢1(4;), which is determined by

(1(11) = b1 (A1), (91(A1))y = 3(d1(4))y,

(P1(41)); = 4(D1(A1)) o +2(d1(41))s (¢1(A1))e = (¢1(41)),- (35)
General solutions to this system in two cases of /; >0 and 4, <0 are
$101) = Cysinh(v/71(x + 3y + 2(2/1 + 1)z + 1)) + Ca cosh(v/ 21 (X + 3y + 2241 + 1)z +t)), 41 >0, (3.6)
$1(A1) = C3c08(v/ =4 (By +x+ 222 + 1)z+1t)) — Casin(/ =41 By +x+ 224 + 1)z +t)), for — % <M1 <0,
(3.7)
$1(21) = —C5c08(v/ =By +x+ 224 + 1)z +1t)) + Cysin(v/ -2 By +x+ 224 + 1)z +1t)), for 4 < —%, (3.8)

respectively, where Cy, C5, C3 and C4 are arbitrary real constants. But obviously the solutions (3.7) and (3.8) have the opposite
sign, so we will only consider the solution (3.7) later. By an inspection, we find that

$1(21) M 0 $1(21)
505, ¢1(21) 1 A $01,01(%1)
18 (A1) 0 ‘ 1. J 8’“ $1(%)
(ki —1)1 %% LANAS P 1 kyxky | k= 1

dan

(J' ,1¢1 A ) (J' ,1¢1 A ) )
(72 0100) =4(30,00) +2(50,010)
<j' /1¢] /q > (J' /1¢1 j.] ) s 0<] k] —1.

Therefore, through this set of eigenfunctions, we obtain a Wronskian solution to the Eq. (1.1):

1 o
m&l (),
which corresponds to the first type of Jordan blocks with a nonzero real eigenvalue.

When 2; >0, we get negaton solutions, and when/; <0, we get positon solutions.

If we suppose A have m different nonzero real eigenvalues, in which there are I positive real eigenvalues and m — [ neg-
ative real eigenvalues, then more general negaton can be obtained by combining [ sets of eigenfunctions associated with dif-
ferent 4; > 0:

U= 20,0 W(gy (). 1,0, b1().....

1 1 o1 1
= 20,0 W (1) 051 G gy G b 00 e O ) )
Similarly, more general positon can be obtained by combining m — I sets of eigenfunctions associated with different /; < 0:
1 1
= 20,0 W (1) ;051 () gy 10O ),

1 1 ki1 —1
ﬁa/'.m,,d)m—l(lmfl)v m p— ¢m l( ))

This solution is called an n-negaton of order (k; — 1,ko —1,...,k; — 1) or n-positon of order (k; — 1,k —1,...,kpn_— 1). If
I=norl=0, we simply say that it is an n-negaton of order n or an n-positon of order n.
An n-soliton solution is a special n-negaton:

u=20InW(dy,¢,...,¢,)

with ¢; given by
¢; = cosh <\/Z(x+ 3y4+2Q24+ 1z +10) + yi), i odd,
¢i:sinh( xi(x+3y+2(21i+1)z+t)+yi>, i even,

where 0< 4y </, <---< 4, and y; (1 <i < n) are arbitrary real constants.
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Two kinds of special negatons of order k are
U=20,InW($,8,0,...,0"¢), ¢=cosh(vVi(x+3y+22i+1)z+1)+7),
u=20,InW($,,0,...,0"¢), ¢ =sinh(vVi(x+3y+22i+1)z+1)+7),

where 4 >0 and y is an arbitrary constant.
Two kinds of special positons of order k are

u=20,InW(¢$,0,0,...,0¢),
d(A) =cos(V=iBy +x+2(22+1Dz+t)+7y), i<0,
u=20InW(,0,0,...,0¢),
d() =sin(V=2(3y +x+22i+ 1)z+ 1) +7y), 2<O.

To understand the above results better, we shall give several exact solitons, positons and negatons of lower-order as follows:

(1) Two solitons of zero-order:
u=20,InW(¢;) =20, In(cosh(v/2; (x + 3y + 2241 + 1)z +t) + ;) = 21/ tanh(0),

u =28, InW(¢,) =20, In(sinh (/71 (X + 3y + 2(2/1 + 1)z +t) +7,)) = 21/ coth(6;),
where 0; = V21 (X + 3y + 2221 + D)z +t) + 9,41 > 0.

One soliton of first-order:

u = 29, In W(cosh(6,), sinh(6,)) = 2041 = J2)(sinh(6 + 6) — sinh(6 — 02))

where 0; = /7 (X +3y + 224 + 1)z +t) +v;, 4> 0,i=1,2.
(2) One negaton of first-order:

4v/71(1 + cosh(20))

— 20, InW/(cosh(0 h(o
4 = 20In Wcosh(0), 9, cosh(0)) = 5 3 1oz 1 22+ ) 7 5inh(20)°

where 6 = (VZ1 (X + 3y + 2(271 + 1)z + t) + ;).

(3) Two positon of zero-order:

u=20InW(¢;) =20In(cos(v/ =21 (X + 3y + 2211 + 1)z+1t) +y;)) = =2/ —1; tan(s).

u=20InW(¢;) =20,In(—sin(v/ =41 (x + 3y + 2(24 + 1)z + t) + ,)) = 21/ —4;1 cot(03)).

where 05 = V=4 (x +3y + 224 + D)z +1t) +7;.
One positon of first-order:

4v/=21(1 + cos(20))

— 20,InW(cos(0), 9, cos(0)) —
U = 20:In W(cos(0),9,, cos(0) = 5 5 T 0717+ 22 4 0) + sin(20)’

where 0 = /=24 (x +3y + 224 + )z +1t) + ;.
3.3. Interaction solutions

Let us assume that there are two sets of eigenfunctions

(¢1(4); 2(4); - Gr(A); Y (W), - (W)

associated with two different eigenvalues 4 andy, respectively. A Wronskian solution u = 20,InW(¢1 (1), p2(2),.

(V21 = V7z) cosh(0: + 02) — (V21 + V/Z2) cosh(01 — 02)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

A

(@), ..., (w)) is said to be a Wronskian interaction solution between two solutions determined by the two sets of elgenfunc-
tions in (3.16). Of course, we can have more general Wronskian interaction solutions among three kinds of solutions such as

rational solutions, negatons, positons.
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In what follows, we shall show a few special Wronskian interaction solutions. Let us first choose different sets of special
eigenfunctions:
¢rational =X+ 3y +2z+t,
Osoliton = COSh(v/ A1 (X + 3y + 2(221 + 1)z + 1)),
Dpositon = COS(v/ —Aa(X + 3y +2(2/2 + 1)z + 1)),

where /; >0, /, <0 are constants.
Three Wronskian interaction determinants between any two of a rational solution, a single soliton and a single positon
are

W (rationats Bsoliton) = /41 (X + 3y + 2z + t) sinh(0;) — cosh(0;), (3.17)
W(d’mtionalv (/)positon) ="V ) (X + 3y +2z+ t) sin((?z) - COS(HZ)v (318)
W (dsoiitons Dpositon) = —V/ 42 Cosh(01) sin(6) — /21 cos(02) sinh(6y), (3.19)

where 01 = V21 (X + 3y + 224 + 1)z +t),0; = V=72(X + 3y +2(2/2 + 1)z + ¢).
Further, the corresponding Wronskian interaction solutions are

221(x + 3y + 2z + t) cosh(6,)

Urs = 20, IN W (g iton) = 3.20
IS X (¢rat10nala d)sollton) m(x + 3y + ZZJr l’) Sil’lh(@]) — COSh(O]) ’ ( )
—272(Xx+ 3y + 2z + t) cos(6s)
ur :Zaxan rational » i = = N 3 321
P (ratonal: Pposicon) V=2 (X + 3y + 2z + t) sin(0) + cos(0;) (3.21)
2(A1 — ) cosh(0y) cos(6,)
Usp = 205 In W () iton) = 3.22
sp X (¢sollton7¢ posnon) mCOSh(91)SiH(92)+\/Zsinh(9])COS(92)7 ( )
where 61 = VA1 (X + 3y + 224 + 1)z +t),0; = V=72 + 3y +2(242 + 1)z + ¢).
The following is one Wronskian interaction determinant and solution involving the three eigenfunctions.
W(d)rationalv ¢solitom d’positon) = (X + 3y + 2z + t) </12 \/ZSiHh(O]) COS(OZ) + ;hl V —7»2 COSh(Ol) Sin(02)>

+ (41 — A2) cosh(0;) cos(6,) = p,, (3.23)

— 20, InW _ 24 3.24
ufSP - 8X n (¢rationalv¢solitom d’positon) - P, ) ( . )

where
qy = (X+ 3y + 22+ t)\/=21/2(J1 — %) sinh(6;) sin(6;) + (},1 /71 sinh(0;) cos(0,) + 4/ cosh(6;) sin(f)z))7

0 =vVAi(x+3y+2QM +1Dz+1), and 0y =/—ip(X+ 3y + 224 + 1)z +1).

When the corresponding Jordan form of a real matrix is the second type of block, the solutions of the Eq. (2.10) will become
very complicated, so we omit that here.

4. Conclusion

In sum, we gave the Wronskian determinant solutions of the (3 + 1)-dimensional Jimbo-Miwa equation through the
Wronskian technique. Moreover, we obtained some rational solutions, soliton solutions, positons and negatons of this equa-
tion by solving the resultant systems of linear partial differential equations which guarantee that the Wronskian determi-
nant solves the equation in the bilinear form. All these show the richness of the solution space of the (3 + 1)-dimensional
Jimbo-Miwa equation and the resulting solutions are expected to help understand wave dynamics in weakly nonlinear
and dispersive media.
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