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Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a

(341)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian extension is

made for the equation by means of the Pfaffianization procedure, the Wronski-type and Gramm-type Pfaffian solutions

of the resulting coupled system are presented.
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1. Introduction

The investigation of the exact traveling wave so-
lutions to nonlinear partial differential equations plays
an important role in the study of nonlinear physical
phenomena. During the past several decades, many
powerful and efficient methods have been proposed to
obtain the exact traveling wave and solitary wave so-
lutions of nonlinear evolution equations.!—4l

It is known that nonlinear equations such as
the Korteweg—de Vries (KdV) equation, the Boussi-
nesq equation, and the Kadomtsev—Petviashvili (KP)
equation possess multi-soliton solutions generated
Soli-

tons and positons can be expressed in terms of
5—15

from a combination of exponential waves.
Wronskian determinants.| For higher-dimensional
soliton equations, there exist Grammian solutions
[16-18] The
lutions to the KP equation were constructed by
Nakamural' and the Pfaffian solutions to the B-type

Kadomtsev-Petviashvili (BKP) equation were pre-

and Pfaffian solutions. Grammian so-

sented by Hirota.l??! The Hirota bilinear form plays a
crucial role in the construction of these solutions.16:21]
(341)-dimensional

The following generalized
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shallow water equation:
uzxmy - 3umxuy - 3uzuzy + uyt —Ugz = 0 (1)

was investigated in different ways.[?>23 In Ref. [22],
the soliton-type solutions for Eq. (1) were constructed
by using a generalized tanh algorithm with symbolic
computation. In Ref. [23], the traveling wave solu-
tions of Eq. (1) expressed by hyperbolic, trigonomet-
ric, and rational functions were established with the
G’ /G-expansion method, where G = G(§) satisfies a
second-order linear ordinary differential equation.
Equation (1) can be written as
Uy + SUagzlly + SUplpy — Uyt — Uz =0,  (2)

under a scale transformation x — —z, and thus we
can discuss the solutions of Eq. (2) equivalently.
Utilizing the Cole-Hopf transformation

u=2(In f),, (3)
we obtain the Hirota bilinear form of Eq. (2)
(D3Dy — DyDy — D, D.)f - f

= (fzrxy - fyt - fmz)f - fmrxfy
_3fac:ryfac + fyft + f:rfz + 3fa::1:fa:y
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=0, (4)

where D,, D,, D.,
operators.1

and D; are the Hirota

In this paper, we will show that Eq. (2) has a
class of Grammian solutions and a class of Pfaffian so-
lutions. In addition, we will carry out the Pfaffianiza-
tion procedure?¥ to extend Eq. (2) to a new coupled
system, whose Wronski-type and Gramm-type Pfaf-
fian solutions exist.

2. Grammian solutions

Let us now introduce the following Grammian de-
terminant:

f=det(ai;)i<ij<n,
aij = Cij +/ ¢ipjdx, (5)

where ¢;; is constant, and functions ¢; = ¢;(x,y, z,t)
and ; = ¥;(x,y, z,t) satisfy

¢i,y = kd)i,mm; d)i,t = _2¢i,zzma
¢i,z = Bk(bi,za::rm "/}j,y = _kwj,mca
wj,t = —2%‘,1”, wj,z = _3kwj,zza::r7 (6)

where 7 > 1, j < N, and k is an arbitrary nonzero
number. In the above definition of a;j;, the lower limit
of integration is chosen to make sure that the func-
tions ¢; and 1; as well as their derivatives are zero in
the lower limit.

Theorem 1 If ¢; and 1; satisfy Eq. (6), then
the Grammian determinant f defined by Eq. (5) is
the solution of Eq. (4).

Proof Let us express the determinant f by
means of an N-th order Pfaffian as

f:(1a27'")NaN*7"~,2*71*)3 (7)

where (¢,7*) = a;5, and (4, ) = (4*,j*) = 0.

To compute the derivatives of the entries a;; and
the Grammian determinant f, we introduce new Pfaf-
fian entries as usual

a" a”
(dy.1) = W@" (dn,j*) = Jan
(dm, dy,) = (dn,i) = (dy,,57) =0,

flpjv
m,n > 0.(8)

In terms of these new entries and Eq. (6), the deriva-
tives of the entries a;; = (i, j*) are given by

0 o x
%ai,]‘ = ¢Z¢] = (d07d0727] )7

a xr
a—yam‘ = / (d%‘,yd’j +¢i¢j7y)dx
= k/ ((bi,mij - ¢zwj7ww)dx

= k(ff%,z% - ¢iwj,:c)
= k[_(dlvdgai’j*) + (dOadT7iv.j*)]v
0

=0 = / (@i,t05 + dirpj ) da

= _2(¢i,xmwj - ¢i7w¢j,x + ¢iwj7mv)
= _2[(d27 dzh Z7]*) - (dla dia Zvj*)
=+ (d07d;7iaj*)]a

b T
:/ (¢z,z¢]+¢z¢j,z)dx

2 0ij

0z
= Sk/ (d)i,mxa:ij - d)zd}j,xmxz)dx
= 3k(¢z,z1¢¢] - ¢i,$1‘¢j,w
- (bzwj,a:wz + d)i,zwj,a:w)
= Sk[_(d37 dzk)a 'Lv]*) + (dOa d;, i? ]*)
+ (d27d>1k7i7j*) - (dlv d;%]*)]
Then we can develop differential rules for Pfaffians as
in Ref. [16], and compute various derivatives of the

Grammian determinant f with respect to variables
x, y, z, and t as follows:

fe = (do,dg, ),
foz = (d1,dg, @) + (do, d7, ),
frze = (d2,dg, @) +2(d1,d7, @) + (do, d3, @),
fy = k[=(d1,d;, ®) + (do, d}, )],
foy = k[(do,d5, @) — (da, dg, @)],
fazy = k[—(d3,dg, ®) + (do, d3, ®)
= (d2,d7, @) + (d1,d3, )],
foway = k[(do, d}, @) — (da, dj, )
—2(ds3,dy, ®) +2(dy,d5, e)
— (do, d3, d1, dg, ®) + (da, dgy, do, d7, @)],
[ = 3k[-(ds, dj, ®) + (do, d3, )
+ (d2,d}, @) — (d1,d3, )],
foz = 3k[(do, d}, ®) — (da, dj, ®)
+ (d2, d}, do, dgy, ®) — (d1,d3, do, dy, )],
fr = —2[(da, dg, ®) — (d1,d], ®) + (do, d3, )],
fyt = —2k[(do,d},®) — (da, dj, ®)
+(d3, di, 8) — (di1,d3, @)
— (do, d3, d1, dg, ®) + (da, dgy, do, d7, @)],

where the abbreviated notation e denotes the list of in-
dices 1,2,..., N, N*,(N—1)*,...,1* that are common
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to each Pfaffian. Substituting the above derivatives of
f into Eq. (3), we obtain

(foxay = fyt — fuz)f

= 6k[—(do, d3,d1,dp, ®) + (d2, dgy, do, d7, ®)](e),
= 3foayfo + fufs = 6k[(d2, d}, ®)(do, dj, )
= (d1,d3, ®)(do, dg, ®)],
= fowafy + fylt + 3fox oy

= 6k[—(d2, dy, )(do, d7, ®)
+ (do, d3, ®)(d1, dp, o)),

and further obtain that
(D3Dy — DyDy — Do D) f - f = 6k(A1 + As), (9)
where

A1 = —(do,d3,d1,dg, ®)(e) — (di,d3, 8)(do, dg, ®)
+ (do, d3, ®)(d1, dg, @)
= —(do, d3,dy, dg, ®)(e) + (do, d3, ®)(d1, dj, )
+ (do, dj, ®)(d3, d1, )
-0,
and
As = (da,df, do,d7, e)(e) + (d2,d], ®)(do, dj, )
— (da, dj, ®)(do, d}, )
= (d2,dg, do, d7, ®)(e) — (d2,dg, ®)(do, di, )
— (d2,d7, ®)(dg, do, )
= 0.

It is easy to see that Eq. (9) is nothing but the Jacobi
identity for determinants. Therefore, we show that f
defined by Eq. (5) is the solution of Eq. (4) under the
linear differential conditions (6).

The corresponding solution of Eq. (2) is

u=2(nf),,
f=det <Cij + /z D dm) , (10)
1<i,j<N

where Cij is a constant.

3. Pfaffian solutions

Let us now introduce the following Pfaffian:

Iy =Pf.(aij)i<ij<an,

aij = Cij +/ D¢ - ¢jdu, (11)

where ¢;; is constant, and function ¢; = ¢;(x,y, z,t)
satisfies

Giy = l/ ¢idz, @i = 3P,
(bi,t = ¢i,zzz»

where 1 <4 < 2N and [ is an arbitrary nonzero num-
ber.

Theorem 2 If ¢; (1 < i < 2N) satisfies Eq. (12),
then the Pfaffian fx defined by Eq. (11) is the solution
of Eq. (4).

Proof Let us express the determinant fy by
means of an N-th order Pfaffian as

(12)

v =(1,2,...,2N), (13)

where the Pfaffian entries (4, j) = a4 .
Based on Eq. (12), the derivatives of the entries
a;j = (1,7) are given by

1o} 0 z
%aij 9z (/ Dyoi - ¢; dx)

= ¢ixPj — GiPjx = (do,d1,1,7),
@aij = l/ <¢l,a:'u¢j + ¢i,a:¢j,y

- ¢i,y¢j,m - ¢z¢a,ry)dx
= 1(¢i0j,y — Giypj) = l(d_1,do,1,]),

0 0 *
Lo =312 D..o: - bs
8za” 3l8x (/ 2 Di - O dx)
3l (¢Z,I¢J - ¢’L¢j,x) = 31(d07 d17 ivj)v
5705 = [ G110+ 61000 — Gu10s0 — 630) do
= ¢z,zazx¢j - ¢i¢j7wwz -2 (¢i,mw¢j,:€ - ¢i,x¢j,xw)
= (d07 d37 Zaj) - 2(d17 d27 i7j)7
with the definition that
(dflai) :/ ¢2dx7 (dnaz)
(dm7 d’rL) = 07

J— 8”
- Oan
m,n=20,1,2,3.

bi,

(14)
Then we can develop differential rules for Pfaffians as
in Ref. [16], and compute various derivatives of the
Pfaffian fy = (1,2,...,2N) = () with respect to the
variables z, y, z, and t as follows:

fnz = (do,d1,®), [fNzz = (do,d2,9),
INzze = (d1,dz, ) + (do,d3, e),

[Ny = Ud-1,do,®), [Nys=1(d-1,d1,9),
INyaa = U[(d-1,d2,®) 4 (do, dy, ®)],
I yzer = U[(d=1,ds, ®) +2(do, d2, ®)

+(d_1,do,d1,dz, )],
Ine = (do,ds, @) —2(dy,ds, @),
Iy = U(d-1,ds,®) — (do, d2, ®)
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_Q(d—lad07d17d2a.)]7
N = 3l(do,di,e®), [na.=3l(do,d2,e).

Substituting the above derivatives of fy into Eq. (3),
we can now solve the following equations:

(fNzwey — [Nyt — [N22)IN
3l(d_1,dp,d1,dz2,e)(e),

— fNzaefNy = 3N zayfNe + [NyfNe + [N2IN,2
—3l(d_1,do,®)(d1,d2, ) — 3l(d_1,d2, ®)(dy,dy,e),
3fN e SNy = 3l(d_1,d1,e)(do, d2,e),

and further obtain
(DD, — DyD; — D,D.)fn - fn
Sl[(dflv dOa d17 d27 .)(.) - (dfla d07 .)(dlv d2a .)
(d—17 dla .)(d07 d27 .) - (d—17 d27 .)(dOa d17 .)]
0

This last equality is nothing but the Pfaffian identity.
Therefore, we show that fy defined by Eq.(11) is the
solution of the bilinear equation (4).

The corresponding solution of Eq. (2) is

u = 2(111 fN)x,

1<i,j<2N

where ¢;; is a constant.

4. Pfaffianization

Recently, a procedure called Pfaffianization was
developed by Hirota and Ohta to produce new cou-
pled systems of soliton equations from known soliton
equations.[?¥ These Pfaffianized equations appear as
generalized systems of original equations and have so-
lutions expressed in terms of Pfaffians.

4.1. Wronski-type Pfaffian solutions

In what follows, we shall apply the Pfaffianiza-
tion procedure to the bilinear equation (3) to gener-
ate a new coupled system. Let us now consider the
Wronski-type Pfaffian fy = (1,2,...,2N) with its el-
ements satisfying

o,
%(27])_(24_17])—’_(27]—’_1)7

a%(i,j) = k[(i +2,)) + (3,5 +2)],
%(m’) = —2[(i +3,5) + (5,5 + 3)],

2 6,9) =3k +4,9) + (15 + 4], (16)

where k is an arbitrary nonzero number. Tak-

ing the above assumption into account, we can

compute various derivﬂives of the Pfaffian fy =
(1,2,...,2N) (fny = (2N) for short) with respect to
the variables z,y, z, and ¢, i.e.,
fvae = (2N —1,2N +1),
Fyae = (2N —2,2N,2N + 1) + (2N — 1,2N +2),
= (2N —3,2N —1,2N,2N +1)
+2(2N —2,2N,2N +2)
+ (2N —1,2N +3),
FNwase = (2N —4,2N —2,2N — 1,2N,2N + 1)
+3(2N —3,2N — 1,2N,2N +2)
+2(2N —2,2N +1,2N +2)
+3(2N —2,2N,2N + 3)
+ (2N —1,2N +4),
fny = k[—(2N —2,2N,2N +1)
+ (2N = 1,2N +2)],
FNay = k[—(2N =3,2N —1,2N,2N + 1)
+(2N —1,2N + 3)),
FNaey = k[—(2N —4,2N — 22N — 1,2N, 2N + 1)
— (2N —3,2N — 1,2N, 2N +2)
+(2N —2,2N,2N +3) + (2N — 1,2N + 4)],
FNany = K[-(2N —5,2N —3,... 2N +1)
+ (2N —1,2N +5)
— (2N —3,2N —1,2N +1,2N +2)
+(2N —2,2N +1,2N +3)
—2(2N —4,2N — 2,2N —1,2N, 2N + 2)],
Fygy = K2[(2N —4,2N —2,2N —1,2N,2N + 1)
— (2N —3,2N — 1,2N,2N +2)
— (2N —2,2N,2N +3)
+2(2N —2,2N +1,2N +2)
+ (2N —1,2N +4)),
fne = —2[(2N —3,2N —1,2N,2N + 1)
— (2N —2,2N,2N +2) + (2N — 1,2N +3)],
Fyat = —2[(2N —4,2N —2,2N — 1,2N, 2N + 1)
— (2N —2,2N +1,2N +2)
+ (2N = 1,2N +4)],
Fyye = —2k[—(2N —5,2N —3,... 2N + 1)
— (2N —3,2N —1,2N +1,2N +2)
+ (2N —4,2N —2,2N — 1,2N, 2N + 2)
— (2N —2,2N,2N +4)

fN,xa:m
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N — 22N+12N+3)
2N —1,2N +5)],
(2N 4,2N —2,2N —1,2N,2N + 1)
2N —3,2N — 1,2N,2N +2)
N — 22N2N+3)

+(
+(
3k[—
(2
- (2
(2N N —1 2N +4)],
-
(2
- (2
(2N

k
+

fN,z =

+
3k
+

(2N —=5,2N —3,... 2N + 1)
N — 32N—12N+12N—|—2)
N — 22N+12N+3)

N —1,2N +5)).

fN,a:z =

+

Therefore, we can now solve the following equations:

(fN,xmg__\fN,yt — fNzz)IN
= 6k[—(2ZN —3,2N — 1,2N + 1,2N +2)
+ (2N —2,2N +1,2N + 3)](2N),
—3fNzayfNz + IN2IN,-
= 6k[(2N — 3,2N — 1,2N, 2N + 2)
— (2N —2,2N,2N + 3)](2N — 1,2N + 1),
— fNazefNy T 3N zafNay + [Ny N
= 6k[—(2N — 3,2N — 1,2N,2N + 1)
x (2N —1,2N +2)
+ (2N —1,2N +3)(2N —2,2N,2N + 1)],
and further obtain
(DD, — DyDy — D.D.)fx - fx = 6k(By + B), (17)

where

By = (2N —3,2N —1,2N — 2,2N)

x (2N —3,2N — 1,2N + 1,2N +2)
— (2N —3,2N —1,2N —2,2N + 1)
x (2N —3,2N — 1,2N, 2N +2)
+ (2N —3,2N —1,2N — 2,2N +2)
x (2N —3,2N — 1,2N,2N +1),  (18)

and

By = (2N —2,2N — 1,2N)
x (2N —2,2N +1,2N + 3)

Uggpzy — SUgply — SUgUgy + Uyt

B2 Wapes + 652 Wopty + K2 Wlygy + 3]6211)u3c + 2k2way + 2k wuy,
k2 0ppne + 6k20pzty + K2 0Usee + 3k20u2 + 2k%0, — 2k%0uy — 30y,

N —2,2N —1,2N +1)
N —2,2N,2N +3)
N —2,2N —1,2N +3)

- (2N
(2N
2N
(2N —2,2N,2N +1).

X
Jr
X (19)
In view of Egs. (18) and (19),
Eq. (17) is not equal to zero. Following the Hirota—

it is obvious that
Ohta Pfaffianization procedure,¥ introducing

1,2,...,2N —2) = (2N — 2),
,2,...,2N +1,2N +3)
2N+12N+3)
N

(
(1
(
(1
(2
(1,

gy = (1,2,...,2N —3,2N — 1)
= 3,2N — 1),
hy = (1,2,...,2N +2) = (2N +2),  (20)

then employing the Pfaffian identities, we obtain three
bilinear equations from Egs. (17) and (20) as

(DgDy - DyDt -D Dz)fN : fN

+6k(gNﬁN — gNhN) =0,

(k*Dj + 2k*D, Dy — 3D, — 2kD.)gn - fn =0,
(kD2 + 2k*D, Dy — 3D2 + 2kD.)hy - fx = 0.(21)

The procedures for deducing the last two expressions
of Eq. (21), which are similar to that for the first one
of Eq. (21 1) the
coupled (3+1)-dimensional generalized shallow water

), are neglected here. We call Eq. (2

Hirota bilinear equation.

Let us now summarize the above result.
Assume that the Pfaffian en-
tries (¢,7) satisfy the linear differential equations in
Eq. (16). Then fxy = (1,2,...,2N) as well as
gn, hn, Gn, and hy defined by Eq. (20) solve the
Pfaffianized coupled Hirota bilinear equation (21).

Theorem 3

By further introducing the dependent variable

transformation
=2(Infn)zy, v=39gn/fn,
o =hn/fn, w=gn/fn, ©=hn/fn, (22)

then the coupled (341)-dimensional generalized bilin-
ear equation (21) is mapped into

— Ugy + 6k(vD — w), =0,

— Bwyy — 38;1uyyw —2kw, =0, (23)

— 30 Yuyyd + 2kd, = 0.

It is easy to see that the coupled system (23) can be reduced to Eq. (2) when v = 0 = w = = 0.
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4.2. Gramm-type Pfaffian solutions

In this subsection, we would like to present a class
of Gramm-type Pfaffian solutions to the Pfaffianized
coupled system (23). Consider the following Gramm-
type pfaffians

fN - (]— 27 N)a
gn = (c1,¢0,1 ...,2N),
hy = (do, dg, ., 2N), (24)

gN - (02300a172 2N)7
hy = (d07d1,1,27...,2N),

where different types of Pfaffian entries (i,5) are de-
fined as

(1,7) = ¢ij +/ (Pithj — pjbs)dx,  cij = —cys,

(i) = 2ty (e ) = ot 9
(d d ) (Cm; Cn) (Cmadn) = 0;
where ¢;; is constant, ¢; = ¢i(z,y,2,t), and ¢; =

Vi(z,y,2,t) (4,5 =1,2,...,2N). In the above defini-
tion of (i,7), the lower limit of integration is chosen
to make sure that the functions ¢; and v; as well as
their derivatives are zero in the lower limit.

Theorem 4 Assume ¢; and ; satisfy the fol-
lowing linear differential equations:

¢i,y = k¢i,xm d)i,t = 72¢i,.’rfﬂ$’

% %, (26)
/l/)j7y = —k%‘,m, %‘,t = _zwj,w;w:a

wj,z = 73kwj,:cmmca 1 S] S 2N.

Then fn, gn, hn, gn, and hy defined by Eq. (24)
are the solutions of the Pfaffianized coupled Hirota
bilinear equation (21).

Proof Based on the conditions (26), the deriva-

tives of the Pfaffian entries (i, j) are given by
0, .
%(17]) -
8 o xr
a*y(%]) = [ (diy¥j + ¢ithjy)da

¢ih; — v = (co,do,1,7),

= k(i otj — dithjz)
= k[(COa dlaivj) - (Cl’ do’i7j)]’

B T
- 3k/ ((bi,zmrzwj - (ble,rxzz)dx
3k(¢z,wzwd)] - Qbi,mw’(/)j,z

_Qsiwj,www + ¢l7‘LwJ,.L.L)
= 3k[(007d33i7j) - (63,d03i7j)
+(627d17i7j) - (Clvd27iaj)]7

6 x
E(Z}j) = / (i 05 + ditpje)de

= _2/ (¢i,mww'¢j +¢1w],zww)dx

= 72(¢i,$1¢j - ¢i,m¢j,z + (biwj,mm)
= _2[(00’d27i5j)_(Cl7d17i;j)
+(627d0ai7j)}'

Then we can develop differential rules for Pfaffi-
ans, and compute various derivatives of the Gramm-
type Pfaffians fy = (1,2,...,2N) = (o), gy =
gclvc()a.)a hy = (d07d27.)7 gN = (027007.)7 and
hn = (do,d1,e) with respect to the variables z, y, z,
and t. Here we only list various derivatives of fy as
follows:
fN,.’E = 7d07 ®),
(Co7d17 )7

+
+2(c1,dy, @) + (co,da, @),
+
°)

Q
v
IS8
=)
[ ]

(c
fNze = (c1,do,®
fNsz = (

(

)
)
)
)+ 3(ca,dy,®) + 3(cy,do, )

fN,xacx:c = (c3,do, ®

+ (co,ds, ®) + 2(c1,d1, co,dp, ®),
fny = k[=(c1,do,®) + (co,di, )],
[Ny = K[(co,d2, ) = (c2,do, )],
INzzy = k[—(c3,do, ) + (co,d3, @)

—(c2,dy1, @) + (c1,d2, ®)],
IN zzzy = k[(co,ds, ®) — (ca,dp, )
—2(c3,dy,®) +2(c1,ds, @)
—(co, da, c1,dp, ®) + (c2,do, co, d1, )],

(
Ingy = K[(c3,do, @) = (c2,d1, ) = (c1,d2, )
+ (co,ds, ®) + 2(c1,d1, co,do, ®)],
fn,. = 3k[—(c3,do,®) + (co,d3,®)
+ (c2,d1, @) — (c1,d2, 9)],
INz2 = 3k[(co,ds,®) — (ca,do, ®)
+(c2,d1,co,do, ®) — (c1,d2, o, do, )],
fne = —2[(ca, do, ®) — (c1,d1,0) + (co, da, 0],
Nzt = —2[(c3,do, ®) + (co,ds, )

—(c1,d1,co,do, )],

fnye = —2k[(co,da, ®) — (ca,do,®)
+(c3,d1, ) — (c1,d3, )
— (co, da, c1,do, ®) + (c2, do, co, d1,9)].

The other derivatives were neglected since their calcu-
lation procedures are similar. Substituting the above
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derivatives into the first equation of Eq. (21) by em-
ploying Eq. (24), we obtain

(D3D, — D,D; — D, D,)fn
fn + 6k(gnhy — gnh)
= —6k[(co,do, c2,d1,®)(e) — (co,do, ®)(c2,d1,®)
+ (co,c2,0)(dg,dy, ®
— (co, dy,®)(dg, ca,®)] + 6k[(co, do, c1,d2, ®)(e)
— (co, do, ®)(c1,dz2,
+ (co, c1,0)(do, d2, ®
= 0.

—_— — ~— —

— (co,da,®)(dg, c1, )]

This last equality is equal to zero since it is nothing
but the Pfaffian identity. Similarly, the last two equa-
tions in Eq. (21) can also be reduced to Pfaffian iden-
tities. Hence, we have shown that fx, gn, An, G,
and hy defined by Eq. (24) is the solution of the Pfaf-
fianized coupled Hirota bilinear system (21).

5. Conclusion and remark

In summary, we have established Grammian and
Pfaffian solutions for the (3+1)-dimensional gener-
alized shallow water equation (2). In addition, we
have applied the Pfaffianization procedure to derive a
new coupled system for Eq. (2), and have constructed
a Wronski-type and a Gramm-type Pfaffian solution
for this new coupled system. Our results show that
Eq. (2) not only has Grammian determinant solutions,
This
property is completely different from that of the KP

but also has Pfaffian determinant solutions.

equation, which only has Grammian solutions, and
from that of the BKP equation, which only has Pfaf-
fian solutions. Resonant soliton solutions??! will also

be an interesting topic of our future investigation and
research.
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