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Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a

(3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian extension is

made for the equation by means of the Pfaffianization procedure, the Wronski-type and Gramm-type Pfaffian solutions

of the resulting coupled system are presented.
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1. Introduction

The investigation of the exact traveling wave so-

lutions to nonlinear partial differential equations plays

an important role in the study of nonlinear physical

phenomena. During the past several decades, many

powerful and efficient methods have been proposed to

obtain the exact traveling wave and solitary wave so-

lutions of nonlinear evolution equations.[1−4]

It is known that nonlinear equations such as

the Korteweg–de Vries (KdV) equation, the Boussi-

nesq equation, and the Kadomtsev–Petviashvili (KP)

equation possess multi-soliton solutions generated

from a combination of exponential waves. Soli-

tons and positons can be expressed in terms of

Wronskian determinants.[5−15] For higher-dimensional

soliton equations, there exist Grammian solutions

and Pfaffian solutions.[16−18] The Grammian so-

lutions to the KP equation were constructed by

Nakamura[19] and the Pfaffian solutions to the B-type

Kadomtsev-Petviashvili (BKP) equation were pre-

sented by Hirota.[20] The Hirota bilinear form plays a

crucial role in the construction of these solutions.[16,21]

The following (3+1)-dimensional generalized

shallow water equation:

uxxxy − 3uxxuy − 3uxuxy + uyt − uxz = 0 (1)

was investigated in different ways.[22,23] In Ref. [22],

the soliton-type solutions for Eq. (1) were constructed

by using a generalized tanh algorithm with symbolic

computation. In Ref. [23], the traveling wave solu-

tions of Eq. (1) expressed by hyperbolic, trigonomet-

ric, and rational functions were established with the

G′/G-expansion method, where G = G(ξ) satisfies a

second-order linear ordinary differential equation.

Equation (1) can be written as

uxxxy + 3uxxuy + 3uxuxy − uyt − uxz = 0, (2)

under a scale transformation x → −x, and thus we

can discuss the solutions of Eq. (2) equivalently.

Utilizing the Cole–Hopf transformation

u = 2(ln f)x, (3)

we obtain the Hirota bilinear form of Eq. (2)

(D3
xDy −DyDt −DxDz)f · f

= (fxxxy − fyt − fxz)f − fxxxfy

− 3fxxyfx + fyft + fxfz + 3fxxfxy
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= 0, (4)

where Dx, Dy, Dz, and Dt are the Hirota

operators.[16]

In this paper, we will show that Eq. (2) has a

class of Grammian solutions and a class of Pfaffian so-

lutions. In addition, we will carry out the Pfaffianiza-

tion procedure[24] to extend Eq. (2) to a new coupled

system, whose Wronski-type and Gramm-type Pfaf-

fian solutions exist.

2. Grammian solutions

Let us now introduce the following Grammian de-

terminant:

f = det(aij)1≤i,j≤N ,

aij = cij +

∫ x

ϕiψj dx, (5)

where cij is constant, and functions ϕi = ϕi(x, y, z, t)

and ψj = ψj(x, y, z, t) satisfy

ϕi,y = kϕi,xx, ϕi,t = −2ϕi,xxx,

ϕi,z = 3kϕi,xxxx, ψj,y = −kψj,xx,

ψj,t = −2ψj,xxx, ψj,z = −3kψj,xxxx, (6)

where i ≥ 1, j ≤ N , and k is an arbitrary nonzero

number. In the above definition of aij , the lower limit

of integration is chosen to make sure that the func-

tions ϕi and ψj as well as their derivatives are zero in

the lower limit.

Theorem 1 If ϕi and ψj satisfy Eq. (6), then

the Grammian determinant f defined by Eq. (5) is

the solution of Eq. (4).

Proof Let us express the determinant f by

means of an N -th order Pfaffian as

f = (1, 2, . . . , N,N∗, . . . , 2∗, 1∗), (7)

where (i, j∗) = aij , and (i, j) = (i∗, j∗) = 0.

To compute the derivatives of the entries aij and

the Grammian determinant f , we introduce new Pfaf-

fian entries as usual

(d∗n, i) =
∂n

∂xn
ϕi, (dn, j

∗) =
∂n

∂xn
ψj ,

(dm, d
∗
n) = (dn, i) = (d∗m, j

∗) = 0, m, n ≥ 0. (8)

In terms of these new entries and Eq. (6), the deriva-

tives of the entries aij = (i, j∗) are given by

∂

∂x
ai,j = ϕiψj = (d0, d

∗
0, i, j

∗),

∂

∂y
ai,j =

∫ x

(ϕi,yψj + ϕiψj,y)dx

= k

∫ x

(ϕi,xxψj − ϕiψj,xx)dx

= k(ϕi,xψj − ϕiψj,x)

= k[−(d1, d
∗
0, i, j

∗) + (d0, d
∗
1, i, j

∗)],

∂

∂t
ai,j =

∫ x

(ϕi,tψj + ϕiψj,t)dx

= −2

∫ x

(ϕi,xxxψj + ϕiψj,xxx)dx

= −2(ϕi,xxψj − ϕi,xψj,x + ϕiψj,xx)

= −2[(d2, d
∗
0, i, j

∗)− (d1, d
∗
1, i, j

∗)

+ (d0, d
∗
2, i, j

∗)],

∂

∂z
ai,j =

∫ x

(ϕi,zψj + ϕiψj,z)dx

= 3k

∫ x

(ϕi,xxxxψj − ϕiψj,xxxx)dx

= 3k(ϕi,xxxψj − ϕi,xxψj,x

−ϕiψj,xxx + ϕi,xψj,xx)

= 3k[−(d3, d
∗
0, i, j

∗) + (d0, d
∗
3, i, j

∗)

+ (d2, d
∗
1, i, j

∗)− (d1, d
∗
2, i, j

∗)].

Then we can develop differential rules for Pfaffians as

in Ref. [16], and compute various derivatives of the

Grammian determinant f with respect to variables

x, y, z, and t as follows:

fx = (d0, d
∗
0, •),

fxx = (d1, d
∗
0, •) + (d0, d

∗
1, •),

fxxx = (d2, d
∗
0, •) + 2(d1, d

∗
1, •) + (d0, d

∗
2, •),

fy = k[−(d1, d
∗
0, •) + (d0, d

∗
1, •)],

fxy = k[(d0, d
∗
2, •)− (d2, d

∗
0, •)],

fxxy = k[−(d3, d
∗
0, •) + (d0, d

∗
3, •)

− (d2, d
∗
1, •) + (d1, d

∗
2, •)],

fxxxy = k[(d0, d
∗
4, •)− (d4, d

∗
0, •)

− 2(d3, d
∗
1, •) + 2(d1, d

∗
3, •)

− (d0, d
∗
2, d1, d

∗
0, •) + (d2, d

∗
0, d0, d

∗
1, •)],

fz = 3k[−(d3, d
∗
0, •) + (d0, d

∗
3, •)

+ (d2, d
∗
1, •)− (d1, d

∗
2, •)],

fxz = 3k[(d0, d
∗
4, •)− (d4, d

∗
0, •)

+ (d2, d
∗
1, d0, d

∗
0, •)− (d1, d

∗
2, d0, d

∗
0, •)],

ft = −2[(d2, d
∗
0, •)− (d1, d

∗
1, •) + (d0, d

∗
2, •)],

fyt = −2k[(d0, d
∗
4, •)− (d4, d

∗
0, •)

+(d3, d
∗
1, •)− (d1, d

∗
3, •)

− (d0, d
∗
2, d1, d

∗
0, •) + (d2, d

∗
0, d0, d

∗
1, •)],

where the abbreviated notation • denotes the list of in-
dices 1, 2, . . . , N,N∗, (N−1)∗, . . . , 1∗ that are common
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to each Pfaffian. Substituting the above derivatives of

f into Eq. (3), we obtain

(fxxxy − fyt − fxz)f

= 6k[−(d0, d
∗
2, d1, d

∗
0, •) + (d2, d

∗
0, d0, d

∗
1, •)](•),

− 3fxxyfx + fxfz = 6k[(d2, d
∗
1, •)(d0, d∗0, •)

− (d1, d
∗
2, •)(d0, d∗0, •)],

− fxxxfy + fyft + 3fxxfxy

= 6k[−(d2, d
∗
0, •)(d0, d∗1, •)

+ (d0, d
∗
2, •)(d1, d∗0, •)],

and further obtain that

(D3
xDy −DyDt −DxDz)f · f = 6k(A1 +A2), (9)

where

A1 = −(d0, d
∗
2, d1, d

∗
0, •)(•)− (d1, d

∗
2, •)(d0, d∗0, •)

+ (d0, d
∗
2, •)(d1, d∗0, •)

= −(d0, d
∗
2, d1, d

∗
0, •)(•) + (d0, d

∗
2, •)(d1, d∗0, •)

+ (d0, d
∗
0, •)(d∗2, d1, •)

= 0,

and

A2 = (d2, d
∗
0, d0, d

∗
1, •)(•) + (d2, d

∗
1, •)(d0, d∗0, •)

− (d2, d
∗
0, •)(d0, d∗1, •)

= (d2, d
∗
0, d0, d

∗
1, •)(•)− (d2, d

∗
0, •)(d0, d∗1, •)

− (d2, d
∗
1, •)(d∗0, d0, •)

= 0.

It is easy to see that Eq. (9) is nothing but the Jacobi

identity for determinants. Therefore, we show that f

defined by Eq. (5) is the solution of Eq. (4) under the

linear differential conditions (6).

The corresponding solution of Eq. (2) is

u = 2(ln f)x,

f = det

(
cij +

∫ x

ϕiψj dx

)
1≤i,j≤N

, (10)

where cij is a constant.

3. Pfaffian solutions

Let us now introduce the following Pfaffian:

fN = Pf.(aij)1≤i,j≤2N ,

aij = cij +

∫ x

Dxϕi · ϕj dx, (11)

where cij is constant, and function ϕi = ϕi(x, y, z, t)

satisfies

ϕi,y = l

∫ x

ϕidx, ϕi,z = 3lϕi,x,

ϕi,t = ϕi,xxx, (12)

where 1 ≤ i ≤ 2N and l is an arbitrary nonzero num-

ber.

Theorem 2 If ϕi (1 ≤ i ≤ 2N) satisfies Eq. (12),

then the Pfaffian fN defined by Eq. (11) is the solution

of Eq. (4).

Proof Let us express the determinant fN by

means of an N -th order Pfaffian as

fN = (1, 2, . . . , 2N), (13)

where the Pfaffian entries (i, j) = aij .

Based on Eq. (12), the derivatives of the entries

aij = (i, j) are given by

∂

∂x
aij =

∂

∂x

(∫ x

Dxϕi · ϕj dx
)

= ϕi,xϕj − ϕiϕj,x = (d0, d1, i, j),

∂

∂y
aij = l

∫ x

(ϕi,xyϕj + ϕi,xϕj,y

−ϕi,yϕj,x − ϕiϕj,xy)dx

= l (ϕiϕj,y − ϕi,yϕj) = l(d−1, d0, i, j),

∂

∂z
aij = 3l

∂

∂x

(∫ x

Dxϕi · ϕj dx
)

= 3l (ϕi,xϕj − ϕiϕj,x) = 3l(d0, d1, i, j),

∂

∂t
aij =

∫ x

(ϕi,xtϕj + ϕi,xϕj,t − ϕi,tϕj,x − ϕiϕj,xt) dx

= ϕi,xxxϕj − ϕiϕj,xxx − 2 (ϕi,xxϕj,x − ϕi,xϕj,xx)

= (d0, d3, i, j)− 2(d1, d2, i, j),

with the definition that

(d−1, i) =

∫ x

ϕidx, (dn, i) =
∂n

∂xn
ϕi,

(dm, dn) = 0, m, n = 0, 1, 2, 3. (14)

Then we can develop differential rules for Pfaffians as

in Ref. [16], and compute various derivatives of the

Pfaffian fN = (1, 2, . . . , 2N) = (•) with respect to the

variables x, y, z, and t as follows:

fN,x = (d0, d1, •), fN,xx = (d0, d2, •),
fN,xxx = (d1, d2, •) + (d0, d3, •),
fN,y = l(d−1, d0, •), fN,yx = l(d−1, d1, •),

fN,yxx = l[(d−1, d2, •) + (d0, d1, •)],
fN,yxxx = l[(d−1, d3, •) + 2(d0, d2, •)

+ (d−1, d0, d1, d2, •)],
fN,t = (d0, d3, •)− 2(d1, d2, •),
fN,yt = l[(d−1, d3, •)− (d0, d2, •)
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− 2(d−1, d0, d1, d2, •)],
fN,z = 3l(d0, d1, •), fN,xz = 3l(d0, d2, •).

Substituting the above derivatives of fN into Eq. (3),

we can now solve the following equations:

(fN,xxxy − fN,yt − fN,xz)fN

= 3l(d−1, d0, d1, d2, •)(•),
− fN,xxxfN,y − 3fN,xxyfN,x + fN,yfN,t + fN,xfN,z

= −3l(d−1, d0, •)(d1, d2, •)− 3l(d−1, d2, •)(d0, d1, •),
3fN,xxfN,xy = 3l(d−1, d1, •)(d0, d2, •),

and further obtain

(D3
xDy −DyDt −DxDz)fN · fN

= 3l[(d−1, d0, d1, d2, •)(•)− (d−1, d0, •)(d1, d2, •)
+ (d−1, d1, •)(d0, d2, •)− (d−1, d2, •)(d0, d1, •)]

= 0.

This last equality is nothing but the Pfaffian identity.

Therefore, we show that fN defined by Eq.(11) is the

solution of the bilinear equation (4).

The corresponding solution of Eq. (2) is

u = 2(ln fN )x,

fN = Pf.

(
cij +

∫ x

Dxϕi · ϕj dx
)

1≤i,j≤2N

, (15)

where cij is a constant.

4. Pfaffianization

Recently, a procedure called Pfaffianization was

developed by Hirota and Ohta to produce new cou-

pled systems of soliton equations from known soliton

equations.[24] These Pfaffianized equations appear as

generalized systems of original equations and have so-

lutions expressed in terms of Pfaffians.

4.1.Wronski-type Pfaffian solutions

In what follows, we shall apply the Pfaffianiza-

tion procedure to the bilinear equation (3) to gener-

ate a new coupled system. Let us now consider the

Wronski-type Pfaffian fN = (1, 2, . . . , 2N) with its el-

ements satisfying

∂

∂x
(i, j) = (i+ 1, j) + (i, j + 1),

∂

∂y
(i, j) = k[(i+ 2, j) + (i, j + 2)],

∂

∂t
(i, j) = −2[(i+ 3, j) + (i, j + 3)],

∂

∂z
(i, j) = 3k[(i+ 4, j) + (i, j + 4)], (16)

where k is an arbitrary nonzero number. Tak-

ing the above assumption into account, we can

compute various derivatives of the Pfaffian fN =

(1, 2, . . . , 2N) (fN = (2̂N) for short) with respect to

the variables x, y, z, and t, i.e.,

fN,x = (2̂N − 1, 2N + 1),

fN,xx = (2̂N − 2, 2N, 2N + 1) + (2̂N − 1, 2N + 2),

fN,xxx = (2̂N − 3, 2N − 1, 2N, 2N + 1)

+2(2̂N − 2, 2N, 2N + 2)

+ (2̂N − 1, 2N + 3),

fN,xxxx = (2̂N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)

+3(2̂N − 3, 2N − 1, 2N, 2N + 2)

+2(2̂N − 2, 2N + 1, 2N + 2)

+3(2̂N − 2, 2N, 2N + 3)

+ (2̂N − 1, 2N + 4),

fN,y = k[−(2̂N − 2, 2N, 2N + 1)

+ (2̂N − 1, 2N + 2)],

fN,xy = k[−(2̂N − 3, 2N − 1, 2N, 2N + 1)

+ (2̂N − 1, 2N + 3)],

fN,xxy = k[−(2̂N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)

− (2̂N − 3, 2N − 1, 2N, 2N + 2)

+ (2̂N − 2, 2N, 2N + 3) + (2̂N − 1, 2N + 4)],

fN,xxxy = k[−(2̂N − 5, 2N − 3, . . . , 2N + 1)

+ (2̂N − 1, 2N + 5)

− (2̂N − 3, 2N − 1, 2N + 1, 2N + 2)

+ (2̂N − 2, 2N + 1, 2N + 3)

− 2(2̂N − 4, 2N − 2, 2N − 1, 2N, 2N + 2)],

fN,yy = k2[(2̂N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)

− (2̂N − 3, 2N − 1, 2N, 2N + 2)

− (2̂N − 2, 2N, 2N + 3)

+2(2̂N − 2, 2N + 1, 2N + 2)

+ (2̂N − 1, 2N + 4)],

fN,t = −2[(2̂N − 3, 2N − 1, 2N, 2N + 1)

− (2̂N − 2, 2N, 2N + 2) + (2̂N − 1, 2N + 3)],

fN,xt = −2[(2̂N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)

− (2̂N − 2, 2N + 1, 2N + 2)

+ (2̂N − 1, 2N + 4)],

fN,yt = −2k[−(2̂N − 5, 2N − 3, . . . , 2N + 1)

− (2̂N − 3, 2N − 1, 2N + 1, 2N + 2)

+ (2̂N − 4, 2N − 2, 2N − 1, 2N, 2N + 2)

− (2̂N − 2, 2N, 2N + 4)
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+(2̂N − 2, 2N + 1, 2N + 3)

+ (2̂N − 1, 2N + 5)],

fN,z = 3k[−(2̂N − 4, 2N − 2, 2N − 1, 2N, 2N + 1)

+ (2̂N − 3, 2N − 1, 2N, 2N + 2)

− (2̂N − 2, 2N, 2N + 3)

+ (2̂N − 1, 2N + 4)],

fN,xz = 3k[−(2̂N − 5, 2N − 3, . . . , 2N + 1)

+ (2̂N − 3, 2N − 1, 2N + 1, 2N + 2)

− (2̂N − 2, 2N + 1, 2N + 3)

+ (2̂N − 1, 2N + 5)].

Therefore, we can now solve the following equations:

(fN,xxxy − fN,yt − fN,xz)fN

= 6k[−(2̂N − 3, 2N − 1, 2N + 1, 2N + 2)

+ (2̂N − 2, 2N + 1, 2N + 3)](2̂N),

− 3fN,xxyfN,x + fN,xfN,z

= 6k[(2̂N − 3, 2N − 1, 2N, 2N + 2)

− (2̂N − 2, 2N, 2N + 3)](2̂N − 1, 2N + 1),

− fN,xxxfN,y + 3fN,xxfN,xy + fN,yfN,t

= 6k[−(2̂N − 3, 2N − 1, 2N, 2N + 1)

× (2̂N − 1, 2N + 2)

+ (2̂N − 1, 2N + 3)(2̂N − 2, 2N, 2N + 1)],

and further obtain

(D3
xDy −DyDt −DxDz)fN · fN = 6k(B1 +B2), (17)

where

B1 = (2̂N − 3, 2N − 1, 2N − 2, 2N)

× (2̂N − 3, 2N − 1, 2N + 1, 2N + 2)

− (2̂N − 3, 2N − 1, 2N − 2, 2N + 1)

× (2̂N − 3, 2N − 1, 2N, 2N + 2)

+ (2̂N − 3, 2N − 1, 2N − 2, 2N + 2)

× (2̂N − 3, 2N − 1, 2N, 2N + 1), (18)

and

B2 = (2̂N − 2, 2N − 1, 2N)

× (2̂N − 2, 2N + 1, 2N + 3)

− (2̂N − 2, 2N − 1, 2N + 1)

× (2̂N − 2, 2N, 2N + 3)

+ (2̂N − 2, 2N − 1, 2N + 3)

× (2̂N − 2, 2N, 2N + 1). (19)

In view of Eqs. (18) and (19), it is obvious that

Eq. (17) is not equal to zero. Following the Hirota–

Ohta Pfaffianization procedure,[24] introducing

gN = (1, 2, . . . , 2N − 2) = (2̂N − 2),

hN = (1, 2, . . . , 2N + 1, 2N + 3)

= (2̂N + 1, 2N + 3),

ĝN = (1, 2, . . . , 2N − 3, 2N − 1)

= (2̂N − 3, 2N − 1),

ĥN = (1, 2, . . . , 2N + 2) = (2̂N + 2), (20)

then employing the Pfaffian identities, we obtain three

bilinear equations from Eqs. (17) and (20) as

(D3
xDy −DyDt −DxDz)fN · fN

+6k(ĝN ĥN − gNhN ) = 0,

(k2D4
x + 2k2DxDt − 3D2

y − 2kDz)gN · fN = 0,

(k2D4
x + 2k2DxDt − 3D2

y + 2kDz)ĥN · fN = 0. (21)

The procedures for deducing the last two expressions

of Eq. (21), which are similar to that for the first one

of Eq. (21), are neglected here. We call Eq. (21) the

coupled (3+1)-dimensional generalized shallow water

Hirota bilinear equation.

Let us now summarize the above result.

Theorem 3 Assume that the Pfaffian en-

tries (i, j) satisfy the linear differential equations in

Eq. (16). Then fN = (1, 2, . . . , 2N) as well as

gN , hN , ĝN , and ĥN defined by Eq. (20) solve the

Pfaffianized coupled Hirota bilinear equation (21).

By further introducing the dependent variable

transformation

u = 2(ln fN )x, v = ĝN/fN ,

v̂ = ĥN/fN , w = gN/fN , ŵ = hN/fN , (22)

then the coupled (3+1)-dimensional generalized bilin-

ear equation (21) is mapped into


uxxxy − 3uxxuy − 3uxuxy + uyt − uxz + 6k(vv̂ − wŵ)x = 0,

k2wxxxx + 6k2wxxux + k2wuxxx + 3k2wu2x + 2k2wxt + 2k2wut − 3wyy − 3∂−1
x uyyw − 2kwz = 0,

k2v̂xxxx + 6k2v̂xxux + k2v̂uxxx + 3k2v̂u2x + 2k2v̂xt − 2k2v̂ut − 3v̂yy − 3∂−1
x uyy v̂ + 2kv̂z = 0.

(23)

It is easy to see that the coupled system (23) can be reduced to Eq. (2) when v = v̂ = w = ŵ = 0.
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4.2.Gramm-type Pfaffian solutions

In this subsection, we would like to present a class

of Gramm-type Pfaffian solutions to the Pfaffianized

coupled system (23). Consider the following Gramm-

type pfaffians

fN = (1, 2, . . . , 2N),

gN = (c1, c0, 1, 2, . . . , 2N),

hN = (d0, d2, 1, 2, . . . , 2N),

ĝN = (c2, c0, 1, 2, . . . , 2N),

ĥN = (d0, d1, 1, 2, . . . , 2N),

(24)

where different types of Pfaffian entries (i, j) are de-

fined as
(i, j) = cij +

∫ x

(ϕiψj − ϕjψi)dx, cij = −cji,

(dn, i) =
∂n

∂xn
ϕi, (cn, i) =

∂n

∂xn
ψi,

(dm, dn) = (cm, cn) = (cm, dn) = 0,

(25)

where cij is constant, ϕi = ϕi(x, y, z, t), and ψj =

ψj(x, y, z, t) (i, j = 1, 2, . . . , 2N). In the above defini-

tion of (i, j), the lower limit of integration is chosen

to make sure that the functions ϕi and ψj as well as

their derivatives are zero in the lower limit.

Theorem 4 Assume ϕi and ψj satisfy the fol-

lowing linear differential equations:
ϕi,y = kϕi,xx, ϕi,t = −2ϕi,xxx,

ϕi,z = 3kϕi,xxxx 1 ≤ i ≤ 2N,

ψj,y = −kψj,xx, ψj,t = −2ψj,xxx,

ψj,z = −3kψj,xxxx, 1 ≤ j ≤ 2N.

(26)

Then fN , gN , hN , ĝN , and ĥN defined by Eq. (24)

are the solutions of the Pfaffianized coupled Hirota

bilinear equation (21).

Proof Based on the conditions (26), the deriva-

tives of the Pfaffian entries (i, j) are given by

∂

∂x
(i, j) = ϕiψj − ϕjψi = (c0, d0, i, j),

∂

∂y
(i, j) =

∫ x

(ϕi,yψj + ϕiψj,y)dx

= k

∫ x

(ϕi,xxψj − ϕiψj,xx)dx

= k(ϕi,xψj − ϕiψj,x)

= k[(c0, d1, i, j)− (c1, d0, i, j)],

∂

∂z
(i, j) =

∫ x

(ϕi,zψj + ϕiψj,z)dx

= 3k

∫ x

(ϕi,xxxxψj − ϕiψj,xxxx)dx

= 3k(ϕi,xxxψj − ϕi,xxψj,x

−ϕiψj,xxx + ϕi,xψj,xx)

= 3k[(c0, d3, i, j)− (c3, d0, i, j)

+ (c2, d1, i, j)− (c1, d2, i, j)],

∂

∂t
(i, j) =

∫ x

(ϕi,tψj + ϕiψj,t)dx

= −2

∫ x

(ϕi,xxxψj + ϕiψj,xxx)dx

= −2(ϕi,xxψj − ϕi,xψj,x + ϕiψj,xx)

= −2[(c0, d2, i, j)− (c1, d1, i, j)

+ (c2, d0, i, j)].

Then we can develop differential rules for Pfaffi-

ans, and compute various derivatives of the Gramm-

type Pfaffians fN = (1, 2, . . . , 2N) = (•), gN =

(c1, c0, •), hN = (d0, d2, •), ĝN = (c2, c0, •), and

ĥN = (d0, d1, •) with respect to the variables x, y, z,

and t. Here we only list various derivatives of fN as

follows:

fN,x = (c0, d0, •),
fN,xx = (c1, d0, •) + (c0, d1, •),
fN,xxx = (c2, d0, •) + 2(c1, d1, •) + (c0, d2, •),
fN,xxxx = (c3, d0, •) + 3(c2, d1, •) + 3(c1, d2, •)

+ (c0, d3, •) + 2(c1, d1, c0, d0, •),
fN,y = k[−(c1, d0, •) + (c0, d1, •)],
fN,xy = k[(c0, d2, •)− (c2, d0, •)],
fN,xxy = k[−(c3, d0, •) + (c0, d3, •)

− (c2, d1, •) + (c1, d2, •)],
fN,xxxy = k[(c0, d4, •)− (c4, d0, •)

− 2(c3, d1, •) + 2(c1, d3, •)
− (c0, d2, c1, d0, •) + (c2, d0, c0, d1, •)],

fN,yy = k2[(c3, d0, •)− (c2, d1, •)− (c1, d2, •)
+ (c0, d3, •) + 2(c1, d1, c0, d0, •)],

fN,z = 3k[−(c3, d0, •) + (c0, d3, •)
+ (c2, d1, •)− (c1, d2, •)],

fN,xz = 3k[(c0, d4, •)− (c4, d0, •)
+ (c2, d1, c0, d0, •)− (c1, d2, c0, d0, •)],

fN,t = −2[(c2, d0, •)− (c1, d1, •) + (c0, d2, •)],
fN,xt = −2[(c3, d0, •) + (c0, d3, •)

− (c1, d1, c0, d0, •)],
fN,yt = −2k[(c0, d4, •)− (c4, d0, •)

+ (c3, d1, •)− (c1, d3, •)
− (c0, d2, c1, d0, •) + (c2, d0, c0, d1, •)].

The other derivatives were neglected since their calcu-

lation procedures are similar. Substituting the above
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derivatives into the first equation of Eq. (21) by em-

ploying Eq. (24), we obtain

(D3
xDy −DyDt −DxDz)fN

·fN + 6k(ĝN ĥN − gNhN )

= −6k[(c0, d0, c2, d1, •)(•)− (c0, d0, •)(c2, d1, •)
+ (c0, c2, •)(d0, d1, •)
− (c0, d1, •)(d0, c2, •)] + 6k[(c0, d0, c1, d2, •)(•)
− (c0, d0, •)(c1, d2, •)
+ (c0, c1, •)(d0, d2, •)− (c0, d2, •)(d0, c1, •)]

= 0.

This last equality is equal to zero since it is nothing

but the Pfaffian identity. Similarly, the last two equa-

tions in Eq. (21) can also be reduced to Pfaffian iden-

tities. Hence, we have shown that fN , gN , hN , ĝN ,

and ĥN defined by Eq. (24) is the solution of the Pfaf-

fianized coupled Hirota bilinear system (21).

5. Conclusion and remark

In summary, we have established Grammian and

Pfaffian solutions for the (3+1)-dimensional gener-

alized shallow water equation (2). In addition, we

have applied the Pfaffianization procedure to derive a

new coupled system for Eq. (2), and have constructed

a Wronski-type and a Gramm-type Pfaffian solution

for this new coupled system. Our results show that

Eq. (2) not only has Grammian determinant solutions,

but also has Pfaffian determinant solutions. This

property is completely different from that of the KP

equation, which only has Grammian solutions, and

from that of the BKP equation, which only has Pfaf-

fian solutions. Resonant soliton solutions[25] will also

be an interesting topic of our future investigation and

research.
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