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In this paper, lump solutions of nonlinear partial differential equations, the generalized

(2 + 1)-dimensional KP equation and the Jimbo–Miwa equation, are studied by using the
Hirota bilinear method and carrying out symbolic computations in Maple. Moreover, the

interaction solutions, i.e. collisions between lump waves and kink waves, are investigated.
A group of graphs are plotted to illustrate the dynamics of the obtained results.
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1. Introduction

It is well known that exact solutions of nonlinear partial differential equations and

their generalized forms have been playing an essential role in the study of many

complex physical phenomena and other nonlinear engineering problems1; for exam-

ple, lump solutions, kink solutions and so on. As some sort of rational solutions,

lump solutions are localized in every direction of the space. Lump solutions to a few

nonlinear partial differential equations have been found and their dynamics have

also been analyzed, for example, the KP and BKP equations,2–15 the p-gKP and

‖Corresponding author.
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p-gBKP equations16 and so on. Recently, a lot of concerns have been paid to the

study of lump–kink solutions, which means the interactions of lump solutions and

kink solutions. Tang et al. studied the interaction of a lump with a stripe of (2+1)-

dimensional Ito equation and showed that the lump is drowned or swallowed by a

stripe soliton.17–23 This study will aim at the lump and interaction solutions of the

following two nonlinear differential equations: the generalized (2 + 1)-dimensional

KP equation is (
ut − uux −

1

3
uxxx + ux

)
x

+
1

3
uyy = 0 (1)

and the Jimbo–Miwa equation is

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3uxy = 0 , (2)

where u = u(x, y, t) is a function of spatial variables x, y and time variable t. It is

noted that Eqs. (1) and (2) come from the second member of a KP hierarchy and

describe some interesting (2 + 1)-dimensional waves.24

Actually, the KP equations and Jimbo–Miwa equations and their generalized

forms have already been studied by using many effective methods, such as the Hirota

bilinear method, the generalized bilinear method, the Exp-function method and so

on.25–32 The KP and the Jimbo–Miwa equations have been applied to modeling

water waves of long wavelength with weakly nonlinear restoring forces and frequency

dispersion, and they can be employed to modeling waves in ferromagnetic media

and two-dimensional matter-wave pulses in Bose–Einstein condensates as well.

In this paper, we apply the Hirota bilinear operators to study the lump solutions

and interaction solutions of Eqs. (1) and (2). We construct not only the lump solu-

tions of Eqs. (1) and (2) but also the interaction solutions between lump solutions

and stripe soliton solutions. Moreover, we illustrate the dynamical properties of

these obtained solutions with the corresponding graphs. There are some differences

between our method and the unified method and its generalized form,33–42 since

we make use of the quadratic functions.

This paper is arranged as follows. In Sec. 2, we study the lumps and the in-

teraction solutions of Eq. (1), moreover we analyze their dynamics. The lump so-

lutions and the interaction solutions and the dynamics of solutions of Eq. (2) are

investigated in Sec. 3. Some discussions of the applications of lump solutions and

interaction solutions to physics are presented in Sec. 4, and some conclusions are

given in Sec. 5.

2. Lump and Interaction Solutions of Eq. (1)

In this section, we will construct lump solutions and mixed solutions of Eq. (1).

Moreover, their dynamics will also be studied.
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2.1. Lump solutions of Eq. (1)

Applying the transformation u = 4(ln f)xx, we obtain the corresponding bilinear

form to Eq. (1) as follows:(
DxDt −

1

3
D4

x +D2
x +

1

3
D2

y

)
f · f = 0 , (3)

where f(x, y, t) is an unknown real function and Dx, Dy, Dt are the Hirota deriva-

tives defined by

Dm
x D

n
y a(x, y) · b(x, y) =

(
∂m

∂sm
∂n

∂tn

)
a(x+ s, y + t) · b(x− s, y − t)

∣∣
s=0,t=0

,

m, n = 0, 1, . . . .

All the details about the Hirota direct method can be found in Ref. 25 and references

therein.

To find the lump solutions of Eq. (1), we express f in the following form

f = g2 + h2 + a9, g = a1x+ a2y + a3t+ a4, h = a5x+ a6y + a7t+ a8 , (4)

where ai’s are all real parameters to be determined. Plugging f into Eq. (3) and

equating all the coefficients of all the polynomials of x, y, t to zero leads to a system

of algebraic equations in ai’s. Solving this system, we obtain all the values of ai’s:

a3 = −3a31 + a1a
2
2 + 3a1a

2
5 − a1a26 + 2a2a5a6

3(a21 + a25)
,

a7 = −3a21a5 + 2a1a2a6 − a22a5 + 3a35 + a5a
2
6

3(a21 + a25)
,

a9 =
3(a61 + 3a41a

2
5 + 3a21a

4
5 + a65)

(a1a6 − a2a5)2
.

(5)

There are six independent parameters, two of which are completely free. Moreover,

the following conditions can guarantee the localized analyticity, positiveness and

rationality in all directions of the function f :

a21 + a25 6= 0, a1a6 − a2a5 6= 0 . (6)

Plugging Eq. (5) into Eq. (4), we obtain a class of quadratic function solution to

the bilinear equation (3), then the solutions of Eq. (1) are also obtained via the

transformation u = 4(ln f)xx:

u = 4
2a21 + a25

f
− 8

(a1g + a5h)2

f2
, (7)

It is observed that these resulting lump solutions contain six independent parame-

ters, two of which are totally free and for different times. The central points can be

obtained via seeking the extremum points, which are of importance to study the

lump solitons about the velocity, the changes of waveform and so forth. The ampli-

tude of u is also attained,
4(2a2

1+a2
5)(a1a6−a2a5)

2

(a2
1+a2

5)
3 , which tell us that the amplitude is
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determined by a1, a2, a5, a6. We also noted that the lump wave (7) is analytic in the

XY -plane if and only if a9 > 0. The analyticity of the solution (7) is guaranteed if

(6) holds. Moreover, it is easy to find that the aforementioned lump solution u→ 0

if and only if the sum of squares g2 +h2 →∞, or, equivalently, x2 +y2 →∞ at any

given time. Hence, the condition (6) can guarantee both analyticity and localiza-

tion of the lump wave (7). Based on the aforementioned discussions, the condition

(a) (b)

(c)

Fig. 1. (Color online) Graphs of lump wave (8) with the specific parameters: t = 1, a1 = 0, a2 =

2, a4 = 0, a5 = 1, a6 = −1 and a8 = 0: (a) 3D plot, (b) density plot and (c) contour plot.
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(6), the analyticity and the localization of the solution (7) are mutually equivalent.

Moreover, (6) is also the necessary condition to get lump solitons. The parame-

ters a1, a2, a5 and a6 determine the expansion and the deflection angles of lump,

the smaller the absolute values of which result in a greater expansion of lump. In

the meantime, the two totally independent parameters are much more important

to the extremum points. Now we choose some specific values of the parameters:

a1 = 1, a2 = 2, a4 = 0, a5 = 1, a6 = −1 and a8 = 0, the graphs of the lump wave

(7) are shown vividly by Fig. 1. If we fix time variable t = 1, the central points can

be obtained via seeking the extremum points as follows:
(
1
6 ,

1
3

)
,
(

1
6 ±

2
√
21
3 , 13

)
, so

that the maximal amplitude of u is attained as 9
2 .

2.2. Interaction solutions of Eq. (1)

In this subsection, we are going to investigate the collisions among the lump solution

and the kink solution. Now we choose

f = g2 + h2 + l + a12 , (8)

where g = a1x + a2y + a3t + a4, h = a5x + a6y + a7t + a8 and l = ea9x+a10y+a11t.

Plugging f into Eq. (3) and using the transformation u = 4(ln f)xx, the lump–kink

solutions of Eq. (1) are obtained as follows:

Case I. We choose the following parameters:

a1 = 0, a2 = ±
√

3a9, a5 = ±
√

3a9 ,

a7 =
3a25a

2
9 − 3a25 − a26

3a5
, a10 =

a6a9
a5

,

a11 =
a9(3a25a

2
9 − 3a25 − a26)

3a25
, a12 =

a25
a29
.

(9)

In order to guarantee the positiveness, analyticity and the localization of u in all

directions in the (x, y)-plane, it is required that a5 6= 0, a9 6= 0. So we have the

following lump–kink wave solution:

u1 =
4(2a25 + a29l)

g2 + h2 + l +
a2
5

a2
9

− 4(2a5h+ a9l)
2(

g2 + h2 + l +
a2
5

a2
9

)2 , (10)

which has six independent parameters, four of which are completely independent.
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Case II. We select the following parameters:

a1 =
α(a5a10 − a6a9)

a29
,

a3 = −3a5a
4
9a10 + 3a6a

5
9 + 3a5a

2
9a10 + a5a

3
10 − 3a6a

3
9 − a6a9a210

a49α
,

a2 =
3a5a

4
9 + a5a

2
10 − a6a9a10

3αa39
,

a7 =
3a5a

4
9 − 3a5a

2
9 + a5a

2
10 − 2a6a9a10

3a29
,

a11 =
a49 − 3a29 − a210

3a9
,

a12 =
3a25a

4
9 + a25a

2
10 − 2a5a6a9a10 + a26a

2
9

3a69
,

(11)

where α = ±
√

1
3 . In order to guarantee the analyticity, positiveness and rationality

of u, the following conditions have to be satisfied:

a9 6= 0, 3a25a
4
9 + a25a

2
10 − 2a5a6a9a10 + a26a

2
9 > 0 .

Via the transformation u = 4(ln f)xx, we get the following solution to Eq. (1):

u2 =
4p1
q1
− 4p22

q21
, (12)

where

p1 =
2α2(a5a10 − a6a9)2

a49
+ 2a25 + a29l ,

p2 =
2α(a5a10 − a6a9)g

a29
+ 2a5h+ a9l ,

q1 = g2 + h2 + l +
3a25a

4
9 + a25a

2
10 − 2a5a6a9a10 + a26a

2
9

3a69
.

It is noted that there are seven independent parameters and three are totally in-

dependent. As seen from the above results, the first part g of u1 in Case I is

irrelevant to time variable x for a1 = 0. In order to gain the collision phenomenon,

a23 +a27 +a211 6= 0 is required. Therefore, the asymptotic behavior of u is obtained as

u→ 0 while t→∞. The asymptotic behavior shows that the lump wave is finally

swallowed up by the kink wave with the change of time, which implies they become

one kink wave after their collisions, since the lump wave moves faster across the

kink wave with higher energy, which is transported by the waves and is directly

proportional to the square of the amplitude of the wave. Moreover, we know that

the lump–kink wave solution algebraically and exponentially decays at last. Hence,
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(a) (b)

(c)

Fig. 2. (Color online) Evolution profiles of lump wave (10) with the specific parameters: t = 2,

a1 = 0, a3 = 1, a4 = 0, a6 = 1, a8 = 0, and a9 = 1. (a) x-curves, (b) y-curves and (c) contour plot.

it is a lump–kink solitary wave solution and describes a completely non-elastic in-

teraction between two different solitons. Figure 2 for the solution (10) illustrates

the typical phenomena in the interaction between a lump and a kink with the spe-

cial parameters. This is a completely non-elastic interaction between two different

solitons and decays both algebraically and exponentially.

3. Lump and Interaction Solutions of Eq. (2)

In this section, we will find the lump solutions and the lump–kink solutions to the

generalized (2 + 1)-dimensional Jimbo–Miwa equation, i.e. Eq. (2), by using the

Hirota bilinear forms.
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3.1. Lump solutions of Eq. (2)

Applying the transformation u = 2(ln f)x, we obtain the Hirota bilinear form

(D3
xDy + 2DyDt − 3DxDy)f · f = 0 . (13)

Employing a similar procedure as in Sec. 2, we obtain ai’s as follows.

a1 = −a5a6
a2

, a3 = −3a5a6
2a2

, a7 =
3a5
2
. (14)

There are six independent parameters, three of which are completely indepen-

dent. Moreover, the following conditions can guarantee the localized analyticity,

positiveness and rationality in all directions of the function f :

a2 6= 0, a9 > 0 . (15)

Plugging Eq. (14) into the corresponding equations just as we did in Sec. 2, we can

get the resulting class of function f , which implies the lump solution of Eq. (2) is

u = 4
−a5a6g + a2a5h

a2f
. (16)

It is observed that these resulting lump solutions contain six independent param-

eters, two of which are totally free and for different times. We observed that the

solution (16) is analytic in the XY -plane if and only if a9 > 0. The analyticity

of the solution (16) is guaranteed if (15) holds, which yields a2 6= 0 and a9 > 0.

Moreover, it is easy to find that the aforementioned lump solution u → 0 if and

only if the sum of squares g2 + h2 → ∞, or, equivalently, x2 + y2 → ∞, at any

given time. Hence, the condition (15) can guarantee both analyticity and localiza-

tion of the solution (16). According to the above discussions, the condition (15),

the analyticity and the localization of the solution (16) are actually equivalent to

each other. The parameters a2, a5 and a6 determine the expansion and the deflec-

tion angles of lump, the smaller the absolute values of which result in a greater

expansion of lump. In the meantime, the two totally independent parameters are

much more important to the extremum points. Now we choose some specific values

of the parameters: a2 = 1, a4 = 0, a5 = 1, a6 = 1, a8 = 0 and a9 = 1, the graphs of

the lump wave (16) are given by Fig. 3. If we fix time variable t = 0, the central

points can be obtained via seeking the extremum points as follows:
(
±
√
6
6 , 0

)
, so

that the maximal amplitude of u is attained as 3
√
6

4 .

3.2. Interaction solutions of Eq. (2)

In this subsection, we investigate the collisions among lump solutions and kink

solutions. Therefore, we assume

f = g2 + h2 + l + a13 , (17)

where g = a1x+a2y+a3t+a4, h = a5x+a6y+a7t+a8 and l = ea9x+a10y+a11t+a12 .
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(a) (b)

(c)

Fig. 3. (Color online) Graphs of lump solution (16) with the specific parameters: t = 0, a1 =
1.5, a2 = 1, a4 = 0, a5 = −1, a6 = 0.4 and a8 = 0. (a) 3D plot, (b) density plot and (c) contour

plot.

Plugging f into Eq. (13), all the aforementioned parameters can be obtained.

Therefore, according to the transformation u = 2(ln f)x, we can obtain five classes

of solutions of Eq. (2) as follows.

Case I. When the parameters are

a2 = a5 = a7 = a10 = 0, a3 =
3a1
2
, a11 = −a

3
9

2
+

3a9
2
, (18)

the lump–kink wave solution is

u1 =
2(2a1g + a9l)(

3a1

2 t+ xa1 + a4
)2

+ (ya6 + a8)2 + et
(
− a3

9
2 +

3a9
2

)
+xa9+a12 + a13

, (19)

with seven independent parameters, five of which are completely independent.
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(a) (b)

(c)

Fig. 4. (Color online) Evolution profiles of lump wave (20) with the specific parameters: t = 1,

a2 = 1, a4 = 0, a6 = 1, a7 = 1, a8 = 0, a9 = 1, a12 = 0 and a13 = 1. (a) x-curves, (b) y-curves and

(c) contour plot.

Case II. If we select the parameters as

a1 = −2a6a7
3a2

, a3 = −a6a7
a2

, a5 =
2a7
3
, a10 = 0, a11 = a39 , (20)

we obtain the following lump–kink wave solution:

u2 =
2(−4a6a7g + 4a2a7h+ 3a2a9l)

3a2((−ta6a7

a2
− x 2a6a7

3a2
+ ya2 + a4)2 +

(
ta7 + x 2a7

3 + ya6 + a8
)2

+ et
(
− a3

9
2 +

3a9
2

)
+xa9+a12 + a13)

, (21)

which has eight independent free parameters, four of which are totally independent.
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Case III. We choose the following parameters:

a1 = a3 = a5 = a7 = 0, a11 = −a
3
9

2
+

3a9
2
, (22)

then the lump–kink wave solution is obtained as

u3 =
2a9l

(ya2 + a4)2 + (ya6 + a8)2 + et
(
− a3

9
2 +

3a9
2

)
+xa9+ya10+a12 + a13

. (23)

There are eight independent parameters, seven of which are completely indepen-

dent.

Case IV. Selecting the parameters as

a1 = a3 = a6 = a9 = a11 = 0, a7 =
3a5
2

(24)

leads to the following solution:

u4 =
4a5h

(y + a4)2 +
(
3a5

2 t+ a5x+ a8
)2

+ ea10y+a12 + a13
. (25)

It is observed that there are seven independent parameters, six of which are totally

independent.

Case V. Choosing the following parameters

a2 = −a5a6
a1

, a3 =
3a1
2
, a7 =

3a5
2
, a9 = a11 = 0 (26)

results in a lump–kink wave solution

u5 =
4(a1g + a5h)

( 3a1

2 t+ a1x− a5a6

a1
y + a4)2 + ( 3a5

2 t+ a5x+ ya6 + a8)2 + eya10+a12 + a13
.

(27)

It is noted that there are eight independent parameters, five of which are totally

independent. As seen from the above results, the exponential functions of u1 and u2
in Case I and Case II are irrelevant to time variable y for a10 = 0, respectively. In

Case III, the first two parts g and h of the lump–kink solution in u3 are irrelevant to

space variable x and time variable t. The first part g of u4 in Case IV is irrelevant

to space variable x and time variable t as well, and the second part h of u4 is

irrelevant to the space variable y, the third part namely the exponential function

is irrelevant to space variable x and time variable t. For Case V, the third part

namely the exponential function is irrelevant to x and t. Therefore, in order to gain

the collision phenomenon, a23 + a27 + a211 6= 0 is required. Therefore, the asymptotic

behavior of u is obtained as u → 0 while t → ∞. The asymptotic behavior proves

that the lump wave is finally swallowed up by the kink wave, then they become one

kink wave after the collisions, since the lump wave moves faster across the kink wave

with higher energy, which is transported by the waves and is directly proportional

to the square of the amplitude of the wave. Moreover, we know that the lump–kink
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solution u algebraically and exponentially decays at last. Hence, it is a lump–kink

solitary wave solution and describes a completely non-elastic collision between two

different soliton waves.

4. Discussions

It has been found that the lump solution can propagate symmetrically in any direc-

tion on the XY -plane although it is not axisymmetric, and its intrinsic anisotropy

is caused by the anisotropy of the medium.43 Moreover, for the lump–kink solu-

tions, it is found that the lump wave moves faster across the kink wave with higher

energy, then they become one kink wave after their collision. So some studies and

applications of lump solitons and lump–kink solutions of the KP equation and the

Jimbo–Miwa equation in physics came out. For example, the evolutions of lump

solitons and their generations which are from few-cycle input pulses have been nu-

merically simulated by Minzoni and Smyth,44 and Leblond et al.,45 respectively, see

also the references therein. Particularly, rogue wave solutions, which have drawn a

lot of concerns from mathematicians and physicists all over the world, are a very

interesting class of lump or lump–kink solutions, and they can help analyze the

wave propagation of earthquake response of structure. Now, such kind of solutions

is often used to describe many significant nonlinear wave phenomena, for instance,

oceanography46 and nonlinear optics.47

5. Conclusions

In this research, we have studied the lump solutions and the lump–kink solutions

and some dynamic characters of a generalized (2+1)-dimensional KP equation and

Jimbo–Miwa equation. Based on the bilinear forms and the approach of positive

quadratic functions, some lump solutions are derived, in which some important

parameters are involved, and in order to guarantee the positiveness, the analyticity

and the rational localization, these parameters have to satisfy some conditions.

In the meantime, the lump–kink solutions are also investigated via adding one

exponential function to the positive quadratic function.

Acknowledgments

This work is supported by the National Natural Science Foundation of China

(Nos. 11101029, 11271362 and 11375030), the Fundamental Research Funds for

the Central Universities (No. 610806), Beijing City Board of Education Science

and Technology Key Project (No. KZ201511232034), Beijing Nova program

(No. Z131109000413029) and Beijing Finance Funds of Natural Science Program

for Excellent Talents (No. 2014000026833ZK19).

Conflict of Interest

The authors declare that they have no conflict of interest.

1950133-12

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
9.

33
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

E
O

R
G

IA
 o

n 
10

/1
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 16, 2019 9:35 MPLB S0217984919501331 page 13

Lump and interaction solutions of nonlinear partial differential equations

References

1. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering (Cambridge University Press, New York, 1991).

2. W. X. Ma, Phys. Lett. A 379 (2015) 1975.
3. D. S. Wang and J. Liu, Appl. Math. Lett. 79 (2018) 211.
4. B. Ren, Phys. Scripta 90 (2015) 065206.
5. D. S. Wang and X. L. Wang, Nonlinear Anal.-Real 41 (2018) 334.
6. B. Ren, W. X. Ma and J. Yu, Comput. Math. Appl. 77(8) (2019) 2086, doi:10.1016/

j.camwa.2018.12.010.
7. D. S. Wang, Y. R. Shi, W. X. Feng and L. Wen, Physica D 351–352 (2017) 30.
8. Y. Sun, B. Tian, X. Y. Xie, J. Chai and H. M. Yin, Waves Random Complex Media

28 (2018) 544.
9. A. Askari, D. Saadatmand and K. Javidan, Waves Random Complex Media 29 (2018)

368, doi:10.1080/17455030.2018.1439203.
10. C. R. Gilson and J. J. C. Nimmo, Phys. Lett. A 147 (1990) 472.
11. J. G. Liu and G. P. Ai, Mod. Phys. Lett. B 32 (2018) 1850343.
12. L. Zou, Z. B. Yu, S. F. Tian, L. L. Feng and J. Li, Mod. Phys. Lett. B 32 (2018)

1850104.
13. J. Y. Yang and W. X. Ma, Mod. Phys. Lett. B 30 (2016) 1640028.
14. H. Wang, Y. H. Wang, W. X. Ma and C. L. Temuer, Mod. Phys. Lett. B 32 (2018)

1850376.
15. W. X. Ma and T. C. Xia, Phys. Scr. 87 (2013) 458.
16. W. X. Ma, Z. Y. Qin and X. Lü, Nonlinear Dynam. 84 (2016) 923.
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