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In this paper, lump solutions of nonlinear partial differential equations, the generalized
(2+ 1)-dimensional KP equation and the Jimbo-Miwa equation, are studied by using the
Hirota bilinear method and carrying out symbolic computations in Maple. Moreover, the
interaction solutions, i.e. collisions between lump waves and kink waves, are investigated.
A group of graphs are plotted to illustrate the dynamics of the obtained results.
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1. Introduction

It is well known that exact solutions of nonlinear partial differential equations and
their generalized forms have been playing an essential role in the study of many
complex physical phenomena and other nonlinear engineering problems!; for exam-
ple, lump solutions, kink solutions and so on. As some sort of rational solutions,
lump solutions are localized in every direction of the space. Lump solutions to a few
nonlinear partial differential equations have been found and their dynamics have
also been analyzed, for example, the KP and BKP equations,21® the p-gKP and
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p-gBKP equations'® and so on. Recently, a lot of concerns have been paid to the
study of lump—kink solutions, which means the interactions of lump solutions and
kink solutions. Tang et al. studied the interaction of a lump with a stripe of (2+1)-
dimensional Ito equation and showed that the lump is drowned or swallowed by a
stripe soliton.1” 23 This study will aim at the lump and interaction solutions of the
following two nonlinear differential equations: the generalized (2 + 1)-dimensional
KP equation is

1 1
Up — Uy — §u"”” +u, | + guyy =0 (1)
and the Jimbo-Miwa equation is
Upzzy + SUyUze + SUpUzy + 2Uys — 3Uzy = 0, (2)

where u = u(x,y,t) is a function of spatial variables z,y and time variable ¢. It is
noted that Eqgs. (1) and (2) come from the second member of a KP hierarchy and
describe some interesting (2 + 1)-dimensional waves.?4

Actually, the KP equations and Jimbo-Miwa equations and their generalized
forms have already been studied by using many effective methods, such as the Hirota
bilinear method, the generalized bilinear method, the Exp-function method and so
on.2>32 The KP and the Jimbo-Miwa equations have been applied to modeling
water waves of long wavelength with weakly nonlinear restoring forces and frequency
dispersion, and they can be employed to modeling waves in ferromagnetic media
and two-dimensional matter-wave pulses in Bose—Einstein condensates as well.

In this paper, we apply the Hirota bilinear operators to study the lump solutions
and interaction solutions of Eqs. (1) and (2). We construct not only the lump solu-
tions of Egs. (1) and (2) but also the interaction solutions between lump solutions
and stripe soliton solutions. Moreover, we illustrate the dynamical properties of
these obtained solutions with the corresponding graphs. There are some differences
between our method and the unified method and its generalized form,33 42
we make use of the quadratic functions.

This paper is arranged as follows. In Sec. 2, we study the lumps and the in-
teraction solutions of Eq. (1), moreover we analyze their dynamics. The lump so-
lutions and the interaction solutions and the dynamics of solutions of Eq. (2) are
investigated in Sec. 3. Some discussions of the applications of lump solutions and
interaction solutions to physics are presented in Sec. 4, and some conclusions are

since

given in Sec. 5.

2. Lump and Interaction Solutions of Eq. (1)

In this section, we will construct lump solutions and mixed solutions of Eq. (1).
Moreover, their dynamics will also be studied.
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2.1. Lump solutions of Eq. (1)
Applying the transformation v = 4(In f),., we obtain the corresponding bilinear
form to Eq. (1) as follows:

1 1
(Dth—3D§+D§+3D§>f-f:O, (3)

where f(x,y,t) is an unknown real function and D,, D,, D, are the Hirota deriva-
tives defined by
am o

>a(x+5,y+t)b(x5, y*t)|8:0t:0,

m,n=0,1,....

All the details about the Hirota direct method can be found in Ref. 25 and references
therein.
To find the lump solutions of Eq. (1), we express f in the following form
f=+h+ay, g=aiz+ay+ast+as, h=asz+agy+art+as, (4)

where a;’s are all real parameters to be determined. Plugging f into Eq. (3) and
equating all the coefficients of all the polynomials of z, y, ¢ to zero leads to a system
of algebraic equations in a;’s. Solving this system, we obtain all the values of a;’s:

3(1? + alag + 3a1a§ — alag + 2asasag

a3z = )
3(af + a3)
_ 3a%a5 + 2aiasa¢6 — a%a5 + 3ag’ + a5a§
a7 = — p) 2 ) (5)
3(ai +ag)
" 3(a$ + 3ata? + 3a2ad + af)
g =

(a1as — azas)?
There are six independent parameters, two of which are completely free. Moreover,
the following conditions can guarantee the localized analyticity, positiveness and
rationality in all directions of the function f:

at+ai#0, ajag— azas #0. (6)

Plugging Eq. (5) into Eq. (4), we obtain a class of quadratic function solution to

the bilinear equation (3), then the solutions of Eq. (1) are also obtained via the

transformation v = 4(In )4,

2a3 + a? _g (a1g + ash)? , 7)
f f?

It is observed that these resulting lump solutions contain six independent parame-

ters, two of which are totally free and for different times. The central points can be

u=4

obtained via seeking the extremum points, which are of importance to study the

lump solitons about the velocity, the changes of waveform and so forth. The ampli-

(2a§+a§)(a1a5—a2a5)2
(af+a3)®

tude of u is also attained, 4 , which tell us that the amplitude is
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determined by a1, as, as, ag. We also noted that the lump wave (7) is analytic in the
XY-plane if and only if ag > 0. The analyticity of the solution (7) is guaranteed if
(6) holds. Moreover, it is easy to find that the aforementioned lump solution u — 0
if and only if the sum of squares g2+ h? — oo, or, equivalently, 2 +y? — oo at any
given time. Hence, the condition (6) can guarantee both analyticity and localiza-
tion of the lump wave (7). Based on the aforementioned discussions, the condition
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Fig. 1. (Color online) Graphs of lump wave (8) with the specific parameters: t = 1,a1 = 0,a2 =
2,a4 = 0,a5 = 1,a6 = —1 and ag = 0: (a) 3D plot, (b) density plot and (c) contour plot.
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(6), the analyticity and the localization of the solution (7) are mutually equivalent.
Moreover, (6) is also the necessary condition to get lump solitons. The parame-
ters ai,as,as and ag determine the expansion and the deflection angles of lump,
the smaller the absolute values of which result in a greater expansion of lump. In
the meantime, the two totally independent parameters are much more important
to the extremum points. Now we choose some specific values of the parameters:

a1 = l,as = 2,a4 = 0,a5 = 1,a56 = —1 and ag = 0, the graphs of the lump wave
(7) are shown vividly by Fig. 1. If we fix time variable ¢ = 1, the central points can
be obtained via seeking the extremum points as follows: (%, %) , (é + 23@, %) , SO

that the maximal amplitude of u is attained as %

2.2. Interaction solutions of Eq. (1)

In this subsection, we are going to investigate the collisions among the lump solution
and the kink solution. Now we choose

f=¢+h+l+a, (8)
where g = a1z + agy + ast + aq, h = asx + agy + art + ag and | = e®9TTaoytant,

Plugging f into Eq. (3) and using the transformation v = 4(ln f)4,, the lump—kink
solutions of Eq. (1) are obtained as follows:

Case I. We choose the following parameters:

a; = 0, as = ﬂ:\/gag, as = ﬂ:\/gag,

3a2a? — 3a? — a2 agag
4y = 2599 5 6 g0 =
3@5 ’ as ’ (9)
ag(3a2a3 — 3a2 — a?) a?
aqy = 5%9 5 6 agg = 5
= 2 J )
3ag ag

In order to guarantee the positiveness, analyticity and the localization of u in all
directions in the (z,y)-plane, it is required that as # 0,a9 # 0. So we have the
following lump-kink wave solution:

4(2a2 + a3l) 4(2ash + agl)?
Uy = - s
g2+h2+l+% (92+h2+l+%>2
@y

(10)

which has six independent parameters, four of which are completely independent.
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Case II. We select the following parameters:

_alasaip — agag)
aqg=——->=

2 K
agy
a 3asadaip + 3agad + 3asalaig + asai, — 3asald — agagal
3= - 1 )
ago
3 4 2
a50g + a5a7y — AeGya10
as = 3 )
3aag
(11)
3a5a3 — 3a5ag + a5a%0 — 2aga9aig
a7 =
3a3 ’
4 2 2
_ ag —3a5 — ajg
ayl = ——pg
3a9
3a§a3 + agafo — 2asagagaig + a%ag
a1z =

6 Y
3ag

where o = i\/g . In order to guarantee the analyticity, positiveness and rationality
of u, the following conditions have to be satisfied:

ag #0, 3aiag+ a2al, — 2asasagaio + azai > 0.

Via the transformation v = 4(ln f).,, we get the following solution to Eq. (1):

dpy  4p3
Uy = — — —2, (12)
q1 q7
where
202 (asa19 — agagy)?
pr = 200500 Z 0600y 2y 2y
Qg
2a(asarg — aga
Py = (5 122 69)g+2a5h+a9l,
9

3aZaj + aZa, — 2asagagain + a2al
5 .
3ag

a=g"+h*+1+

It is noted that there are seven independent parameters and three are totally in-
dependent. As seen from the above results, the first part g of u; in Case I is
irrelevant to time variable = for a; = 0. In order to gain the collision phenomenon,
a?+a2+ a3, # 0 is required. Therefore, the asymptotic behavior of u is obtained as
u — 0 while ¢ — co. The asymptotic behavior shows that the lump wave is finally
swallowed up by the kink wave with the change of time, which implies they become
one kink wave after their collisions, since the lump wave moves faster across the
kink wave with higher energy, which is transported by the waves and is directly
proportional to the square of the amplitude of the wave. Moreover, we know that
the lump—kink wave solution algebraically and exponentially decays at last. Hence,
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(c)

Fig. 2. (Color online) Evolution profiles of lump wave (10) with the specific parameters: ¢t = 2,
a1 =0,a3 =1,a4 =0,a6 = 1,a8 = 0, and ag = 1. (a) z-curves, (b) y-curves and (c) contour plot.

it is a lump—kink solitary wave solution and describes a completely non-elastic in-
teraction between two different solitons. Figure 2 for the solution (10) illustrates
the typical phenomena in the interaction between a lump and a kink with the spe-
cial parameters. This is a completely non-elastic interaction between two different
solitons and decays both algebraically and exponentially.

3. Lump and Interaction Solutions of Eq. (2)

In this section, we will find the lump solutions and the lump—kink solutions to the
generalized (2 + 1)-dimensional Jimbo-Miwa equation, i.e. Eq. (2), by using the
Hirota bilinear forms.

1950133-7
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3.1. Lump solutions of Eq. (2)

Applying the transformation v = 2(In f),, we obtain the Hirota bilinear form

(D3D, +2D,D; —3D,D,)f-f=0. (13)
Employing a similar procedure as in Sec. 2, we obtain a;’s as follows.
asae 3asag 3as
a1 as , as 2&2 , ar 2 ( )

There are six independent parameters, three of which are completely indepen-
dent. Moreover, the following conditions can guarantee the localized analyticity,
positiveness and rationality in all directions of the function f:

az #0, a9 >0. (15)

Plugging Eq. (14) into the corresponding equations just as we did in Sec. 2, we can
get the resulting class of function f, which implies the lump solution of Eq. (2) is

4—a5agg + asash
Clgf '
It is observed that these resulting lump solutions contain six independent param-
eters, two of which are totally free and for different times. We observed that the
solution (16) is analytic in the XY-plane if and only if ag > 0. The analyticity
of the solution (16) is guaranteed if (15) holds, which yields as # 0 and ag > 0.
Moreover, it is easy to find that the aforementioned lump solution v — 0 if and
only if the sum of squares g2 + h? — oo, or, equivalently, % + y?> — oo, at any
given time. Hence, the condition (15) can guarantee both analyticity and localiza-
tion of the solution (16). According to the above discussions, the condition (15),
the analyticity and the localization of the solution (16) are actually equivalent to
each other. The parameters as, a5 and ag determine the expansion and the deflec-

u =

(16)

tion angles of lump, the smaller the absolute values of which result in a greater
expansion of lump. In the meantime, the two totally independent parameters are
much more important to the extremum points. Now we choose some specific values
of the parameters: as = 1,a4 = 0,a5 = 1,a6 = 1,as = 0 and ag = 1, the graphs of
the lump wave (16) are given by Fig. 3. If we fix time variable ¢ = 0, the central
points can be obtained via seeking the extremum points as follows: (i%, O) , SO

that the maximal amplitude of u is attained as %.

3.2. Interaction solutions of Eq. (2)

In this subsection, we investigate the collisions among lump solutions and kink
solutions. Therefore, we assume

f=g+h +1+ays, (17)

where g = a1z + a2y +ast+ad, h = asx +agy + a7t +ag and | = e®9TTaoytanttas,

1950133-8
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Fig. 3. (Color online) Graphs of lump solution (16) with the specific parameters: ¢ = 0,a1 =
1.5,a2 = 1,a4 = 0,a5 = —1,a6 = 0.4 and ag = 0. (a) 3D plot, (b) density plot and (c) contour
plot.

Plugging f into Eq. (13), all the aforementioned parameters can be obtained.
Therefore, according to the transformation v = 2(In f),, we can obtain five classes
of solutions of Eq. (2) as follows.

Case I. When the parameters are

3a a2  3a
az =as = a7 = ayp =0, a3:71, a11=—§9+797 (18)

the lump—kink wave solution is
2(2a19 + aol)

Uy = 5 (19)

ad 3a
(gt + zar + a4)2 + (yas + as)? + (-3 ) trastars | a3

with seven independent parameters, five of which are completely independent.
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Fig. 4. (Color online) Evolution profiles of lump wave (20) with the specific parameters: t = 1,
az =1,a4 =0,a6 = 1,a7 = 1,a8 = 0,a9 = 1,a12 = 0 and a13 = 1. (a) z-curves, (b) y-curves and
(c) contour plot.

Case II. If we select the parameters as

2a6a7 agQy 2&7
3
- ) asz = — ) as = 9 alp = 07 ailr = a97 (20)
3&2 a9 3

a; =

we obtain the following lump—kink wave solution:

2(—4agarg + 4azarh + 3azagl)
Uz = 2 5 2 5 (21)
3as((—t925r — 22382 + yas + aq)” + (tar + 223 + yag + as)

+et(7§+3%)+wa9+a12 4 013)
which has eight independent free parameters, four of which are totally independent.
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Case III. We choose the following parameters:

a2 3a
a1 =az =as = a7 =0, a11=—?9+79; (22)

then the lump—kink wave solution is obtained as
2agl

Uus = (23)

ad | 3a
(yaz + as)? + (yas + as)? + O + a3

There are eight independent parameters, seven of which are completely indepen-
dent.
Case IV. Selecting the parameters as

30,5

2 (24)

ap=ag=a¢ =ag =ann =0, ay=
leads to the following solution:
4a5h
(y+ a4)2 + (&%t + asx + a8)2 + earoytaiz 4 g ’

(25)

Uyg =

It is observed that there are seven independent parameters, six of which are totally
independent.

Case V. Choosing the following parameters

GQZ—GZT6, agz%, CWZS%, a9:a11:0 (26)
results in a lump-—kink wave solution
e — 4(a19 + ash)
P (gt tarw — S5y +ay)? + (382 + a53 + yag + ag)? + evrotaz +agg

(27)

It is noted that there are eight independent parameters, five of which are totally
independent. As seen from the above results, the exponential functions of vy and us
in Case I and Case II are irrelevant to time variable y for a9 = 0, respectively. In
Case I1I1, the first two parts g and h of the lump-kink solution in ug are irrelevant to
space variable x and time variable ¢. The first part g of uy in Case IV is irrelevant
to space variable x and time variable ¢t as well, and the second part h of wuy is
irrelevant to the space variable y, the third part namely the exponential function
is irrelevant to space variable x and time variable t. For Case V, the third part
namely the exponential function is irrelevant to « and t. Therefore, in order to gain
the collision phenomenon, a3 + a2 + a?; # 0 is required. Therefore, the asymptotic
behavior of u is obtained as u — 0 while ¢ — co. The asymptotic behavior proves
that the lump wave is finally swallowed up by the kink wave, then they become one
kink wave after the collisions, since the lump wave moves faster across the kink wave
with higher energy, which is transported by the waves and is directly proportional
to the square of the amplitude of the wave. Moreover, we know that the lump—kink

1950133-11
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solution u algebraically and exponentially decays at last. Hence, it is a lump—kink
solitary wave solution and describes a completely non-elastic collision between two
different soliton waves.

4. Discussions

It has been found that the lump solution can propagate symmetrically in any direc-
tion on the XY-plane although it is not axisymmetric, and its intrinsic anisotropy
is caused by the anisotropy of the medium.*3 Moreover, for the lump-kink solu-
tions, it is found that the lump wave moves faster across the kink wave with higher
energy, then they become one kink wave after their collision. So some studies and
applications of lump solitons and lump-kink solutions of the KP equation and the
Jimbo-Miwa equation in physics came out. For example, the evolutions of lump
solitons and their generations which are from few-cycle input pulses have been nu-
merically simulated by Minzoni and Smyth,** and Leblond et al.,%> respectively, see
also the references therein. Particularly, rogue wave solutions, which have drawn a
lot of concerns from mathematicians and physicists all over the world, are a very
interesting class of lump or lump-kink solutions, and they can help analyze the
wave propagation of earthquake response of structure. Now, such kind of solutions
is often used to describe many significant nonlinear wave phenomena, for instance,

oceanography?® and nonlinear optics.4?

5. Conclusions

In this research, we have studied the lump solutions and the lump-kink solutions
and some dynamic characters of a generalized (2+ 1)-dimensional KP equation and
Jimbo-Miwa equation. Based on the bilinear forms and the approach of positive
quadratic functions, some lump solutions are derived, in which some important
parameters are involved, and in order to guarantee the positiveness, the analyticity
and the rational localization, these parameters have to satisfy some conditions.
In the meantime, the lump-kink solutions are also investigated via adding one
exponential function to the positive quadratic function.
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