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In this research, we study the exact solutions of the Rosenau–Hyman equation, the cou-

pled KdV system and the Burgers–Huxley equation using modified transformed rational

function method. In this paper, the simplest equation is the Bernoulli equation. We are
not only obtain the exact solutions of the aforementioned equations and system but also

give some geometric descriptions of obtained solutions. All can be illustrated vividly by

the given graphs.
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rational function method; exact solutions; geometric property.

1. Introduction

In the last years, the nonlinear partial differential equations have been widely ap-

plied to many natural systems, for instance, the biology, chaos and ecology. More-

over, the exact analytical solutions of the nonlinear partial differential equations

(NPDE) play a key role in several research directions, for example, descriptions of

different kinds of waves, as initial condition for simulation process. Thus, people

¶Corresponding author.

1850282-1

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
8.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SO

U
T

H
E

R
N

 C
A

L
IF

O
R

N
IA

 @
 L

O
S 

A
N

G
E

L
E

S 
on

 0
8/

31
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S0217984918502822
mailto:jpyu@ustb.edu.cn


August 21, 2018 16:50 MPLB S0217984918502822 page 2

Y.-L. Sun et al.

pay a lot of attention to this important research area.1–18 A lot of excellent meth-

ods for finding exact solutions of the nonlinear partial differential equations have

been established, such as, homogeneous balance method,19–22 hyperbolic function

method,23 F-expansion method24 and variable-detached method,25–28 the Bäcklund

transform,29,30 the Jacobi elliptic function method,31 the extended tanh-function

method,32 Hirota bilinear operator method33 and generalized bilinear operator

method,34 etc. One of the direct methods is the method of simplest equation,

which was presented by Kudryashov in 1988.35 This method and modified method

of simplest equation have been used to find exact solutions of NPDE,36–40 such

as Fisher equation and Fisher-like equations,41 generalized Kuramoto–Sivashinsky

equation.42 In Ref. 43, a more general direct approach-transformed rational function

method was investigated.

In this study, based on the results of Ref. 43, we presented a modified trans-

formed rational function method, and study the exact solutions of the Rosenau–

Hyman equation, the coupled KdV system and the Burgers–Huxley equation using

modified transformed rational function method. Moreover, some geometric descrip-

tions of obtained solutions will be studied and illustrated vividly by the graphs.

This paper is organized as follows. In Sec. 2, we introduce modified transformed

rational function method; then we construct new exact analytical solutions of the

Rosenau–Hyman equation, the coupled KdV system and the Burgers–Huxley equa-

tion in Secs. 3–5. Meanwhile, some geometric properties of obtained results are

given therein. Finally, we summarize and discuss the results briefly.

2. Modified Transformed Rational Function Method

We begin this section with introducing the homogeneous balance method. Now, let

us take the Burgers equation

∂u

∂t
+ u

∂u

∂x
− α∂

2u

∂x2
= 0 , (1)

as an example. Suppose that

u =
∂m+nf(ω)

∂xm∂tn
+ partial derivative terms with lower than m+ n order of f(ω)

= f (m+n)ωmx ω
n
t + terms with lower than (m+n) degree in derivatives of ω(x, t) ,

(2)

where ω = ω(x, t), f = f(ω) and m ≥ 0, n ≥ 0 are integers to be determined.

The nonlinear term in Eq. (1) is transformed into

uux = f (m+n)f (m+n+1)ω(2m+1)
x ω2n

t

+ terms with lower than 2(m+ n) + 1

degree in various derivatives of ω(x, t) . (3)
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The highest order partial derivative term in Eq. (1) is converted into

uxx = f (m+n+2)ω(m+2)
x ωnt + terms with lower than (m+ n+ 2)

degree in various derivatives of ω(x, t) . (4)

Requiring the highest degrees in partial derivatives of ω(x, t) in (3) and (4) are

equal yields

2m+ 1 = m+ 2, 2n = n, (5)

which has a non-negative integer solution: m = 1, n = 0. Thus

u =
∂f

∂ω

∂ω

∂x
+ a1f + a2 . (6)

Now, in this research, we always choose r = 0, but it is the least order of

derivatives in the given equation in Ref. 43, which implies that r may be 0, 1, 2 or

other non-negative integers. We also let η satisfy the Bernoulli equation φ′(ξ) =

φb+1(ξ)−φ(ξ). Using the direct computation in Wsolve, we get its exact solution as

η = φ(ξ) = 1

(1+cebξ+ξ0 )
1
b

, where c is a parameter. Throughout this paper, we assume

that c = 1, that is, φ(ξ) = 1

(1+ebξ+ξ0 )
1
b
. We let ν be a polynomial with respect to

η, the degree of which can be determined by the homogeneous method. Thus the

algorithm of the modified transformed rational function method is:

Algorithm 2.1.

Step 1. For any given nonlinear partial differential equation with respect to x, t,

H(u, ut, ux, utt, utx, uxx, . . .) = 0 , (7)

where H is a polynomial with respect to u, ut, ux, utt, utx, uxx, . . .. By the traveling

wave transform

u(x, t) = u(ξ), ξ = kx− λt , (8)

Equation (7) can be transformed into an ordinary differential equation

L(u, u′, u′′, u′′′ , . . .) = 0, (9)

where k and λ are constants to be determined, and u′ = du
dξ .

Step 2. Let

u(ξ) =

n∑
i=0

ai(φ(ξ))i, an 6= 0 , (10)

be a solution of Eq. (9), where n is a positive integer, which can be obtained by

the homogeneous balance method, ai are constants to be determined, and φ(ξ) has

the following form:

φ(ξ) =

(
1

1 + ebξ+ξ0

) 1
b

=
1

2b

(
1− tanh

(
bξ + ξ0

2

)) 1
b

, (11)
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where ξ0 is a constant, and φ(ξ) is a solution of the following ordinary differential

equation:

dφ(ξ)

dξ
= φ(ξ)b+1 − φ(ξ) , (12)

where b is a positive integer.

Step 3. Substitute Eqs. (10) and (12) into Eq. (9), then collect all the coefficients

of φi(ξ) and let all of them be zero, thus we can get a system of algebraic equations

with respect to the parameters k, λ, ai(i = 0, 1, 2, . . . , n).

Step 4. Applying characteristic set technique to solve the system of algebraic

equations obtained in Step 3, we can have the values of k, λ, ai(i = 0, 1, 2, . . . , n).

Step 5. Substitute the obtained k, λ, ai(i = 0, 1, 2, . . . , n) into (10), then we obtain

all the new exact analytical solutions of Eq. (7).

Remark. In this study, we use homogeneous balance method to determine the

value of n in formula (10), by which we can get several types of the solitary wave

solutions of Eq. (7).

In order to get some geometric properties of solutions of Eq. (7), we will ap-

plied the associated Monge formula M = (x, t, u(x, t)), to studying the Gaussian

curvature K and the mean curvature H, which are defined by

K =
L11L22 − L2

12

g11g22 − g212
, H =

L11g22 + L22g11 − 2L12g12
2(g11g22 − g212)

,

g11g22 − g212 6= 0 ,

where

g11 = Mx ·Mx, g12 = Mx ·Mt, g22 = Mt ·Mt ,

L11 = Mxx ·N, L12 = Mxt ·N, L22 = Mtt ·N

and

N =
Mx ×Mt

‖Mx ×Mt‖
.

In the following sections, we will apply this method to study some important

partial differential equations.

3. Exact Solutions of the Rosenau–Hyman Equation

The Rosenau–Hyman equation is studied in this section, which is

ut + αuux + β(u2)xxx = 0 , (13)

where α is the parameter of the convection term, and β is the parameter of the

nonlinear dispersion term. We will use the proposed method of simplest equation to
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search the exact analytical solutions of it. First, making use of the traveling wave

transform (8), then (13) becomes

2βk3(uu′′′ + 3u′u′′) + αku2u′ − λu′ = 0 . (14)

We will give the detailed results of the following three cases.

Case 1. Taking the parameter b = 1, one obtains

φ(ξ) =
1

1 + eξ+ξ0
(15)

and the auxiliary ordinary differential equation

dφ(ξ)

dξ
= φ(ξ)2 − φ(ξ) . (16)

From the homogeneous balance method, it follows that n = 2, then the solution of

Eq. (14) can be written in the following form:

u(ξ) = a0 + a1φ(ξ) + a2φ
2(ξ) . (17)

Now, applying (15), (16) and (17) to (14), we can obtain a system of nonlinear

algebraic relations among the parameters a0, a1, a2, k, λ and the solution of the

system by applying characteristic set, then the exact analytical solution of Eq. (13)

can be obtained when b = 1

u =
−5βk2

α
(1− 12φ(ξ) + 12φ2(ξ)) , (18)

where ξ = kx− 15k5β2

α t.

Case 2. If b = 2, then

φ(ξ) =

(
1

1 + e2ξ+ξ0

) 1
2

, (19)

hence the simplest equation becomes

dφ(ξ)

dξ
= φ(ξ)3 − φ(ξ) . (20)

From the homogeneous balance method, it follows that n = 4, then the solution of

Eq. (14) can be written in the following form:

u(ξ) =

4∑
i=0

aiφ(ξ)i . (21)

Applying (19), (20) and (21) to (14), we can obtain a system of algebraic equations

for a0, a1, a2, a3, a4, k, λ. Employing Wsolve to this system, then

u = −20βk2

α
+

240βk2

α
φ(ξ)2 − 240βk2

α
φ(ξ)4 (22)

is an exact analytical solution of Eq. (13), where ξ = kx− 240k5β2

α t.
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Case 3. If b = 3, then

φ(ξ) =

(
1

1 + e3ξ+ξ0

) 1
3

, (23)

and the auxiliary ordinary differential equation is

dφ(ξ)

dξ
= φ(ξ)4 − φ(ξ) . (24)

By the homogeneous balance method, it follows that n = 6, then the solution of

Eq. (14) can be written in the following form:

u(ξ) =

6∑
i=0

aiφ(ξ)i . (25)

Therefore, employing (23), (24) and (25) on (14), we can obtain a system of algebraic

equations for a0, a1, a2, a3, a4, a5, a6, k, λ. Applying characteristic set in Wsolve to

this system, we can get the exact analytical solution of Eq. (13)

u = −45βk2

α
+

540βk2

α
φ(ξ)3 − 540βk2

α
φ(ξ)6 , (26)

where ξ = kx− 1215k5β2

α t.

In addition, we can obtain several classes of the solitary wave solutions of

Eq. (13) by choosing other values of the parameter b.

To discuss the geometric properties of the solution (18), we rewrite it as

u(ξ) =
−5βk2

α

(
−2 + 3 tanh2

(
ξ + ξ0

2

))
, ξ = kx− 15k5β2

α
t , (27)

then its Monge formula is described as follows:

M =

(
x, t,
−5βk2

α

(
−2 + 3 tanh2

(
ξ + ξ0

2

)))
. (28)

Thus, the related quantities and normal vector of M are obtained:

g11 = 1 +
225β2k6 tanh2( ξ+ξ02 ) sech4( ξ+ξ02 )2

16α
,

g12 = −
3375β6k10λ tanh2( ξ+ξ02 ) sech4( ξ+ξ02 )

16α3
,

g22 = 1 +
3375β8k14λ2 tanh2( ξ+ξ02 ) sech4( ξ+ξ02 )

1024α4
,

N =
(− 15βk3

4α tanh( ξ+ξ02 ) sech2( ξ+ξ02 ), 225k
7β3

4α2 tanh( ξ+ξ02 ) sech2( ξ+ξ02 ), 1)√
1 + ( 225β2k6

16α2 + 50625β6k14

16α2 ) tanh2( ξ+ξ02 ) sech4( ξ+ξ02 )
,

L11 =
15βk4

8α (3 tanh2( ξ+ξ02 )− 1) sech2( ξ+ξ02 )√
1 + ( 225β2k6

16α2 + 50625β6k14

16α2 ) tanh2( ξ+ξ02 ) sech4( ξ+ξ02 )
,
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Fig. 1. (a) Shape and surface, (b) density plot, (c) contour plot of solution (18) with specific
values of parameters k = 1, α = 1, β = 1.

L12 =
225β3k8

8α2 (3 tanh2( ξ+ξ02 )− 1) sech2( ξ+ξ02 )√
1 + ( 225β2k6

16α2 + 50625β6k14

16α2 ) tanh2( ξ+ξ02 ) sech4( ξ+ξ02 )
,

L22 =
3375β5k12

8α3 (3 tanh2( ξ+ξ02 )− 1) sech2( ξ+ξ02 )√
1 + ( 225β2k6

16α2 + 50625β6k14

16α2 ) tanh2( ξ+ξ02 ) sech4( ξ+ξ02 )
. (29)

The Gaussian curvature K and the mean curvature H are given, respectively, as

follows:

K = 0, H =
( 15βk4

2α + 3375β5k8

2α3 )(3 tanh2( ξ+ξ02 )− 1) sech2( ξ+ξ02 )

(1 + ( 225β2k6

16α2 + 50625β6k14

16α2 ) tanh2( ξ+ξ02 ) sech4
(
ξ+ξ0
2 ))

3
2

.

Therefore, a family of parabolic surfaces (K = 0, H 6= 0) is represented by the

solution (18); on the cuspidal edge x = 15β2k4

α t− ξ0
k + 2

k tanh−1(± 1√
3
), a family of

planes (K = 0, H = 0) is represented by (18), which can be given by (x, t, 5βk
2

α ).

Furthermore, we can obtain the singular points of (18) as x = 15β2k4

α t− ξ0
k .

The following Fig. 1 give us the graph, density plot and contour plot of solution

(18) vividly.

4. Exact Solutions of the Coupled KdV System

In this section, we study the exact solutions and their geometric properties of the

coupled KdV system, which is written in the following form:

ut + 6αuux − 6vvx + αuxxx = 0, vt + 3αuvx + αvxxx = 0 , (30)

To find the solitary wave solutions to the system (27), we let

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = kx− λt , (31)

then the system (27) becomes

−λu′ + 6kαuu′ − 6kvv′ + αk3u′′′ = 0, −λv′ + 3kαuv′ + αk3v′′′ = 0 . (32)
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Similarly, as in the previous example, if we choose b = 1, then φ(ξ) = 1
1+eξ+ξ0

.

The homogeneous balance method implies n = 2 and m = 1, 2. Therefore, we

can choose

u(ξ) = a0 + a1φ(ξ) + a2φ(ξ)2, v(ξ) = c0 + c1φ(ξ) . (33)

u(ξ) = a0 + a1φ(ξ) + a2φ(ξ)2, v(ξ) = c0 + c1φ(ξ) + c2φ(ξ)2 . (34)

Substituting (32) into (31), we can get a system of algebraic equations for

a0, a1, a2, b0, b1, k, λ. Similarly, substituting (33) into (31), we can also get a sys-

tem of algebraic equations for a0, a1, a2, b0, b1, b2, k, λ. Using characteristic set in

Wsolve, we can obtain the solutions to the coupled KdV system as

u1(ξ) = −αk
3 − λ

6kα
+ 2k2φ(ξ)− 2k2φ(ξ)2 ,

v1(ξ) = −αk
4 − 2kλ

3α
+ 2

αk4 − kλ
3α

φ(ξ) .

(35)

u2(ξ) =
−k3α+ λ

3kα
+ 4k2φ(ξ)− 4k2φ(ξ)2 ,

v2(ξ) = −−
√

2k2α+ 4kλ

6α
− 2
√

2k2φ(ξ) + 2
√

2k2φ(ξ)2 ,

(36)

and the Gaussian curvature K and mean curvature H of the surfaces defined by

the solutions (34) and (35), respectively:

K1,2 = 0,

H1 = ±
(2 cosh2( ξ+ξ02 ))− 3 cosh5( ξ+ξ02 )k2(k2 + λ2)

(k6 cosh2( ξ+ξ02 ) + k4λ2 cosh2( ξ+ξ02 ) + 4 cosh6( ξ+ξ02 )− k6 − k4λ2)
3
2

,

H2 = ±
18 sinh( ξ+ξ02 ) cosh3( ξ+ξ02 )k(αk3 − λ)α2(k2 + λ2)

(α2k10 +α2k8λ2− 2αk7λ− 2αk5λ3 + 36α2 cosh4( ξ+ξ02 ) + k4λ2 + k2λ4)
3
2

,

Fig. 2. (a) Shape and surface, (b) density plot, (c) contour plot of u2 of solution (35) with specific
values of parameters k = 2, α = 1, λ = 1.
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Fig. 3. (a) Shape and surface, (b) density plot, (c) contour plot of v2 of solution (35) with specific

values of parameters k = 2, α = 1, λ = 1.

(37)

where ξ = kx − λt. It follows that the solutions u̇1 and v1 represent a family of

parabolic surfaces and a family of planes.

Figures 2 and 3 are the graphs, density plot and contour plot of solution (35).

5. Exact Solutions of the Burgers–Huxley Equation

Now, let us discuss the Burgers–Huxley equation described by

ut + αuux − uxx = βu(1− u)(u− s) , (38)

where α, β and s are constants. This equation is a typical model for describing

the interaction between reaction mechanism, convection effect and diffusion trans-

port. In 1987, Satsuma firstly obtained two solitary wave solutions by using Hirota

method. When β = 0 and α = 1, (37) is reduced to the Burgers equation; when

α = 0, (37) becomes the Hexley equation. There are many researchers who used

various techniques to obtain the solutions of the Burgers–Huxley equation. To do

this, similar to Example 3.2, we let

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = kx− λt , (39)

making use of (35), Eq. (34) will become

−λu′ + αkuu′ − k2u′′ = βu(1− u)(u− s) . (40)

Case 1. If we choose b = 1, then φ(ξ) = 1
1+eξ+ξ0

. By the homogeneous balance

method, the parameter n = 1, so that we can take

u(ξ) = a0 + a1φ(ξ) . (41)

Substituting (40) into (39) in Wsolve, we can get a system of algebraic equations

for parameters a0, a1, k, λ. Solving this system by using characteristic set in Wsolve,

the solitary wave solutions to (37) are obtained as follows:

u(ξ) = φ(ξ) , (42)
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where

ξ = kx− αk + β(1− 2s)

2
t, k =

α±
√
α2 + 8β

4

and

u(ξ) = sφ(ξ) , (43)

where

ξ = kx− s(αk + β(s− 2))

2
t, k =

(α±
√
α2 + 8β)s

4
.

Case 2. Let b = 2, then φ(ξ) = 1
1+e2ξ+ξ0

. It follows n = 2 by the homogeneous

balance method. So that we can take

u(ξ) = a0 + a1φ(ξ) + a1φ(ξ)2 (44)

with the help of Wsolve, substituting (43) into (39), we can get a system of algebraic

equations for parameters a0, a1, a2, k, λ. Using characteristic set in Wsolve, the

solitary wave solutions of (37) are obtained as follows:

u(ξ) = 1− φ(ξ) , (45)

where

ξ = kx− 2αk + β(2s− 1)

4
t, k =

−α±
√
α2 + 8β

8
,

and

u(ξ) = sφ(ξ) , (46)

where

ξ = kx− 2αk + βs(2− s)
4

t, k =
(−α±

√
α2 + 8β)s

8
.

By taking different values of the parameter b, we can obtain other types of the

solitary wave solutions of Eq. (37). Furthermore, we can perform the computations

of the Gaussian curvature K and mean curvature H of the solution (40), and obtain

them as follows:

K = 0, H =
λ tanh( ξ+ξ02 ) sech2( ξ+ξ02 )

(64 + sech2( ξ+ξ02 ))
3
2

. (47)

It follows that the solution (40) represents hyperbolic surfaces and planes on the

cuspidal edge x = αk+β(1−2s)
2k t− ξ0

k .

The 3D plot, density plot and contour plot of solution (40) with specific value

of parameters have been shown in Fig. 4.
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Fig. 4. (a) Shape and surface, (b) density plot, (c) contour plot of solution (40) with s = 3,

α = 1, β = 1.

6. Conclusion

This research mainly deals with the Rosenau–Hyman equation, the coupled KdV

system and the Burgers–Huxley equation using modified transformed rational func-

tion method. To the best knowledge of us, some new exact solutions of the afore-

mentioned equations, moreover a some geometric descriptions of obtained solutions.

All can be illustrated vividly by the given graphs. The results will play some im-

portant roles in the studying of some nonlinear phenomena in other research areas,

for instance, nonlinear physics.
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