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In this research, we study the exact solutions of the Rosenau-Hyman equation, the cou-
pled KdV system and the Burgers—Huxley equation using modified transformed rational
function method. In this paper, the simplest equation is the Bernoulli equation. We are
not only obtain the exact solutions of the aforementioned equations and system but also
give some geometric descriptions of obtained solutions. All can be illustrated vividly by
the given graphs.
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1. Introduction

In the last years, the nonlinear partial differential equations have been widely ap-
plied to many natural systems, for instance, the biology, chaos and ecology. More-
over, the exact analytical solutions of the nonlinear partial differential equations
(NPDE) play a key role in several research directions, for example, descriptions of
different kinds of waves, as initial condition for simulation process. Thus, people
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pay a lot of attention to this important research area.l™8 A lot of excellent meth-
ods for finding exact solutions of the nonlinear partial differential equations have
been established, such as, homogeneous balance method,*?22 hyperbolic function
method,?3 F-expansion method?* and variable-detached method,2° 28 the Backlund
transform,2?:3% the Jacobi elliptic function method,! the extended tanh-function
method,32 Hirota bilinear operator method®? and generalized bilinear operator
method,?* etc. One of the direct methods is the method of simplest equation,
which was presented by Kudryashov in 1988.3> This method and modified method
of simplest equation have been used to find exact solutions of NPDE 3640
as Fisher equation and Fisher-like equations,*! generalized Kuramoto-Sivashinsky
equation.?? In Ref. 43, a more general direct approach-transformed rational function
method was investigated.

In this study, based on the results of Ref. 43, we presented a modified trans-
formed rational function method, and study the exact solutions of the Rosenau—
Hyman equation, the coupled KdV system and the Burgers—Huxley equation using
modified transformed rational function method. Moreover, some geometric descrip-
tions of obtained solutions will be studied and illustrated vividly by the graphs.

This paper is organized as follows. In Sec. 2, we introduce modified transformed
rational function method; then we construct new exact analytical solutions of the
Rosenau—Hyman equation, the coupled KdV system and the Burgers—Huxley equa-
tion in Secs. 3-5. Meanwhile, some geometric properties of obtained results are
given therein. Finally, we summarize and discuss the results briefly.

such

2. Modified Transformed Rational Function Method

We begin this section with introducing the homogeneous balance method. Now, let
us take the Burgers equation

ot Ox Ox?
as an example. Suppose that
o)
~ Qzmotn
= fm+n)yme® 4 terms with lower than (m +n) degree in derivatives of w(z, t)
(2)

+ partial derivative terms with lower than m + n order of f(w)

where w = w(z,t), f = f(w) and m > 0,n > 0 are integers to be determined.
The nonlinear term in Eq. (1) is transformed into

Uy = f(m-l—n)f(m-‘rn-&-l)w:(fm—i-l)w?n
+ terms with lower than 2(m +n) +1
degree in various derivatives of w(x,t). (3)
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The highest order partial derivative term in Eq. (1) is converted into
Upy = T (M+2) )7 4 terms with lower than (m + n + 2)
degree in various derivatives of w(x,t) . (4)

Requiring the highest degrees in partial derivatives of w(x,t) in (3) and (4) are
equal yields

2m+1=m+2, 2n=mn, (5)
which has a non-negative integer solution: m = 1, n = 0. Thus
af Ow
== — . 6
“ 8w8x+a1f+a2 (6)

Now, in this research, we always choose r = 0, but it is the least order of
derivatives in the given equation in Ref. 43, which implies that » may be 0,1,2 or
other non-negative integers. We also let 7 satisfy the Bernoulli equation ¢'(¢) =
#*TL(€) — ¢ (€). Using the direct computation in Wsolve, we get its exact solution as

n = ¢(§) = ——L——, where c is a parameter. Throughout this paper, we assume
(14cebé+€0) b
that ¢ = 1, that is, ¢(¢) = ——L——. We let v be a polynomial with respect to

T (1qebEteo)E
7, the degree of which can be determined by the homogeneous method. Thus the
algorithm of the modified transformed rational function method is:

Algorithm 2.1.

Step 1. For any given nonlinear partial differential equation with respect to x,t,

H(u7ut7uw7uttaut:v7uxz7°"):O7 (7)
where H is a polynomial with respect to w, us, Uy, Ust, Uty Ugy, - - .. By the traveling
wave transform

u(z,t) = u(§), &=kr—A, (8)

Equation (7) can be transformed into an ordinary differential equation

L(u,u/ ;v d"..) =0, (9)

where k and \ are constants to be determined, and v’ = Z—z.

Step 2. Let

n

u(@) = ai(d(€)', an#0, (10)

i=0
be a solution of Eq. (9), where n is a positive integer, which can be obtained by

the homogeneous balance method, a; are constants to be determined, and ¢(§) has
the following form:

1 % 1 b %
P(€) = <1—|—eb5+50> =5 (1 — tanh (5—;&)>) ) (11)
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where & is a constant, and ¢(§) is a solution of the following ordinary differential
equation:

d(€) _ 1
o =T e, (12)

where b is a positive integer.

Step 3. Substitute Eqgs. (10) and (12) into Eq. (9), then collect all the coefficients
of ¢*(£) and let all of them be zero, thus we can get a system of algebraic equations
with respect to the parameters k, A, a;(i =0,1,2,...,n).

Step 4. Applying characteristic set technique to solve the system of algebraic
equations obtained in Step 3, we can have the values of k, \,a;(i =0,1,2,...,n).

Step 5. Substitute the obtained k, A\, a;(i =0, 1,2,...,n) into (10), then we obtain
all the new exact analytical solutions of Eq. (7).

Remark. In this study, we use homogeneous balance method to determine the
value of n in formula (10), by which we can get several types of the solitary wave
solutions of Eq. (7).

In order to get some geometric properties of solutions of Eq. (7), we will ap-
plied the associated Monge formula M = (z,t,u(z,t)), to studying the Gaussian
curvature K and the mean curvature H, which are defined by

_ Ly1Loy — L3, I_ L11922 + Laagin — 2L12912

K
G11922 — Gis 2(g11922 — 935)

G11922 — g1z # 0,

where
gun = My - My, g12 = My - My, gao = My - My,
Lyy = Mgy - N, L1z =My - N, Laa =My - N
and
N — M, x M, .
[ My x M|

In the following sections, we will apply this method to study some important
partial differential equations.

3. Exact Solutions of the Rosenau—Hyman Equation

The Rosenau—Hyman equation is studied in this section, which is
ug 4wty + B(u?)pze =0, (13)

where « is the parameter of the convection term, and 3 is the parameter of the
nonlinear dispersion term. We will use the proposed method of simplest equation to
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search the exact analytical solutions of it. First, making use of the traveling wave
transform (8), then (13) becomes

28k3 (v 4 3u'u") + akuu’ — M’ = 0. (14)
We will give the detailed results of the following three cases.

Case 1. Taking the parameter b = 1, one obtains

1
P(§) = [ (15)
and the auxiliary ordinary differential equation
do&) _ a2
e =0 (o). (16)

From the homogeneous balance method, it follows that n = 2, then the solution of
Eq. (14) can be written in the following form:

u(€) = ao + a1(€) + az¢”(€) - (17)

Now, applying (15), (16) and (17) to (14), we can obtain a system of nonlinear
algebraic relations among the parameters ag, a1, as,k, A and the solution of the
system by applying characteristic set, then the exact analytical solution of Eq. (13)
can be obtained when b =1

—58k?
u =

(1 —12¢(¢) + 126%(€)), (18)

where £ = kx — 15K°5% 4.
(03

Case 2. If b = 2, then

Rt
00 = (15 ) - (19)
hence the simplest equation becomes
do(€) _ s
e = 90" —0(6). (20)

From the homogeneous balance method, it follows that n = 4, then the solution of
Eq. (14) can be written in the following form:

4
u(€) = aip(§)". (21)
=0

Applying (19), (20) and (21) to (14), we can obtain a system of algebraic equations
for ag, a1, a9, as, aq, k, \. Employing Wsolve to this system, then

208k%  2408k? 2408k?
- + $()* -

« « «

¢(€)* (22)

. . . _ 240k° 3°
is an exact analytical solution of Eq. (13), where § = kx — ==_+—t.
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Case 3. If b = 3, then

1 5
?(&) = <1+e3§+50> ; (23)
and the auxiliary ordinary differential equation is
do(§) _ o4
e = 08" = 0(9). (24

By the homogeneous balance method, it follows that n = 6, then the solution of
Eq. (14) can be written in the following form:

6
=3 wole). (25)
=0

Therefore, employing (23), (24) and (25) on (14), we can obtain a system of algebraic
equations for ag, a1, as, as, aq, as, ag, k, A. Applying characteristic set in Wsolve to
this system, we can get the exact analytical solution of Eq. (13)

2 2 2
o ABBK | 5408k o(e)° — 5408k
(0% (0% «

502
where £ = kx — %t.
In addition, we can obtain several classes of the solitary wave solutions of

Eq. (13) by choosing other values of the parameter b.
To discuss the geometric properties of the solution (18), we rewrite it as

u(§) = _5fk2 (—2+3tanh2 (“50)) §=kr— 15If62t, (27)

#(€)° (26)

2

then its Monge formula is described as follows:

M = (x,t, 56k (—2 + 3 tanh? (MJ))) . (28)
« 2

Thus, the related quantities and normal vector of M are obtained:

22567k tanh®(£55) sech™(£552)7

=1
g11 + 6o 7
_ 33758%°) tanh?(££50) sech? (4450)
g2 1603 ’
B 337558141%2 tanh?($£50) sech? (4450 )
92 = 10240 )
N = ( 15ﬁk tanh( ) sech%ﬂ) M tanh(ﬂ) sech2(5+5° )7 1)
\/1 +( 22156/3;2k6 506?2’8;k14)tanh2(5+£o)SeCh4(f+5°)
I 155k (3 tanh?(£4£0 ) — 1) sech?($££0)
11 — ,

\/1+ 22156@’“6 5062557k ) fanh? (££80 ) sech? (50
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(a) (b) (c)

Fig. 1. (a) Shape and surface, (b) density plot, (c) contour plot of solution (18) with specific
values of parameters k =1, a =1, § = 1.

2256 K (3 tanh?(££50) — 1) sech?(££%)

Ly = )
\/1 4 2215521{6 50632221@14),5&11}12(5250)Sech4(§z 0)
57.12
Ly, = 7‘337?}3’“ (3 tanh2(£+§°) -1 sech2(—§+2£°) (29)
\/1 + (222K | B062BTRM )y 2 (L0 gecpd (Edto)

The Gaussian curvature K and the mean curvature H are given, respectively, as
follows:

158k% 3375858 2,64 ‘ o et
(% + ;Tﬂ.z)(?)tanh (5 250) — 1) sech (ﬁ%)

= 225820, 5062580k14 2 2 3
(1+( 16’%2 + 1652 ) tanh (—Hf")sech (—&250))2

K =0,

Therefore, a family of parabolic surfaces (K = 0, H # 0) is represented by the

15ﬁ2k
«

solution (18); on the cuspidal edge = = E" + Ztanh ™' (£ \/g) a family of

planes (K = 0, H = 0) is represented by (18), which can be given by (z,t, 5Bk )-

4
Furthermore, we can obtain the singular points of (18) as x = %t — %‘)

The following Fig. 1 give us the graph, density plot and contour plot of solution
(18) vividly.

4. Exact Solutions of the Coupled KdV System

In this section, we study the exact solutions and their geometric properties of the
coupled KdV system, which is written in the following form:

up + 6aut, — 6V, + g = 0, v + 3auv, + g, =0, (30)
To find the solitary wave solutions to the system (27), we let
u(z,t) = u(€), wv(z,t)=v(), &=kx—Mt, (31)
then the system (27) becomes
—\u' + 6kauu’ — 6kve’ + ak3u” =0, —\' 4 3kauv’ + ok =0.  (32)

1850282-7
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Similarly, as in the previous example, if we choose b = 1, then ¢(&) = H_gﬁ
The homogeneous balance method implies n = 2 and m = 1,2. Therefore, we
can choose

u(€) = ao + a16(§) + a20(€)*,  v(€) = co + c16(8). (33)
u(€) = ao + a16(§) + a20(€)*,  v(€) = co + c19(€) + c20(6)”. (34)

Substituting (32) into (31), we can get a system of algebraic equations for
ag, ai,as, bo, by, k, A. Similarly, substituting (33) into (31), we can also get a sys-
tem of algebraic equations for ag, a1, as,bg, b1, b2, k, A\. Using characteristic set in
Wsolve, we can obtain the solutions to the coupled KdV system as

() =~ 2 k) —2k%0(6)2. ,
Ul(g):_ak43—a2k/\+2ak‘43;k)\¢(§)- (35)
us(€) = A k) ko2,

() =~ Ty kg +2vaR (e "

and the Gaussian curvature K and mean curvature H of the surfaces defined by
the solutions (34) and (35), respectively:

K1,2 = 0)
(2 cosh%%)) — 3c0sh5(%)162(/<:2 +22)
(kS cosh? (5580 4 kN2 cosh? (S552) + 4 cosh®(48) — k6 — k422)3

H =

b

18 sinh(4£50) cosh® (SE50 )k (ak® — N)a2(k? + A?)
(a2k10 4+ a2kBA2 — 20k7\ — 2akPA3 + 3602 cosh* (S550) 4+ k4N2 4 k2)\1)3

Hy =+

)

(b) (©)

Fig. 2. (a) Shape and surface, (b) density plot, (c) contour plot of uz of solution (35) with specific
values of parameters k =2, a =1, A = 1.
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N

g -6 4 7 -y 2 4 6

(a) (b) (c)

Fig. 3. (a) Shape and surface, (b) density plot, (c¢) contour plot of v2 of solution (35) with specific
values of parameters k =2, a =1, A = 1.

(37)

where & = kx — At. It follows that the solutions u%; and v; represent a family of
parabolic surfaces and a family of planes.
Figures 2 and 3 are the graphs, density plot and contour plot of solution (35).

5. Exact Solutions of the Burgers—Huxley Equation
Now, let us discuss the Burgers—Huxley equation described by
Up + QUUy — Uz = Pu(l —u)(u—s), (38)

where «, § and s are constants. This equation is a typical model for describing
the interaction between reaction mechanism, convection effect and diffusion trans-
port. In 1987, Satsuma firstly obtained two solitary wave solutions by using Hirota
method. When § = 0 and « = 1, (37) is reduced to the Burgers equation; when
a = 0, (37) becomes the Hexley equation. There are many researchers who used
various techniques to obtain the solutions of the Burgers—Huxley equation. To do
this, similar to Example 3.2, we let

u(z,t) =u(§), v(z,t)=0(f), &=kz—A, (39)

making use of (35), Eq. (34) will become
X+ akuu' — k2 = Bu(l —u)(u—s). (40)
Case 1. If we choose b = 1, then ¢(§) = m By the homogeneous balance

method, the parameter n = 1, so that we can take

u(§) = ap + a19(§) - (41)

Substituting (40) into (39) in Wsolve, we can get a system of algebraic equations
for parameters ag, a1, k, A. Solving this system by using characteristic set in Wsolve,
the solitary wave solutions to (37) are obtained as follows:

u(§) = ¢(¢), (42)

1850282-9
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where
E—k ak+ﬁ(1—25)t k at+/a?+83
=k — , = I
and
u(§) = so(§) (43)
where
€= ko s(ak—&—ﬁ(s—?))t’ b= (a £ a2+8ﬁ)s.
2 4
Case 2. Let b = 2, then ¢(§) = m It follows n = 2 by the homogeneous
balance method. So that we can take
u(€) = ag + a16(§) + a19(¢)? (44)

with the help of Wsolve, substituting (43) into (39), we can get a system of algebraic
equations for parameters ag, a1, az, k, A. Using characteristic set in Wsolve, the
solitary wave solutions of (37) are obtained as follows:

u(€) =1-9(&), (45)
where
fzkx—Zak+B(2s_1)t, i —a+ oz2—|—857
4 8
and
u(§) = s6(§), (46)
where

2ak + Bs(2 — s) (—a+ a2 +80)s

4 8 '
By taking different values of the parameter b, we can obtain other types of the
solitary wave solutions of Eq. (37). Furthermore, we can perform the computations
of the Gaussian curvature K and mean curvature H of the solution (40), and obtain
them as follows:

£ =kr— t, k=

I A tanh(%) sech? (5150

K=0, 2
(64 + sech%%))%

(47)

It follows that the solution (40) represents hyperbolic surfaces and planes on the
. _ ak+B(1-2s), &
cuspidal edge z = —5—>1 — 3.
The 3D plot, density plot and contour plot of solution (40) with specific value
of parameters have been shown in Fig. 4.

1850282-10
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(a) (b) (c)

Fig. 4. (a) Shape and surface, (b) density plot, (c) contour plot of solution (40) with s = 3,
a=1,8=1.

6. Conclusion

This research mainly deals with the Rosenau-Hyman equation, the coupled KdV
system and the Burgers—Huxley equation using modified transformed rational func-
tion method. To the best knowledge of us, some new exact solutions of the afore-
mentioned equations, moreover a some geometric descriptions of obtained solutions.
All can be illustrated vividly by the given graphs. The results will play some im-
portant roles in the studying of some nonlinear phenomena in other research areas,
for instance, nonlinear physics.
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