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a b s t r a c t

We first introduce a (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq-like
(KPB-like) equation. In order to study the dynamics of lump solutions of this new model,
two dimensionally reduced cases are firstly investigated by using the generalized bilinear
method. The quadratic functions are used to construct lump solutions to the aforemen-
tioned dimensionally reduced cases. Analyzing these lumps, we find the free parameters
play an important role during the research on the dynamics of lump solutions, which are
utilized to find the sufficient and necessary conditions for guaranteeing the existence,
the analyticity and the rational localization of lump solitary waves. The triple sums
of quadratic function solutions are further studied. To show the dynamics, we present
some graphical analyses of the resulting solutions, which can be applied to the study of
nonlinear phenomena in physics, such as nonlinear optics, and oceanography.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years, the research of nonlinear partial differential equations is flourishing since they can provide a
description of the features in various fields, for example, oceanography and optics, and so on [1–43]. we noticed that
many vital nonlinear partial differential equations describing the nonlinear phenomena can be generated from Hirota
bilinear equations [1] and generalized bilinear equations [12], such as the KdV equation and the KP equation. In the
meantime, their solutions can also be constructed by using the Hirota bilinear forms and generalized bilinear forms, for
instance, constructing the rational solutions [12–15]. Additionally, the rational solutions of some nonintegrable have also
been investigated [16].

The lump solution is a special kind of rational solution and is localized in all directions in the space. Recently, the study
of lump solution has attracted a lot more attentions [15]. In this research, we aimed at using the Hirota bilinear forms
to generate some new generalized KP equation in (3+1)-dimensions and the corresponding (2+1)-dimensional reduced
cases.

It is well-known that the Kadomtsev–Petviashvili equation is applied to describe the evolution of the nonlinear and
long waves with small and slow dependence on the transverse coordinate. The restriction, which is the waves must be
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one dimensional, was relaxed by Kadomtsev and Petviashvili [17–43], so that the completely integrable KP equation was
obtained as follows:

(ut + 6uux + uxxx)x + auyy = 0

A lot of generalized KP equations have been studied in some literatures [20–23]. Particularly, one generalized KP equation
was investigated in [20]

(ut + αunux + βuxxx)x + ν(uxx + uyy + uzz) + r(uxy + uxz + uyz),

where α, β, ν, r are parameters.
Additionally, one new KP-like equation in (2+1)-dimensions

uxt + 3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx + uyy = 0, (1)

was investigated in [19–24]. This model was introduced via generalized bilinear operators and some better results have
been obtained.

Recently, the research of the lump solutions of some generalized KP equations has been concerned by many people
(e.g., see [19–36]). It is noticed that the generalized bilinear equations play an important role during the investigation of
the lump solutions [12] given by
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, m, n ≥ 0,

where αs
p = (−1)rp(s), s = rp(s) mod p.

Now, let p = 2, then we have the following

D2,tD2,xf · f = 2fxt f − 2fxft ,D4
2,xf · f = 2fxxxxf − 8fxxxfx + 6f 2xx,

D2
2,yf · f = 2fyyf − 2f 2y ,D2

2,z f · f = 2fzz f − 2f 2z ,

which can generate the standard generalized bilinear KP equation in (3+1)-dimensions in the form

(D2,tD2,x + D4
2,x + D2

2,y + D2
2,z)f · f

= 2fxt f − 2fxft + 2fxxxxf − 8fxxxfx + 6f 2xx + 2fyyf − 2f 2y + 2fzz f − 2f 2z = 0,

which is exactly corresponding to the standard Hirota case.
Such as the generalized Boussinesq equation written as

utt + 3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx = 0, (2)

and the generalized Kadomtsev–Petviashvili equation

uxt + 3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx + uyy = 0, (3)

they have the generalized bilinear forms, through u = 2(ln f )x, respectively,

(D2
3,t + D4

3,x)f · f = 2ftt f − 2f 2t + 6f 2xx = 0, (4)

and

(D3,xD3,t + D4
3,x + D2

3,y)f · f = 2fxt f − 2fxft + 6f 2xx + 2fyyf − 2f 2y = 0. (5)

So that we can get one combination of Eqs. (4) and (5) as follows

(c1D3,xD3,t + c2D2
3,t + c3D4

3,x + c4D2
3,y)f · f

= 2[c1(fxt f − fxft ) + c2(ftt f − f 2t ) + 3c3f 2xx + c4(fyyf − 2f 2y )] = 0,
(6)

which is correspondent to the following nonlinear partial differential equation

c1uxt + c2utt + c3(3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx) + c4uyy = 0. (7)
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We begin this paper with introducing a (3+1)-dimensional KPB-like equation in Section 2; then the lump solutions to
two dimensionally reduced cases will be constructed in Section 3 and Section 4, respectively. In the meantime, the triple
sum of quadratic function solutions are also discussed. To illustrate the dynamics of the resulting solutions vividly, some
important figures are provided. We conclude this paper with Section 5.

2. The Kadomtsev–Petviashvili-Boussinesq-like equation

If we assume that p be a prime number, then the generalized bilinear operators can be defined as [12]:

Dn1
p,x1 · · ·DnM

p,xM (f · g) =

M∏
i=1

(
∂

∂xi
+ αp

∂

∂x′

i
)i

×f (x1, . . . , xM )f (x′

1, . . . , x
′

M )|x′1=x1,...,x′M=xM ,

(8)

where arbitrary parameters n1, . . . , nM are all nonnegative integers, and αs
p = (−1)rp(s), s = rp(s) mod p.

Under the assumption p = 3, Eqs. (4) and (5) can be converted into the following forms

(D2
3,t + D4

3,x + D2
3,z)f · f = 2ftt f − 2f 2t + 6f 2xx + 2fzz f − 2f 2z = 0, (9)

and

(D3,xD3,t + +D3,yD3,t + D4
3,x + D2

3,y + D2
3,z)f · f

= 2fxt f − 2fxft + 2fyt f − 2fyft + 6f 2xx + 2fyyf − 2f 2y + 2fzz f − 2f 2z = 0, (10)

respectively. Thus, we can get a (3+1)-dimensional KPB-like equation by adding two more terms c2D3,yD3,t and c6D2
3,z as

follows:

(c1D3,xD3,t + c2D3,yD3,t + c3D2
3,t + c4D4

3,x + c5D2
3,y + c6D2

3,z)f · f
= 2[c1(fxt f − fxft ) + c2(fyt f − fyft ) + c3(ftt f − f 2t )
+3c4f 2xx + c5(fyyf − 2f 2y ) + c6(fzz f − 2f 2z )] = 0,

(11)

the scalar form of which is

c1uxt + c2uyt + c3utt + c4(3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx) + c5uyy + c6uzz = 0, (12)

through u = 2(ln f )x (see [44]).
As matter of a fact, the relation between f and u can be obtained as[

(c1D3,xD3,t + c2DyDt + c3D2
3,t + c4D4

3,x + c5D2
3,y + c6D2

3,z)f · f

f 2

]
x

= c1uxt + c2uyt + c3utt + c4(3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx) + c5uyy + c6uzz,

(13)

from which it follows that if f solve Eq. (11) then u = 2(ln f )x is a solution to Eq. (12) as well.

3. Lump solutions of case I

Suppose z = t , then Eq. (11) is reduced to a (2+1)-dimensional KPB-like equation

(c1D3,xD3,t + c2DyDt + c3D2
3,t + c4D4

3,x + c5D2
3,y + c6D2

3,z)f · f
= 2[c1(fxt f − fxft ) + c2(fyt f − fyft ) + (c3 + c6)(ftt f − f 2t )
+3c4f 2xx + c5(fyyf − 2f 2y )] = 0.

(14)

Therefore, applying u = 2(ln f )x, Eq. (14) is converted into

c1uxt + c2uyt + (c3 + c6)utt + c4(3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx) + c5uyy = 0. (15)

To construct the lump solitary waves of Eq. (14), we start with

f = g2
+ h2

+ a9, g = a1x + a2y + a3t + a4, h = a5x + a6y + a7t + a8, (16)
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where a′

is are real to be determined. Substituting (16) into Eq. (14), we got the relations among a′

is:

a1 = −
a22a3c5 + a2a23c2 + 2a2a6a7c5 + a2a27c2 + a33c3 + a33c6 − a3a26c5 + a3a27c3 + a3a27c6

c1(a23 + a27)

a5 =
a22a7c5 − 2a2a3a6c5 − a23a6c2 − a23a7c3 − a23a7c6 − a26a7c5 − a6a27c2 − a37c3 − a37c6

c1(a23 + a27)

a9 = −
3c4q

c41c5(a
2
3 + a27)(a2a7 − a3a6)2

,

(17)

where q is a polynomial of degree 12, for simplicity, we do not give it here. It is obvious that the set (17) has to satisfy
the following conditions

c1c4c5 ̸= 0, c4c5q < 0, △ =

⏐⏐⏐⏐a2 a3
a6 a7

⏐⏐⏐⏐ ̸= 0, (18)

which can guarantee not only f is well defined but also it is positive. Therefore, (17) gives rises to a class of positive
quadratic function solution of Eq. (14):

f = g2
+ h2

−
3c4q

c41c5(a
2
3 + a27)(a2a7 − a3a6)2

, (19)

which yields lump solutions to Eq. (15):

u = 2(ln f )x = 4
a1g + a5h

f
, (20)

with f defined by (20), and functions g and h given by

g = −
a22a3c5 + a2a23c2 + 2a2a6a7c5 + a2a27c2 + a33c3 + a33c6 − a3a26c5 + a3a27c3 + a3a27c6

c1(a23 + a27)
x + a2y + a3t + a4,

h =
a22a7c5 − 2a2a3a6c5 − a23a6c2 − a23a7c3 − a23a7c6 − a26a7c5 − a6a27c2 − a37c3 − a37c6

c1(a23 + a27)
x + a6y + a7t + a8.

(21)

It is found that there are 6 arbitrary parameters in this class of lump solutions: a2, a3, a4, a6, a7, a8, provided that the
solutions are all well defined, i.e., the determinant condition (18) is satisfied, which precisely implies that two directions
(a2, a3) and (a6, a7) are not parallel in the xy-plane . Moreover, analyzing (8), we observed that (20) is analytical in the
xy-plane if and only if a9 > 0 and u → 0 if and only if g2

+h2
→ ∞, or x2 +y2 → ∞ at any time. So that (18) guarantees

the analyticity and localization of (20).
One special example is given in the following

c1 = 1, c2 = 1, c3 = 1, c4 = −1, c5 = 1, c6 = 1,
a2 = 2, a3 = 1, a4 = 0, a6 = 1, a7 = 1, a8 = 0,

(22)

which tells us that

f = 2t2 − 22tx + 6ty +
137
2

x2 − 37xy + 5y2 +
56307

2
, (23)

u = −
4(22t − 137x + 37y)

4t2 − 44tx + 12ty + 137x2 − 74xy + 10y2 + 56307
. (24)

The contour plot of u is drawn in Fig. 1 with t = 1.
It is found that (21) generally goes to zero while △ → 0. We illustrate this by choosing

c1 = 1, c2 = 1, c3 = 1, c4 = −1, c5 = 1, c6 = 1,
a2 = 1, a3 = 1, a4 = 0, a6 = 1, a7 = 1 + ε, a8 = 0,

(25)

which leads to △ = ε, then (20) becomes

u = −
4ε2p(ε)
q(ε)

(26)

where p(x, y, t, ε) is a polynomial of degree 5, and q(x, y, t, ε) = εs(x, y, t, ε)+ 12288 is also a polynomial of degree 8. So
that it is obvious (26) goes to zero while ε → 0.
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Fig. 1. Profiles of (24) with t = 1: (a) contour plot (b) x-curve (c) y-curve.

4. Lump solutions of case II

Under the assumption z = y, Eq. (11) can be reduced to the following (2+1)-dimensional case

(c1D3,xD3,t + c2DyDt + c3D2
3,t + c4D4

3,x + (c5 + c6)D2
3,y)f · f

= 2[c1(fxt f − fxft ) + c2(fyt f − fyft ) + c3(ftt f − f 2t )

+3c4f 2xx + (c5 + c6)(fyyf − 2f 2y )] = 0.

(27)

Now, let u = 2(ln f )x, Eq. (12) turns into

c1uxt + c2uyt + c3utt + c4(3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx) + (c5 + c6)uyy = 0. (28)

It is obvious that f solves Eq. (27) implies u = 2(ln f )x solves Eq. (28). To derive the lump solitary wave solution to Eq. (28),
we begin with

f = g2
+ h2

+ a9, g = a1x + a2y + a3t + a4, h = a5x + a6y + a7t + a8, (29)

where the parameters a′

is are all real to be determined. Substituting (29) into Eq. (27) leading to

a1 = −
a22a3c5 + a22a3c6 + a2a23c2 + 2a2a6a7c5 + 2a2a6a7c6 + a2a27c2 + a33c3 − a3a26c5 − a3a26c6 + a3a27c3

c1(a23 + a27)

a5 =
a22a7c5 + a22a7c6 − 2a2a3a6c5 − 2a2a3a6c6 − a23a6c2 − a23a7c3 − a26a7c5 − a26a7c6 − a6a27c2 − a37c3

c1(a23 + a27)

a9 = −
3c4q

c41 (c5 + c6)(a23 + a27)(a2a7 − a3a6)2
,

(30)

where q is a polynomial of degree 12. For simplicity, we do not present it here. (31) has to satisfy the following condition

c1c4(c5 + c6) ̸= 0, c4(c5 + c6)q < 0, △ =

⏐⏐⏐⏐a2 a3
a6 a7

⏐⏐⏐⏐ ̸= 0. (31)

These conditions can guarantee that f is well defined and is positive.
Thus, (31) gives a rise to a class of positive quadratic function solutions of Eq. (27) as follows:

f = g2
+ h2

−
3c4q

c41 (c5 + c6)(a23 + a27)(a2a7 − a3a6)2
, (32)

which gives a rise to a class of lump solutions of Eq. (28) via u = 2(ln f )x:

u = 2(ln f )x = 4
a1g + a5h

f
, (33)

where g and h are defined as before. Via analyzing the computation, we observed the directions (a2, a3) and (a6, a7) are
not parallel in the xy-plane at all. In the meantime, It is noted that (33) is analytic if and only if a9 > 0, and at any given
time, u → 0 if and only if g2

+ h2
→ ∞, or x2 + y2 → ∞ at any time. Thus, (31) can guarantee both analyticity and

localization of (33).



Y.-L. Sun, W.-X. Ma, J.-P. Yu et al. / Computers and Mathematics with Applications 78 (2019) 840–847 845

Fig. 2. Profiles of (36) with t = 1: (a) contour plot (b) x-curve (c) y-curve.

One particular example is presented as

c1 = 1, c2 = 1, c3 = 1, c4 = −1, c5 = 1, c6 = 1,
a2 = 2, a3 = 1, a4 = 0, a6 = 1, a7 = 1, a8 = 0,

(34)

which means that

f = 2t2 − 26tx + 6ty + 109x2 − 46xy + 5y2 + 35643, (35)

u = −
4(13t − 109x + 23y)

2t2 − 26tx + 6ty + 109x2 − 46xy + 5y2 + 35643
. (36)

The contour plot, x-curve and y-curve of function u are given by Fig. 3 with t = 1 (see Fig. 2).
We observed that (33) generally goes to zero while △ in (31) tends to zero. We can illustrate this by selecting

c1 = 1, c2 = 1, c3 = 1, c4 = −1, c5 = 1, c6 = 1,
a2 = 1, a3 = 1, a4 = 0, a6 = 1, a7 = 1 + ε, a8 = 0,

(37)

which leads to △ = ε, then the lump solution (33) becomes

u = −
8ε2p(ε)
q(ε)

(38)

where p(x, y, t, ε) is a polynomial of degree 5 and q(x, y, t, ε) = εs(x, y, t, ε) + 12288 is a polynomial of degree 8. it is
clear that (38) goes to zero when ε → 0.

5. Triple sum of quadratic function solutions

Within this section, we utilize the triple sum of quadratic functions to construct lump solutions. The definition of
multiple sum of quadratic function solutions was firstly proposed in [34], all the references can be found therein. Assume
that

f =

M1∑
i≥1

g2
i +

M2∑
j≥1

h2
j + c4(M1+M2)+1, (39)

where

gi = a1ix + a2iy + a3it + a4i, hj = b1jx + b2jy + b3jt + b4j

and a1i, a2i, a3i, a4i, b1j, b2j, b3j, b4j, c4(M1+M2)+1 are arbitrary real constants and M1,M2 are integers. For the particular case
of Eq. (11):

(D3,xD3,t + D3,yD3,t − D2
3,t + D4

3,x − D2
3,y)f · f

= 2[(fxt f − fxft ) + (fyt f − fyft ) − (ftt f − f 2t )
+3f 2xx − (fyyf − 2f 2y )] = 0

(40)

Applying the transformation u = 2(ln f )x, we converted Eq. (40) into

uxt + uyt − utt + (3uxuxx + 3uu2
x +

3
2
u3ux +

3
2
u2uxx) − uyy = 0. (41)
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Fig. 3. Profiles of (45) with t = 1: (a) contour plot (b) x-curve (c) y-curve.

To find the triple sum of positive quadratic function solutions of Eq. (40), we start with

f = (ax + t + y + 1)2 + (x + by)2 + (ct)2 + d
g = (ax + t + y + 1)2, h = (x + by)2, w = (ct)2,

(42)

where the real parameters a, b, c, d are all to be determined. After substituting (42) into Eq. (40), we obtained

a1 = −α2
− α + 1, b = α, c = α, d = 6α2

+ 8α − 5, (43)

where α is the real root of Z3
+ Z2

− Z + 1 = 0 presented by

α = −
1
3
(19 + 3

√
33)

1
3 −

4

3(19 + 3
√
33)

1
3

− 1/3

and d > 0. All have been validated in Maple.
Therefore, (42) gives a rise to a triple sum of quadratic function solution to Eq. (40):

f = ((−α2
− α + 1)x + y + t + 1)2 + (x + αy)2 + (αt)2 + 6α2

+ 8α − 5 (44)

and the resulting quadratic function solution turns out some lump solutions of Eq. (41) via u = 2(ln f )x:

u = 2(ln f )x = 4
(−α2

− α + 1)((−α2
− α + 1)x + y + t + 1) + (x + αy)

((−α2 − α + 1)x + t + y + 1)2 + (x + αy)2 + (αt)2 + 6α2 + 8α − 5
, (45)

where the functions f , g, h are defined as above. The contour plots, x-curve and y-curve of u are presented by Fig. 3 with
t = 1.

6. Conclusions

A lot of researchers have paid much more attention to the research of lump solutions to the KP equation or
KP-like equations recently. Applying the generalized bilinear method, we analyzed the dynamics of the introduced
(3+1)-dimensional KPB-like equation (12) through investigating lump solutions of two special cases. So that we got
the conditions for the analyticity and localization of the lump solitary waves. We observed lump solution goes to zero
when △ → 0 illustrated by the corresponding graphs.

For the decreasing solutions dependent rationally on x are related to Hamiltonian flow from Moser’s theory of Toda
system, and the nondecreasing solutions dependent rationally on x and y are connected with a generalized multiple
particle Moser system, so that people have paid many concerns to investigate the dynamics of lumps [13], which can
be efficiently obtained via the generalized bilinear method [12]. The higher order extensions and multiple component
of lumps display very different soliton phenomenon, hence, they are very important and interesting research topics
now. [34] firstly introduced the definition and form of sums of higher-order even function solutions or multiple sums of
quadratic function solutions to study the dynamics of lumps. We studied the triple sum of quadratic function solutions of
Eq. (12). Additionally, since rogue wave solutions and lumps can be derived from positive polynomial solutions, as a future
research, we will also study the existence of positive polynomial solutions, which has attracted many mathematicians and
physicists [18,44].
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