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In this paper, a generalized three-component Hirota—Satsuma coupled KdV equa-
tion describing the interactions of two long waves with different dispersion
relations, is investigated. Applying Hirota bilinear operator theory, the bilinear
form of the proposed model is first obtained, and then its N-soliton solutions are
given in explicit forms. Finally, the analysis of the dynamic property shows that
the collisions between two solitons are elastic.
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1. Introduction

Soliton solutions of nonlinear partial differential equations (NPDEs) can describe many complicated and

nonlinear wave phenomena. Therefore, finding analytic solutions, particularly N-soliton solutions, is now

becoming more and more important in solitary wave theory [1-23]. During the research, a lot of effective
methods have been proposed. For instance, the Bicklund method [24-27], the F-expansion method [28], the
inverse scattering transformation (IST) approach [29-31], the unified transformed method [32], the Darboux
transformation method [33], the Hirota direct method [34], the algebra geometric method [35], and so on.
In Ref. [36], we presented and studied the following generalized two-component Hirota—Satsuma coupled

KdV equation:

up = a(Uggpe — BuLy) + 3b(|v|2)$,vt = —Vpzx + UV, (1)
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which might be employed to investigate the interaction phenomena between long waves with different dis-
persive relations. In this letter, we further study the following generalized three-component Hirota—Satsuma
coupled KdV equation as follows:

U = a(Ugge — Buty) + 3D(VW) g, Vs = —Vgzy + 3UVL, W = —Wage + SUW,, (2)

where a and b are arbitrary real constants. 3b(vw), is the force term on the KdV wave system with
dispersion relation w = —k>. (2) can be reduced to the general KdV system without the effect of v and
w. When a = %,b = 1, (2) becomes the well-known generalized Hirota—Satsuma coupled KdV equation
firstly introduced [37] and studied by researchers [35-39]. We might hope to obtain N-soliton solutions of
the complex coupled system (2) with a = 3 and b # 0 and the asymptotic analysis. To the best of our
knowledge, (2) has not been revealed and studied by using the Hirota direct approaching previous articles.

The structure of this paper is: In Section 2, the Hirota bilinear form of (2) is derived, and soliton solutions
are expressed in explicit forms. In Section 3, the dynamic property analysis for two-soliton solutions is done,
which might prove that the collisions between soliton solutions are elastic. Finally, some conclusions are

given in Section 4.
2. The bilinear form and IN-soliton solutions

It is well-known that the Hirota bilinear method is a powerful and effective tool for studying soliton
solutions of many important equations. Now, we use the following two transformations to derive the bilinear
form of (2)

u=—=2(Inf)pz,v (3)

_ 9 -l
BT
where f = f(x,t) is a real function, g = g(x,t) and h = h(z,t) are complex functions. Substituting (3) into
(2) and applying the properties of Hirota bilinear operators, we obtain bilinear form of (2) as follows:

(303 = DaDy)f - f = bgh, (Dt + D3)g - f = 0,(Dy + D3)h - f =0, (4)

where D, and D; are Hirota bilinear operators defined by

S, 0] aN" [0 a\"
Dbyt = (8:6 - 837) (ay ) ay) A VY ot =y (5)
Using the perturbation technique, we expand f and g into power series :

f=1+f@2 4 fWet 4.4 fER2E L
g = g(l)e -+ 9(3)63 + o+ g(2k+1)62k+1 4+ (6)
h=hWe+4+h®e 4.0 f D 2R41 4

where € is a small parameter.
Substituting these expansions into (4) and collecting terms of each order of small parameter ¢ yield the
following three sets of relations

g+ g =0, (7)
0¥ + @), = (D, + D3)gW - 1, 8)
9 + g0, = —(D, + D2)(gV - fO 4 @) . 2y, (9)
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nY 4 hY, =0, (10)
n? + ), = (Do + DHAD - ), (11)
B+ 03, = (Do DAY - fO 1 - £, (12)
2542, — 1) = gV A) (13)
2<§fm D) = ~(3DE = DD - [+ bgMR) g IR (14)
25 f e — 1) = (D4 = DD - 19 4 b(gRE) 4 g IR 4 gD 0) (15)

2.1. One-soliton solutions
According to (1), we suppose
g(l) — efl,h(l) =en, (16)

where
&=k +pit + &, p1 = ki, m = kix +wit + 17, w0y = —k3, (17)

with k1,p1, k1,w; real constants and £9,79 complex numbers. Plugging (16) into (13), we have

1
2(2f95zacx - f(2)) - b6£1+n1 (18)
One solution of which is easily obtained
@) bef1t+m
I = (19)

Plugging (19) into (8) and (11) generates two equations

9 + g2, = 0,0 + 3, =0, (20)

rrxr xrxrxr

which implies that ¢(® = 0, h(3) = 0 are solutions. Similarly, we are able to take f(* = ¢g® = p(5) = f(6) =
.- = 0, which means that the expansions of f, g and h could be truncated into the following finite sums

F=1+fP =14 Ae801m g=gM) =¢&1 p=p =¢n (21)

ith
w1 b
3(]'{31 + lil)z(k% + Iﬁ%) '

It is noted the small perturbation parameter € might be absorbed into the phase constant £ in the exponent

Ay = (22)

&1, so taking € = 1, we obtain the solution of (2)

81 _ el
u=—2(In(1+ A1 tM)), 0 = Va(r Al YT B a g (23)

Actually, (21) might be rewritten in a convenient form
fi=1+ f(2) =14 €£1+m+613,91 — g(l) — 6517h1 =) = gm (24)

ith
w1 b
3(ki 4 k1)2(kF + K3)
3

ef13 —
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Then, one-soliton solution could be expressed explicitly as

w= 72(1n(1 + e£1+n1+913))mm _ (k1+2m)2 seCh2(£1+n§+013)7
31 (k1+r1)2 (K2 4K2) . _ £141140
v = \/§(1+e§1+’71+913) = 5 eb1 M sech( & y 13, (26)
L m A (BRD)2(R34RT) 140140
w == \/§.(1+e§1+’71+913) — 5 e 5lsech( 1 % 13)7

Particularly, if a = §,b = 1, the solution (26) coincides with that in [39].

2.2. Two-soliton solutions

It is obvious that Eq. (7) also admits the following solutions

g(l) =81 4 6527 A — om + e, (27)
where
with dispersive relations
pi=—k,(j=12),w;=—x,(j =1,2), (29)

with kj,pj,gg, k; real numbers and ,wj,n? complex numbers. Plugging (27) into (13) results in

1 )
2 1+m §1+m2 Ea+m §2+1m2 30
R e )] (30)
whose solution is
f(2) — A13651+771 +A14ef1+712 +A23e§2+m +A24e€2+712’ (31)
where b b b
9 = S A1 e T 4% S S T (32)

Aoy = ,Big = A3, B1y = Aoz, Boz = A14, Boy = Agy.

(k2+f€2) (k3+r3)’
Using (31), (27), (8) and (11), we get the solutions of (8) and (11), respectively,

9@ = A5 A13Aszef1te2tm 4 A p Ay AggefitE2tm2 p3) = By BigBogemT12H€1 4 By By BogeM t2té2

(33)
where ) . )
_ ((k1+k2)?+2(K3+K2)) (k1 —ko) (r14r2)3+2(k5+E3)) (k1 -k 2
A=ty B T ) (34)
In the same way, we get one solution of Eq. (14) as follows:
FO = A1pA13 A1y Ags Ay AggetrTeatmtnz, (35)
where
A34 = Bis. (36)
If we further substitute ¢g(¥, g3 (M 13 and @) £ into (9), (12) and (15), we conclude that g(® =0
is a solution of (9) h®) = 0 is a solution of (12) and £ = 0 is a solution of (15). Similarly, we get
g =nM = & = = 0. Now, we take e = 1, functions f and g, h are truncated to the following forms:

fo=14 A1zef1tm 4 A efrtnz 4 Aggef2tm 4 Ay ef2tm2 4 A5 A3 A1, Aoz Agy Aggelt TE2 Mtz
go = €51 + €52 + A9 A13Agzefiteetm 4 A5 A1, Agyefrtoatnz (37)
ho = €M + "2 + B3 B13BgyseM 1281 4 By By Byjemtmtez,

4
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Plugging(37) into (3) yields a solution of Eq. (2).
To express two-soliton solutions of Eq. (2) explicitly, we rewrite A,;, B;; as

Aj=e"(1<i<j<4),By=e%, (1<i<j<4,i=1,2). (38)

Hence, functions f> and g, might be rewritten

fo =14 esrtmtois 4 litmetia 4 platm+oas 4 elatmatoa
tebrtéetnitna+012+013+014+023+024+054

go = €81 4 82 4 efrtéatmtOiat0ist0a3 4 &1 +EatmatO12+01a 4024 (39)
ho = M + "2 4 eMtmteithizt+Bizthos 4 emtnz+ia+Prat+hiatho
Plugging (37)) into (3) yields a two-soliton solution of Eq. (2) as
w = —2(n(fo))earv = L2 = 2 (10)
V3fa V3f2

2.3. N-soliton solutions

Generally, in order to construct N-soliton solutions, functions fy,gny can be written in the following

forms:
j PPNy
In =201 Bi(w) Ih<jci<an (Aj)"itt (p)e~i=1 7%,
2N
IN =01 Be(w)hi<jci<an (Aji)"it (M)eZF1 Hits, (41)
2N
hn =32,01 Bs(W) Ih<j<i<on (Bj)Hat (M)ez]':1 S
with

EN+j =njN+ =&, (G =12,...,N),

) 3(k;—ky)2 (k2+k?) .
Aij‘i‘l: 3(kj+nl)b2(k]2_+,€12)7(]al:172a'~'7N)aAj,l: ! b L 7(1§]<ZSN)7 (42)
3(nj7/il)2(f€?+nl2) X X
Bji=Antjnp=——3 1, (1< j<I<N),Bjny = AN, =1,2,...,N),

B;(p), (7 = 1,2,3) take over all possible combinations of yu; = 0,1,(j = 1,2,...,2N). Additionally, By ()
satisfies the condition Zf;l Wi = Z;\le UN+j, Ba(p) and Bs(u) both satisfy Zjvzl Wi = Z;vzl pn+; + 1.
Substituting (41) into (3) gives rise to some solutions of (2).

Now, we rewrite functions fy, gn,hn as follows:

2N 2N 2N 2N
IN=201 B1(M)ezj=1 READMIPIe Hitit gy = 2 =01 BQ(M)erZI ngﬁZlSKle@ﬂ,

2N 2N (43)
hn =2 -0 BB(M)GZJ:I K2 S
with
elit = Ay, efit = By, (1 <j <1<2N). (44)
Substituting (41) into (3) leads to some N-soliton solutions
gN hy
u=—=2(In fN)zz,v = . (45)

B \/ngMU V3fn

3. Dynamic property analysis

To better understand the dynamic properties of collisions between two solitons, the analysis sometimes
needs to be performed using the technique in [40]. Therefore, some important physical quantities of solitons

5
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Fig. 1. Evolution profile of the interaction between two solitons u expressed in (40) (a). Three-dimensional plot; (b) The interaction
process plots; (c¢) Contour plot.

-40 -20 0 20 40
X

(a) (b) (©

Fig. 2. Evolution profile of the interaction solution v in (40) (a). Three-dimensional plot; (b) The interaction process plots;2(c)
Contour plot.

before and after collisions might be found from the following useful graphs. For simplicity, we graphically
show the collisions between two solitons are elastic. given the following graphs with specific parameters
y=1,b=3k = L,ky = 2,51 = 2,k = 1, = &9 = 0,n) = 79 = 0. It is obvious that the collisions
between two solitons might be elastic. Since their respective amplitudes and velocities keep the same as
those before collisions, only might some phase shifts be changed. Fig. 1 illustrates the collisions between
two solitons. Meanwhile, it is also observed that the two solitons with u are dark solitons, which both travel
from left to right. The soliton with larger amplitude propagates much faster than another one with smaller
amplitude, the faster soliton travels cross the slower one. Moreover, during the collision process, the faster
soliton is suppressed in its amplitude, but the slower one is enhanced temporarily. Fig. 1(b) shows that
these two solitons almost merge into a single pulse at the moment of ¢t = 0. Fig. 1(a)—(c) tell us that the two
solitons travel forward and keep their original velocities, amplitudes and widths after the collisions.

Fig. 2(a)—(c) show us the collisions between two solitons with v and w being bright solitons, respectively.
Moreover, the corresponding two solitons both travel from left to right. As aforementioned discuss, the soliton
with larger amplitude propagates much faster than another one with smaller amplitude, the faster soliton
moves passes the slower one. Moreover, during the collisions, the faster soliton is suppressed in its amplitude,
but the slower one is enhanced temporarily. Figs. 2(b) and 3(b))show us that the two solitons almost merge
into a single pulse at the moment of ¢ = 0. Figs. 2 and 3 illustrate that their two solitons keep moving
forward and keep their original velocities, amplitudes and widths after their collisions.

4. Conclusions

In this paper, we studied a generalized three-component Hirota—Satsuma coupled KdV equation and
obtained the bilinear form (4) and N-soliton solutions (45). Additionally, the dynamic properties of two

6
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(a) (b) (©)

Fig. 3. Evolution profile of the interaction solution w in (40) (a) Three-dimensional plot; (b) The interaction process plots; (c)
Contour plot.

solitons (40) is performed. According to the graph and analysis, we conclude that the collisions between two
solitons are elastic. In the future, we will apply this method to study other PDEs and physical phenomena. As
an interesting and meaningful and future work, we will study the lump-soliton solutions and the interaction
solutions of the proposed model based on the results obtained in [41-44].
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