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a b s t r a c t

In this paper, a generalized three-component Hirota–Satsuma coupled KdV equa-
tion describing the interactions of two long waves with different dispersion
relations, is investigated. Applying Hirota bilinear operator theory, the bilinear
form of the proposed model is first obtained, and then its N -soliton solutions are
given in explicit forms. Finally, the analysis of the dynamic property shows that
the collisions between two solitons are elastic.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Soliton solutions of nonlinear partial differential equations (NPDEs) can describe many complicated and
nonlinear wave phenomena. Therefore, finding analytic solutions, particularly N -soliton solutions, is now

ecoming more and more important in solitary wave theory [1–23]. During the research, a lot of effective
ethods have been proposed. For instance, the Bäcklund method [24–27], the F-expansion method [28], the

nverse scattering transformation (IST) approach [29–31], the unified transformed method [32], the Darboux
ransformation method [33], the Hirota direct method [34], the algebra geometric method [35], and so on.

In Ref. [36], we presented and studied the following generalized two-component Hirota–Satsuma coupled
dV equation:

ut = a(uxxx − 6uux) + 3b(|v|2)x, vt = −vxxx + 3uvx, (1)
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which might be employed to investigate the interaction phenomena between long waves with different dis-
persive relations. In this letter, we further study the following generalized three-component Hirota–Satsuma
coupled KdV equation as follows:

ut = a(uxxx − 6uux) + 3b(vw)x, vt = −vxxx + 3uvx, wt = −wxxx + 3uwx, (2)

where a and b are arbitrary real constants. 3b(vw)x is the force term on the KdV wave system with
dispersion relation w = −k3. (2) can be reduced to the general KdV system without the effect of v and

. When a = 1
2 , b = 1, (2) becomes the well-known generalized Hirota–Satsuma coupled KdV equation

rstly introduced [37] and studied by researchers [35–39]. We might hope to obtain N-soliton solutions of
he complex coupled system (2) with a = 1

2 and b ̸= 0 and the asymptotic analysis. To the best of our
knowledge, (2) has not been revealed and studied by using the Hirota direct approaching previous articles.

The structure of this paper is: In Section 2, the Hirota bilinear form of (2) is derived, and soliton solutions
are expressed in explicit forms. In Section 3, the dynamic property analysis for two-soliton solutions is done,
which might prove that the collisions between soliton solutions are elastic. Finally, some conclusions are
given in Section 4.

2. The bilinear form and N -soliton solutions

It is well-known that the Hirota bilinear method is a powerful and effective tool for studying soliton
solutions of many important equations. Now, we use the following two transformations to derive the bilinear
form of (2)

u = −2(ln f)xx, v = g√
3f

, w = h√
3f

, (3)

here f = f(x, t) is a real function, g = g(x, t) and h = h(x, t) are complex functions. Substituting (3) into
2) and applying the properties of Hirota bilinear operators, we obtain bilinear form of (2) as follows:

( 1
2 D4

x − DxDt)f · f = bgh, (Dt + D3
x)g · f = 0, (Dt + D3

x)h · f = 0, (4)

here Dx and Dt are Hirota bilinear operators defined by

Dm
x Dn

y a · b =
(

∂

∂x
− ∂

∂x′

)m (
∂

∂y
− ∂

∂y′

)n

a(x, y)b(x′, y′)|x′=x,y′=y. (5)

sing the perturbation technique, we expand f and g into power series :

f = 1 + f (2)ϵ2 + f (4)ϵ4 + · · · + f (2k)ϵ2k + · · · ,
g = g(1)ϵ + g(3)ϵ3 + · · · + g(2k+1)ϵ2k+1 + · · · ,
h = h(1)ϵ + h(3)ϵ3 + · · · + h(2k+1)ϵ2k+1 + · · · ,

(6)

where ϵ is a small parameter.
Substituting these expansions into (4) and collecting terms of each order of small parameter ϵ yield the

ollowing three sets of relations

g
(1)
t + g(1)

xxx = 0, (7)
g

(3)
t + g(3)

xxx = −(Dt + D3
x)g(1) · f (2), (8)

g
(5)
t + g(5)

xxx = −(Dt + D3
x)(g(1) · f (4) + g(3) · f (2)), (9)

· · · · · · · · ·

2
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t + h(1)

xxx = 0, (10)
h

(3)
t + h(3)

xxx = −(Dt + D3
x)h(1) · f (2), (11)

h
(5)
t + h(5)

xxx = −(Dt + D3
x)(h(1) · f (4) + h(3) · f (2)), (12)

· · · · · · · · ·

2(1
2f (2)

xxxx − f
(2)
xt ) = bg(1)h(1) (13)

2(1
2f (4)

xxxx − f
(4)
xt ) = −(1

2D4
x − DxDt)f (2) · f (2) + b(g(1)h(3) + g(3)h(1)) (14)

2(1
2f (6)

xxxx − f
(6)
xt ) = −(1

2D4
x − DxDt)f (2) · f (4) + b(g(1)h(5) + g(3)h(3) + g(5)h(1)) (15)

· · · · · · · · ·

2.1. One-soliton solutions

According to (1), we suppose
g(1) = eξ1 , h(1) = eη1 , (16)

where
ξ1 = k1x + p1t + ξ0

1 , p1 = −k3
1, η1 = κ1x + ω1t + η0

1 , ω1 = −κ3
1, (17)

ith k1, p1, κ1, ω1 real constants and ξ0
1 , η0

1 complex numbers. Plugging (16) into (13), we have

2(1
2f (2)

xxxx − f
(2)
xt ) = beξ1+η1 . (18)

ne solution of which is easily obtained
f (2) = beξ1+η1

24k4
1

(19)

lugging (19) into (8) and (11) generates two equations

g
(3)
t + g(3)

xxx = 0, h
(3)
t + h(3)

xxx = 0, (20)

hich implies that g(3) = 0, h(3) = 0 are solutions. Similarly, we are able to take f (4) = g(5) = h(5) = f (6) =
· · · = 0, which means that the expansions of f , g and h could be truncated into the following finite sums

f = 1 + f (2) = 1 + A1eξ1+η1 , g = g(1) = eξ1 , h = h(1) = eη1 (21)

with
A1 = b

3(k1 + κ1)2(k2
1 + κ2

1) . (22)

t is noted the small perturbation parameter ϵ might be absorbed into the phase constant ξ0
1 in the exponent

1, so taking ϵ = 1, we obtain the solution of (2)

u = −2(ln(1 + A1eξ1+η1))xx, v = eξ1√
3(1+A1eξ1+η1 ) , w = eη1√

3(1+A1eξ1+η1 ) . (23)

ctually, (21) might be rewritten in a convenient form

f1 = 1 + f (2) = 1 + eξ1+η1+θ13 , g1 = g(1) = eξ1 , h1 = h(1) = eη1 (24)

ith
eθ13 = b

2 2 2 . (25)
3(k1 + κ1) (k1 + κ1)
3
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Then, one-soliton solution could be expressed explicitly as

u = −2(ln(1 + eξ1+η1+θ13))xx = − (k1+κ1)2

2 sech2( ξ1+η1+θ13
2 ),

v = eξ1√
3(1+eξ1+η1+θ13 ) =

√
(k1+κ1)2(k2

1+κ2
1)

2 eξ1−η1sech( ξ1+η1+θ13
2 ),

w == eη1√
3(1+eξ1+η1+θ13 ) =

√
(k1+κ1)2(k2

1+κ2
1)

2 eη1−ξ1sech( ξ1+η1+θ13
2 ),

(26)

articularly, if a = 1
2 , b = 1, the solution (26) coincides with that in [39].

.2. Two-soliton solutions

It is obvious that Eq. (7) also admits the following solutions

g(1) = eξ1 + eξ2 , h(1) = eη1 + eη2 , (27)

here
ξj = kjx + pjt + ξ0

j , ηj = κjx + ωjt + η0
j , (j = 1, 2), (28)

ith dispersive relations
pj = −k3

j , (j = 1, 2), ωj = −κ3
j , (j = 1, 2), (29)

ith kj , pj , ξ0
j , κj real numbers and , ωj , η0

j complex numbers. Plugging (27) into (13) results in

2(1
2f (2)

xxxx − f
(2)
xt ) = b(eξ1+η1 + eξ1+η2 + eξ2+η1 + eξ2+η2), (30)

whose solution is
f (2) = A13eξ1+η1 + A14eξ1+η2 + A23eξ2+η1 + A24eξ2+η2 , (31)

where
A13 = b

3(k1+κ1)2(k2
1+κ2

1) , A14 = b
3(k1+κ2)2(k2

1+κ2
2) , A23 = b

3(k2+κ1)2(k2
2+κ2

1) ,

A24 = b
3(k2+κ2)2(k2

2+κ2
2) , B13 = A13, B14 = A23, B23 = A14, B24 = A24.

(32)

sing (31), (27), (8) and (11), we get the solutions of (8) and (11), respectively,

g(3) = A12A13A23eξ1+ξ2+η1 + A12A14A24eξ1+ξ2+η2 , h(3) = B12B13B23eη1+η2+ξ1 + B12B14B24eη1+η2+ξ2

(33)
where

A12 = ((k1+k2)3+2(k3
1+k3

2))(k1−k2)2

b(k1+k2) , B12 = ((κ1+κ2)3+2(κ3
1+k3

2))(κ1−κ2)2

b(κ1+κ2) . (34)

n the same way, we get one solution of Eq. (14) as follows:

f (4) = A12A13A14A23A24A34eξ1+ξ2+η1+η2 , (35)

here
A34 = B12. (36)

f we further substitute g(1), g(3), h(1), h(3) and f (2), f (4) into (9), (12) and (15), we conclude that g(5) = 0
s a solution of (9), h(5) = 0 is a solution of (12) and f (6) = 0 is a solution of (15). Similarly, we get
g(7) = h(7) = f (8) = · · · = 0. Now, we take ϵ = 1, functions f and g, h are truncated to the following forms:

f2 = 1 + A13eξ1+η1 + A14eξ1+η2 + A23eξ2+η1 + A24eξ2+η2 + A12A13A14A23A24A34eξ1+ξ2+η1+η2 ,
g2 = eξ1 + eξ2 + A12A13A23eξ1+ξ2+η1 + A12A14A24eξ1+ξ2+η2 ,

η1 η2 η1+η2+ξ1 η1+η2+ξ2
(37)
h2 = e + e + B12B13B23e + B12B14B24e .

4



Y.-L. Sun, W.-X. Ma and J.-P. Yu Applied Mathematics Letters 120 (2021) 107224

H

2

f

w

B

s
S

3

n

Plugging(37) into (3) yields a solution of Eq. (2).
To express two-soliton solutions of Eq. (2) explicitly, we rewrite Aij , Bij as

Aij = eθij (1 ≤ i < j ≤ 4), Bij = eβij , (1 ≤ i < j ≤ 4, i = 1, 2). (38)

ence, functions f2 and g2 might be rewritten

f2 = 1 + eξ1+η1+θ13 + eξ1+η2+θ14 + eξ2+η1+θ23 + eξ2+η2+θ24

+eξ1+ξ2+η1+η2+θ12+θ13+θ14+θ23+θ24+θ34

g2 = eξ1 + eξ2 + eξ1+ξ2+η1+θ12+θ13+θ23 + eξ1+ξ2+η2+θ12+θ14+θ24 ,
h2 = eη1 + eη2 + eη1+η2+ξ1+β12+β13+β23 + eη1+η2+ξ2+β12+β14+β24 .

(39)

Plugging (37)) into (3) yields a two-soliton solution of Eq. (2) as

u = −2(ln(f2))xx, v = g2√
3f2

, v = h2√
3f2

. (40)

.3. N-soliton solutions

Generally, in order to construct N -soliton solutions, functions fN , gN can be written in the following
orms:

fN =
∑

µ=0,1 B1(µ)Π1≤j<l≤2N (Ajl)µjµl(µ)e
∑2N

j=1 µjξj ,

gN =
∑

µ=0,1 B2(µ)Π1≤j<l≤2N (Ajl)µjµl(µ)e
∑2N

j=1 µjξj ,

hN =
∑

µ=0,1 B3(µ)Π1≤j<l≤2N (Bjl)µjµl(µ)e
∑2N

j=1 µjηj ,

(41)

ith

ξN+j = ηj , ηN+j = ξj , (j = 1, 2, . . . , N),

Aj,N+l = b
3(kj+κl)2(k2

j
+κ2

l
) , (j, l = 1, 2, . . . , N), Aj,l = 3(kj−kl)2(k2

j +k2
l )

b , (1 ≤ j < l ≤ N),

Bj,l = AN+j,N+l = 3(κj−κl)2(κ2
j +κ2

l )
b , (1 ≤ j < l ≤ N), Bj,N+l = Al,N+j(j, l = 1, 2, . . . , N),

(42)

j(µ), (j = 1, 2, 3) take over all possible combinations of µj = 0, 1, (j = 1, 2, . . . , 2N). Additionally, B1(µ)
atisfies the condition

∑N
j=1 µj =

∑N
j=1 µN+j , B2(µ) and B3(µ) both satisfy

∑N
j=1 µj =

∑N
j=1 µN+j + 1.

ubstituting (41) into (3) gives rise to some solutions of (2).
Now, we rewrite functions fN , gN , hN as follows:

fN =
∑

µ=0,1 B1(µ)e
∑2N

j=1 µjξj+
∑2N

1≤j<l
µjµlθjl , gN =

∑
µ=0,1 B2(µ)e

∑2N

j=1 µjξj+
∑2N

1≤j<l
µjµlθjl ,

hN =
∑

µ=0,1 B3(µ)e
∑2N

j=1 µjηj+
∑2N

1≤j<l
µjµlβjl ,

(43)

with
eθjl = Ajl, eβjl = Bjl, (1 ≤ j < l ≤ 2N). (44)

Substituting (41) into (3) leads to some N -soliton solutions

u = −2(ln fN )xx, v = gN√
3fN

, w = hN√
3fN

. (45)

. Dynamic property analysis

To better understand the dynamic properties of collisions between two solitons, the analysis sometimes
eeds to be performed using the technique in [40]. Therefore, some important physical quantities of solitons
5
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Fig. 1. Evolution profile of the interaction between two solitons u expressed in (40) (a). Three-dimensional plot; (b) The interaction
rocess plots; (c) Contour plot.

Fig. 2. Evolution profile of the interaction solution v in (40) (a). Three-dimensional plot; (b) The interaction process plots;2(c)
Contour plot.

before and after collisions might be found from the following useful graphs. For simplicity, we graphically
show the collisions between two solitons are elastic. given the following graphs with specific parameters
y = 1, b = 3, k1 = 1, k2 = 2, κ1 = 2, κ2 = 1, ξ0

1 = ξ0
2 = 0, η0

1 = η0
2 = 0. It is obvious that the collisions

etween two solitons might be elastic. Since their respective amplitudes and velocities keep the same as
hose before collisions, only might some phase shifts be changed. Fig. 1 illustrates the collisions between
wo solitons. Meanwhile, it is also observed that the two solitons with u are dark solitons, which both travel
rom left to right. The soliton with larger amplitude propagates much faster than another one with smaller
mplitude, the faster soliton travels cross the slower one. Moreover, during the collision process, the faster
oliton is suppressed in its amplitude, but the slower one is enhanced temporarily. Fig. 1(b) shows that
hese two solitons almost merge into a single pulse at the moment of t = 0. Fig. 1(a)–(c) tell us that the two
olitons travel forward and keep their original velocities, amplitudes and widths after the collisions.

Fig. 2(a)–(c) show us the collisions between two solitons with v and w being bright solitons, respectively.
oreover, the corresponding two solitons both travel from left to right. As aforementioned discuss, the soliton
ith larger amplitude propagates much faster than another one with smaller amplitude, the faster soliton
oves passes the slower one. Moreover, during the collisions, the faster soliton is suppressed in its amplitude,
ut the slower one is enhanced temporarily. Figs. 2(b) and 3(b))show us that the two solitons almost merge
nto a single pulse at the moment of t = 0. Figs. 2 and 3 illustrate that their two solitons keep moving
orward and keep their original velocities, amplitudes and widths after their collisions.

. Conclusions

In this paper, we studied a generalized three-component Hirota–Satsuma coupled KdV equation and

btained the bilinear form (4) and N -soliton solutions (45). Additionally, the dynamic properties of two

6
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Fig. 3. Evolution profile of the interaction solution w in (40) (a) Three-dimensional plot; (b) The interaction process plots; (c)
ontour plot.

olitons (40) is performed. According to the graph and analysis, we conclude that the collisions between two
olitons are elastic. In the future, we will apply this method to study other PDEs and physical phenomena. As
n interesting and meaningful and future work, we will study the lump-soliton solutions and the interaction
olutions of the proposed model based on the results obtained in [41–44].
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