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Abstract
This paper examines the three-component coupled nonlinear Schrödinger equation, which has
various applications in deep ocean, nonlinear optics, Bose–Einstein (BE) condensates, andmore. On
the basis of seed solutions and a Lax pair, theNth-order iterative expressions for the solutions are
derived by using the generalizedDarboux transformation. The evolution plots of dark-bright-rogue
wave or breather-roguewave are then obtained via numerical simulation. Particularly, a novel rogue
wave propagation trajectory is found in the second and third order localizedwave solutions.
Moreover, by increasing the value of the free parameterα andβ, the nonlinear wavesmergewith each
other distinctly. The results further reveal the abundant dynamical patterns of localizedwaves in the
three-component coupled system.

1. Introduction

TheMulti-component coupled nonlinear Schrödinger (NLS) equations can be used to describe a variety of
complex physical phenomena, and they possessmore abundant dynamical behaviors of localizedwave solutions
than do the scalarNLS equations [1–7]. Roguewaves on amulti-soliton background for theManakov system
have been studied by using theDarboux-dressing transformation [1]. The bright–dark–rogue solution [2] and
other higher-order localizedwaves are all found in a two-component coupledNLS equation [3, 4]. A four-
petaledflower structure roguewave is exhibited in a three-component coupledNLS equation [5]. Soliton
solutions are generated from the binaryDarboux transformation (DT) formulticomponentNLS equations and
their reductions [6]. The general N -soliton solution andNth-order vector rational and semi-rational rogue
waves for a three-component coupledNLS equation have also been found by using differentmethods [7, 8].
Meanwhile,manymethods have been presented tofind localizedwave solutions, including Bӓcklund
transformation [9–11], the nonlinear steepest descentmethod [11–15], the Riemann–Hilbert approach [16], the
DT [17–20], andmore. Based on the profound theoretical significance and potential applicability, the study of
localizedwaves of themulti-componentNLS equations has always been important, and great progresses have
beenmade [21–24] in this area.

Motivated by the aforesaidwork, the three-component coupledNLS equation is considered [27–30]:
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which can be applied in plasma physics [25], nonlinear optics [26], Bose–Einstein condensates [27], and some
others. Vijayajayanthi et al derived the vector soliton solution of equation (1) by theHorita bilinearmethod [28].
Based on the generalizedDT, Zhang et al gave the expression of theNth-order vector rational and semi-rational
rogue solutions of equation (1) [29]. For the convenience of calculation,σ is taken as 1.Wang et al displayed the
newbreather wave and roguewave solutions for equation (1) atσ= 1 by using theDT [30]. Peng et al obtained
multi-soliton solutions for equation (1) atσ= 1 via the Riemann–Hilbertmethod [31]. However, there are fewer
studies on the dynamics of higher-order localizedwaves for equation (1) atσ= 1. In this paper, a generalizedDT
is used to study the equation (1), and a novel propagation trajectory of higher-order roguewaves is obtained.

The remainder of this paper is organized as follows. In section 2, a generalizedDT for equation (1) is
constructed, and the iterative formulas of theNth-order solutions are derived. In section 3, the higher-order
roguewaves on amulti-bright-dark soliton ormulti-breathers are derived, and some evolution plots of localized
wave solitons are illustrated. Finally, several conclusions are drawn in section 4.

2.Generalized darboux transformation

The Lax pair corresponding to equation (1) atσ= 1 is

( ) ( )lF = F = L + FU i Q a2x
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( )j f y cF = , , , T is a vector solution of equation (2),λ is the spectral parameter, ( )=q i 1, 2, 3i is the
potential function, and ⁎ represents the complex conjugate. Thus, it can be easily proven that the zero-curvature
equation, [ ]- + =U V U V, 0,t x yields in equation (1).

TheDarbouxmatrix is constructed as follows:

( )l= - A -T I H H 31

where

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⁎

⁎

⁎

⁎ ⁎ ⁎

⁎

⁎

⁎

l
l

l
l

j f y c
f j
y j
c j

A = =
-

-
-

H

0 0 0
0 0 0

0 0 0

0 0 0

,
0 0

0 0

0 0

1

1

1

1

1 1 1 1

1 1

1 1

1 1

I is the identitymatrix, and ( ) ( )j f y cF = =k, , , 1, 2,k k k k k
T is the solution to equation (2) for l l= .k

The classical DT definition is as follows:
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Assume that ( ) ( )j f y c l hF = = F, , , ,1 1 1 1 1 1 1 is a solution of equation (2)with [ ]=q q 0 ,1 1 [ ]=q q 0 ,2 2
[ ]=q q 03 3 and l l h= + ,1 h is a small parameter, then F1 can be expanded as the Taylor series at h = 0,
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3.Dynamics of localizedwaves

In order to construct localizedwave solution on the bright–dark soliton background, the planewave solution is
considered as a seed solution. According to equation (1), such a seed solution can be obtained:
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[ ]=q q 03 3 and l l= .1 According to equations (6)–(10), thefirst-order localizedwave solutions of equation (1)

are derived:
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Equation (11) involves free parameters d d d, , ,1 2 3 a b, .With the change of those free parameters, the dynamics
of the first-order localizedwave solutions are discussed through the following three cases.

(1) = = =d d d 1,1 2 3 a b= =0, 0.The components q ,1 q2 and q3 are represented by the first-order rogue
waves, which is similar to the case of standardNLS equation.

(2) = = =d d d0, 0, 1,1 2 3 a b¹ ¹0, 0.Thefirst-order roguewaveon a bright- bright-dark solitonbackground
canbederived.The interactionbetween afirst-order rougewave and abright- bright-dark soliton is exhibited in
figure1.A roguewave suddenly appears fromnowhere at time t=0, and these twowaves superimposewith each
other, The roguewave cannotbe easily identified at the zero-amplitudebackground, as shown infigures 1(a) and
(b). It soondisappears afterwards, and the soliton continuesmoving forward.Moreover, the roguewavemoves far
away fromthe soliton as the value ofα andβ, increases infigure 1.

(3) = = = -d d d0.5, 0.5, 1,1 2 3 a b¹ ¹0, 0. The first-order rogue wave on a breather (Kuznetsov-Ma
breather) background is presented infigure 2. The propagation direction of a breather is parallel to the
positive direction of the t-axis, and a roguewave suddenly appears at t= 0. It is observed that the breather and
roguewavesmerge as the value ofα andβ, increases.

Next, considering the following limit:
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According to equations (6)–(12), the second-order localizedwave solutions of equation (1) are obtainedwith
the free parameters a bd d d m n, , , , , , ,1 2 3 1 1
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Figure 1.Evolution of thefirst‐order bright‐dark‐rougewavewith parameters d1=0, d2=0, d3=1.

Figure 2.Evolution of thefirst-order KMbreather-rouge wavewith parameters = = = -d d d0.5, 0.5, 1.1 2 3

5
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Similarly, the dynamical properties of the second-order localizedwave solutionswith the variations of the
free parameters involved are discussed in the following cases:

1) a b= = = = =d d d1, 1, 1, 0, 0.1 2 3 The contour plots of components q ,1 q2 and q3 is shown in figure 3.
Let = =m n 0,1 1 q ,1 q2 and q3 are the second-order roguewave, which is symmetric about =t 0, as shown
infigure 3(a); For = =m n 100,1 1 a second-order roguewave is separated into fourfirst-order roguewaves
and also symmetric distributionwith respect to =t 0.The roguewave has one hump and two valleys in the
center, while the other three roguewaves, which have one hump and one valley, form a triangle around the
center, as displayed infigure 3(b).

2) = = =d d d0, 0, 1,1 2 3 a b¹ ¹0, 0. Figure 4 shows a second-order rogue wave coexisting with two
bright-dark solitons. The components q1 and q2 have similar structure, as exhibited infigures 4(a) and (b). In
particular, the component q3 has the one dark-soliton and a second-order roguewave, as shown in
figure 4(c). has a one-dark-soliton and a second-order roguewave, as shown infigure 4(c). The second-order
roguewave separates from two dark-bright solitons by decreasing the value ofα andβ.

3) = = =d d d0.5, 0.5, 1,1 2 3 a b¹ ¹0, 0. The coexistence of a second-order rogue wave and two parallel
breathers can be observed.While in component q ,3 the two parallel Kuznetsov-Ma breathers don’t travel in
the same plane. As the value ofα andβ decreases, the second-order roguewave and breathers separate, as
shown infigure 5.

Further, consider the following limit:
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According to equations (6)–(14), the third-order localizedwave solutions of equation (1) are obtainedwith
the free parameters a bd d d m m n n, , , , , , , , ,1 2 3 1 2 1 2
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Figure 3.Evolution of the second-order rougewavewith parameters a b= = = = =d d d0.5, 0.5, 1, 0, 0.1 2 3
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Figure 4.Evolution of the second-order bright-dark-rouge wavewith parameters = = =d d d0, 0, 1,1 2 3 =m 0,1 =n 0.1

Figure 5.Evolution of the second-order KMbreather-rougewavewith parameters = = =d d d0.5, 0.5, 1,1 2 3 =m 0,1 =n 0.1
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By taking different value of free parameters a bd d d m m n n, , , , , , , , ,1 2 3 1 2 1 2 the dynamical behaviors of the
third-order roguewaves on amulti-bright-dark soliton ormulti-breather background are discussed in the
following cases:

(1) = = =d d d 1,1 2 3 a b= =0, 0.The contour plots of components q ,1 q2 and q3 are shown in figure 6. Let
= = = =m n m n 0,1 1 2 2 q ,1 q2 and q3 are a third-order roguewave and it is shaped like aflame, as shown in

figure 6(a); For = = = =m n m n 100,1 1 2 2 a third-order roguewave is separated into sevenfirst-order
roguewaves, the roguewavewhich has one hump and two valleys is in the center, while the other six rogue
waves are spread around in pairs, and thewhole distribution is ‘Y’, as shown infigure 6(b).

Figure 6.Evolution of the third-order rougewavewith parameters a b= = = = =d d d1, 1, 1, 0, 0.1 2 3

Figure 7.Evolution of the third-order bright-dark-rougewavewith parameters = = =d d d0, 0, 1,1 2 3 = = = =m n m n 0.1 1 2 2
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(2) = = =d d d0, 0, 1,1 2 3 a b¹ ¹0, 0. Figure 7 displays a third-order rogue wave merged with three bright-
dark solitons.Nevertheless, the component q3 has aonedark-soliton and a third-order roguewave.Moreover, the
third-order roguewave separates from twodark-bright solitons bydecreasing the value ofα andβ.

(3) = = =d d d0.5, 0.5, 1,1 2 3 a b¹ ¹0, 0. The interaction between a third-order rogue wave and three
breathers is demonstrated infigure 8. It is found that the propagation directions of three Kuznetsov-Ma
breathers are parallel with the positive direction of t-axis, but the amplitude of breathers are inequality in
component q .3 when the value ofα andβ increases, the roguewaves are farther away from the breathers.

4. Conclusions

This paper studies dynamical properties of solutions to the three-component coupled nonlinear Schrödinger
equation. Based on a seed solution and a Lax pair, the iterative expressions of solutions to the equation are
obtained by using a generalizedDT. There are several parameters a bd d d m, , , , , j1 2 3 and ( )=n j 1, 2, 3j

that play an important role in the interaction dynamics among different nonlinear waves. By choosing different
values of those free parameters, the roguewaves on constant,multi-bright-dark soliton andmulti-breather
backgrounds are obtained, and the corresponding evolution plots are provided.Moreover, the roguewaves are
farther away from the soliton or breather as the parametersα andβ, are decreased. The results of this paper
exhibit rich dynamics of three-component coupled nonlinear systems.
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