Dynamical analysis of higher-order localized waves for a three-component coupled nonlinear Schrödinger equation

N Song\(^{1,*}\), Y F Zhang\(^1\), H J Shang\(^1\) and W X Ma\(^{2,3,4,\odot}\)

\(^1\) School of Mathematics, North University of China, Taiyuan, Shanxi, 030051, People’s Republic of China
\(^2\) Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People’s Republic of China
\(^3\) Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
\(^4\) Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, United States of America
\(^5\) School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

\(^*\) Authors to whom any correspondence should be addressed.
E-mail: songni@nuc.edu.cn and mawx@cas.usf.edu

Keywords: three-component coupled Schrödinger equation, generalized Darboux transformation, localized waves, rogue waves

Abstract
This paper examines the three-component coupled nonlinear Schrödinger equation, which has various applications in deep ocean, nonlinear optics, Bose–Einstein (BE) condensates, and more. On the basis of seed solutions and a Lax pair, the \(N\)-th-order iterative expressions for the solutions are derived by using the generalized Darboux transformation. The evolution plots of dark-bright-rogue wave or breather-rogue wave are then obtained via numerical simulation. Particularly, a novel rogue wave propagation trajectory is found in the second and third order localized wave solutions. Moreover, by increasing the value of the free parameter \(\alpha\) and \(\beta\), the nonlinear waves merge with each other distinctly. The results further reveal the abundant dynamical patterns of localized waves in the three-component coupled system.

1. Introduction

The Multi-component coupled nonlinear Schrödinger (NLS) equations can be used to describe a variety of complex physical phenomena, and they possess more abundant dynamical behaviors of localized wave solutions than do the scalar NLS equations [1–7]. Rogue waves on a multi-soliton background for the Manakov system have been studied by using the Darboux–dressing transformation [1]. The bright–dark–rogue wave or breather–rogue wave are then obtained via numerical simulation. Particularly, a novel rogue wave propagation trajectory is found in the second and third order localized wave solutions. Moreover, by increasing the value of the free parameter \(\alpha\) and \(\beta\), the nonlinear waves merge with each other distinctly. The results further reveal the abundant dynamical patterns of localized waves in the three-component coupled system.

Motivated by the aforesaid work, the three-component coupled NLS equation is considered [27–30]:

\[i q_{1t} + \frac{1}{2} q_{1xx} + \sigma (|q_1|^2 + |q_2|^2 + |q_3|^2) q_1 = 0, \]

\[i q_{2t} + \frac{1}{2} q_{2xx} + \sigma (|q_1|^2 + |q_2|^2 + |q_3|^2) q_2 = 0, \]

(1)
\[i q_{33} + \frac{1}{2} q_{3xx} + \sigma (|q_2|^2 + |q_3|^2) q_3 = 0, \]

which can be applied in plasma physics [25], nonlinear optics [26], Bose–Einstein condensates [27], and some others. Vijayajayanthy et al derived the vector soliton solution of equation (1) by the Horita bilinear method [28]. Based on the generalized DT, Zhang et al gave the expression of the Nth-order vector rational and semi-rational rogue solutions of equation (1) [29]. For the convenience of calculation, \(\sigma \) is taken as 1. Wang et al displayed the new breather wave and rogue wave solutions for equation (1) at \(\sigma = 1 \) by using the DT [30]. Peng et al obtained multi-soliton solutions for equation (1) at \(\sigma = 1 \) via the Riemann–Hilbert method [31]. However, there are fewer studies on the dynamics of higher-order localized waves for equation (1) at \(\sigma = 1 \). In this paper, a generalized DT is used to study the equation (1), and a novel propagation trajectory of higher-order rogue waves is obtained.

The remainder of this paper is organized as follows. In section 2, a generalized DT for equation (1) is constructed, and the iterative formulas of the Nth-order solutions are derived. In section 3, the higher-order rogue waves on a multi-bright–dark soliton or multi-breathers are derived, and some evolution plots of localized wave solitons are illustrated. Finally, several conclusions are drawn in section 4.

2. Generalized darboux transformation

The Lax pair corresponding to equation (1) at \(\sigma = 1 \) is

\[
\Phi_x = U \Phi = (i \lambda \Lambda + Q) \Phi \tag{2a}
\]

\[
\Phi_t = V \Phi = \left(i \lambda^2 + \lambda Q + \frac{1}{2} i \Lambda (Q^2 - Q_0) \right) \Phi \tag{2b}
\]

where

\[
Q = \begin{pmatrix}
0 & -q_1^* & -q_2^* & -q_3^* \\
q_1 & 0 & 0 & 0 \\
q_2 & 0 & 0 & 0 \\
q_3 & 0 & 0 & 0
\end{pmatrix}, \quad \Lambda = \text{diag} (1, -1, -1, -1)
\]

\(\Phi = (\varphi, \phi, \psi, \chi)^T \) is a vector solution of equation (2), \(\lambda \) is the spectral parameter, \(q_i \) \((i = 1, 2, 3)\) is the potential function, and \(\Phi \) represents the complex conjugate. Thus, it can be easily proven that the zero-curvature equation, \(U_t - V_x + [U, V] = 0 \), yields in equation (1).

The Darboux matrix is constructed as follows:

\[
T = \lambda I - \mathcal{H} A H^{-1} \tag{3}
\]

where

\[
A = \begin{pmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & \lambda_1^* & 0 & 0 \\
0 & 0 & \lambda_2 & 0 \\
0 & 0 & 0 & \lambda_2^*
\end{pmatrix}, \quad H = \begin{pmatrix}
\varphi_1 & \phi_1^* & \psi_1^* & \chi_1 \\
\phi_1 & -\varphi_1^* & 0 & 0 \\
\psi_1 & 0 & -\varphi_1^* & 0 \\
\chi_1 & 0 & 0 & -\varphi_1^*
\end{pmatrix}
\]

\(I \) is the identity matrix, and \(\Phi_k = (\varphi_k, \phi_k, \psi_k, \chi_k)^T \) \((k = 1, 2, \cdots)\) is the solution to equation (2) for \(\lambda = \lambda_k \).

The classical DT definition is as follows:

\[
\Phi_N[N-1] = T[N-1]T[N-2] \cdots T[1] \Phi_N, \tag{4}
\]

\[
q_i[N] = q_i[0] - 2i \sum_{k=1}^{N} (\lambda_k - \lambda_i) \frac{\varphi_k^*[k-1] \varphi_k[k-1]}{|\varphi_k[k-1]|^2 + |\varphi_k^*[k-1]|^2 + |\psi_k[k-1]|^2 + |\psi_k^*[k-1]|^2} \tag{5a}
\]

\[
q_i[N] = q_i[0] - 2i \sum_{k=1}^{N} (\lambda_k - \lambda_i) \frac{\psi_k^*[k-1] \psi_k[k-1]}{|\psi_k[k-1]|^2 + |\varphi_k[k-1]|^2 + |\psi_k[k-1]|^2 + |\psi_k^*[k-1]|^2} \tag{5b}
\]

\[
q_i[N] = q_i[0] - 2i \sum_{k=1}^{N} (\lambda_k - \lambda_i) \frac{\chi_k[k-1] \chi_k^*[k-1]}{|\varphi_k[k-1]|^2 + |\varphi_k^*[k-1]|^2 + |\chi_k[k-1]|^2 + |\chi_k^*[k-1]|^2} \tag{5c}
\]

where

\[
T[k] = \lambda_{k+1} I - H[k-1] A_k H[k-1]^{-1},
\]

\[
\Phi_k[k-1] = (T[k-1]T[k-2] \cdots T[1])_{\lambda = \lambda_k} \Phi_k,
\]
Considered as a seed solution. According to equation (2) with \(q_1 = q_1[0], q_2 = q_2[0], q_3 = q_3[0] \) and \(\lambda = \lambda_1 + \eta, \eta \) is a small parameter, then \(\Phi_1 \) can be expanded as the Taylor series at \(\eta = 0 \),

\[
\Phi_1 = \Phi_1[0] + \Phi_1[1]l + \Phi_1[2]l^2 + \cdots + \Phi_1[N]l^N + \cdots
\]

where \(\Phi_1[k] = (\varphi_1[k], \phi_1[k], \chi_1[k], \psi_1[k], \psi_1[k]^T, \Phi_1[k]) = \frac{\partial^k}{\partial \lambda^k} \Phi_1(\lambda) \), \((k = 0, 1, 2, \ldots, N) \).

Then a generalized DT can be defined as:

\[
\Phi_1[N - 1] = \Phi_1[0] + \left[\sum_{l=1}^{N-1} T_l[l] \right] \Phi_1[l] + \left[\sum_{l=1}^{N-1} \sum_{k>l} T_l[k] T_l[l] \right] \Phi_1[l] + \cdots + [T_l[N-1] T_l[N-2] \cdots T_l[1]] \Phi_1[1],
\]

\[
q_1[N] = q_1[0] - 2i \sum_{k=1}^{N} (\lambda_1 - \lambda_1^T) \frac{\varphi_1[k-1]}{\phi_1[k-1]^2 + |\varphi_1[k-1]|^2 + |\chi_1[k-1]|^2 + |\psi_1[k-1]|^2},
\]

\[
q_2[N] = q_2[0] - 2i \sum_{k=1}^{N} (\lambda_1 - \lambda_1^T) \frac{\psi_1[k-1]}{\phi_1[k-1]^2 + |\varphi_1[k-1]|^2 + |\chi_1[k-1]|^2 + |\psi_1[k-1]|^2},
\]

\[
q_3[N] = q_3[0] - 2i \sum_{k=1}^{N} (\lambda_1 - \lambda_1^T) \frac{\chi_1[k-1]}{\phi_1[k-1]^2 + |\varphi_1[k-1]|^2 + |\chi_1[k-1]|^2 + |\psi_1[k-1]|^2},
\]

where

\[
H_1[k-1] = \begin{pmatrix}
\varphi_1[k-1] & \phi_1[k-1] & \psi_1[k-1] & \chi_1[k-1] \\
\phi_1[k-1] & \varphi_1[k-1] & \psi_1[k-1] & \chi_1[k-1] \\
\psi_1[k-1] & \phi_1[k-1] & \varphi_1[k-1] & \chi_1[k-1] \\
\chi_1[k-1] & \psi_1[k-1] & \phi_1[k-1] & \varphi_1[k-1]
\end{pmatrix},
A_1 = \begin{pmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & \lambda_1^* & 0 & 0 \\
0 & 0 & \lambda_1^* & 0 \\
0 & 0 & 0 & \lambda_1^*
\end{pmatrix}
\]

3. Dynamics of localized waves

In order to construct localized wave solution on the bright–dark soliton background, the plane wave solution is considered as a seed solution. According to equation (1), such a seed solution can be obtained:

\[
q_1[0] = d_1 e^{i \theta} (k = 1, 2, 3), \quad \theta = (d_1 + d_2 + d_3) t
\]

where \(d_i \) are the arbitrary constants. The special vector solution of Lax pair of equation (1) with \(q_1[0], q_2[0] \) and \(q_3[0] \) at \(\lambda \) can be written as:

\[
\Phi_1(\eta) = \begin{pmatrix}
(C_1 e^{M_1 + M_2} - C_2 e^{M_1 - M_2}) e^{-\theta} \\
\rho_1(C_1 e^{M_1 + M_2} - C_2 e^{M_1 - M_2}) e^{-\theta} + \alpha d_1 e^{M_2} \\
\rho_2(C_1 e^{M_1 + M_2} - C_2 e^{M_1 - M_2}) e^{-\theta} + \beta d_2 e^{M_2} \\
\rho_3(C_1 e^{M_1 - M_2} - C_2 e^{M_1 + M_2}) e^{-\theta} - (\alpha d_1 + \beta d_2) e^{M_2}
\end{pmatrix},
\]

where

\[
C_1 = \frac{(\lambda + \sqrt{\lambda^2 + (d_1^2 + d_2^2 + d_3^2)})^{\frac{1}{2}}}{\sqrt{\lambda^2 + (d_1^2 + d_2^2 + d_3^2)}}, \quad C_2 = \frac{(\lambda - \sqrt{\lambda^2 + (d_1^2 + d_2^2 + d_3^2)})^{\frac{1}{2}}}{\sqrt{\lambda^2 + (d_1^2 + d_2^2 + d_3^2)}},
\]

\[
\rho_1 = \frac{d_1}{\sqrt{d_1^2 + d_2^2 + d_3^2}}, \quad \rho_2 = \frac{d_2}{\sqrt{d_1^2 + d_2^2 + d_3^2}}, \quad \rho_3 = \frac{d_3}{\sqrt{d_1^2 + d_2^2 + d_3^2}}.
\]
\[M_1 = 0, \quad M_2 = i\sqrt{\lambda^2 + (d_1^2 + d_2^2 + d_3^2)}(x + \lambda t + \Omega(\eta)) \]
\[M_3 = -i\lambda(x + \lambda t), \quad \Omega(\eta) = \sum_{k=1}^{N} s_k \eta^{2k}, \quad s_k = m_k + i n_k, \quad (k = 1, 2, \ldots, N) \]

Here \(\alpha, \beta, m_k, n_k \) are the arbitrary constants. Let \(\lambda = i\sqrt{d_1^2 + d_2^2 + d_3^2} (1 + \eta^2) \) with a small parameter \(\eta \), the vector function \(\Phi(\eta) \) can be expanded as Taylor series at \(\eta = 0 \)
\[\Phi(\eta) = \Phi^{(0)} + \Phi^{(1)} \eta + \Phi^{(2)} \eta^2 + \Phi^{(3)} \eta^3 + \cdots \] (10)

where \(\Phi^{(k)} \) can be obtained with Maple, and
\[\varphi^{(0)} = e^{-i\alpha t} \frac{d_1}{2} i \sqrt{\lambda} (2i\sqrt{\lambda} x - 2\beta t - i) \]
\[\phi^{(0)} = \frac{\alpha d_1 \delta e^{-i\alpha t} - 2d_1 (i\sqrt{\lambda} x - \beta t + i/2) e^{i\alpha t} i \sqrt{\lambda} \delta}{\alpha} \]
\[\psi^{(0)} = \frac{\beta d_2 \delta e^{-i\alpha t} - 2d_2 (i\sqrt{\lambda} x - \beta t + i/2) e^{i\alpha t} i \sqrt{\lambda} \delta}{\alpha} \]
\[\chi^{(0)} = \frac{-(\alpha d_1 + \beta d_2) \delta e^{-i\alpha t} - 2d_1 (i\sqrt{\lambda} x - \beta t + i/2) e^{i\alpha t} i \sqrt{\lambda} \delta}{\alpha} \]
with \(\delta = d_1^2 + d_2^2 + d_3^2 \). Moreover, the expressions of \(\varphi^{(0)}, \phi^{(0)}, \psi^{(0)} \) and \(\chi^{(0)} \) are omitted due to their cumbersome forms.

It is easy to determine that \(\Phi^{(0)} \) is a vector solution of equation (2) with \(q_1 = q_2 = q_3 = 0 \), \(q_1 = q_2 = 0 \) and \(\lambda = \lambda_0 \). According to equations (6)–(10), the first-order localized wave solutions of equation (1) are derived:
\[q_1^{[1]} = q_1^{[0]} - 2i(\lambda_1 - \lambda_0^*) \frac{\varphi^{(0)}[\phi^{(0)}]}{[\varphi^{(0)}]^2 + [\phi^{(0)}]^2 + [\psi^{(0)}]^2 + [\chi^{(0)}]^2}, \] (11a)
\[q_2^{[1]} = q_2^{[0]} - 2i(\lambda_2 - \lambda_0^*) \frac{\varphi^{(0)}[\phi^{(0)}]}{[\varphi^{(0)}]^2 + [\phi^{(0)}]^2 + [\psi^{(0)}]^2 + [\chi^{(0)}]^2}, \] (11b)
\[q_3^{[1]} = q_3^{[0]} - 2i(\lambda_3 - \lambda_0^*) \frac{\varphi^{(0)}[\phi^{(0)}]}{[\varphi^{(0)}]^2 + [\phi^{(0)}]^2 + [\psi^{(0)}]^2 + [\chi^{(0)}]^2}. \] (11c)

Equation (11) involves free parameters \(d_1, d_2, d_3, \alpha, \beta \). With the change of those free parameters, the dynamics of the first-order localized wave solutions are discussed through the following three cases.

1. \(d_1 = d_2 = d_3 = 1, \alpha = 0, \beta = 0 \). The components \(q_1, q_2 \) and \(q_3 \) are represented by the first-order rogue waves, which is similar to the case of standard NLS equation.

2. \(d_1 = 0, d_2 = 0, d_3 = 1, \alpha = 0, \beta = 0 \). The first-order rogue wave on a bright- bright-dark soliton background can be derived. The interaction between a first-order rogue wave and a bright- bright-dark soliton is exhibited in figure 1. A rogue wave suddenly appears from nowhere at time \(t = 0 \), and these two waves superimpose with each other. The rogue wave cannot be easily identified at the zero-amplitude background, as shown in figures 1(a) and (b). It soon disappears afterwards, and the soliton continues moving forward. Moreover, the rogue wave moves far away from the soliton as the value of \(\alpha \) and \(\beta \) increases.

3. \(d_1 = 0.5, d_2 = 0.5, d_3 = -1, \alpha = 0, \beta = 0 \). The first-order rogue wave on a breather (Kuznetsov-Ma breather) background is presented in figure 2. The propagation direction of a breather is parallel to the positive direction of the t-axis, and a rogue wave suddenly appears at \(t = 0 \). It is observed that the breather and rogue waves merge as the value of \(\alpha \) and \(\beta \) increases.

Next, considering the following limit:
\[\Phi^{[1]} = \lim_{\eta \to 0} \frac{T^{[1]}(\lambda_1, \lambda_2 + \eta, \lambda_3)}{\eta^2} \Phi^{[0]} = \lim_{\eta \to 0} \frac{(\lambda_1 \eta^2 + T^{[1]}(1)) \Phi^{[1]}}{\eta^2} = \lambda_1 \Phi^{[0]} + T^{[1]}(1) \Phi^{[1]}, \] (12)

where
\[T^{[1]}(1) = \lambda_1 I - H_0(0) A_t H_0(0)^{-1}, \quad \Phi^{[1]} = (\varphi^{[1]}, \phi^{[1]}, \psi^{[1]}, \chi^{[1]}) \]
According to equations (6)–(12), the second-order localized wave solutions of equation (1) are obtained with the free parameters $d_1, d_2, d_3, \alpha, \beta, m_1, m_2$,

$$q_1[2] = q_1[1] - 2i(\lambda - \lambda^2)\frac{\phi_1[1]\phi_1[1]}{[\phi_1[1]]^2 + [\phi_1[1]]^2 + [\lambda_1[1]]^2 + [\phi_1[1]]^2},$$

(13a)
Similarly, the dynamical properties of the second-order localized wave solutions with the variations of the free parameters involved are discussed in the following cases:

1) $d_1 = 1, d_2 = 1, d_3 = 1, \alpha = 0, \beta = 0$. The contour plots of components q_1, q_2, and q_3 is shown in figure 3. Let $m_1 = n_1 = 0, q_1, q_2$, and q_3 are the second-order rogue wave, which is symmetric about $t = 0$, as shown in figure 3(a); For $m_1 = n_1 = 100$, a second-order rogue wave is separated into four first-order rogue waves and also symmetric distribution with respect to $t = 0$. The rogue wave has one hump and two valleys in the center, while the other three rogue waves, which have one hump and one valley, form a triangle around the center, as displayed in figure 3(b).

2) $d_1 = 0, d_2 = 0, d_3 = 1, \alpha = 0, \beta = 0$. Figure 4 shows a second-order rogue wave coexisting with two bright-dark solitons. The components q_1 and q_2 have similar structure, as exhibited in figures 4(a) and (b). In particular, the component q_3 has the one dark-soliton and a second-order rogue wave, as shown in figure 4(c). The second-order rogue wave separates from two dark-bright solitons by decreasing the value of α and β.

3) $d_1 = 0.5, d_2 = 0.5, d_3 = 1, \alpha = 0, \beta = 0$. The coexistence of a second-order rogue wave and two parallel breathers can be observed. While in component q_3, the two parallel Kuznetsov-Ma breathers don’t travel in the same plane. As the value of α and β decreases, the second-order rogue wave and breathers separate, as shown in figure 5.

Further, consider the following limit:

$$
\Phi_1[2] = \lim_{\eta \to 0} \frac{T[2]|_{\lambda=\lambda_1(1+\eta)} T[1]|_{\lambda=\lambda_1(1+\eta)} \Phi_1}{\eta^3}
$$

$$
= \lim_{\eta \to 0} \frac{(\lambda_1^2 \eta^4 + \lambda_1 (T_1[2] + T_1[1]) \eta^2 + T_1[2] T_1[1] \Phi_1)}{\eta^4}
$$

$$
= \lambda_1^2 \Phi_1^{[0]} + \lambda_1 (T_1[2] + T_1[1]) \Phi_1^{[1]} + T_1[2] T_1[1] \Phi_1^{[2]},
$$

(14)

where

$$
T_1[1] = \lambda_1 I - H_1[0] A_1 H_1[0]^{-1}, \quad T_1[2] = \lambda_1 I - H_1[1] A_1 H_1[1]^{-1}
$$

$$
\Phi_1^{[1]} = (\phi_1^{[1]}, \phi_1^{[1]}, \phi_1^{[1]}, \chi_1^{[1]}), \quad \Phi_1^{[2]} = (\phi_1^{[2]}, \phi_1^{[2]}, \phi_1^{[2]}, \chi_1^{[2]})
$$

According to equations (6)–(14), the third-order localized wave solutions of equation (1) are obtained with the free parameters $d_1, d_2, d_3, \alpha, \beta, m_1, m_2, n_1, n_2$.

$$
$$

(15a)
Figure 4. Evolution of the second-order bright-dark-rouge wave with parameters $d_1 = 0$, $d_2 = 0$, $d_3 = 1$, $m_1 = 0$, $n_1 = 0$.

Figure 5. Evolution of the second-order KM breather-rouge wave with parameters $d_1 = 0.5$, $d_2 = 0.5$, $d_3 = 1$, $m_1 = 0$, $n_1 = 0$.

\[q_3^{[3]} = q_2^{[2]} - 2i(\lambda_1 - \lambda_2^*) \frac{\varphi_2^{[2]} \psi_1^{[2]}}{|\varphi_2^{[2]}|^2 + |\varphi_1^{[2]}|^2 + |\chi_1^{[2]}|^2 + |\psi_1^{[2]}|^2} \]

(15b)
By taking different values of free parameters a, d, d_1, d_2, α, β, m_1, m_2, n_1, n_2, the dynamical behaviors of the third-order rogue waves on a multi-bright-dark soliton or multi-breather background are discussed in the following cases:

1. $d_1 = d_2 = d_3 = 1$, $\alpha = 0, \beta = 0$. The contour plots of components q_1, q_2, and q_3 are shown in figure 6. Let $m_1 = n_1 = m_2 = n_2 = 0, q_1, q_2$ and q_3 are a third-order rogue wave and it is shaped like a flame, as shown in figure 6(a); For $m_1 = n_1 = m_2 = n_2 = 100$, a third-order rogue wave is separated into seven first-order rogue waves, the rogue wave which has one hump and two valleys is in the center, while the other six rogue waves are spread around in pairs, and the whole distribution is 'Y', as shown in figure 6(b).

$$q_3[3] = q_3[2] - 2i(\lambda_3 - \lambda_2^3)\frac{\varphi_1^*[2]\chi_1[2]}{|\phi_1[2]|^2 + |\varphi_1[2]|^2 + |\chi_1[2]|^2 + |\psi_1[2]|^2}$$ \hspace{1cm} (15c)
Figure 7 displays a third-order rogue wave merged with three bright-dark solitons. Nevertheless, the component q_3 has a one dark-soliton and a third-order rogue wave. Moreover, the third-order rogue wave separates from two dark-bright solitons by decreasing the value of α and β.

Figure 8. Evolution of the third-order breather-rouge wave with parameters $d_1 = 0.5$, $d_2 = 0.5$, $d_3 = 1$, $\alpha = 0$, $\beta = 0$. The interaction between a third-order rogue wave and three breathers is demonstrated in figure 8. It is found that the propagation directions of three Kuznetsov-Ma breathers are parallel with the positive direction of t-axis, but the amplitude of breathers are inequality in component q_3 when the value of α and β increases, the rogue waves are farther away from the breathers.

4. Conclusions

This paper studies dynamical properties of solutions to the three-component coupled nonlinear Schrödinger equation. Based on a seed solution and a Lax pair, the iterative expressions of solutions to the equation are obtained by using a generalized DT. There are several parameters d_1, d_2, d_3, α, β, m_j and n_j ($j = 1, 2, 3 \cdots$) that play an important role in the interaction dynamics among different nonlinear waves. By choosing different values of those free parameters, the rogue waves on constant, multi-bright-dark soliton and multi-breather backgrounds are obtained, and the corresponding evolution plots are provided. Moreover, the rogue waves are farther away from the soliton or breather as the parameters α and β are decreased. The results of this paper exhibit rich dynamics of three-component coupled nonlinear systems.

Acknowledgments

The authors sincerely thanks for the support of the National Natural Science Foundation of China (NNSFC) through grant No.11602232, Research Project Supported by Shanxi Scholarship Council of China through grant No.2022–150 and Natural Science Foundation of Shanxi Province through grant No.202203021211086 and No.202203021211088.

Data availability statement

No new data were created or analysed in this study.
ORCID iDs
N Song https://orcid.org/0000-0002-0629-7015
WX Ma https://orcid.org/0000-0001-5309-1493

References
[21] Du Z, Tian B, Qu Q X and Zhao X H 2020 Characteristics of higher–order vector rogue waves to a coupled fourth–order nonlinear Schrödinger system in a two–mode optical fiber The European Physical Journal Plus 135 241