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Abstract

This paper examines the three-component coupled nonlinear Schrédinger equation, which has
various applications in deep ocean, nonlinear optics, Bose—Einstein (BE) condensates, and more. On
the basis of seed solutions and a Lax pair, the Nth-order iterative expressions for the solutions are
derived by using the generalized Darboux transformation. The evolution plots of dark-bright-rogue
wave or breather-rogue wave are then obtained via numerical simulation. Particularly, a novel rogue
wave propagation trajectory is found in the second and third order localized wave solutions.
Moreover, by increasing the value of the free parameter o and (3, the nonlinear waves merge with each
other distinctly. The results further reveal the abundant dynamical patterns of localized waves in the
three-component coupled system.

1. Introduction

The Multi-component coupled nonlinear Schrodinger (NLS) equations can be used to describe a variety of
complex physical phenomena, and they possess more abundant dynamical behaviors of localized wave solutions
than do the scalar NLS equations [ 1-7]. Rogue waves on a multi-soliton background for the Manakov system
have been studied by using the Darboux-dressing transformation [1]. The bright—dark—rogue solution [2] and
other higher-order localized waves are all found in a two-component coupled NLS equation [3, 4]. A four-
petaled flower structure rogue wave is exhibited in a three-component coupled NLS equation [5]. Soliton
solutions are generated from the binary Darboux transformation (DT) for multicomponent NLS equations and
their reductions [6]. The general N -soliton solution and Nth-order vector rational and semi-rational rogue
waves for a three-component coupled NLS equation have also been found by using different methods [7, 8].
Meanwhile, many methods have been presented to find localized wave solutions, including Backlund
transformation [9—11], the nonlinear steepest descent method [11-15], the Riemann—Hilbert approach [16], the
DT [17-20], and more. Based on the profound theoretical significance and potential applicability, the study of
localized waves of the multi-component NLS equations has always been important, and great progresses have
been made [21-24] in this area.

Motivated by the aforesaid work, the three-component coupled NLS equation is considered [27-30]:

. 1
q,, + quxx + olql + 19,1 + 19,1 q, = 0,

. 1
1y + EqZ)cx + O(lqllz + |qZ|2 + |Q3|2)q2 =0, (1)
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. 1
g3, + Eqsxx + U(|q1|2 + IQle + |Q3|2)q3 =0,

which can be applied in plasma physics [25], nonlinear optics [26], Bose—Einstein condensates [27], and some
others. Vijayajayanthi et al derived the vector soliton solution of equation (1) by the Horita bilinear method [28].
Based on the generalized DT, Zhang et al gave the expression of the Nth-order vector rational and semi-rational
rogue solutions of equation (1) [29]. For the convenience of calculation, o is taken as 1. Wang et al displayed the
new breather wave and rogue wave solutions for equation (1) at 0 = 1 by using the DT [30]. Peng et al obtained
multi-soliton solutions for equation (1) at o = 1 via the Riemann—Hilbert method [31]. However, there are fewer
studies on the dynamics of higher-order localized waves for equation (1) at o = 1. In this paper, a generalized DT
is used to study the equation (1), and a novel propagation trajectory of higher-order rogue waves is obtained.

The remainder of this paper is organized as follows. In section 2, a generalized DT for equation (1) is
constructed, and the iterative formulas of the Nth-order solutions are derived. In section 3, the higher-order
rogue waves on a multi-bright-dark soliton or multi-breathers are derived, and some evolution plots of localized
wave solitons are illustrated. Finally, several conclusions are drawn in section 4.

2. Generalized darboux transformation

The Lax pair corresponding to equation (1)atc = 11is

D, = UD = (iIAA + Q) (2a)
= VP = (i/\2 +AQ + %iA(QZ - Qx))<I> 2b)

where

0 —qf —q; —q;
4 0 0 0 . _ 1
Q= g 0 0 o | A =diag(1, -1, —1, —1)

3 0 0 0

® = (¢, ¢, ¥, x) isavector solution of equation (2), A is the spectral parameter, q;(i=1, 2, 3)isthe
potential function, and x represents the complex conjugate. Thus, it can be easily proven that the zero-curvature
equation, U; — V, + [U, V] = 0, yields in equation (1).

The Darboux matrix is constructed as follows:

T= A — HAH! 3)
where
N O 0 O o o Yt X
A:O)\{‘OO’HZQSI—@TO 0
0 0 X 0 b0 —pr 0

I is the identity matrix, and ®; = (¢, ¢ Vi Xi)T (kK = 1, 2,--+) isthe solution to equation (2) for A = .
The classical DT definition is as follows:

Oy[N — 1] = T[N — 1]T[N — 2] - T[1]®y, )
X oilk — 11 ¢ lk — 1]
N] =gqg.[0] — 2 A — A% 5
4N = a0l ’g(k ”wm—uv+wM—uP+wm—uF+ww—uP )
gl @ilk — 1k — 1]
[N] =g,[0] —2 A — Af 5b
& o2 ’g(k ”ww—uv+wm—uv+mw—uv+wm—uv G0
N *
. Gk — 1lxlk — 1]
[NT = 5101 — 2i>" (A — A2) (50)
BT D D PN T s oy T e T

where
Tkl = Mg — H[k — 1TAH[k — 1171,

Olk — 1] = (T[k — 1Tk — 2] -+ T[1D]r=n, P>
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aulk =10 Gk — 11 Witk — 11 xGlk — 1] M 0 0 0

k=11 =gk -1 0 0 *
mik -1 = | AT Atk T B
Yrlk — 1] 0 — Tk — 1] 0 0 0 M 0

Assume that ©; = (¢, ¢, Y1, x1) = P1(A, 1) isasolution of equation (2) with g, = ¢,[0], g, = 4, (0],
q; = q;[0land A = X\ + 7, yisasmall parameter, then ®; can be expanded as the Taylor seriesat = 0,

Where (I)[lk] = (901”(]) ¢1[kl) X]lklr wl[kl)T: (pllk] 1 a (I)l( ) > (k = 0> 1) 2))N)
KON o,
Then a generalized DT can be defined as:
N-1 —1N-1
[N - 1] =" + [Z Tl[l]]cb'l” l]]@%
I=1 I=1 k>1
+[TIN — 11BN = 2] - 11N, )
%
[k — ¢k — 1]
2N = 4101 — 23"\ — . At % . _, (8a)
=1 I¢k[k = 1P + gk — 111 + Ixelk — 1P + [¥ilk — 1]]
N %
) [k — 1yi[k — 1]
qz[N] = qz[o] - 212()‘1 - Aik) > 7k > /(/}k > 2 (Sb)
k=1 loplk — 11> + loplk — 117 + [xglk — 1> + [¢elk — 1]
orlk — 1x [k — 1]
5[N] = q5[0] — 2iy (N — X) it (8¢)
’ ’ kz ‘ lgelk — 1P + ok — 1P + [xilk — 11 + |yulk — 1112
where
L[kl = NI — Hi[k — 11AH [k — 1T,
O|[N — 1] = (¢[N — 11, ;[N — 1], [N — 1], ;[N — 1)),
ek =11 ¢tk =11 Tk — 11 XTIk = 1] N O 0 0
k—1] —¢fk—1 0 0 *
Hilk — 1] ol 1 =l ] A 0\ 0* 0
hilk — 1] 0 —ik — 1] 0 0 0 AN 0
lk — 1] 0 0 — Gk — 1] 0.0 0 X

3. Dynamics of localized waves

In order to construct localized wave solution on the bright—dark soliton background, the plane wave solution is
considered as a seed solution. According to equation (1), such a seed solution can be obtained:

4,101 = dre®(k =1, 2, 3), 0 = (d + dy + d3)t )

where dy are the arbitrary constants. The special vector solution of Lax pair of equation (1) with g, [0], ¢,[0] and
q5[0] at A can be written as:

(CGeM+Me — CzeMl‘MZ)f%
1) — p(CeM— — C26M1+M2)e?i + adses ’
p,(CeMi=Me — Cy MMy s+ BdyeMs
p5(CreM—M — CzeMﬁMZ)e% — (ady + Bdy)eMs

where

c A+ ¥+ @+ d2+ d)) o - J¥ + @+ d2+dd)yn
1= , ) =
JN 4 @+ di +d)) JN A+ @+ d} +dD)

d d, ds

P = » Py = P E >
' Jdl + di + d? ? Jdl + di + d? ’ Jdi + di + d3
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My =0, My = i ¥ + (d} + d} + d}) (x + A\t + Q1))
N
M; = —iX(x + Ab), Q) = > sk, s = my + ing, (k = 1, 2,--+,N)
k=1

Here o, (3, my, g are the arbitrary constants. Let A = iy/(df + d + di) (1 + n?) with a small parameter 7,
the vector function ®,(7) can expanded as Taylor seriesat n = 0

Di(n) = " + B2 + Bt + P + - (10)
where <I’[1k] can be obtained with Maple, and

o e S id6 (2iNEx — 26t — i)
01—
5

ads § e OxFiot _ 2d1(i«/3x — 6t + %)eigt iv§

¢1[0] — 5
Bds § eoxrist _ zdz(iﬁx — bt + %)e?ﬁ
¢1[O] — 5 ,
—(ady + Bdy) b e Pxtidt — 2d3(1\/5x — bt + %)e‘? iV§
" = ; ,

with § = df + d; + d5. Moreover, the expressions of ¢, 1], ¢, 1%, 1, (¥ and y, %) are omitted due to their
cumbersome forms.

Itis easy to determine that ®,[0] = <I>[10] isa vector solution of equation (2) with g, = ¢,[01, g, = 4, (0],
g5 = q;[0]and A = A, According to equations (6)—(10), the first-order localized wave solutions of equation (1)
are derived:

*
. 2 [0]¢1[0]
[1] = q,[0] — 2i(N — ) ! , (11a)
R AT G 01 + 1011 + g [01F + [¢4l0]12 ¢
. @101 [0]

[1] = q,[0] — 2i(N — AF L , 11b
LT K A O T 1001 + W [OIF + 1 [0IF (1o
*

5111 = g,[0] — 2i(\ — XF #1100l (11¢)

) b
|6, [011 + [, [011* + [x[011 + [¢n[O0]]

Equation (11) involves free parameters dy, d,, ds, v, 3. With the change of those free parameters, the dynamics
of the first-order localized wave solutions are discussed through the following three cases.

()dy=d, =ds =1, a =0, 3 = 0.The components g, ¢, and g, are represented by the first-order rogue
waves, which is similar to the case of standard NLS equation.

2)dy=0,d,=0,d; =1, = 0, § = 0. The first-order rogue wave on a bright- bright-dark soliton background
can be derived. The interaction between a first-order rouge wave and a bright- bright-dark soliton is exhibited in
figure 1. A rogue wave suddenly appears from nowhere at time t = 0, and these two waves superimpose with each
other, The rogue wave cannot be easily identified at the zero-amplitude background, as shown in figures 1(a) and
(b). It soon disappears afterwards, and the soliton continues moving forward. Moreover, the rogue wave moves far
away from the soliton as the value of c and 3, increases in figure 1.

(3)d=0.5,d, =0.5,d5 = —1, a = 0, § = 0. The first-order rogue wave on a breather (Kuznetsov-Ma
breather) background is presented in figure 2. The propagation direction of a breather is parallel to the
positive direction of the t-axis, and a rogue wave suddenly appears at t = 0. It is observed that the breather and
rogue waves merge as the value of o and 3, increases.

Next, considering the following limit:

T[1]|x= N ) 2
@,[1] = lim [”A*Al;“fz) lzlimW?+—2Tl[1D‘I’1

n—0 n n—0 n

= N0 + T[], (12)
where

T[1] = NI — Hi[01A4H 0], &Y = (o, gt it vt
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Figure 1. Evolution of the first-order bright-dark-rouge wave with parameters d1=0, d2=0, d3=1.

1 1 1 1 1 1
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Figure 2. Evolution of the first-order KM breather-rouge wave with parameters d; = 0.5, d, = 0.5, ds = —1.

According to equations (6)—(12), the second-order localized wave solutions of equation (1) are obtained with
the free parameters dy, d,, ds, o, 8, my, ny,
e[11¢,[1]
|6 P + 1o [P + Dl + [l

q,[2] = q,[1] — 2i(A — X)) (13a)
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Figure 3. Evolution of the second-order rouge wave with parameters d; = 0.5, d, = 0.5, d; = 1, « = 0, 3 = 0.

*
. S
2] = q,[1] — 2i(h — X* i , 135)
BRI =@l = 2 = A T SR + halP + [eF (
*
0121 = g1 — 20 — XF) A lhall] (130

1o (1P + o 1P + [P+ [al1])

Similarly, the dynamical properties of the second-order localized wave solutions with the variations of the
free parameters involved are discussed in the following cases:

Ddi=1,d,=1,d3 =1, «a =0, 3 = 0. The contour plots of components ¢, g, and g, is shown in figure 3.
Let m; = m = 0, q;, g, and g, are the second-order rogue wave, which is symmetric about t = 0, as shown
in figure 3(a); For m; = n; = 100, a second-order rogue wave is separated into four first-order rogue waves
and also symmetric distribution with respect to t = 0. The rogue wave has one hump and two valleys in the
center, while the other three rogue waves, which have one hump and one valley, form a triangle around the
center, as displayed in figure 3(b).

2)d=0,d,=0,d5=1, a = 0, 8 = 0. Figure 4 shows a second-order rogue wave coexisting with two
bright-dark solitons. The components g, and g, have similar structure, as exhibited in figures 4(a) and (b). In
particular, the component g, has the one dark-soliton and a second-order rogue wave, as shown in
figure 4(c). has a one-dark-soliton and a second-order rogue wave, as shown in figure 4(c). The second-order
rogue wave separates from two dark-bright solitons by decreasing the value of cvand 3.

3) dy=05,d,=0.5,d3 =1, a = 0, § = 0. The coexistence of a second-order rogue wave and two parallel
breathers can be observed. While in component g5, the two parallel Kuznetsov-Ma breathers don’t travel in
the same plane. As the value of v and (3 decreases, the second-order rogue wave and breathers separate, as
shown in figure 5.

Further, consider the following limit:

T21=xna+m T I=rna+ P

@1[2] = lim "

7—0 n
iy QI+ N(EGI2] + BD7 + B2 )P,
n—0 774

=X2 4+ N (T[2] + DY + TR21T[1]92, (14)

where
L[1] = NI — H[0JAHI[0I™, T[2] = M — Hi[11AH[1]!
B = (" of'h, ofh A, O = (o, o L X

According to equations (6)—(14), the third-order localized wave solutions of equation (1) are obtained with
the free parameters d,, &>, ds, a, 3, my, my, ny, ny,

¢1214,(2]
16,211 + 1 (21 + [ (211 + [eal2]P

q,[3] = q,[2] — 2i(\ — XD (15a)
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Figure 4. Evolution of the second-order bright-dark-rouge wave with parameters d, = 0, d, = 0, d3 = 1, m; = 0, m; = 0.
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Figure 5. Evolution of the second-order KM breather-rouge wave with parameters d; = 0.5, d, = 0.5, d5 = 1, m; = 0, m; = 0.
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Figure 6. Evolution of the third-order rouge wave with parameters dy = 1, d, = 1, ds =1, « = 0, 3 = 0.
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Figure 7. Evolution of the third-order bright-dark-rouge wave with parameters dy = 0, d, = 0, ds = 1, my = n = mp, = m, = 0.

21y (2]

15
ORIE F1ARIF + h2IF £ [T (139

3031 = q,21 — 2i(n — Af

By taking different value of free parameters d,, &y, ds, o, 3, my, my, ny, ny, the dynamical behaviors of the
third-order rogue waves on a multi-bright-dark soliton or multi-breather background are discussed in the

following cases:

(1)dy=d, =ds = 1, « = 0, B = 0.The contour plots of components ¢, 4, and g, are shown in figure 6. Let
m = m = m, = m =0, q,, g, and g, are a third-order rogue wave and it is shaped like a flame, as shown in
figure 6(a); For m; = n; = m, = n, = 100, a third-order rogue wave is separated into seven first-order
rogue waves, the rogue wave which has one hump and two valleys is in the center, while the other six rogue
waves are spread around in pairs, and the whole distribution is Y’, as shown in figure 6(b).
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Figure 8. Evolution of the third-order breather-rouge wave with parameters d; = 0.5, d, = 0.5, ds = 1, my = m = mp = m, = 0.

2)d=0,dy=0,d5 =1, a = 0, 3 = 0. Figure 7 displays a third-order rogue wave merged with three bright-
dark solitons. Nevertheless, the component g, has a one dark-soliton and a third-order rogue wave. Moreover, the
third-order rogue wave separates from two dark-bright solitons by decreasing the value of v and 5.

(3)dy =0.5,d, =0.5,ds =1, a = 0, § = 0. The interaction between a third-order rogue wave and three
breathers is demonstrated in figure 8. It is found that the propagation directions of three Kuznetsov-Ma
breathers are parallel with the positive direction of t-axis, but the amplitude of breathers are inequality in
component g;. when the value of & and Bincreases, the rogue waves are farther away from the breathers.

4. Conclusions

This paper studies dynamical properties of solutions to the three-component coupled nonlinear Schrédinger
equation. Based on a seed solution and a Lax pair, the iterative expressions of solutions to the equation are
obtained by using a generalized DT. There are several parameters d,, d, ds, o, 3, m; and n(j=1,2,3-+)
that play an important role in the interaction dynamics among different nonlinear waves. By choosing different
values of those free parameters, the rogue waves on constant, multi-bright-dark soliton and multi-breather
backgrounds are obtained, and the corresponding evolution plots are provided. Moreover, the rogue waves are
farther away from the soliton or breather as the parameters a:and 3, are decreased. The results of this paper
exhibit rich dynamics of three-component coupled nonlinear systems.
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