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Abstract The first- and second-order localizedwaves
for a variable-coefficient coupled Hirota equation
describe the vector optical pulses in inhomogeneous
optical fiber and are investigated via generalized Dar-
boux transformation in this work. Based on the equa-
tion’s Lax pair and seed solutions, the localized
wave solutions are calculated, and the dynamics of
the obtained localized waves are shown and ana-
lyzed through numerical simulation. A series of novel
dynamical evolution plots illustrating the interaction
between the rogue waves and dark-bright solitons or
breathers are provided. It is found that functions have
an influence on the propagation of shape, period, and
velocity of the localized waves. The presented results
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1 Introduction

As the primary tool for transmitting various types of
information, optical fiber communication has a wide
range of applications and is developing rapidly [1–5].
In recent years, an increasing number of researchers
have devoted themselves to studying the dynam-
ics of nonlinear evolution equations in the field of
optics, including the nonlinear Schrödinger equa-
tion [6–8], the Kundu-Eckhaus equation [9,10], the
Radhakrishnan-Kundu-Lakshmanan equation [11], the
complex cubic quinticGinzburg-Landau equation [12],
and the Gerdjikov-Ivanov equation [13]. Scholars have
switched their attention fromconstant-coefficient equa-
tions [14,15] to variable-coefficient equations [16–
18], which more effectively account for the inhomo-
geneity of the medium and its nonuniform bound-
aries. The variable-coefficient equations were then
applied to describe localized waves, which consist
of solitons [19,20], breathers [21], and rogue waves
[22,23]. Several methods are used to investigate local-
ized waves, including Darboux transformation (DT)
[24–26], Bäcklund transformation [27], bilinear meth-
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ods [28,29], and the unified method [30]. The study
of localized waves in nonlinear optical fiber using
variable-coefficient equations have provided the the-
oretical basis for modern communication [31,32].

Motivated by the above considerations, a variable-
coefficient coupled Hirota equation is studied in this
work [33]:

iq1t + α(t)q1xx + 2β(t)(|q1|2 + |q2|2)q1
+iδ(t)

[
β(t)

α(t)
(6|q1|2 + 3|q2|2)q1x

+3
β(t)

α(t)
q1q

∗
2q2x + q1xxx

]

+1

2
i

{
[β(t)]t
β(t)

− [α(t)]t
α(t)

}
q1 = 0, (1a)

iq2t + α(t)q2xx + 2β(t)(|q1|2 + |q2|2)q2
+iδ(t)

[
β(t)

α(t)
(6|q2|2 + 3|q1|2)q2x

+3
β(t)

α(t)
q2q

∗
1q1x + q2xxx

]

+1

2
i

{
[β(t)]t
β(t)

− [α(t)]t
α(t)

}
q2 = 0, (1b)

where q j ( j = 1, 2) is the complex envelope in the
electric field, x is the evolution time, t is the propagation
distance, and ∗ denotes a complex conjugate. Addition-

ally, α(t), β(t), δ(t), β(t)
α(t) , and

1
2

{
[β(t)]t
β(t) − [α(t)]t

α(t)

}
are

the coefficients of group velocity dispersion (GVD),
the nonlinear terms referring to self-phase modula-
tion (SPM) and cross-phase modulation (XPM), the
third-order dispersion (TOD), nonlinear terms related
to self-steepening and delayed nonlinear response, and
the gain or absorption modulus, respectively.

Previous research on Eq. (1) has been carried out,
in which two types of N th-order rogue wave solutions
with different dynamic structureswere considered [34].
Optical vector breather solutions were obtained via
DT as a symbolic iteration technique [35]. Shi et al.

obtained the polynomial wave solutions and the ratio-
nal wave solutions via a unified method [36]. Yang et
al. derived one- and two-fold soliton solutions and one-
and two-fold breather solutions [37]. Further, Yang et
al. presented one- and two-fold breather-to-soliton con-
version conditions [38].

Studies demonstrate that multi-wave interaction
enriches the research results of nonlinear evolution
equations and produces complementary effects in some
coupled or vector systems [39–41]. Thus, unlike the
above existing research results on Eq. (1), the dynam-
ical characteristics of first- and second-order localized
waves will be investigated in this paper. In the present
work, the generalized DT is derived, and the dynam-
ics of first- and second-order localized wave solutions
are discussed by combining the classical DT and limit
methods.

The remainder of this paper is organized as fol-
lows. In Sect. 2, the generalized DT is derived, and
the higher-order localized wave solutions are obtained.
Based on numerical simulation, the evolution plots of
the first- and second-order localized waves are given
in Sect. 3, and their dynamical characteristics are dis-
cussed. Finally, Sect. 4 provides several conclusions.

2 Generalized Darboux transformation

The generalized DT is an effective method for solving
nonlinear evolution equations. In this section, the gen-
eralized DT is derived, and the iterative formula of the
N th-order solutions is obtained for Eq. (1).

The following Lax pair of Eq. (1) is considered [38]:

�x = U�, (2a)

�t = V�, (2b)
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where

U = λσ +U1, V = λ3V1 + λ2V2 + λV3 + V4,

σ =
⎛
⎝−2i 0 0

0 i 0
0 0 i

⎞
⎠ ,U1 = i

√
β(t)

α(t)

⎛
⎝ 0 q1 q2
q∗
1 0 0

q∗
2 0 0

⎞
⎠ ,

V1 = 9δ(t)σ, V2 = 3α(t)σ + 9δ(t)U1,

V3 = 3i

⎛
⎜⎜⎜⎝

β(t)δ(t)
α(t) (|q1|2 + |q2|2)

√
β(t)
α(t) [q1α(t) + iδ(t)q1x ]

√
β(t)
α(t) [q2α(t) + iδ(t)q2x ]√

β(t)
α(t)

[
q∗
1α(t) − iδ(t)q∗

1x

] −β(t)δ(t)
α(t) |q1|2 −β(t)δ(t)

α(t) q∗
1q2√

β(t)
α(t)

[
q∗
2α(t) − iδ(t)q∗

2x

] −β(t)δ(t)
α(t) q∗

2q1 −β(t)δ(t)
α(t) |q2|2

⎞
⎟⎟⎟⎠ ,

V4 = 1

α(t)

⎛
⎜⎜⎜⎝

β(t) [d5 − δ(t)(d31 + d32)] i
√

β(t)
α(t) [d11 − α(t)d21] i

√
β(t)
α(t) [d12 − α(t)d22]

i
√

β(t)
α(t)

[
d∗
11 − α(t)d∗

21

]
β(t)

[
δ(t)d31 − iα(t)|q1|2

]
β(t)

[
δ(t)d41 − iα(t)q∗

1q2
]

i
√

β(t)
α(t)

[
d∗
12 − α(t)d∗

22

]
β(t)

[
δ(t)d42 − iα(t)q∗

2q1
]

β(t)
[
δ(t)d32 − iα(t)|q2|2

]

⎞
⎟⎟⎟⎠ ,

d11 = −2δ(t)β(t)q1
(
|q1|2 + |q2|2

)
,

d21 = −iα(t)q1x + δ(t)q1xx , d31 = q∗
1q1x − q1q

∗
1x ,

d12 = −2δ(t)β(t)q2
(
|q1|2 + |q2|2

)
,

d22 = −iα(t)q2x + δ(t)q2xx , d32 = q∗
2q2x − q2q

∗
2x ,

d41 = q∗
1q2x − q2q

∗
1x , d42 = q∗

2q1x − q1q
∗
2x ,

d5 = iα(t)
(
|q1|2 + |q2|2

)
,

whereλ is the spectral parameter,� = (ϕ, χ, φ)T is the
vector solution of Eq. (2), and T denotes the transpose
for a vector. It is easy to verify thatU and V satisfy the
compatibility condition Ut − Vx + [U, V ] = 0.

The Darboux matrix T is constructed as follows
[42]:

T = λI − H�H−1, (3)

where

H =
⎛
⎝ϕ1 χ∗

1 φ∗
1

χ1 −ϕ∗
1 0

φ1 0 −ϕ∗
1

⎞
⎠, � =

⎛
⎝λ1 0 0

0 λ∗
1 0

0 0 λ∗
1

⎞
⎠,

in which �=(ϕ1, χ1, φ1)
T is the eigenfunction of Eq.

(2) corresponding to the spectral parameter λ=λ1, the
seed solutions q1 = q1[0] and q2 = q2[0], and I is the
identity matrix. Thus, the classical DT is defined as:

λ = λk,�k = (ϕk, χk, φk)
T , (k = 1, 2, · · · , N ), (4)

�N [N − 1] = T [N − 1]T [N − 2] · · · T [1]�N , (5)

q1[N ] = q1[0] − 3

√
α(t)

β(t)

N∑
k=1

(λ1 − λ∗
1)

× ϕk [k − 1]χ∗
k [k − 1]

|ϕk [k − 1]|2 + |χk [k − 1]|2 + |φk [k − 1]|2 ,

(6a)

q2[N ] = q2[0] − 3

√
α(t)

β(t)

N∑
k=1

(λ1 − λ∗
1)

× ϕk [k − 1]φ∗
k [k − 1]

|ϕk [k − 1]|2 + |χk [k − 1]|2 + |φk [k − 1]|2 ,

(6b)

where

T [k] = λk+1 I − H [k − 1]�[k]H [k − 1]−1,

�k[k − 1] = (T [k − 1]T [k − 2] · · · T [1]) ∣∣λ=λk �k,

H [k − 1] =
⎛
⎝ϕk[k − 1] χ∗

k [k − 1] φ∗
k [k − 1]

χk[k − 1] −ϕ∗
k [k − 1] 0

φk[k − 1] 0 −ϕ∗
k [k − 1]

⎞
⎠,
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�[k] =
⎛
⎝λk 0 0

0 λ∗
k 0

0 0 λ∗
k

⎞
⎠.

The generalized DT of Eq. (1) is constructed based on
the above classical DT. Assuming �1 = �1 (λ1, η) is
a solution of Eq. (2) and η is a small parameter, the
following Taylor expansion of η=0 is obtained:

�1 = �
[0]
1 +�

[1]
1 η+�

[2]
1 η2+· · ·+�

[N ]
1 ηN +o

(
ηN

)
,

(7)

where

�
[k]
1 = 1

k!
∂k

∂λk
�1 (λ)

∣∣
λ=λ1 =

(
ϕ

[k]
1 , χ

[k]
1 , φ

[k]
1

)T
,

(k = 0, 1, 2, · · · , N ) .

It can be easily confirmed that �
[0]
1 = �1[0] is a

special solutionwithλ=λ1,q1 = q1[0], andq2 = q2[0]
of Eq. (2). Therefore, the generalized DT is defined as
follows:

�1[N − 1] = �
[0]
1 +

[
N−1∑
l=1

T1[l]
]

�
[1]
1

+
[
N−1∑
l=1

N−1∑
k>l

T1[k]T1[l]
]

�
[2]
1

+ · · · + [T1[N − 1] · · · T1[2]T1[1]]�[N−1]
1 , (8)

q1[N ] = q1[N − 1] − 3

√
α(t)

β(t)
(λ1 − λ∗

1)

× ϕ1[N − 1]χ∗
1 [N − 1]

|ϕ1[N − 1]|2 + |χ1[N − 1]|2 + ∣∣φ1[N − 1]2∣∣ ,
(9a)

q2[N ] = q2[N − 1] − 3

√
α(t)

β(t)
(λ1 − λ∗

1)

× ϕ1[N − 1]φ∗
1 [N − 1]

|ϕ1[N − 1]|2 + |χ1[N − 1]|2 + ∣∣φ1[N − 1]2∣∣ ,
(9b)

where

T1[k] = λ1 I − H1[k − 1]�1H1[k − 1]−1,

�1[N − 1] = (ϕ1[N − 1], χ1[N − 1], φ1[N − 1])T ,

H1[k − 1] =
⎛
⎝ϕ1[k − 1] χ∗

1 [k − 1] φ∗
1 [k − 1]

χ1[k − 1] −ϕ∗
1 [k − 1] 0

φ1[k − 1] 0 −ϕ∗
1 [k − 1]

⎞
⎠,

�1 =
⎛
⎝λ1 0 0

0 λ∗
1 0

0 0 λ∗
1

⎞
⎠.

3 Dynamics of localized waves

In this section, the first- and second-order localized
wave solutions ofEq. (1) are calculated, and the dynam-
ics of localized waves are analyzed according to the
evolution plots.

Assuming the plane waves q1[0] = a1
√

α(t)
β(t)e

iω(t)

and q2[0] = a2
√

α(t)
β(t)e

iω(t) are seed solutions of the
localized waves, where

ω(t) =
∫

2(a21 + a22)α(t)dt

and a1 and a2 are arbitrary real constants. The corre-

sponding basic vector solution at λ=
(

− 2i
3

√
a21 + a22

)
(
1 + η2

)
is calculated as:

�1(η) =

⎛
⎜⎜⎝

(v1e
κ1+κ2 − v2e

κ1−κ2 )e
iω(t)
2

ς1(v1e
κ1−κ2 − v2e

κ1+κ2 )e−
iω(t)
2 + �a2e

κ3

ς2(v1e
κ1−κ2 − v2e

κ1+κ2 )e−
iω(t)
2 − �a1e

κ3

⎞
⎟⎟⎠ ,

(10)

where

v1 =

√
3λ −

√
9λ2 + 4(a21 + a22)√

9λ2 + 4(a21 + a22)
,

v2 =

√
3λ +

√
9λ2 + 4(a21 + a22)√

9λ2 + 4(a21 + a22)
,

κ1 = − iλ

2
[x + 3λ (α(t) + 3λδ(t)) t] ,

κ2 = i

2

√
9λ2 + 4(a21 + a22)(x − τ t + �(η)),

κ3 = iλ [x + 3λ(α(t) + 3λδ(t))t] ,

τ = −3λα(t) +
[
2(a21 + a22) − 9λ2

]
δ(t),

ς1 = ia1√
a21 + a22

, ς2 = ia2√
a21 + a22

,� (η)

=
N∑
j=1

(
m j + in j

)
η2 j ,
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Fig. 1 The first-order localized waves with a1 = 1, a2 = 0,� = 1
10 and (a, d) α(t) = 1, β(t) = 2, δ(t) = 1

50 ; (b, e) α(t) = 1, β(t) =
2, δ(t) = cos(t)

20 ; (c, f) α(t) = t
20 , β(t) = 5t, δ(t) = cos(t)

20

in which � , m j , and n j are arbitrary real constants.
Let γ = a21 + a22 and expand function �1 (η) as a

Taylor series at η = 0,

�1(η) = �
[0]
1 +�

[1]
1 η2+�

[2]
1 η4+�

[3]
1 η6+· · · , (11)

where

�1 (η) =
(
ϕ

[k]
1 , χ

[k]
1 , φ

[k]
1

)T

= 1

(2k)!
∂2k�1

∂η2k

∣∣
η=0 (k = 0, 1, 2, · · ·) ,

ϕ
[0]
1 = γ − 1

4 (−2 − 2i)(((iα(t)

+3
√

γ δ(t))
√

γ t − 2x)
√

γ

+1

4
)eiγ

∫
α(t)dt+

√
γ

3 ((iα(t)+2
√

γ δ(t))
√

γ t−x),

χ
[0]
1 = γ − 3

4 (−2 + 2i)a1((− x

2
+ (iα(t)

+3
√

γ δ(t))
√

γ t)
√

γ

−1

4
)e−iγ

∫
α(t)dt+

√
γ

3 (−x+(iα(t)+2
√

γ δ(t))
√

γ t)

+2a2�γ e− 2
√

γ

3 (−x+2(iα(t)+2
√

γ δ(t))
√

γ t),

φ
[0]
1 = γ − 3

4 (−2 + 2i)a2((− x

2
+ (iα(t)

+3
√

γ δ(t))
√

γ t)
√

γ

−1

4
)e−iγ

∫
α(t)dt+

√
γ

3 (−x+(iα(t)+2
√

γ δ(t))
√

γ t)

−2a1�γ e− 2
√

γ

3 (−x+2(iα(t)+2
√

γ δ(t))
√

γ t).

As the expression �
[1]
1 =

(
ϕ

[1]
1 , χ

[1]
1 , φ

[1]
1

)T
is

complicated, its specific form is omitted. The dynami-
cal characteristics of the first- and second-order local-
ized waves are discussed subsequently.

Obviously, �[0]
1 = (ϕ

[0]
1 , χ

[0]
1 , φ

[0]
1 )T is the solution

of the Lax pair when q1 = q1[0], q2 = q2[0], and
λ = − 2i

3
√

γ . According to Eqs. (8) and (9), the first-
order localized wave solutions of Eq. (1) are obtained
as:

q1[1] = q1[0] − 3

√
α(t)

β(t)
(λ1 − λ∗

1)

× ϕ1[0]χ∗
1 [0]

|ϕ1[0]|2 + |χ1[0]|2 + |φ1[0]|2
, (12a)
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Fig. 2 The first-order localized waves with a1 = 4
5 , a2 = 1,� = 1

100 and (a, d) α(t) = 3
2 , β(t) = 3

2 , δ(t) = t
100 ; (b, e) α(t) =

3
2 , β(t) = 3

2 , δ(t) = sin(t)
30 ; (c, f) α(t) = sin(t)

3 ,β(t) = sin(t)
3 ,δ(t) = t

100

q2[1] = q2[0] − 3

√
α(t)

β(t)
(λ1 − λ∗

1)

× ϕ1[0]φ∗
1 [0]

|ϕ1[0]|2 + |χ1[0]|2 + |φ1[0]|2
, (12b)

The evolution plots of the first-order localized waves
are obtained by altering the values of the free param-
eters. The dynamics of the first-order localized waves
are then discussed.

Figure 1 depicts the interactions between first-order
roguewaves and dark-bright solitons.When α(t), β(t),
and δ(t) are constants, the first-order rogue wave in
the component q1[1] interacts with one dark soliton
and the velocity of the dark soliton remains constant
during propagation, as shown in Fig. 1a. When α(t)
and β(t) are constants and δ(t) = cos(t)

20 , the first-order
rogue wave will interact with the periodic dark soliton,
as shown in Fig. 1b. When α(t) and β(t) are variable
coefficients and δ(t) = cos(t)

20 , unlike the previous plots,
the rogue wave changes into an S-shape, as shown in
Fig. 1c. Figure 1d–f shows that the rogue wave in the
component q2[1] is not easily observed in a background
of zero amplitude.

Figure 2 shows the collision between a first-order
rogue wave and one breather. Figure 2a and d displays
the first-order rogue wave coexisting with a parabolic
breather when α(t) and β(t) are constants, and δ(t)
is a linear function. Figure 2b and e shows the evo-
lution plots of the first-order rogue wave interacting
with the periodic breather when α(t) and β(t) are the
same as the former and δ(t) is a trigonometric func-
tion. Figure 2c and f illustrates the presence of periodic
rogue waves, which are observed when α(t) and β(t)
are trigonometric functions and δ(t) = t

100 . Moreover,
Fig. 2 illustrates that the amplitude of q1[1] is greater
than the amplitude of q2[1], which are both influenced
by a1 and a2.

Based on the following limit formula

�1[1] = lim
η→0

T [1]
∣∣∣λ=λ1(1+η2)

�1

η2

= lim
η→0

(λ1η
2+T1[1]

∣∣
λ=λ1 )�1

η2
= λ1�

[0]
1 + T1[1]�[1]

1 ,

(13)
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Fig. 3 The second-order localized waves with a1 = 1, a2 = 0, α(t) = 1, β(t) = 1
3 ,� = 1

100 and (a, d) δ(t) = t
100 ,m1 = 0, n1 = 0;

(b, e) δ(t) = t2
100 ,m1 = 0, n1 = 0; (c, f) δ(t) = t2

100 ,m1 = 30, n1 = 30

and Eqs. (8) and (9), the second-order localized wave
solutions can be obtained as:

q1[2] = q1[1] − 3

√
α(t)

β(t)
(λ1 − λ∗

1)

× ϕ1[1]χ∗
1 [1]

|ϕ1[1]|2 + |χ1[1]|2 + |φ1[1]|2
, (14a)

q2[2] = q2[1] − 3

√
α(t)

β(t)
(λ1 − λ∗

1)

× ϕ1[1]φ∗
1 [1]

|ϕ1[1]|2 + |χ1[1]|2 + |φ1[1]|2
, (14b)

where

�1[1] = (ϕ1[1], χ1[1], φ1[1])T ,

T1[1] = λ1 I − H1[0]�1H1[0]−1,

H1[0] =
⎛
⎝ϕ1[0] χ∗

1 [0] φ∗
1 [0]

χ1[0] −ϕ∗
1 [0] 0

φ1[0] 0 −ϕ∗
1 [0]

⎞
⎠ ,

�1 =
⎛
⎝λ1 0 0

0 λ∗
1 0

0 0 λ∗
1

⎞
⎠ .

Similarly, the dynamical characteristics of the second-
order localized wave solutions are analyzed by altering
the values of the free parameters in the following cases.

Figure 3a and d exhibits the second-order rogue
wave interacting with two parabolic dark-bright soli-
tons and displays the parabolic dark-bright solitons’
accelerating and decelerating motions when α(t) and
β(t) are constants, δ(t) = t

100 , m1 = 0, and n1 = 0.

When δ(t) = t2
100 , m1 = 0, and n1 = 0, the dark

solitons change from parabolic to cubic, as shown in
Fig. 3b. Unlike the former, in Fig. 3c, the second-order
rogue wave is separated into three first-order rogue
waves when m1 = 30 and n1 = 30. This result indi-
cates that the amplitude of the separated second-order
rogue wave becomes smaller and its energy is lower
than that of the second-order one without separation.
Furthermore, the rogue wave in the component q2[2] is
difficult to observe in a background of zero amplitude,
as shown in Fig. 3d–f.

Figure 4 shows the dynamics of the second-order
rogue wave and breathers when α(t) and β(t) are con-
stants and δ(t) is a trigonometric function. Figure 4a
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Fig. 4 The second-order localizedwaveswith a1 = 1, a2 = 1, α(t) = 1, β(t) = 1,� = 1
1000 and (a, d) δ(t) = cos(t)

50 ,m1 = 0, n1 = 0;

(b, e) δ(t) = cos(3t)
50 ,m1 = 0, n1 = 0; (c, f) δ(t) = cos(3t)

50 ,m1 = 20, n1 = 20

and d displays the second-order rogue wave interact-
ing with two periodic breathers when δ(t) = cos(t)

50 ,
m1 = 0, and n1 = 0. Based on the above param-
eters, the period of the two breathers decreases, and
their propagation velocity becomes faster when δ(t) =
cos(3t)
50 , as illustrated in Fig. 4b and e. Compared with

Fig. 4a and d, b and e indicate that δ(t) has no effect on
the amplitude of the breathers and changes the prop-
agation velocity of the breathers. In addition, Fig. 4c
and f shows that separation phenomenon occurs in the
second-order rogue waves when changing the values
of parameters m1 and n1.

Figure 5a demonstrates that the second-order rogue
wave coexists with the two periodic parabolic dark
solitons when α(t) and β(t) are constants and δ(t) =
t+cos(5t)

30 . Furthermore, it is found that δ(t) determines
the type of dark soliton. The second-order rogue wave
and the two dark solitons are periodic when α(t), β(t),
and δ(t) are trigonometric functions, and the height of
the rogue waves’ peak decreases along the positive and
negative directions of the x axis (as shown in Fig. 5b).
It is hard to observe the second-order rogue when the

second-order rogue wave is together with bright soli-
tons, as illustrated in Fig. 5c and d.

When α(t) and β(t) are variable coefficients, δ(t) is
a constant,m1 = 0, and n1 = 0, the second-order rogue
wave and K -shape dark-bright solitons are generated
together, as shown in Fig. 6a and c. Figure 6b illustrates
that the second-order roguewave is separated into three
first-order rogue waves when the values of m1 and n1
are changed. It is also found that the rogue wave is
difficult to identify when a2 = 0 in the component
q2[2].

4 Conclusions

This work studied a variable-coefficient coupledHirota
equation by constructing generalized DT on the basis
of classical DT and Taylor expansion. The equation
was then used to obtain first- and second-order local-
ized wave solutions, whereby localized wave evolu-
tion plots were obtained via numerical simulation. It
was found that the parameters had an important effect

123



Localized wave solutions... 5717

Fig. 5 The second-order
localized waves with
a1 = 1, a2 = 0,� =
1

200 ,m1 = 0, n1 = 0 and (a,
c) α(t) = 1, β(t) =
1, δ(t) = t+cos(5t)

30 ; (b, d)
α(t) = cos(t),β(t) =
cos(t)
2 ,δ(t) = cos(t)

80

on the dynamics of the localized waves. The param-
eters a1 and a2 had a significant influence on the
type of localized waves. If a1 �= 0 and a2 = 0,
the rogue waves coexisted with dark-bright solitons;
if a1 and a2 were not equal to 0, the rogue waves
interacted with breathers. The parameters m j and n j

( j = 1, 2, · · · , N − 1) determined the separation of
the rogue waves. When the parametersm1 and n1 were
not equal to 0, the second-order rogue waves separated
into three first-order rogue waves. Moreover, it was
observed that the functionsα(t), β(t), and δ(t) influ-

enced the propagation shape of localized waves. When
α(t), β(t), and δ(t) were constants, common localized
waves occurred. When α(t) and β(t) were constants
and δ(t) was a linear, quadratic, or trigonometric func-
tion, the rogue waves interacted with the parabolic,
cubic, or periodic dark-bright solitons and breathers.
When α(t), β(t), and δ(t) were trigonometric func-
tions, the localized waves had periodicity all along the
propagation direction. These results contribute to the
understanding of localized wave propagation in inho-
mogeneous optical fibers.
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Fig. 6 The second-order localized waves with a1 = 1, a2 = 0, α(t) = t, β(t) = t, δ(t) = 1
50 ,� = 1

100 and (a, c) m1 = 0, n1 = 0;
(b, d) m1 = 10, n1 = 10
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