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In this paper, higher-order localized waves for a coupled fourth-order nonlinear

Schrödinger equation are investigated via a generalized Darboux transformation. The
Nth-order localized wave solutions of this equation are derived via Lax pair and Dar-

boux matrix. Evolution plots are made and dynamical characteristics of the obtained
higher-order localized waves are analyzed through numerical simulation. It is observed

that rogue waves coexist with dark–bright solitons and breathers. The presented results

also show that different values of the involved parameters have diverse effects on the
higher-order localized waves.

Keywords: Coupled fourth-order nonlinear Schrödinger equation; generalized Darboux
transformation; localized waves.

1. Introduction

In recent years, the rapid development of optical fiber communication technol-

ogy has become one of the main pillars of modern communication.1,2 In the field
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of nonlinear optical fibers, many nonlinear phenomena can be described using

nonlinear evolution equations,3–5 which attracted more and more attention of

scholars in academic researches. Due to the complexity and diversity of natu-

ral phenomena, the scholars switched their attention from single-component6,7

to multi-component equations.8,9 Multi-component coupled nonlinear evolution

equations are used to investigate localized waves, a kind of nonlinear waves

such as solitons,10,11 breathers12 and rogue waves.13,14 A few methods can be

applied to investigate localized waves, which include Darboux transformation

(DT),15 Bäcklund transformation,16 the Hirota bilinear method,17 and general-

ized DTs.18–20 Localized waves in nonlinear optical fibers have been studied by

many researchers, and related results provide a theoretical basis for optical fiber

communications.21–23

In this paper, the following coupled fourth-order nonlinear Schrödinger (CNLS)

equation will be studied24–26:

iqj,t + qj,xx + βqj,xxxx + 2qj

2∑
ρ=1

|qρ|2

+β

[
2qj

2∑
ρ=1

|qρ,x|2 + 2qj,x

2∑
ρ=1

qρq
∗
ρ,x + 6qj,x

2∑
ρ=1

q∗ρqρ,x + 4qj,xx

2∑
ρ=1

|qρ|2

+ 4qj

2∑
ρ=1

q∗ρqρ,xx + 2qj

2∑
ρ=1

qρq
∗
ρ,xx + 6qj

(
2∑
ρ=1

|qρ|2
)2
 = 0, (j = 1, 2),

(1)

where q1(x, t) and q2(x, t) are the complex envelopes of the two kinds of polarization

in the electric field, x and t indicate propagation distance and evolution time,

respectively. The ∗ denotes complex conjugate, and the parameter β represents the

strength of the higher-order linear and nonlinear effects.

There are some research results on Eq. (1). Lan displays three shapes of rogue

waves via the DT.27 The interaction among rogue waves, bright-dark solitons and

breathers is discussed, and rogue waves pair is presented.28 Four different types of

breathers are considered.29 Based on a second-order generalized DT, Wang et al.

obtain two- and three-soliton solutions.30

However, there are few studies on dynamics of the third-order localized waves

of Eq. (1). This paper will derive the Nth-order generalized DT on the basis of

classical DT and limiting method, basic solutions will be constructed and the third-

order localized wave solutions will be generated via a generalized DT.

This paper is arranged as follows. In Sec. 2, the generalized DT will be derived,

and the higher-order localized wave solutions will be obtained. In Sec. 3, on the

basis of numerical simulation, the evolution plots of the higher-order localized waves

are given, and their dynamical characteristics are analyzed. Section 4 concludes.
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2. Generalized Darboux Transformation

The following Lax pair is considered31:

Φx = UΦ, (2a)

Φt = V Φ, (2b)

where

U = iλσ + P,

V = 8iβσλ4 + 8βPλ3 + [4iβPxσ + 4iβP 2σ + 2i(I − σ)]λ2 + (4βP 3 − 2βPxx

− 2βPPx+2βPxP − 2P )λ+ iβσPxxx − iβPxxPσ − iβPPxxσ + iβP 2
xσ

+ 3iβP 2Pxσ + 3iβPxP
2σ + iσPx − iσP 2 + 3iβσP 4,

σ =


−1 0 0

0 1 0

0 0 1

, P =


0 q∗1 q∗2

−q1 0 0

−q2 0 0

.
The Darboux matrix T is constructed as follows:

T = λI −HΛH−1, (3)

where

H =


ϕ1 −φ∗1 −χ∗1
φ1 ϕ∗1 0

χ1 0 ϕ∗1

, Λ =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

.
Φ = (ϕ1, φ1, χ1)T is the eigenfunction of Eq. (2) corresponding to the spectral

parameter λ = λ1 and seed solutions q1 = q1[0] and q2 = q2[0]. The DT of Eq. (1)

is obtained from the Darboux matrix T as follows:

λ = λk, Φk = (ϕk, φk, χk)T , (k = 1, 2, . . . , N), (4)

ΦN [N − 1] = T [N − 1]T [N − 2] . . . T [1]ΦN , (5)

q1[N ] = q1[0]− 2i
N∑
k=1

(λ1 − λ∗1)
ϕ∗k[k − 1]φk[k − 1]

|ϕk[k − 1]|2 + |φk[k − 1]|2 + |χk[k − 1]|2
, (6a)

q2[N ] = q2[0]− 2i
N∑
k=1

(λ1 − λ∗1)
ϕ∗k[k − 1]χk[k − 1]

|ϕk[k − 1]|2 + |φk[k − 1]|2 + |χk[k − 1]|2
, (6b)

where

T [k] = λk+1I −H[k − 1]Λ[k]H[k − 1]−1,

Φk[k − 1] = (T [k − 1]T [k − 2] · · ·T [1])|λ=λkΦk,
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H[k − 1] =


ϕk[k − 1] −φ∗k[k − 1] −χ∗k[k − 1]

φk[k − 1] ϕ∗k[k − 1] 0

χk[k − 1] 0 ϕ∗k[k − 1]

,

Λ[k] =


λk 0 0

0 λ∗k 0

0 0 λ∗k

.
Based on the above classical DT, a generalized DT of Eq. (1) is constructed.

Assuming Φ1 = Φ1(λ1, η) is a solution of Eq. (2) and η is a small parameter, Taylor

expansion of Φ1 at η = 0 is obtained as follows:

Φ1 = Φ
[0]
1 + Φ

[1]
1 η + Φ

[2]
1 η

2 + · · ·+ Φ
[N ]
1 ηN + o(ηN ), (7)

where

Φ
[k]
1 =

1

k!

∂k

∂λk
Φ1(λ)|λ=λ1 = (ϕ

[k]
1 , φ

[k]
1 , χ

[k]
1 )T , (k = 0, 1, 2, . . . , N).

It is easy to verify that Φ
[0]
1 = Φ1[0] is a special solution with λ = λ1, q1 = q1[0]

and q2 = q2[0] of Eq. (2). Thus, the generalized DT is defined as follows:

Φ1[N − 1] = Φ
[0]
1 +

[
N−1∑
l=1

T1[l]

]
Φ

[1]
1 +

[
N−1∑
l=1

N−1∑
h>l

T1[h]T1[l]

]
Φ

[2]
1

+ · · ·+ [T1[N − 1] . . . T1[2]T1[1]]Φ
[N−1]
1 , (8)

q1[N ] = q1[N − 1]

− 2i(λ1 − λ∗1)
ϕ∗1[N − 1]φ1[N − 1]

|ϕ1[N − 1]|2 + |φ1[N − 1]|2 + |χ1[N − 1]|2
, (9a)

q2[N ] = q2[N − 1]

− 2i(λ1 − λ∗1)
ϕ∗1[N − 1]χ1[N − 1]

|ϕ1[N − 1]|2 + |φ1[N − 1]|2 + |χ1[N − 1]|2
, (9b)

where

T1[k] = λ1I −H1[k − 1]Λ1H1[k − 1]−1,

Φ1[N − 1] = (ϕ1[N − 1], φ1[N − 1], χ1[N − 1])T ,

H1[k − 1] =


ϕ1[k − 1] −φ∗1[k − 1] −χ∗1[k − 1]

φ1[k − 1] ϕ∗1[k − 1] 0

χ1[k − 1] 0 ϕ∗1[k − 1]

,
2250146-4
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Λ1 =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

.

3. Dynamics of Higher-Order Localized Waves

Assuming q1[0] = a1e
iθ and q2[0] = a2e

iθ are seed solutions of Eq. (1), where

θ = µx+ ωt,

ω = −µ2 + 2(a21 + a22) + β[6(a21 + a22)
2 − 12µ2(a21 + a22) + µ4],

a1, a2 and µ are arbitrary real constants.

The first- and second-order localized wave solutions with µ = 0 have been

studied.28 The dynamical characteristics of the higher-order localized waves will be

discussed with µ 6= 0 which is different from Ref. 28.

The corresponding basic vector solution at λ = (µ2 + i
√
a21 + a22)(1 + η2) is

Φ1(η) =

 (h1e
κ1+κ2 − h2eκ1−κ2)e−

iθ
2

υ1(h1e
κ1−κ2 − h2eκ1+κ2)e

iθ
2 + γa2e

κ3

υ2(h1e
κ1−κ2 − h2eκ1+κ2)e

iθ
2 − γa1eκ3

, (10)

where

h1 =

(
−
√(

µ
2 − λ

)2
+ (a1υ1 + a2υ2)

2 − µ
2 + λ

) 1
2√(

µ
2 − λ

)2
+ (a1υ1 + a2υ2)

2
,

h2 =

(√(
µ
2 − λ

)2
+ (a1υ1 + a2υ2)

2 − µ
2 + λ

) 1
2√(

µ
2 − λ

)2
+ (a1υ1 + a2υ2)

2
,

κ1 = 2i[(−a21 − a22 + µλ− 2λ2)µ2β + λ2]t,

κ2 = i

√(µ
2
− λ
)2

+ (a1υ1 + a2υ2)
2
(x− τt+ Ω(η)), κ3 = iλ(x+ 8βλ3),

τ = µ+ 2λ+ β[µ(−µ2 + 2µλ− 4λ2) + (6µ+ 4λ)(a21 + a22)− 8λ3],

υ1 =
a1√
a21 + a22

, υ2 =
a2√
a21 + a22

, Ω(η) =
N∑
j=1

(mj + inj)η
2j , (mj , nj ∈ R),

αj , mj and nj are arbitrary real constants. Let δ = a21 + a22, and expand function

Φ1(η) be Taylor series at η = 0,

Φ1(η) = Φ
[0]
1 + Φ

[1]
1 η

2 + Φ
[2]
1 η

4 + Φ
[3]
1 η

6 + · · · , (11)
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where

Φ1(η) = (ϕ
[k]
1 , φ

[k]
1 , χ

[k]
1 )T =

1

(2k)!

∂2kΦ1

∂η2k
|η=0, (k = 0, 1, 2, . . .),

ϕ
[0]
1 = δ−

1
4

(√
2

2
+

√
2

2
i

)
[2ixδ

1
2 + i+ 4δt+ 24βδ2t

− 4iδ
1
2µt(1 + 12βδ) + 4βδ

1
2µ2t(iµ− 4δ

1
2 )]eζ1 ,

φ
[0]
1 = −δ− 3

4

(√
2

2
+

√
2

2
i

)
a1[2iδ

1
2x+ 24βδ2t+ 4δt− i

− 4iδ
1
2µt(12βδ + 1) + 4βδ

1
2µ2t(iµ− 4δ

1
2 )]eζ2 + γa2e

ζ3 ,

χ
[0]
1 = −δ− 3

4

(√
2

2
+

√
2

2
i

)
a2[2iδ

1
2x+ 24βδ2t+ 4δt− i

− 4iδ
1
2µt(12βδ + 1) + 4βδ

1
2µ2t(iµ− 4δ

1
2 )]eζ2 − γa1eζ3 ,

ζ1 = 2µt(µ2β − 1)δ
1
2 +
−iµx+ µ2t(−iβµ2 + 16iδβ + 2i)− 6iδt(δβ + 1)

2
,

ζ2 = 2µt(µ2β − 1)δ
1
2 +

iµx+ iβµ2t(µ2 − 8δ) + 2iδt(3βδ − 1)

2
,

ζ3 = [iδ−
1
2x+ 8βδt− 12iβδ

1
2µt+ βµ2t(iδ−

1
2µ− 6)]

(
iδ +

µ

2
δ

1
2

)
.

Owing to the expression Φ
[j]
1 = (ϕ

[j]
1 , φ

[j]
1 , χ

[j]
1 )T (j = 1, 2) which is complicated,

its specific form is omitted.

Based on the following limit formula:

Φ1[2] = lim
η→0

T [2]|λ=λ1(1+η2)T [1]|λ=λ1(1+η2)Φ1

η4

= lim
η→0

(λ1η
2 + T1[2]|λ=λ1)(λ1η

2 + T1[1]|λ=λ1)Φ1

η4

= λ21Φ
[0]
1 + λ1(T1[2] + T1[1])Φ

[1]
1 + (T1[2]T1[1])Φ

[2]
1 , (12)

and Eqs. (8) and (9), the third-order localized wave solutions can be obtained

q1[3] = q1[2]− 2i(λ1 − λ∗1)
ϕ∗1[2]φ1[2]

|ϕ1[2]|2 + |φ1[2]|2 + |χ1[2]|2
, (13a)

q2[3] = q2[2]− 2i(λ1 − λ∗1)
ϕ∗1[2]χ1[2]

|ϕ1[2]|2 + |φ1[2]|2 + |χ1[2]|2
, (13b)

where

Φ1[2] = (ϕ
[2]
1 , φ

[2]
1 , χ

[2]
1 ),
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T1[1] = λ1I −H1[0]Λ1H1[0]−1,

T1[2] = λ1I −H1[1]Λ1H1[1]−1,

H1[0] =


ϕ1[0] −φ∗1[0] −χ∗1[0]

φ1[0] ϕ∗1[0] 0

χ1[0] 0 ϕ∗1[0]

,

H1[1] =


ϕ1[1] −φ∗1[1] −χ∗1[1]

φ1[1] ϕ∗1[1] 0

χ1[1] 0 ϕ∗1[1]

,

Λ1 =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

.
The evolution plots of different third-order localized waves are obtained by alter-

ing the values of the free parameters. Next, the dynamics of third-order localized

wave solutions are discussed in different cases.

Fig. 1. (Color online) The third-order localized waves with a1 = 1, a2 = m1 = m2 = n1 = n2 =

0, µ = 1
100

, β = 1
10

and (a) γ = 1
5000

; (b) γ = 1
5000

; (c) γ = 1
10

; (d) γ = 1
10

.

2250146-7
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Case 1. µ = γ = 0, a1 6= 0, a2 6= 0 and β 6= 0.

Let m1 = m2 = n1 = n2 = 0, q1[3] and q2[3] be the basic third-order rogue waves,

and their amplitude is maximum at the center. Let m1 = m2 = n1 = n2 6= 0, the

third-order rogue waves are separated into six first-order rogue waves. The evolution

plots of third-order rogue waves are omitted in this paper.

Case 2. µ 6= 0, a1 6= 0, and a2 = 0.

Let m1 = m2 = n1 = n2 = 0, the interaction between third-order rogue waves and

three dark solitons can be obtained in Fig. 1(a). As shown in Fig. 1(b), the third-

order rogue waves in the component q2[3] are not easily observed in the background

of zero amplitude. It can be seen that the third-order rogue waves are merged with

the three dark solitons by increasing the value of γ in Fig. 1(c).

Let m1 = m2 = n1 = n2 6= 0, it is obvious that the third-order rogue waves

in the component q1[3] are separated into six first-order rogue waves in Fig. 2(a).

Similarly, as seen in Fig. 2(b), it is difficult to observe rogue waves in the component

q2[3]. Moreover, Figs. 2(c) and 2(d) exhibit the change of the propagation direction

of bright–dark solitons by altering the value of µ.

Fig. 2. (Color online) The third-order localized waves with a1 = 1, a2 = 0,m1 = m2 = n1 =

n2 = 30, γ = 1
100000

, β = 1
5

and (a) µ = 1
10

; (b) µ = 1
10

; (c) µ = − 1
10

; (d) µ = − 1
10

.

2250146-8
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Fig. 3. (Color online) The third-order localized waves with a1 = a2 = 4
5
,m1 = m2 = n1 = n2 =

0, µ = 1
20

, γ = 1
100000

and (a) β = 1
10

; (b) β = 1
10

; (c) β = 1
100

; (d) β = 1
100

.

Cases 3. µ 6= 0, a1 6= 0 and a2 6= 0.

Let m1 = m2 = n1 = n2 = 0, Figs. 3(a) and 3(b) display the interaction between

the third-order rogue waves and three breathers, and the dynamic characteristics

of the components q1[3] and q2[3] are basically consistent. On decreasing the value

of β, Figs. 3(c) and 3(d) show that the three breathers’ period increases.

Let m1 = m2 = n1 = n2 6= 0, due to the separation function, the third-

order rogue waves appear as a separation phenomenon and interact with the three

breathers, as shown in Figs. 4(a) and 4(b).

In summary, the parameters have an important influence on the dynamics of

the localized waves.

The parameters a1 and a2 influence the type of localized waves. If a1 6= 0 and

a2 = 0, the third-order rogue waves interact with three dark–bright solitons. If

a1 6= 0 and a2 6= 0, it is observed that the third-order rogue waves coexist with

three breathers.

The parameters mj , nj , (j = 1, 2) play an important role in the separation of

third-order rogue waves. When the parameters mj , nj are not equal to 0, the third-

order rogue waves can be separated into six first-order rogue waves.

2250146-9
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Fig. 4. (Color online) The third-order localized waves with a1 = a2 = 4
5
, µ = 1

20
, γ = 1

500000
, β =

1
10

and (a) m1 = m2 = n1 = n2 = 50; (b) m1 = m2 = n1 = n2 = 50.

The parameter µ has an important influence on the propagation direction of

three dark–bright solitons and breathers. As µ < 0, the included angle between the

propagation direction of the three dark–bright solitons or breathers and the positive

direction of t-axis is an obtuse angle, or else is an acute angle.

The parameter γ leads to the separation of the third-order rogue waves from the

three dark–bright solitons and breathers. As the parameter γ increases, the third-

order rogue waves gradually merge the three dark-bright solitons and breathers.

The parameter β determines the period and spacing of the three dark–

bright solitons and breathers. As β decreases, the period of the three breathers

increases.

4. Conclusions

On the basis of seed solutions and the Lax pair, a coupled fourth-order nonlinear

Schrödinger equation was studied by a generalized DT. Dynamical characteristics

of the localized waves were analyzed by altering the values of the involved param-

eters, including the interaction between higher-order rogue waves and dark–bright

solitons or breathers. The obtained results enrich dynamics of localized waves in a

birefringent optical fiber.
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