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Abstract This work focuses on higher-order local-
ized waves for coupled variable-coefficient fourth-
order nonlinear Schrödinger equation that describe the
simultaneous propagation of optical pulses in an inho-
mogeneous optical fiber. Based on the Lax pair, N -
th Darboux transformation is constructed and iterative
expression of localized wave solutions are obtained.
Three-dimensional animations are used to reveal the
dynamical characteristics and evolution of nonau-
tonomous localized waves solutions. Profiles and con-
tour plots distributions of nonautonomous solitons,
breathers, and rogue waves are shown. The variable
coefficients functions γ1 (t) and σ (t) are discussed to
reveal how the magnitude, shape, and position of back-
groundwaves are affected. It is hopeful that resultsmay
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provide theoretical basis for the research on the local-
ized waves in an inhomogeneous optical fiber in the
future.
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1 Introduction

The study of localized waves governed by nonlinear
equations is a fascinating area of research that has
attracted significant attention from researchers due to
its wide range of applications in physics, mathematics,
and engineering [1–3]. Localized waves can be catego-
rized as solitons, breathers, and rogue waves [4]. Soli-
tons are stable wave packets that maintain their shape
and amplitude over long distance. They are character-
ized by the particle-like properties, which mean soli-
tons can interact with each other without losing their
own form [5,6]. Breathers are special type of nonlinear
waves that exhibit a breathing or pulsating behavior [7].
Unlike solitons, breathers involve a periodic exchange
of energy with the surrounding medium, which can be
thought as localized oscillations. Breathers are impor-
tant in understanding certain phenomena such as those
occurring in optical fibers and mechanical systems [8].
Rogue waves are transient and highly energetic waves
that occur unexpectedly and have a much larger ampli-
tude than the surrounding waves. Rogue waves are
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characterized by their sudden appearance, which have
a significant impact on maritime activities and coastal
structures. The amplitude of the rogue wave is typi-
cally at least twice that of waves in the background
field, making them a significant concern for safety and
stability [9–11].

Each type of localized waves has unique charac-
teristics and behaviors. Their study contributes to a
broader understanding of wave phenomena in nonlin-
ear systems. In the nonlinear science, many nonlin-
ear evolution equations are derived from the integrable
systems, so that many phenomena can be described
by the integrable equations. In recent decades, inte-
grability theory has made great progress and has been
widely used in many fields, such as optical fiber sys-
tems, plasma astrophysics, Bose–Einstein condensa-
tion, molecular dynamics, biology, and oceanography
[12–17]. The currently availablemethods to find the N -
th soliton solutions of an integral equation include the
Riemann–Hilbert method [18], the Darboux-dressing
method [19], and the Hirota bilinear method [20]. So
far, the binary Darboux transformation method has
been put forward for finding the soliton solutions of
the focusing nonlocal nonlinear Schrödinger equa-
tion [21]. Also, periodic localized wave solutions have
been successfully constructed by using the Bell poly-
nomials approach, the PINN deep learning method,
and the Darboux transformation [22–24]. The cou-
pled variable-coefficient equation containing disper-
sion, self-steepening, and decay nonlinear response is
more abundant than the one with constant-coefficient
describing the nonlinear wave behavior [25–27]. On
this basis, the variable-coefficient fourth-order nonlin-
ear Schrödinger equation (NLS) is studied, which can
be used to describe nonlinear transmission and inter-
action of ultrashort pulses in high-speed optical fiber
communication systems, and nonlinear spin excitations
in one-dimensional Heisenberg ferromagnetic chains
[28–30],
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where q j (x, t), ( j = 1, 2, 3) are the amplitudes of
molecular excitation, the subscripts x denotes partial
derivatives with respect to the normalized propagation
distance, t represents the retarded time, and the symbol
∗ indicates the complex conjugate. σ(t) is the group
velocity dispersion (GVD) coefficient, μ(t) is related
to the self-phase modulation (SPM) coefficient, γ1(t)
is the fourth-order dispersion coefficient, γα(t)(α =
2, ...7) are the cubic nonlinear coefficients, and γ8(t) is
the quintic nonlinear coefficient. Eq. (1) is completely
integrable under the conditions,

μ(t) = 2σ(t), γ2(t) = 2γ1(t),

γ3(t) = 2γ1(t), γ4(t) = 6γ1(t),

γ5(t) = 4γ1(t), γ6(t) = 4γ1(t),

γ7(t) = 2γ1(t), γ8(t) = 6γ1(t).

Some studies have been conducted on two-
component fourth-order nonlinear Schrödinger equa-
tions. For instance, Xu et al. [31] derived the soliton
solutions using the Riemann-Hilbert method. Borluk
et al. [32] investigated the orbital stability of solitary
waves for the fourth-order nonlinear Schrödinger equa-
tion. Zhou et al. [33] obtained the vector breatherwaves
and higher-order rogue waves for the coupled higher-
order nonlinear Schrödinger equations. However, there
are no reports on the solitons, breathers, and periodic
rogue waves mixed interaction solutions for Eq. (1) by
far. The aim of this paper is to construct N -order solu-
tions of the localized waves for Eq. (1) using the gen-
eralized Darboux transformation. Specially, it is found
that periodic rogue waves occur in the periodic back-
ground.

This paper will be prepared as follows. In Sect. 2,
the generalized Darboux transformation is constructed,
and the N -order localized wave solutions are derived.
In Sect. 3, the fission and annihilation phenomena of
solitons, breathers, and rogue waves for Eq. (1) are pre-
sented by three-dimensional animations. The inhomo-
geneity of the fiber affects the transmission of the local-
ized waves, such as the width, amplitude, and derection
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of propagation. It can be seen that solitons, breathers,
and rogue waves are managed by appropriately select-
ing the controllable parameters.

2 Generalized Darboux transformation

In this section, we derive the solutions for Eq. (1). A
Lax pair equation and a 4 × 4 eigenvalue problem and
is considerd,

Φx = UΦ,

Φt = VΦ,
(2)

with

U =

⎛

⎜⎜⎝

−iλ q1 q2 q3
−q∗

1 iλ 0 0
−q∗

2 0 iλ 0
−q∗

3 0 0 iλ

⎞

⎟⎟⎠ , V =

⎛

⎜⎜⎝

V11 V12 V13 V14
V21 V22 V23 V24
V31 V32 V33 V34
V41 V42 V43 V44

⎞

⎟⎟⎠ ,

where Φ = (φ, ϕ, χ,ψ)T is the vector solution of
Eq. (2) and the superscript T represents the vector
transpose, q j ( j = 1, 2, 3) are potential functions, λ is
the spectral parameter and φ, ϕ, χ,ψ are the complex
functions related to x, t and λ.

V11 = 8iγ1(t)λ
4 − 2i

[
σ(t) + 2γ1(t)

3∑

l=1

|ql |2
]

λ2

+2γ1(t)
3∑

l=1

(
q∗
l ql,x − qlq

∗
l,x

)
λ

−iγ1(t)
3∑

l=1

|ql,x |2 −
3∑

l=1

(
q∗
l ql,xx + qlq

∗
l,xx

)

−3

(
3∑

l=1

|ql |2
)2 ]

+ iσ(t)
3∑

l=1

|ql |2,

V1,s = −8γ1(t)qs−1λ
3 − 4iqs−1,xλ

2

+2
[
σ(t)qs−1 + γ1(t)qs−1,xx + 2γ1(t)qs−1

3∑

l=1

|ql |2
]
λ + iγ1(t)

[
qs−1,xxx

+3qs−1,x

3∑

l=1

|ql |2

+3qs−1,x

2∑

l=1

q∗
l ql,x

]
+ iσ(t)qs−1,x ,

Vs,1 = V ∗
1,s,

Vss = 8iγ1(t)λ
4 − 2i

[
σ(t) + 2γ1(t)

3∑

l=1

|qs−1|2
]

λ2

+2γ1(t)
3∑

l=1

(
q∗
s−1qs−1,x − qs−1q

∗
s−1,x

)
λ

−3iγ1(t)|qs−1|2
3∑

l=1

|ql |2 + iγ1(t)
[
|qs−1,x |2

−qs−1q
∗
s−1,xx − q∗

s−1qs−1,xx

]

−iσ(t)|qs−1|2, (s = 2, 3, 4)

It can be easily proved that U and V satisfy the com-
patibility condition Ut − Vx +UV − VU = 0.

The Darboux matrix T can be constructed as fol-
lows,

T = λI − HΛH−1, (3)

where

H =

⎛

⎜⎜⎝

φ1 ϕ∗
1 χ∗

1 ψ∗
1

ϕ1 −φ∗
1 0 0

χ1 0 −φ∗
1 0

ψ1 0 0 −φ∗
1

⎞

⎟⎟⎠,Λ =

⎛

⎜⎜⎝

λ1 0 0 0
0 λ∗

1 0 0
0 0 λ∗

1 0
0 0 0 λ∗

1

⎞

⎟⎟⎠.

I is the identity matrix, Φ1 = (φ1, ϕ1, χ1, ψ1)
T =

Φ1(λ1, η) refers to the eigenfunction of Eq. (2) corre-
sponding to the spectral parameters λ = λ1 and seed
solutions q1 = q1[0], q2 = q2[0] and q3 = q3[0].
Thus, the classical Darboux transformatin is defined,

λ = λk, Φk = (φk, ϕk, χk, ψk)
T , (k = 1, 2, . . . N )

ΦN [N−1] = T [N−1] T [N−2] · · · T [1]ΦN

q1[1] = q1[0] − 2i(λ1 − λ∗
1)

φ∗
k [k − 1]ϕk [k − 1]

|φk [k − 1]|2 + |ϕk [k − 1]|2 + |χk [k − 1]|2 + |ψk [k − 1]|2 ,

(4)
q2[1] = q2[0] − 2i(λ1 − λ∗

1)

φ∗
k [k − 1]χk [k − 1]

|φk [k − 1]|2 + |ϕk [k − 1]|2 + |χk [k − 1]|2 + |ψk [k − 1]|2 ,

(5)
q3[1] = q3[0] − 2i(λ1 − λ∗

1)

φ∗
k [k − 1]ψk [k − 1]

|φk [k − 1]|2 + |ϕk [k − 1]|2 + |χk [k − 1]|2 + |ψk [k − 1]|2 .

(6)

where

T [k] = λk + 1I − H [k − 1]Λk H1[k − 1]−1,
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Φ1[k − 1] = (T [k − 1]T [k − 2] · · · T [1])λ = λkΦk,

H1[k − 1]

=
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1 [k − 1] ψ∗
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k

⎞

⎟⎟⎠ .

Based on the above classical Darboux transforma-
tion, the generalized Darboux transformation of Eq. (1)
is constructed. Assuming that Φ1 = (φ1, ϕ1, χ1, ψ1)

T

= Φ1(λ1, η) is a solution of Eq. (2) and η is a small
parameter, then Φ1 is expanded as the Taylor series at
η = 0,

Φ1 = Φ1[0]+Φ1[1]η+Φ1[2]η2+· · ·+Φ1[N ]ηN+· · ·

where

Φ
[k]
1 = 1

k!
∂k

∂λk

Φ1(λ)|λ=λ1 = (φ
[k]
1 , ϕ

[k]
1 , χ

[k]
1 , ψ

[k]
1 )T ,

(k = 0, 1, 2, · · · , N )

It can be easily confirmed that Φ[0]
1

= Φ1[0] is a
solution of Eq. (1) with λ = λ1, q1 = q1[0], q2 =
q2[0] and q3 = q3[0]. Thus, the generalized Darboux
transformation of (N -1)-th can be defined as follows,

Φ1[N − 1] = Φ
[0]
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[
N−1∑

l=1

T1[l]
]
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1
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Φ
[2]
1 + · · ·

+ [T1[N − 1]T1[N − 2] · · · T1[1]]Φ[N−1]
1 , (7)
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1)
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(9)
q3[N ] = q3[N − 1] − 2i(λ1 − λ∗

1)

φ∗
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|φk [k−1]|2+|ϕk [k − 1]|2+|χk [k − 1]|2+|ψk [k − 1]|2 .(10)

where

T1[k] = λ1 I − H1[k − 1]Λ1H1[k − 1]−1,

Φ1[N − 1] = (φ1[N − 1], ϕ1[N − 1], χ1[N − 1],
ψ1[N − 1])T ,
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=
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1

⎞

⎟⎟⎠ .

3 Dynamics of the localized waves

Supposing that the seed solutions of Eq. (1) are q[0]
1 =

a1eiω, q
[0]
2 = a2eiω and q[0]

3 = a3eiω, where ω(t) =∫
2σ(t)(a21 + a22 + a23) + 6γ1(t)(a21 + a22 + a23)

2
dt ,

and a1, a2, a3 are arbitrary real constants. The corre-
sponding basic vector solution at λ =(
i
√
a21 + a22 + a23

) (
1 + η2

)
can bewritten as follows,

Φ1(η)

=

⎛

⎜⎜⎜⎝

(
C1eM1+M2 − C2eM1−M2

)
e

i
2 ω

ρ1
(
C1eM1−M2 − C2eM1+M2

)
e− i

2 ω + αa3eM3

ρ2
(
C1eM1−M2 − C2eM1+M2

)
e− i

2 ω + βa3eM3

ρ3
(
C1eM1−M2 − C2eM1+M2

)
e− i

2 ω − (αa1 + βa2) eM3

⎞

⎟⎟⎟⎠ ,

(11)

with

ρ1 = a1√
a21 + a22 + a23

, ρ2 = a2√
a21 + a22 + a23

,

ρ3 = a3√
a21 + a22 + a23

,

C1 =

√
λ −

√
λ2 + a21 + a22 + a23

√
λ2 + a21 + a22 + a23

,

C2 =

√
λ +

√
λ2 + a21 + a22 + a23

√
λ2 + a21 + a22 + a23

,

M1 = 0,
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M2 = i
√

λ2+a21+a22+a23(x−4γ1(t)λ
3t+λt (σ (t)

+2γ1(t)(a
2
1 + a22 + a23))t + Ω (η)),

M3 = iλx + (−8iγ1(t)λ
4 + 2iσ(t)λ2)t,

Ω (η) =
N∑

k=1

skη
2k, sk = mk + ink, (k = 1, 2, · · · N ),

where α, β,mk and nk are arbitrary real constants and
Ω (η) is a separation function. The vector function
Φ1(η) at η = 0 can be expanded by using the Tay-
lor series as follows,

Φ1(η) = Φ
[0]
1 + Φ

[1]
1 η2 + Φ

[2]
1 η4 + Φ

[3]
1 η6 + · · · ,

(12)

where

Φ1(η) = (φ
[k]
1 , ϕ

[k]
1 , χ

[k]
1 , ψ

[k]
1 )T

= 1

(2k)!
∂2kΦ1

∂η2k
|η=0,(k = 0, 1, 2, · · · ).

The expression Φ
[k]
1 =

(
φ

[k]
1 , ϕ

[k]
1 , χ

[k]
1 , ψ

[k]
1

)T
(k =

0, 1, 2 · · · ) are complex, which form are omitted here.
Furthermore, the first- and second-order localizedwave
solutions of Eq. (1) are considered, and the dynamical
characteristics of localized waves are analyzed using
evolutionary plots.

Obviously, when q1 = q1[0], q2 = q2[0], q3 =
q3[0], λ=λ1 and Φ

[0]
1 =

(
φ

[0]
1 , ϕ

[0]
1 , χ

[0]
1 , ψ

[0]
1

)T
are

seed solutions of the Lax pair,. According to Eqs. (8–
10), the first-order localized wave solutions of Eq. (1)
can be obtained as follows,

q1[1] = q1[0] − 2i(λ1 − λ∗
1)

φ∗
1 [0]ϕ1[0]

|φ1[0]|2 + |ϕ1[0]|2 + |χ1[0]|2 + |ψ1[0]|2 ,

(13)

q2[1] = q2[0] − 2i(λ1 − λ∗
1)

φ∗
1 [0]χ1[0]

|φ1[0]|2 + |ϕ1[0]|2 + |χ1[0]|2 + |ψ1[0]|2 ,(14)

q3[1] = q3[0] − 2i(λ1 − λ∗
1)

φ∗
1 [0]ψ1[0]

|φ1[0]|2 + |ϕ1[0]|2 + |χ1[0]|2 + |ψ1[0]|2 .

(15)

The evolutionary plots of the first-order local-
ized waves are derived by altering values of seven
free parameters: γ1(t), σ (t), a1, a2, a3, α and β. The
dynamics of the first-order localized waves are ana-
lyzed.

(1) Figure1 depicts the interaction between the first-
order rogue waves and the bright-dark solitons. When
the coefficients γ1 (t) andσ (t) are both selected as con-
stants, the propagation direction of solitons are parallel
to the t-axis, as exhibited in Fig. 1a, b, and c. When
γ1 (t) = σ (t) = 5t4, the solitons bend at t = 0 and
are exhibited the shape of ′′V ′′, as displayed in Fig. 1d,
e, and f. When the coefficients γ1 (t) and σ (t) are peri-
odic functions, periodic propagation of the roguewaves
and solitons occur as shown in Fig. 1g, h, and i. Fig-
ure1j, k and l show the profile of Fig. 1a, b and c at
t = 0, respectively. It can be seen that the amplitude of
the rogue wave of the component q1[1] is higher than
that of q2[1] for the value of parameter a1 is bigger than
the the parameter a2, as shown in Fig. 1j and k. In addi-
tion, in the zero-amplitude background, only a bright
soliton is found while the first-order rogue waves can
not easily detected, as demonstrated in Fig. 1c, e, f, i
and l.

(2) Figure2 depicts the collision of the first-order
roguewaves and breathers.When the coefficients γ1 (t)
and σ (t) are constants, the interaction between the
common first-order rogue waves and the bright-dark
breathers are illustrated, as shown in Fig. 2a, b and c.
When γ1 (t) and σ (t) are both exponential functions,
the breathers take the shape of ′′V ′′, as shown inFig. 2 d,
e and f.Whenγ1 (t) andσ (t) are periodic functions, the
periodic roguewaves coexistwith the periodic breather,
as demonstrated in Fig. 2g, h and i.

Based on the following limit formula

Φ1[1] = lim
η→0

T [1]|λ=λ1(1+η2)Φ1

η2

= lim
η→0

(λ1η
2 + T1[1])Φ1

η2

= λ1Φ
[0]
1 + T1[1]Φ[1]

1 . (16)

andEqs. (8–10),withT1 [1] = λ1 I−H1 [0]Λ1H1[0]−1

and Φ
[1]
1 = (φ

[1]
1 ϕ

[1]
1 , ψ

[1]
1 , χ

[1]
1 )T , the second-order

localized wave solutions of Eq. (1) can be obtained,

q1[2] = q1[1] − 2i(λ1 − λ∗
1)

φ∗
1 [1]ϕ1[1]

|φ1[1]|2 + |ϕ1[1]|2 + |χ1[1]|2 + |ψ1[1]|2 ,

(17)

q2[2] = q2[1] − 2i(λ1 − λ∗
1)

φ∗
1 [1]χ1[1]

|φ1[1]|2 + |ϕ1[1]|2 + |χ1[1]|2 + |ψ1[1]|2 ,

(18)
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Fig. 1 Evolution diagrams of the first-order localized waves
at a–c and j–l γ1(t) = 0.05, σ (t) = 0.05, a1 = 1, a2 =
0.5, a3 = 0, α = 0.05, β = 0.05; d–f γ1(t) = 5t4, σ (t) =

5t4, a1 = 1, a2 = 0, a3 = 0, α = 0.01, β = 0.01; g–i
γ1(t) = cos( t

2 ), σ (t) = cos( t
2 ), a1 = 0.6, a2 = 0.4, a3 =

0, α = 0.05, β = 0.05
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Fig. 2 Evolution diagrams of the first-order localized waves at
a–c γ (t) = 0.05, σ (t) = 0.05, a1 = 1, a2 = 0.5, a3 = 1, α =
0.005, β = 0.005; d–f γ (t) = 5t4, σ (t) = 5t4, a1 = 1, a2 =

0.6, a3 = 0.6, α = 0.01, β = 0.01; g–i γ (t) = cos( t
2 ), σ (t) =

cos( t
2 ), a1 = 0.4, a2 = 0.3, a3 = 0.4, α = 0.05, β = 0.05

q3[2] = q3[1] − 2i(λ1 − λ∗
1)

φ∗
1 [1]ψ1[1]

|φ1[1]|2 + |ϕ1[1]|2 + |χ1[1]|2 + |ψ1[1]|2 .

(19)

Furthermore, the dynamical characteristics of the
second-order localized wave solutions are analyzed
by choosing different values for nine parameters
γ1(t), σ (t), a1, a2, a3, α, β,m1 and n1, which are dis-
cussed in the following cases.

(3) Dynamics of the localized waves in the com-
ponent q1[2] is studied in Figure 3, the other compo-

nents are also studied in the same way. It is exhibited
the impact on the localized waves with the changing
of the parameters by using the contour plots. When
γ1 (t) and σ (t) are constants, the interaction between
the second-order rogue waves and the bright-dark soli-
tons canbeobserved inFig. 3a, b and c. Ifm1 = n1 = 0,
the second-order rogue waves appear, as demonstrated
in Fig. 3a. Changing the parameters m1 = n1 = 1,
the second-order rogue waves are separated into three
first-order rogue waves with a small triangular arrange-
ment due to the separation function Ω (η), as dis-
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Fig. 3 Contour plots of the second-order localized waves at
a γ (t) = 0, σ (t) = 0.1, a1 = 1.8, a2 = 0, a3 = 0, α =
0.001, β = 0.001,m1 = 0, n1 = 0; b γ (t) = 0, σ (t) =
0.1, a1 = 1.8, a2 = 0, a3 = 0, α = 0.001, β = 0.001,m1 =
1, n1 = 1; c γ (t) = 0, σ (t) = 0.1, a1 = 1.8, a2 = 0, a3 =
0, α = 0.001, β = 0.001,m1 = 20, n1 = 20; d γ (t) =
t2, σ (t) = t2, a1 = 0, a2 = 0, a3 = 1,m1 = 0, n1 = 0, α =
5, β = 5; e γ (t) = t2, σ (t) = t2, a1 = 0, a2 = 0, a3 = 1,m1 =

0, n1 = 0, α = 0.01, β = 0.01; f γ (t) = t2, σ (t) = t2, a1 =
0, a2 = 0, a3 = 1,m1 = 0, n1 = 0, α = 0.0001, β = 0.0001; g
γ (t) = 0, σ (t) = 10 cos( t

2 ), a1 = 1, a2 = 0, a3 = 0, α =
0.001, β = 0.001,m1 = 0, n1 = 0; h γ (t) = 0, σ (t) =
cos( t

2 ), a1 = 1, a2 = 0, a3 = 0, α = 0.001, β = 0.001,m1 =
0, n1 = 0; i γ (t) = 0, σ (t) = cos( t

2 ), a1 = 1, a2 = 0, a3 =
0, α = 0.001, β = 0.001,m1 = 100, n1 = 200

played in Fig. 3b. When the parameters are equal to
m1 = n1 = 10, the three first-order rogue waves
are separated completely, as shown in Fig. 3c. With
the decrease of the parameters α and β, the distance
between the second-order rogue waves and the soli-
tons increases by comparing Fig. 3d, e and f. When

σ (t) is a periodic function and γ1 (t) = 0, the interac-
tions between the second-order periodic rogue waves
and the periodic solitons are presented in Fig. 3g, h
and i. If σ (t) is changed from σ (t) = cos( t2 ) to
σ (t) = 10 cos( t2 ), it can be observed that the ampli-
tude and shape of the periodic rogue waves and peri-
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Fig. 4 Evolution diagrams of the second-order localized waves
at a–c γ1(t) = 0, σ (t) = 0.1, a1 = 1.8, a2 = 0, a3 = 0, α =
0.001, β = 0.001,m1 = 0, n1 = 0; d–f γ1(t) = t2, σ (t) =

t2, a1 = 0, a2 = 0, a3 = 1, α = 0.01, β = 0.01,m1 =
10, n1 = 10; g–i γ1(t) = 0, σ (t) = cos( t

2 ), a1 = 1, a2 =
0, a3 = 0, α = 0.001, β = 0.001,m1 = 0, n1 = 0.

odic solitons are changed by comparing Fig. 3g and h.
Likewise, if the parameters m1 = n1 = 0 are changed
to m1 = 100 and n1 = 200, a row of periodic rogue
waves are separated into three rows of ones by com-
paring Fig. 3h and i.

(4) Figure4 shows the interactions between the
second-order roguewaves and dark-bright solitons. Let
γ1 (t) and σ (t) be constants, Fig. 4a, b and c display
the evolution of the second-order rogue waves interact-
ing with two solitons. When γ1(t) = σ (t) = t2, the
propagation trajectory is of the ′′K ′′ type for the two

solitons, as shown in Fig. 4d, e and f. The second-order
rogue waves are separated into three first-order rogue
waves and arranged in a triangle under the influence
of the separation function Ω (η), as demonstrated in
Fig. 4f. When coefficient σ(t) is a trigonometric func-
tion, the second-order rogue waves are periodic prop-
agation, which can be clearly observed in Fig. 4g, it is
difficult to find the periodic rogue waves in the com-
ponents q2[2] and q3[2] in the zero-amplitude back-
ground, as exhibited in Fig. 4h and g.
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Fig. 5 Evolution diagrams of the second-order localized waves
at a–c γ1(t) = 0, σ (t) = 0.1, a1 = 1.3, a2 = 1.3, a3 =
1.8, α = 0.0001, β = 0.0001,m1 = 1, n1 = 1; d–f
γ1(t) = t2, σ (t) = t2, a1 = 0, a2 = 0, a3 = 1, α =

0.01, β = 0.01,m1 = 20, n1 = 20; g–i γ1(t) = 0, σ (t) =
10 cos( t

2 ), a1 = 0.3, a2 = 0.5, a3 = 0.7, α = 0.0001, β =
0.0001,m1 = 50, n1 = 100.

(5) Under the condition of ai �= 0 (i = 1, 2, 3), the
second-order rogue waves and bright-dark breathers
interact with each other in Fig. 5.When the coefficients
γ1 (t) and σ (t) are constants, the propagation direction
of breathers are parallel to the t-axis. The second-order
rogue waves consist of three first-order ones, as shown
in Fig. 5a, b, and c. When γ1(t) = σ (t) = t2, the
breathers exhibit the shape of ′′K ′′, and the second-
order rogue waves arranged in a triangle, as presented
in Fig. 5d, e, and f. If the coeffficient σ (t) = 10 cos( t2 ),

three rows of periodic rogue waves appear in Fig. 5g,
h and i under the influence of the separation function
Ω (η).

4 Conclusions

Higher-order localized waves for a three-component
variable-coefficient fourth-order nonlinearSchrödinger
equation are studied by using generalized Darboux
transformation. On the basis of the Lax pair and Dar-
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bouxmatrix, the first- and second-order localized wave
solutions are obtained. The interactions of solitons,
breathers and rogue waves are graphically analyzed. It
is demonstrated that the fourth-order dispersion coef-
ficient γ1(t) and the group velocity dispersion coeffi-
cientσ(t) affect the position and amplitude of the local-
ized waves. When the coefficients γ1 (t) and σ (t) are
constants, the common localized waves occur. When
the coefficients γ1 (t) and σ (t) are exponential func-
tions, the rogue waves interact with the ′′V ′′-shaped
or ′′K ′′-shaped solitons and breathers. Specially, when
the coefficients γ1 (t) and σ (t) are periodic functions,
it is shown that the localized waves generated in the
periodic background exhibit the interaction of periodic
rogue waves, solitons and breathers. Furthermore, it
can be seen that rogue waves are separated under the
influence of the separation function. It is hoped that
the results will provide some theoretical foundations
for the study of optical pulse signal propagation in an
inhomogeneous optical fibers, and will be helpful in
understanding and predicting the complex behaviors
of the localized waves.
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