

Study of travelling wave solutions for some special-type nonlinear evolution equations

Junquan Song¹, Lan Hu², Shoufeng Shen¹ and Wen-Xiu Ma^{3,4,5}

¹ Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China

² School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China

³ Department of Mathematics and Statistics, University of South Florida, Tampa, Florida 33620-5700, United States of America

⁴ College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, People's Republic of China

⁵ Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa

E-mail: mathjqsong@163.com

Received 20 March 2018, revised 30 April 2018

Accepted for publication 21 May 2018

Published 11 June 2018

Abstract

The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form $U = \sum_{j=0}^n a_j \tanh^j \xi$ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with $n = 0$ by introducing a new transform $U = -W'(\xi)/W^2$. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.

Keywords: travelling wave solution, nonlinear evolution equation, function expansion method, symbolic computation

1. Introduction

It is very important in mathematical physics to seek exact solutions of nonlinear evolution equations (NLEEs). For example, the bell-shaped sech and kink-shaped tanh solutions can be used to analyse and model the wave phenomena observed in fluid dynamics and in plasma and elastic media. There are several approaches to constructing exact solutions, including Lie symmetry group reduction, the inverse scattering, Darboux and Bäcklund transformations, and the Hirota bilinear operator, homogeneous balance and tanh-function expansion methods, which are all incorporated into the transformed rational function method. The tanh-function expansion method is a feasible and particularly powerful algorithm, because one can write solitary travelling wave solutions of a given NLEE as polynomials of hyperbolic functions and transform the evolution equation under consideration into a system of algebraic equations to solve.

Several extensions of the tanh-function expansion method have also been proposed for solving various kinds of NLEEs. These expansion methods include the Jacobi elliptic function, exponential function, Riccati equation, tanh-coth and G'/G expansion methods [1–21]. Many well-known NLEEs have been solved using these methods, such as the KdV, mKdV, Camassa–Holm and the Kaup–Kupershmidt-type equations, and the Jaulent–Miodek, $(2 + 1)$ -dimensional dispersive long wave and $(2 + 1)$ -dimensional Hirota systems. In addition, some special-type NLEEs, including the double sine-Gordon equation, the coupled Schrödinger–KdV system and the $(2 + 1)$ -dimensional Davey–Stewartson equation, require some kinds of pre-possessing techniques because such equations cannot be directly dealt with by these methods.

Let us recall how the tanh-function expansion method works for a given NLEE

$$H(u, u_t, u_x, u_{xx}, \dots) = 0. \quad (1.1)$$

By means of a travelling wave reduction

$$u(x, t) = U(\xi), \quad \xi = x + ct, \quad (1.2)$$

we can transform (1.1) into the following ordinary differential equation (ODE)

$$H(U, U', U'', \dots) = 0. \quad (1.3)$$

The next crucial step is that the ansatz of exact solutions is expressed as a polynomial in the tanh function,

$$U(\xi) = \sum_{j=0}^n a_j \tanh^j \xi \quad (1.4)$$

because a derivative of $\tanh \xi$ is a polynomial in $\tanh \xi$, e.g., $(\tanh \xi)' = 1 - \tanh^2 \xi$. The positive integer n in the expansion can be determined by balancing the highest order linear term with the nonlinear term in the equation under consideration. By substituting (1.4) into (1.3) and equating all coefficients of the powers of $\tanh \xi$ to zero, we can obtain a system of algebraic equations on the parameters, wave numbers and frequencies. Thus, we can explicitly obtain the parameters a_j and c , with the help of symbolic computation systems such as Maple and Mathematica.

In order to construct diverse exact solutions, (1.4) can be modified to

$$U(\xi) = \sum_{j=0}^n a_j \varphi^j(\xi), \quad \varphi'(\xi) = b + \varphi^2(\xi). \quad (1.5)$$

Considering that the Riccati equation $\varphi'(\xi) = b + \varphi^2(\xi)$ admits several types of exact solutions [21],

$$\varphi(\xi) = \begin{cases} -\sqrt{-b} \tanh(\sqrt{-b} \xi), & -\sqrt{-b} \coth(\sqrt{-b} \xi), \quad b < 0, \\ -\frac{1}{\xi}, & b = 0, \\ \sqrt{b} \tan(\sqrt{b} \xi), & -\sqrt{b} \cot(\sqrt{b} \xi), \quad b > 0, \end{cases} \quad (1.6)$$

we can then obtain various types of exact solution, and (1.4) is only a special case in (1.6). Of course, we can consider more generalized expansion forms [3–5, 8] for constructing more exact solutions, such as the Weierstrass and Jacobi doubly periodic wave solutions.

The paper is structured as follows. In section 2, we study a special-type case that has not been considered, namely $n = 0$ in (1.4) (or (1.5)), by balancing the highest order linear term with the nonlinear term. In section 3, we propose the tanh-function expansion method of implicit function form and apply it to a Harry Dym-type equation as an example. In section 4, we give a short summary.

2. The tanh-function expansion method with $n = 0$

In this section, we illustrate our approach for dealing with the case of $n = 0$ with two examples.

Example 1. We consider the nonlinear wave equation with source terms [22]

$$u_{tt} + 2u_x^2 - \frac{4}{3}uu_{xx} + \alpha u + \beta u^2 = 0. \quad (2.1)$$

Let $u(x, t) = U(\xi)$, $\xi = x + ct$, then (2.1) reduces to

$$c^2 U'' + 2U'^2 - \frac{4}{3}UU'' + \alpha U + \beta U^2 = 0. \quad (2.2)$$

Balancing between U'' and UU'' yields $n = 0$, which is not a positive integer. So if we take $U = V'$, then (2.2) becomes

$$c^2 V''' + 2V''^2 - \frac{4}{3}V'V''' + \alpha V' + \beta V'^2 = 0. \quad (2.3)$$

Furthermore, let $V = W^{-1}$, then (2.3) becomes

$$\begin{aligned} 3c^2 W^2 W''' - 18c^2 W W' W'' + 18c^2 W'^3 + 3\alpha W' W^2 \\ - 3\beta W'^2 + 4W' W''' - 6W''^2 = 0. \end{aligned} \quad (2.4)$$

Now $W^2 W'''$ and W''^2 give the desired balancing number $n = 1$. In this case, we can assume that

$$W = a_0 + a_1 \varphi, \quad \varphi' = b + \varphi^2. \quad (2.5)$$

Substituting (2.5) into (2.4), we have

$$\begin{aligned} 6a_1^2 bc^2 + 18a_0^2 c^2 + 3a_1^2 \alpha + 8a_1 b - 3a_1 \beta &= 0, \\ ba_0(4bc^2 - \alpha) &= 0, \\ 24a_1^2 b^2 c^2 + 24a_0^2 bc^2 + 3a_1^2 b \alpha + 3a_0^2 \alpha \\ + 16a_1 b^2 - 6a_1 b \beta &= 0, \\ 18a_1^2 b^2 c^2 + 6a_0^2 bc^2 + 3a_0^2 \alpha + 8a_1 b^2 - 3a_1 b \beta &= 0. \end{aligned} \quad (2.6)$$

This system has a solution

$$\begin{aligned} 4bc^2 - \alpha &= 0, \\ 18a_1^2 bc^2 + 18a_0^2 c^2 + 8a_1 b - 3\beta a_1 &= 0. \end{aligned} \quad (2.7)$$

So we can get the following three cases which correspond to exact solutions $U = \frac{-W'(\xi)}{W^2}$, $\xi = x + ct$ of (2.1),

Case 1. $\alpha = 0$.

$$W = \pm \sqrt{\frac{\beta a_1}{6c^2}} - \frac{a_1}{\xi}. \quad (2.8)$$

Case 2. $\alpha < 0$.

$$\begin{aligned} W &= \pm \sqrt{\frac{3\beta a_1 - 8a_1 b}{18c^2} - a_1^2 b} - a_1 \sqrt{\frac{-\alpha}{4c^2}} \tanh\left(\sqrt{\frac{-\alpha}{4c^2}} \xi\right); \\ W &= \pm \sqrt{\frac{3\beta a_1 - 8a_1 b}{18c^2} - a_1^2 b} - a_1 \sqrt{\frac{-\alpha}{4c^2}} \coth\left(\sqrt{\frac{-\alpha}{4c^2}} \xi\right). \end{aligned} \quad (2.9)$$

Case 3. $\alpha > 0$.

$$\begin{aligned} W &= \pm \sqrt{\frac{3\beta a_1 - 8a_1 b}{18c^2} - a_1^2 b} + a_1 \sqrt{\frac{\alpha}{4c^2}} \tan\left(\sqrt{\frac{\alpha}{4c^2}} \xi\right); \\ W &= \pm \sqrt{\frac{3\beta a_1 - 8a_1 b}{18c^2} - a_1^2 b} - a_1 \sqrt{\frac{\alpha}{4c^2}} \cot\left(\sqrt{\frac{\alpha}{4c^2}} \xi\right). \end{aligned} \quad (2.10)$$

Example 2. We consider the mKdV-type equation [23]

$$u_t + u_{xxx} + \alpha u^2 u_x + \beta u u_x u_{xx} = 0. \quad (2.11)$$

Let $u(x, t) = U(\xi)$, $\xi = x + ct$, and then (2.11) reduces to

$$cU' + U''' + \alpha U^2 U' + \beta U U' U'' = 0. \quad (2.12)$$

Balancing between U''' and $U U' U''$ yields $n = 0$, which is not a positive integer. So let $U = V'$, and then (2.12) becomes

$$cU'' + U^{(4)} + \alpha U'^2 U'' + \beta U' U'' U''' = 0. \quad (2.13)$$

Furthermore, let $V = W^{-1}$, and then (2.13) becomes

$$\begin{aligned} cW^7 W'' - 2cW^6 W'^2 + \alpha W^3 W'^2 W'' - 2\alpha W^2 W'^4 \\ + \beta W^3 W' W'' W''' - 2\beta W^2 W'^3 W''' \\ - 6\beta W^2 W'^2 W''^2 + 18\beta W W'^4 W''' - 12\beta W'^2 \\ - 24W'^4 W^4 + 36W'^2 W'' W^5 - 6W''^2 W^6 \\ - 8W' W''' W^6 + W^{(4)} W^7 = 0. \end{aligned} \quad (2.14)$$

Thus we can assume that W has ansatz (2.5). Substituting (2.5) into (2.14) and equating all coefficients of the powers of $\varphi(\xi)$ to zero, we have $b = \frac{c}{4}$, $\alpha = c\beta$ and $a_0^2 + ba_1^2 = 0$. So we obtain exact solutions which correspond to $U = \frac{-W'(\xi)}{W^2}$, $\xi = x + ct$ of (2.11),

$$\begin{aligned} W &= \pm \frac{a_1}{2} \sqrt{-c} - \frac{a_1}{2} \sqrt{-c} \tanh\left(\frac{1}{2} \sqrt{-c} \xi\right); \\ W &= \pm \frac{a_1}{2} \sqrt{-c} - \frac{a_1}{2} \sqrt{-c} \coth\left(\frac{1}{2} \sqrt{-c} \xi\right). \end{aligned} \quad (2.15)$$

3. The tanh-function expansion method of implicit function form

In this section, we firstly outline our new method which includes the following four main steps:

Step

1: Using the travelling wave reduction (1.2), namely $u(x, t) = U(\xi)$, $\xi = x + ct$, we transform (1.1) into an ODE (1.3).

Step

2: We expand an exact solution of (1.3) in the form

$$\begin{aligned} U(\xi) &= \sum_{j=0}^n a_j \varphi^j(s), \quad \varphi'(s) = b + \varphi^2(s), \\ \xi &= d_1 s + d_2 \varphi(s), \quad d_2 \neq 0. \end{aligned} \quad (3.1)$$

Here n can be obtained by balancing suitable nonlinear terms and the highest linear derivative term.

Step

3: Substituting the above expansion (3.1) into the ODE (1.3) and equating the coefficients of all powers of $\varphi(s)$ to zero, we can get a system of algebraic equations. Thus parameters c , a_j ($j = 0, 1, \dots, n$), b , d_1 , d_2 can be determined explicitly by solving this system.

Step

4: Considering that (1.6) admits several types of exact solution, we can then obtain various types of exact solution to the evolution equation with implicit function form under consideration.

In fact, all the explicit function expansion methods [2–15, 19, 20] can be generalized to the case of implicit functions $\xi = f(s)$.

In what follows, we consider the Harry Dym-type equation [24–26]

$$v_t - 2\tau \left(v^{\frac{3}{2}}\right)_x - 2\left(v^{-\frac{1}{2}}\right)_{xxx} = 0, \quad \tau > 0, \quad (3.2)$$

by using the above new method. Under the transformation $v = u^{-2}$, ($u > 0$), (3.2) can be written as

$$u u_t - 3\tau u_x + u^4 u_{xxx} = 0. \quad (3.3)$$

Performing the transform $u(x, t) = U(\xi)$, $\xi = x + ct$, we can obtain

$$c U U_\xi - 3\tau U_\xi + U^4 U_{\xi\xi\xi} = 0. \quad (3.4)$$

We rewrite this formula (3.4) as

$$U_{\xi\xi\xi} + c U^{-3} U_\xi - 3\tau U^{-4} U_\xi = 0.$$

Integrating with respect to ξ once, we have

$$U_{\xi\xi} - \frac{1}{2} c U^{-2} + \tau U^{-3} - \frac{h_1}{2} = 0,$$

where $h_1/2$ is a constant of integration. Multiplying the above equation by U_ξ and integrating with respect to ξ once again, we have

$$U^2 U_\xi^2 - h_1 U^3 - h_2 U^2 + c U - \tau = 0, \quad (3.5)$$

where h_2 is another constant of integration [24].

Balancing $U^2 U_\xi^2$ with U^3 , $h_1 \neq 0$, we have $4n - 2 = 3n$, from which $n = 2$. Therefore we can expand an exact solution of the above equation (3.5) in the form

$$\begin{aligned} U(\xi) &= a_0 + a_1 \varphi(s) + a_2 \varphi^2(s), \quad \varphi'(s) = b + \varphi^2(s), \\ \xi &= d_1 s + d_2 \varphi(s), \quad d_2 \neq 0, \end{aligned} \quad (3.6)$$

according to (3.1). Substituting (3.6) into (3.5) yields a set of algebraic equations with the help of symbolic computation

software Maple,

$$\begin{aligned} & a_0^2 a_1^2 b^2 + a_0 c d_1^2 + 2 a_0 b c d_1 d_2 + a_0 b^2 c d_2^2 - a_0^3 d_1^2 h_1 \\ & - 2 a_0^3 b d_1 d_2 h_1 - a_0^3 b^2 d_2^2 h_1 - a_0^2 d_1^2 h_2 \\ & - 2 a_0^2 b d_1 d_2 h_2 - a_0^2 b^2 d_2^2 h_2 - d_1^2 \tau \\ & - 2 b d_1 d_2 \tau - b^2 d_2^2 \tau = 0, \end{aligned}$$

$$\begin{aligned} & 2 a_0 a_1^3 b^2 + 4 a_0^2 a_1 a_2 b^2 + a_1 c d_1^2 + 2 a_1 b c d_1 d_2 \\ & + a_1 b^2 c d_2^2 - 3 a_0^2 a_1 d_1^2 h_1 - 6 a_0^2 a_1 b d_1 d_2 h_1 \\ & - 3 a_0^2 a_1 b^2 d_2^2 h_1 - 2 a_0 a_1 d_1^2 h_2 \\ & - 4 a_0 a_1 b d_1 d_2 h_2 - 2 a_0 a_1 b^2 d_2^2 h_2 = 0, \end{aligned}$$

$$\begin{aligned} & 2 a_0^2 a_1^2 b + a_1^4 b^2 + 10 a_0 a_1^2 a_2 b^2 + 4 a_0^2 a_2^2 b^2 + a_2 c d_1^2 \\ & + 2 a_0 c d_1 d_2 + 2 a_2 b c d_1 d_2 + 2 a_0 b c d_2^2 \\ & + a_2 b^2 c d_2^2 - 3 a_0 a_1^2 d_1^2 h_1 - 3 a_0^2 a_2 d_1^2 h_1 - 2 a_0^3 d_1 d_2 h_1 \\ & - 6 a_0 a_1^2 b d_1 d_2 h_1 - 6 a_0^2 a_2 b d_1 d_2 h_1 \\ & - 2 a_0^3 b d_2^2 h_1 - 3 a_0 a_1^2 b^2 d_2^2 h_1 - 3 a_0^2 a_2 b^2 d_2^2 h_1 \\ & - a_1^2 d_1^2 h_2 - 2 a_0 a_2 d_1^2 h_2 - 2 a_0^2 d_1 d_2 h_2 \\ & - 2 a_1^2 b d_1 d_2 h_2 - 4 a_0 a_2 b d_1 d_2 h_2 - 2 a_0^2 b d_2^2 h_2 \\ & - a_1^2 b^2 d_2^2 h_2 - 2 a_0 a_2 b^2 d_2^2 h_2 - 2 d_1 d_2 \tau \\ & - 2 b d_2^2 \tau = 0, \end{aligned}$$

$$\begin{aligned} & 4 a_0 a_1^3 b + 8 a_0^2 a_1 a_2 b + 6 a_1^3 a_2 b^2 + 16 a_0 a_1 a_2^2 b^2 \\ & + 2 a_1 c d_1 d_2 + 2 a_1 b c d_2^2 - a_1^3 d_1^2 h_1 - 6 a_0 a_1 a_2 d_1^2 h_1 \\ & - 6 a_0^2 a_1 d_1 d_2 h_1 - 2 a_1^3 b d_1 d_2 h_1 - 12 a_0 a_1 a_2 b d_1 d_2 h_1 \\ & - 6 a_0^2 a_1 b d_2^2 h_1 - a_1^3 b^2 d_2^2 h_1 \\ & - 6 a_0 a_1 a_2 b^2 d_2^2 h_1 - 2 a_1 a_2 d_1^2 h_2 - 4 a_0 a_1 d_1 d_2 h_2 \\ & - 4 a_1 a_2 b d_1 d_2 h_2 - 4 a_0 a_1 b d_2^2 h_2 \\ & - 2 a_1 a_2 b^2 d_2^2 h_2 = 0, \end{aligned}$$

$$\begin{aligned} & a_0^2 a_1^2 + 2 a_1^4 b + 20 a_0 a_1^2 a_2 b + 8 a_0^2 a_2^2 b + 13 a_1^2 a_2^2 b^2 \\ & + 8 a_0 a_2^3 b^2 + 2 a_2 c d_1 d_2 + a_0 c d_2^2 + 2 a_2 b c d_2^2 \\ & - 3 a_1^2 a_2 d_1^2 h_1 - 3 a_0 a_2^2 d_1^2 h_1 - 6 a_0 a_1^2 d_1 d_2 h_1 \\ & - 6 a_0^2 a_2 d_1 d_2 h_1 - 6 a_1^2 a_2 b d_1 d_2 h_1 - 6 a_0 a_2^2 b d_1 d_2 h_1 \\ & - a_0^3 d_2^2 h_1 - 6 a_0 a_1^2 b d_2^2 h_1 - 6 a_0^2 a_2 b d_2^2 h_1 \\ & - 3 a_1^2 a_2 b^2 d_2^2 h_1 - 3 a_0 a_2^2 b^2 d_2^2 h_1 - a_2^2 d_1^2 h_2 \\ & - 2 a_1^2 d_1 d_2 h_2 - 4 a_0 a_2 d_1 d_2 h_2 - 2 a_2^2 b d_1 d_2 h_2 \\ & - a_0^2 d_2^2 h_2 - 2 a_1^2 b d_2^2 h_2 - 4 a_0 a_2 b d_2^2 h_2 \\ & - a_2^2 b^2 d_2^2 h_2 - d_2^2 \tau = 0, \end{aligned}$$

$$\begin{aligned} & 2 a_0 a_1^3 + 4 a_0^2 a_1 a_2 + 12 a_1^3 a_2 b + 32 a_0 a_1 a_2^2 b + 12 a_1 a_2^3 b^2 \\ & + a_1 c d_2^2 - 3 a_1 a_2^2 d_1^2 h_1 - 2 a_1^3 d_1 d_2 h_1 \\ & - 12 a_0 a_1 a_2 d_1 d_2 h_1 - 6 a_1 a_2^2 b d_1 d_2 h_1 - 3 a_0^2 a_1 d_2^2 h_1 \\ & - 2 a_1^3 b d_2^2 h_1 - 12 a_0 a_1 a_2 b d_2^2 h_1 \\ & - 3 a_1 a_2^2 b^2 d_2^2 h_1 - 4 a_1 a_2 d_1 d_2 h_2 \\ & - 2 a_0 a_1 d_2^2 h_2 - 4 a_1 a_2 b d_2^2 h_2 = 0, \end{aligned}$$

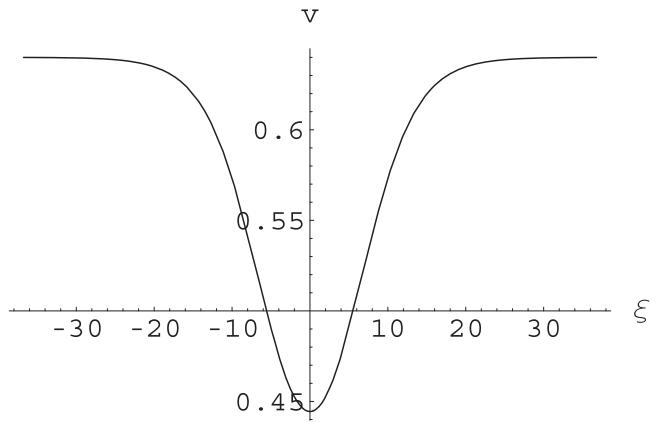


Figure 1. $(V, \xi) = (U^{-2}, \xi)$ with (3.8) has a parameterized soliton solution achieved by setting $b = -1$, $h_1 = -1/2$, $d_1 = 5\sqrt{2}$ and $d_2 = -\sqrt{2}$.

$$\begin{aligned} & a_1^4 + 10 a_0 a_1^2 a_2 + 4 a_0^2 a_2^2 + 26 a_1^2 a_2^2 b + 16 a_0 a_2^3 b \\ & + 4 a_2^4 b^2 + a_2 c d_2^2 - a_2^3 d_1^2 h_1 - 6 a_1^2 a_2 d_1 d_2 h_1 \\ & - 6 a_0 a_2^2 d_1 d_2 h_1 - 2 a_2^3 b d_1 d_2 h_1 - 3 a_0 a_1^2 d_2^2 h_1 \\ & - 3 a_0^2 a_2 d_2^2 h_1 - 6 a_1^2 a_2 b d_2^2 h_1 - 6 a_0 a_2^2 b d_2^2 h_1 \\ & - a_2^3 b^2 d_2^2 h_1 - 2 a_2^2 d_1 d_2 h_2 - a_1^2 d_2^2 h_2 \\ & - 2 a_0 a_2 d_2^2 h_2 - 2 a_2^2 b d_2^2 h_2 = 0, \\ & 6 a_1^3 a_2 + 16 a_0 a_1 a_2^2 + 24 a_1 a_2^3 b - 6 a_1 a_2^2 d_1 d_2 h_1 \\ & - a_1^3 d_2^2 h_1 - 6 a_0 a_1 a_2 d_2^2 h_1 - 6 a_1 a_2^2 b d_2^2 h_1 \\ & - 2 a_1 a_2 d_2^2 h_2 = 0, \\ & 13 a_1^2 a_2^2 + 8 a_0 a_2^3 + 8 a_2^4 b - 2 a_2^3 d_1 d_2 h_1 - 3 a_1^2 a_2 d_2^2 h_1 \\ & - 3 a_0 a_2^2 d_2^2 h_1 - 2 a_2^3 b d_2^2 h_1 - a_2^2 d_2^2 h_2 = 0, \\ & 12 a_1 a_2^3 - 3 a_1 a_2^2 d_2^2 h_1 = 0, \\ & 4 a_2^4 - a_2^3 d_2^2 h_1 = 0. \end{aligned}$$

Solving the above system by means of symbolic computation software again, we can actually obtain several types of exact solution according to (1.6),

$$\begin{aligned} & a_2 = \frac{1}{4} d_2^2 h_1, \quad d_2, h_1 \neq 0, \\ & a_1 = 0, \\ & a_0 = \frac{1}{4} d_2 h_1 (d_1 + b d_2), \\ & \tau = -\frac{1}{64} d_1^2 d_2^3 h_1^4 (d_1 + b d_2), \\ & c = -\frac{1}{16} d_1 d_2^2 h_1^3 (3 d_1 + 2 b d_2), \\ & h_2 = -\frac{1}{4} d_2 h_1^2 (3 d_1 + b d_2). \end{aligned} \quad (3.7)$$

The sign of b can be used to exactly judge the type of travelling wave solutions. For example, when $b < 0$, (3.5) admits exact solutions of tanh-function-type (see figure 1)

$$\begin{aligned} & U = \frac{1}{4} d_2 h_1 (d_1 + b d_2) - \frac{1}{4} d_2^2 h_1 \sqrt{-b} \tanh^2(\sqrt{-b} s), \\ & \xi = d_1 s - d_2 \sqrt{-b} \tanh(\sqrt{-b} s), \end{aligned} \quad (3.8)$$

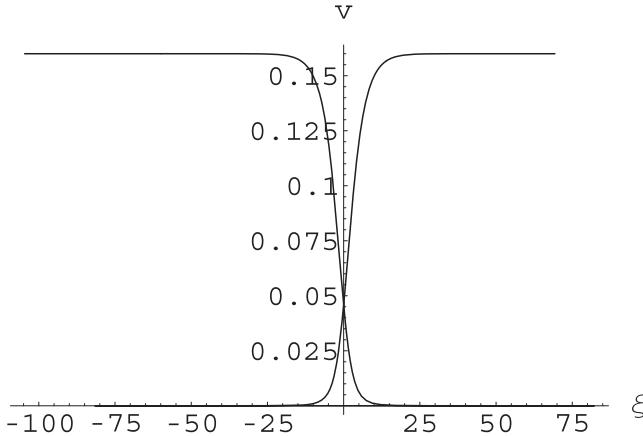


Figure 2. $(v, \xi) = (U^{-2}, \xi)$ with (3.9) has a parameterized anti-kink solution when $s > 0$, and a kink solution when $s < 0$, achieved by setting $b = -1$, $h_1 = 1$, $d_1 = 5\sqrt{2}$ and $d_2 = \sqrt{2}$.

and coth-function-type (see figure 2)

$$U = \frac{1}{4}d_2h_1(d_1 + bd_2) - \frac{1}{4}d_2^2h_1\sqrt{-b} \coth^2(\sqrt{-b}s),$$

$$\xi = d_1s - d_2\sqrt{-b} \coth(\sqrt{-b}s), \quad (3.9)$$

where τ , c , h_2 are given by (3.7). Particularly, when $b = -1$, $h_1 = -\frac{1}{2}$, $d_1 = 2\sqrt{2}$ and $d_2 = -2\sqrt{2}$, we have $a_2 = -1$, $a_1 = 0$, $a_0 = 2$, $h_2 = 2$, $\tau = 1$ and $c = \frac{5}{2}$, according to (3.7). This special result has been also obtained in [24].

4. Summary

From the above two examples, (2.1) and (2.11), it is clear to see that travelling wave solutions (1.6) to a NLEE with $n = 0$ can be obtained by the new transform $U = \frac{-W'(\xi)}{W^2}$ through simple algebraic calculations. It can also be seen that the present method may be generalized to obtain multi-travelling wave solutions and solve coupled nonlinear evolution systems, which will add to the explicit solutions found using the multiple exponential function method and the linear superposition principle [27–29].

Taking the Harry Dym-type equation (3.2) as an example, we have proposed the implicit tanh-function expansion method for constructing more exact solutions of NLEEs. Various kinds of explicit function expansion methods presented in [1–21] can also be generalized to the case of implicit functions. In fact, one can easily write the corresponding version of implicit functions such as $\xi = f(s)$ in step 2, section 3. Thus, exact solutions obtained by the implicit function expansion method include not only the polynomial, exponential, rational, triangular periodic wave, hyperbolic and Jacobi doubly periodic wave solutions, but also the loop-type soliton solutions. For example, by using this new implicit tanh-function expansion method, more exact solutions for the short pulse equation $u_{xt} = u + 1/6(u^3)_{xx}$ can be obtained, which have implicit function forms corresponding to loop-type solitons [30].

This new implicit function expansion method can also deal with the following coupled Harry Dym-type system [31]

$$\begin{cases} u_t = \frac{1}{2}\left(\frac{1}{\sqrt{v}}\right)_{xxx} - 2\alpha\left(\frac{1}{v^\beta}\right)_x, & \beta < 0, \\ v_t = u_x\left(\frac{1}{\sqrt{v}}\right) + 2u\left(\frac{1}{\sqrt{v}}\right)_x \end{cases}$$

and the (2+1)-dimensional Harry Dym-type equation [32, 33]

$$u_t + u^3u_{xxx} + \frac{3}{u}\left(u^2\partial_x^{-1}\left(\frac{u_y}{u^2}\right)\right)_y = 0.$$

However, this new method also has a disadvantage, which is that the amount of computation required is very large. Of course, modern calculating machines and the development of software systems make such computation possible. For the sake of simplicity, we omit the calculation process and results.

Acknowledgments

We would like to express our sincere thanks to the referees for their useful comments and timely help. This work is supported by the National Natural Science Foundation of China (Grant No. 11371323) and the Foundation of the Department of Education of Zhejiang Province (Grant No. Y201432097).

ORCID iDs

Wen-Xiu Ma <https://orcid.org/0000-0001-5309-1493>

References

- [1] Wazwaz A M 2001 A computational approach to soliton solutions of the Kadomtsev–Petviashvili equation *Appl. Math. Comput.* **123** 205–17
- [2] Fan E G and Zhang J 2002 Applications of the Jacobi elliptic function method to special-type nonlinear equations *Phys. Lett. A* **305** 383–92
- [3] Fan E G 2002 Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method *J. Phys. A: Math. Gen.* **35** 6853–72
- [4] Fan E G 2003 An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations *J. Phys. A: Math. Gen.* **36** 7009–26
- [5] Fan E G 2003 Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics *Chaos Solitons Fractals* **16** 819–39
- [6] Yan Z Y 2003 Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method *J. Phys. A: Math. Gen.* **36** 1961–72
- [7] Baldwin D, Göktas Ü, Hereman W, Hong L, Martino R S and Miller J C 2004 Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs *J. Symb. Comput.* **37** 669–705
- [8] Chen Y and Wang Q 2005 Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1 + 1)-dimensional dispersive long wave equation *Chaos Solitons Fractals* **24** 745–57

[9] Kudryashov N A 2005 Simplest equation method to look for exact solutions of nonlinear differential equations *Chaos Solitons Fractals* **24** 1217–31

[10] He J H and Wu X H 2006 Exp-function method for nonlinear wave equations *Chaos Solitons Fractals* **30** 700–8

[11] El-Sabbagh M F and Ali A T 2008 New generalized Jacobi elliptic function expansion method *Commun. Nonlinear Sci. Numer. Simul.* **13** 1758–66

[12] Ma W X and Lee J-H 2009 A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo–Miwa equation *Chaos Solitons Fractals* **42** 1356–63

[13] Kudryashov N A 2009 Seven common errors in finding exact solutions of nonlinear differential equations *Commun. Nonlinear Sci. Numer. Simul.* **14** 3507–29

[14] Zayed E M E and Gepreel K A 2009 Some applications of the $\left(\frac{G'}{G}\right)$ -expansion method to non-linear partial differential equations *Appl. Math. Comput.* **212** 1–13

[15] Parkes E J 2010 Observations on the tanh–coth expansion method for finding solutions to nonlinear evolution equations *Appl. Math. Comput.* **217** 1749–54

[16] Sakthivel R, Chun C and Lee J 2010 New travelling wave solutions of Burgers equation with finite transport memory *Z. Naturforsch. A* **65** 633–40

[17] Kima H and Sakthivel R 2010 Travelling wave solutions for time-delayed nonlinear evolution equations *Appl. Math. Lett.* **23** 527–32

[18] Lee J and Sakthivel R 2011 New exact travelling wave solutions of bidirectional wave equations *Pramana J. Phys.* **76** 819–29

[19] Ali A T 2011 New generalized Jacobi elliptic function rational expansion method *J. Comput. Appl. Math.* **235** 4117–27

[20] Ugurlu Y, Inan I E and Bultut H 2017 Two new applications of $\tan(F(\xi)/2)$ -expansion method *Optik* **131** 539–46

[21] Ma W X and Fuchssteiner B 1996 Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation *Int. J. Non-Linear Mech.* **31** 329–38

[22] Galaktionov V A and Svirshchevskii S R 2007 *Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics* (London: Chapman and Hall/CRC)

[23] Yang Z J 1994 Travelling wave solutions to nonlinear evolution and wave equations *J. Phys. A: Math. Gen.* **27** 2837–55

[24] Geng X G, Li R M and Xue B 2015 A new integrable equation with peakons and cuspons and its bi-Hamiltonian structure *Appl. Math. Lett.* **46** 64–9

[25] Dmitrieva L and Khlabystova M 1998 Multisoliton solutions of the (2+1)-dimensional Harry Dym equation *Phys. Lett. A* **237** 369–80

[26] Halim A A 2008 Soliton solutions of the (2 + 1)-dimensional Harry Dym equation via Darboux transformation *Chaos Solitons Fractals* **36** 646–53

[27] Ma W X, Huang T W and Zhang Y 2010 A multiple exp-function method for nonlinear differential equations and its application *Phys. Scr.* **82** 065003

[28] Ma W X and Zhu Z N 2012 Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm *Appl. Math. Comput.* **218** 11871–9

[29] Ma W X and Fan E G 2011 Linear superposition principle applying to Hirota bilinear equations *Comput. Math. Appl.* **61** 950–9

[30] Fu Z T, Chen Z, Zhang L N, Mao J Y and Liu S K 2010 Novel exact solutions to the short pulse equation *Appl. Math. Comput.* **215** 3899–905

[31] Chen J B and Geng X G 2005 A new Neumann type integrable system related to the coupled Harry Dym hierarchy *Phys. Lett. A* **340** 181–7

[32] Constantin P and Kadanoff L 1991 Dynamics of a complex interface *Physica D* **47** 450–60

[33] Konopelchenko B G and Lee J H 1995 Inverse spectral transform for the Harry Dym equation on the complex plane *Physica D* **81** 32–43