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Abstract

The tanh-function expansion method has been improved and used to construct travelling wave
solutions of the form U = }77_ a; tanh/ ¢ for some special-type nonlinear evolution equations,
which have a variety of physical applications. The positive integer 7 can be determined by balancing
the highest order linear term with the nonlinear term in the evolution equations. We improve the
tanh-function expansion method with n = 0 by introducing a new transform U = —W/'(&) /W?2. A
nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to

show the effectiveness of the improved scheme. We also propose the tanh-function expansion
method of implicit function form, and apply it to a Harry Dym-type equation as an example.

Keywords: travelling wave solution, nonlinear evolution equation, function expansion method,

symbolic computation

1. Introduction

It is very important in mathematical physics to seek exact
solutions of nonlinear evolution equations (NLEEs). For
example, the bell-shaped sech and kink-shaped tanh solutions
can be used to analyse and model the wave phenomena
observed in fluid dynamics and in plasma and elastic media.
There are several approaches to constructing exact solutions,
including Lie symmetry group reduction, the inverse scat-
tering, Darboux and Bécklund transformations, and the Hirota
bilinear operator, homogeneous balance and tanh-function
expansion methods, which are all incorporated into the
transformed rational function method. The tanh-function
expansion method is a feasible and particularly powerful
algorithm, because one can write solitary travelling wave
solutions of a given NLEE as polynomials of hyperbolic
functions and transform the evolution equation under con-
sideration into a system of algebraic equations to solve.
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Several extensions of the tanh-function expansion method
have also been proposed for solving various kinds of NLEE:s.
These expansion methods include the Jacobi elliptic function,
exponential function, Riccati equation, tanh—coth and G'/G
expansion methods [1-21]. Many well-known NLEEs have
been solved using these methods, such as the KdV, mKdV,
Camassa—Holm and the Kaup—Kupershmidt-type equations,
and the Jaulent-Miodek, (2 + 1)-dimensional dispersive long
wave and (2 + 1)-dimensional Hirota systems. In addition,
some special-type NLEEs, including the double sine-Gordon
equation, the coupled Schrodinger—KdV system and the
(2 + 1)-dimensional Davey—Stewartson equation, require
some kinds of pre-possessing techniques because such
equations cannot be directly dealt with by these methods.
Let us recall how the tanh-function expansion method
works for a given NLEE
H(u, ug, Uy, Uy, -

3 =0. (1.1)
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By means of a travelling wave reduction

ux, ) =U(¢), E=x+ct, (1.2)
we can transform (1.1) into the following ordinary differential
equation (ODE)

HWU,U,U" --)=0. (1.3)
The next crucial step is that the ansatz of exact solutions is

expressed as a polynomial in the tanh function,

U = i a;tanh/ ¢ 1.4)

J=0

because a derivative of tanh ¢ is a polynomial in tanh¢, e.g.,
(tanh €)' = 1 — tanh?¢. The positive integer n in the
expansion can be determined by balancing the highest order
linear term with the nonlinear term in the equation under
consideration. By substituting (1.4) into (1.3) and equating all
coefficients of the powers of tanh £ to zero, we can obtain a
system of algebraic equations on the parameters, wave
numbers and frequencies. Thus, we can explicitly obtain the
parameters a; and ¢, with the help of symbolic computation
systems such as Maple and Mathematica.

In order to construct diverse exact solutions, (1.4) can be
modified to

U©) =2 aj/©), PO =b+¢©. (15
j=0

Considering that the Riccati equation ¢'(§) = b + ©?(£)
admits several types of exact solutions [21],

—J=b tanh(/=b¢), —/=b coth(/=b¢), b <0,
PO =9 b=0,
Jb tan(Vb§), —b cot(\/b &), b >0,

(1.6)

we can then obtain various types of exact solution, and (1.4)
is only a special case in (1.6). Of course, we can consider
more generalized expansion forms [3-5, 8] for constructing
more exact solutions, such as the Weierstrass and Jacobi
doubly periodic wave solutions.

The paper is structured as follows. In section 2, we study
a special-type case that has not been considered, namely
n = 0in (1.4) (or (1.5)), by balancing the highest order linear
term with the nonlinear term. In section 3, we propose the
tanh-function expansion method of implicit function form and
apply it to a Harry Dym-type equation as an example. In
section 4, we give a short summary.

2. The tanh-function expansion method with n =0

In this section, we illustrate our approach for dealing with the
case of n = 0 with two examples.

Example 1. We consider the nonlinear wave equation with
source terms [22]

uy + 2u? — %uuﬂ + au + fu? =0. 2.1)
Let u(x, £) = U(€), £ = x + ct, then (2.1) reduces to
4
c2U" +2U0"? — EUU” + aU + BU? = 0. 2.2)

Balancing between U” and UU” yields n = 0, which is not a
positive integer. So if we take U = V', then (2.2) becomes

AV 42V — %V’V”’ + aV’' + BV2 =0. (2.3)
Furthermore, let V = W', then (2.3) becomes
3AW2W — 182WW'W” + 18c*W'3 + 3aW'W?
—38W"2 4 AW'W" — 6W"? = 0. 2.4)

Now W2W" and W"? give the desired balancing number
n = 1. In this case, we can assume that

W =ay+ ap, o' =b+ ¢ (2.5)
Substituting (2.5) into (2.4), we have
6a’bc? + 18adc® + 3afa + 8aib — 34,6 = 0,
bay(4bc* — o) = 0,
24a’b*c? 4 24albc? + 3afba + 3ada
—+ 16(11b2 — 6a1bﬂ = 0,
18a?bc? + 6adbc? + 3ada + 8aib* — 3a1bf = 0.
(2.6)
This system has a solution
4bc? — a =0,
18albc? + 18adc? + 8aihb — 3fa; = 0. .7

So we can get the following three cases which correspond to

WO e = x4 et of 2.1),

exact solutions U = T

Case 1. a = 0.

Bar

6c: &

W=+ - — (2.8)

Case 2. a < 0.

W_:t\/:sﬁ(ll — 8(11b

2 —a -
—aib —a |— tanh| |—&|;
18¢2 ! W42 ( 4c2 5)
35611 — 8a1b 2 —Q —
W=t 22U 000 2 g [ TY coth] =2 g,
\/ 18¢2 ! " 4e2 2t
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Case 3. a > 0.
3,@&1 — 8a1b 2 [} a
W=+ |"——+—— —aib +a |— tan| |[—&|;
\/ 18¢2 ! 'Y 42 22
3Ba; — 8aib 2 e} «
W=+, |—— —ab — ag |— cot] |—¢&|.
\/ 18¢2 ! " 4c2 e

(2.10)

Example 2. We consider the mKdV-type equation [23]
Uy + Upee + rt®uy + Buttzte = 0. (2.11)
Let u(x, t) = U(§), £ = x + ct, and then (2.11) reduces to
cU' + U" + aUU' + pUU'U" = 0. (2.12)

Balancing between U"’ and UU'U” yields n = 0, which is not
a positive integer. So let U = V', and then (2.12) becomes

cU" + UW + aUU" + BU'UUM = 0. (2.13)
Furthermore, let V. = W', and then (2.13) becomes
WIW" — 2eWOW'? + aWW2W" — 2aW2W'
+ﬁW3W/W//W”/ _ zﬁw2wl3wl//
—6ﬁW2W/2W”2 + 18ﬁWW/4W” _ ]26W/2
_24W/4W4 + 36W/2W//W5 _ 6W//2W6
—8W/'W"W6 + WHWT = 0. (2.14)

Thus we can assume that W has ansatz (2.5). Substituting
(2.5) into (2.14) and equating all coefficients of the powers of
¢(&) to zero, we have b = -, a = ¢ff and a¢ + ba? = 0. So
we obtain exact solutions which correspond to U =
% €=x+ct of 2.11),

W= i%J—_ - %J—_ctanh(%J—_cg);

W= ﬁ:%J—_c - %J——ccoth(%J——cg). (2.15)

3. The tanh-function expansion method of implicit
function form

In this section, we firstly outline our new method which
includes the following four main steps:

Step

1: Using the travelling wave reduction (1.2), namely u(x, f) =
U, &= x+ ct, we transform (1.1) into an ODE (1.3).
Step

2: We expand an exact solution of (1.3) in the form

U= a;p/(s),  ¢'(s) =b+ (),
j=0

E=dis + drp(s), dr=D0. 3.1

Here n can be obtained by balancing suitable nonlinear

terms and the highest linear derivative term.

Step

3: Substituting the above expansion (3.1) into the ODE (1.3)
and equating the coefficients of all powers of ¢ (s) to zero, we
can get a system of algebraic equations. Thus parameters c,
a;(j=0,1, -, n), b, dy, d, can be determined explicitly by
solving this system.

Step

4: Considering that (1.6) admits several types of exact
solution, we can then obtain various types of exact solution to
the evolution equation with implicit function form under
consideration.

In fact, all the explicit function expansion methods
[2-15, 19, 20] can be generalized to the case of implicit
functions & = f(s).

In what follows, we consider the Harry Dym-type
equation [24-26]

3 1
Vv, — ZT(vi) — 2<v 5) =0,

by using the above new method. Under the transformation
v=u? (u > 0), (3.2) can be written as

>0, (3.2)

u; — 37u, + u, = 0. 3.3)

Performing the transform u(x, f) = U(§), £ = x + ct, we can
obtain

cUUg — 37U + U*Ugge = 0. (3.4)

We rewrite this formula (3.4) as
Ugee + cU*3U§ — 3TU*4U5 =0.

Integrating with respect to £ once, we have

Uge — Loy + U3 — b 0,
2 2

where /2 is a constant of integration. Multiplying the above
equation by U, and integrating with respect to £ once again,
we have

UV — U? — iU+ cU — 7 =0, 3.5)

where h, is another constant of integration [24].

Balancing Usz2 with U3, h; = 0, we have 4n — 2 =
3n, from which n = 2. Therefore we can expand an exact
solution of the above equation (3.5) in the form

U) =ao+ ap(s) + ax*(s),  ©'(s) = b + ©*(s),
E=dis + drp(s), dry=0,

(3.6)

according to (3.1). Substituting (3.6) into (3.5) yields a set of
algebraic equations with the help of symbolic computation
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software Maple, v

alalb? + agcd? + 2agbedidy + agb*cdi — agdi
—2agbdidrhy — agb*dihy — aidih, 0.6
—2albdidyhy — adb®dihy, — diT
—2bd\dyT — b¥diT =0,

2apaib? + 4alaya,b* + ajcd? + 2a1bcd,ds
+aib*ed; — 3adadihy — 6ag aibdidyhy

.55¢

<
73a02a1b2d22h172a0a1d12h2 -30 -20 -10 10 20 30
—4agarbddrhy — 2agaib*dihy = 0,
0.4
2agalb + a'b? + 10a¢alarb? + dagas b* + arcd} Figure 1. (v, §) = (U2, &) with (3.8) has a parameterized soliton
+2apcdidy + 2aybedydy + 2a0bcd22 solution achieved by setting b = —1, iy = —1/2,d; = 542

dd, = —+2.
Varbed? — 3agatdh — 3alardih — 2addidohy 2 V2

—6agalbdidrhy — 6agarbdidyhy
—2adbd}hy — 3agalb?dihy — 3ada,b*dih
—atdlhy — 2apardihy — 2aldidrhy
—2afbdydrhy — 4aparbdidyhy — 2albd;hy
—alb¥dihy, — 2aparb*dihy, — 2didyT

al + 10agata, + 4a§a22 + 26ataib + 16aga;b
+4astb? + aredi — as’dlih — 6alardidahy
—6agaididyhy — 2a5bdidrhy — 3agaidih
—3ataydih — 6ata,bdihy — 6aga;bdih

—a;b*dih — 2aididahy — afdihy

~2bd;T =0, —dagard?hy — 2abdih, = 0,

4agaib + 8a02a1a2b + 6aia,b* + 16aga;aib? 6ai’ay + 16agma; + 24mas'b — 6ajas didyy
+2aycdidy + 2a1bcdi — aldlhy — 6agaardih —apdih — 6agaiards hy — 6ayaz bds hy
—6aiaididrhy — 2abd\dahy — 12agaya;bdidyhy —2a1a,d3ihy =0,
—6adaybd2hy — ab*d2h, 13alaj + 8apa; + 8ayb — 2a5didrhy — 3afa,dih
—6agaya b*d}hy — 2aya,d hy — dagardydahy —3agatdih — 2a3bdih — atdih, =0,
—4ayar bdydrhy — daga;bd? hy 12aia;5 — 3ajazd;hy = 0,
72a1a2b2d22h2 =0, 46124 - a23d22h1 =0.

Solving the above system by means of symbolic computation
alat + 2a'b + 20apalasb + 8alalb + 13ala}b? software again, we can actually obtain several types of exact

luti i 1.
+8agazb? + 2arcdids + aged? + 2azbed solution according to (1.6).

“3alard2h — 3agaldih — 6agaldidshy 4y = %dfhl, do, by = 0,
—6agaydidyhy — 6ala,bdidahy — 6agaibdidyh
—agdih — 6agaibdihy — 6agdarbd;h

—3alayb?d}hy — 3agaib?dih, — atdlh,

a =0,

1
ap = Zdzhl(dl + bd,),

—2apdidyhy — dagardidyhy — 2a3bdidyhy S —idfd;hf‘(dl + bdy),
—ad}hy — 2albdih, — dagarbdih, 14
—azb¥dihy — dit =0, ¢ = —edidih (3, + 2bdy),
hy = f%d2h12(3d1 + bdy). (3.7)

2apa;’ + 4adayar + 12aiarb + 32apa1aib + 12a,a5b?
The sign of b can be used to exactly judge the type of tra-
d2_3 2d2h_2 deh g - Yy judg yp
taicd dz diri 2611 1924 5 5 velling wave solutions. For example, when b < 0, (3.5)
—12apa1a2d1drhy — 6ayaz bdidyhy — 3agardy by admits exact solutions of tanh-function-type (see figure 1)
—2a’bd}hy — 12aga;a,bd? hy | 1, )
—3a,a22b2d22h1 — dayardidahy U= Zdzhl(dl + bdy) — Zdz iV —b tanh*(\/—bs),

—2apardihy — dajarbdih, = 0, ¢ =dis — dyN—b tanh(V—=bs), (3.8)
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0.025

Z100 -75 -50 -25 25 50 75 °©

Figure 2. (v, §) = w2, &) with (3.9) has a parameterized anti-kink
solution when s > 0, and a kink solution when s < 0, achieved by
setting b = -1,y =1,d, = 5J2 and & = V2.

and coth-function-type (see figure 2)
U= ithl(dl + bdy) — %dzzhl\/—b coth’(vV—bs),
& =dis — dy—b coth(V—bys),

where 7, ¢, h, are given by (3.7). Particularly, when
b=—-1,n= —%, d = 2J2 and d, = —242, we have
m=-1, a=0, aqg=2, p=2, 7=1 and c=2,

according to (3.7). This special result has been also obtained
in [24].

3.9

4. Summary

From the above two examples, (2.1) and (2.11), it is clear to
see that travelling wave solutions (1.6) to a NLEE with n = 0

can be obtained by the new transform U = —uv;’z(g) through
simple algebraic calculations. It can also be seen that the
present method may be generalized to obtain multi-travelling
wave solutions and solve coupled nonlinear evolution sys-
tems, which will add to the explicit solutions found using the
multiple exponential function method and the linear super-
position principle [27-29].

Taking the Harry Dym-type equation (3.2) as an exam-
ple, we have proposed the implicit tanh-function expansion
method for constructing more exact solutions of NLEE:s.
Various kinds of explicit function expansion methods pre-
sented in [1-21] can also be generalized to the case of implicit
functions. In fact, one can easily write the corresponding
version of implicit functions such as & = f(s) in step 2,
section 3. Thus, exact solutions obtained by the implicit
function expansion method include not only the polynomial,
exponential, rational, triangular periodic wave, hyperbolic
and Jacobi doubly periodic wave solutions, but also the loop-
type soliton solutions. For example, by using this new
implicit tanh-function expansion method, more exact solu-
tions for the short pulse equation u,, = u + 1/ 6(u3)xx can be
obtained, which have implicit function forms corresponding
to loop-type solitons [30].

This new implicit function expansion method can also
deal with the following coupled Harry Dym-type system [31]

Uy = %(%)H - 204(%))(, B<o,
w=u( ) + 2u(5),

and the (24 1)-dimensional Harry Dym-type equation [32, 33]
U + g, + i(zﬂaxl(”—;))
u u

However, this new method also has a disadvantage, which is
that the amount of computation required is very large. Of
course, modern calculating machines and the development of
software systems make such computation possible. For the
sake of simplicity, we omit the calculation process and
results.

=0.
y
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