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derivatives D3 ; and D3 ;. A class of rational solutions, generated from polynomial
solutions to the associated generalized bilinear equation, is constructed for the
presented Boussinesqg-like equation. It is conjectured that this class of rational
solutions contain all such rational solutions to the new Boussinesq-like equation.
More concretely, the conjecture says that if a polynomial f = f(z,¢) in « and ¢

Keywords: 5 > ’
Rational solution solves fitf — fi +3fz, = 0, then the degree of f with respect to ¢t must be less than
Boussinesq equation or equal to 1.

Generalized bilinear form © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

On one hand, Hirota bilinear equations have been generalized by involving different prime numbers [1],
which generate diverse nonlinear differential equations possessing potential applications. On the other hand,
there has been a growing interest in rational solutions to nonlinear differential equations (see, e.g., [2,3]). A
kind of interesting rational solutions — rogue wave solutions — draws a big attention of mathematicians and
physicists worldwide and such rational solutions describe significant nonlinear wave phenomena, particularly
in oceanography [4,5] and nonlinear optics [6,7]. One of current interests to us is to discuss about rational
solutions to a new kind of nonlinear differential equations associated with generalized bilinear equations.

Rational solutions to integrable equations (see [8,9]) have been considered systematically by using the
Wronskian formulation and the Casoratian formulation. Particular examples include the KdV equation, the
Boussinesq equation, and the Toda lattice equation (see, e.g., [10-12], respectively). Rational solutions to the
non-integrable (3 + 1)-dimensional KP I [13,14] and KP II [15] are considered by different approaches such
as the tanh-function method [16], the tanh—coth function method [17], and the %-expansion method [18].
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Moreover, rational solutions to the (3 4+ 1)-dimensional KP II can be generated from rational solutions to
the good Boussinesq equation [15].

In this paper, we would like to introduce a Boussinesq-like nonlinear differential equation by using a
generalized bilinear differential equation of Boussinesq type. From polynomial solutions to the associated
generalized bilinear equation, we will construct a class of rational solutions to the presented Boussinesg-like
equation, which have a specific requirement on the degrees of the spatial variable and the temporal variable.
A conjecture will be presented during our analysis that the resulting class of rational solutions contain all
such rational solutions to the Boussinesg-like equation, and a few concluding remarks will be given at the
end of the paper.

2. A Boussinesq-like equation

We consider a generalized bilinear differential equation of Boussinesq type:
(D3, +D3,)f - f =2fuf 27 +6f2,=0. (2.1)

This equation possesses the same bilinear type as the standard Boussinesq one [19]. The bilinear differential
operators involved above are a kind of generalized bilinear differential operators presented in [1,20,21]:
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where o is computed as follows:
ap = (=1)"), s =ry(s) mod p. (2.3)
Note that
abad #alti, i, >0,

when p is a prime number greater than 2. If taking p = 3, we have

=1, aj =1, ad =1,
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as = —1, ag =1, ag =1,
and thus
D3, f-f=2fuf 212, D5, f-f=6f.
In the case of p = 2, which is the Hirota case, we have
D3 f-f=2fuf =21}, D3.f f=2feseaf —8feaefo+6f7
which generates the standard bilinear Boussinesq equation [19]:
(D3 + Dyo)f - f =2fuf = 208 + 2faweaf = 8faanfo + 6f7, =0, (24)
and the Boussinesq equation:
Ut + (U?) gz + Upgzw = 0, (2.5)

under the transformation u = 6(In f)g, [11].
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Motivated by Bell polynomial theories [20,21], we use a dependent variable transformation
u=2(nf),, (2.6)
to introduce a Boussinesg-like scalar nonlinear differential equation

3 3
Ut + SUp Uz + 3uui + §u3uz + §u2

from the generalized bilinear equation (2.1). By virtue of the transformation (2.6), we actually have the
following equality:

Uze = 0, (2.7)

(D3 +Ds)f - f
2 2

12
and thus, if f is a solution to (2.1), then u = 2(ln f), solves the Boussinesq-like equation (2.7). The
Boussinesg-like equation (2.7) is much more complicated than the standard one (2.5), while their bilinear

3 3
1 = Uyt + FUgpUgy + 3uui + Zwduy + S uPugy, (2.8)

counterparts just have an opposite characteristic (i.e., (2.1) is simpler than (2.4)).

Resonant solutions in terms of the two kinds of transcendental functions: exponential functions and
trigonometric functions, have been discussed for generalized bilinear equations [20-22]. In what follows, we
would like to consider rational solutions to the Boussinesqg-like equation (2.7), based on polynomial solutions
to the generalized bilinear equations (2.1).

3. Rational solutions

By a Maple computation on
77
f= Z Zcz‘jxitj;
i=0 j=0
we find that any such polynomial solution f does not allow the degree of ¢ greater than 1. We conjecture
that this is true, namely, any polynomial solution f to the generalized bilinear equation (2.1) must have the

degree of ¢t not greater than 1.
We formulate a polynomial solution to the generalized bilinear equation (2.1) as

F=>pit" = pia)t, (3.1)
=0 =0

where n is a nonnegative integer and the p;’s are polynomials of z with p, # 0. Assume that n > 2. We
want to present a contradiction to this assumption. Since n > 2, we can compute that

fuf = 18 +3f2,
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This is a polynomial in ¢ with coefficients being polynomials in x. Obviously, the coefficients of the first five
highest orders are

t2n : 3p$i,$$7

2=t 6pn,;wcpn—1,xa:a

t2n—2 : —npi + Spi_me + 6pn—2,wwpn,w;c7 (32)
t2n_3 : —2(7’& - 1)pn—1pn + 6pn—3,;vzpn,xw + 6pn—2,wzpn—1,ww7

t2n_4 : —2(7’l - 3)pn_2pn - (n - 1)]?2_1 + 6pn—4,wwpn,ww + 6pn—3,wa:pn—l,mx + 3pi—2,mw’

where we adopt p; = 0 if 4 < 0. Thus, balancing the coefficients of t*" in (2.1), we have

Pn,zz = 07 (33)

which guarantees that the coefficients of ¢2"~! get balanced, and then a balance of the coefficients of #2"~?2
tells

—np? +3p2_4 40 =0, (3.4)

which leads to

Pn—1,00 = E—FPn, e ==+1. (35)

The above two equalities present a specific requirement on the structure of polynomial solutions to (2.1).
Assume that n = 2. We would like to derive a contradiction to this assumption. From the above sums of
coefficients of powers ¢* with i = 4,2,1 in (3.2), we obtain

V6 V6
DP2,za = 0, Plza = 5?]92, Po,xzx = 5?]91, (36)

and the sum of coefficients of #3 is automatically zero, based on (3.2). Then, upon setting
po = 6ax + 2b, a,b= consts.,

the sum of coefficients of the constant terms in (2.1) becomes

4 8 P
2(2pop2 = PT + 3Pf) = dpop2 — PT = —gza’a® — fzaba® — Sb%at + g (),

where ¢ is a third-order polynomial in z. It should be equal to zero, which implies that a = b = 0. This fact
contradicts that py # 0, i.e., the assumption of n = 2. Therefore, it is impossible that n = 2.
Let us now set n = 1. At this moment, we have

Po,zz = 6?171, (3.7
which is guaranteed by a balance of the constant terms in (2.1). Since we have (3.3), i.e., p1 4 = 0, we can
set

p1 = eV3(6az + 2b), (3.8)
which neatly generates
po = ax® + bx® + cx + d, (3.9)

where a, b, ¢, d are arbitrary constants. This way, we obtain a class of polynomial solutions to (2.1):

f = eV3(6az + 2b)t + (az® 4 ba® + cax + d), (3.10)
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Fig. 2. Pictures of (3.12) with e = —1: 3d plot (left) and density plot (right).

with a, b, ¢, d being arbitrary constants. Further, the corresponding rational solutions to the Boussinesg-like
equation (2.7) read

2(6v/3at + 3ax? + 2bx + ¢)

w= , 3.11
eV/3(6ax + 2b)t + (ax3 + bx? + cx + d) (3:11)

where € = +1 and a, b, ¢, d are arbitrary constants.

We conjecture that the class of rational solutions in (3.11) exhaust all rational solutions to the Boussinesg-
like equation (2.7), which are generated from polynomial solutions to the generalized bilinear equation (2.1).
More concretely, the conjecture is equivalent to the following statement.

Conjecture. If a polynomial f = f(x,t) in x and t solves the bilinear equation fyuf — f? + 3f2, = 0, then
the degree of f with respect to t must be less than or equal to 1.

Two special solutions of (3.11) witha=1,b=2, c=2 and d = 3 are

. 2(£6v/3t + 322 4 4z + 2) (3.12)
eV3(6x + 4)t + (23 + 222 + 22 + 3) '

Two pictures of the solution (3.12) with ¢ = 1 are given in Fig. 1, and two pictures of the solution (3.12)
with ¢ = —1 are given in Fig. 2.
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4. Concluding remarks

Based on the standard Boussinesq equation, we introduced a Boussinesq-like nonlinear differential
equation through a generalized bilinear equation of Boussinesq type, and constructed one class of rational
solutions to the resulting Boussinesq-like equation. The basic starting point is the generalized bilinear
differential operators D3 , and Ds; presented in [1,20,21].

We point out that it is worth checking if there are any Wronskian solutions and multiple soliton type
solutions to the Boussinesqg-like nonlinear equation (2.7), which even solve its Cauchy problem (see, e.g., [23]
for analysis on the Burgers type equations). A conjecture is that the presented class of rational solutions in
(3.11) contains all rational solutions to the Boussinesg-like nonlinear equation (2.7), generated from poly-
nomial solutions to the generalized bilinear equation (2.1) through the transformation (2.6). Interestingly,
the standard Boussinesq equation has infinitely many classes of rational solutions [11].

Similarly, a kind of generalized tri-linear differential equations was discussed in [24], together with resonant
solutions. Rational solutions to generalized tri-linear differential equations, which can always be viewed
as continuous functions of the extended complex variables, particularly rogue wave solutions, will be of
considerable interest. Higher-order rogue wave solutions should be connected with generalized Wronskian
solutions [25] and generalized Darboux transformations [26]. Exact periodic wave solutions to generalized
bilinear equations would be another interesting topic [27].
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