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a b s t r a c t

A Boussinesq-like nonlinear differential equation in (1+1)-dimensions is introduced
by using a generalized bilinear differential equation with the generalized bilinear
derivatives D3,x and D3,t. A class of rational solutions, generated from polynomial
solutions to the associated generalized bilinear equation, is constructed for the
presented Boussinesq-like equation. It is conjectured that this class of rational
solutions contain all such rational solutions to the new Boussinesq-like equation.
More concretely, the conjecture says that if a polynomial f = f(x, t) in x and t
solves fttf − f2

t +3f2
xx = 0, then the degree of f with respect to t must be less than

or equal to 1.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

On one hand, Hirota bilinear equations have been generalized by involving different prime numbers [1],
which generate diverse nonlinear differential equations possessing potential applications. On the other hand,
there has been a growing interest in rational solutions to nonlinear differential equations (see, e.g., [2,3]). A
kind of interesting rational solutions – rogue wave solutions – draws a big attention of mathematicians and
physicists worldwide and such rational solutions describe significant nonlinear wave phenomena, particularly
in oceanography [4,5] and nonlinear optics [6,7]. One of current interests to us is to discuss about rational
solutions to a new kind of nonlinear differential equations associated with generalized bilinear equations.

Rational solutions to integrable equations (see [8,9]) have been considered systematically by using the
Wronskian formulation and the Casoratian formulation. Particular examples include the KdV equation, the
Boussinesq equation, and the Toda lattice equation (see, e.g., [10–12], respectively). Rational solutions to the
non-integrable (3 + 1)-dimensional KP I [13,14] and KP II [15] are considered by different approaches such
as the tanh-function method [16], the tanh–coth function method [17], and the G

′

G -expansion method [18].
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Moreover, rational solutions to the (3 + 1)-dimensional KP II can be generated from rational solutions to
the good Boussinesq equation [15].

In this paper, we would like to introduce a Boussinesq-like nonlinear differential equation by using a
generalized bilinear differential equation of Boussinesq type. From polynomial solutions to the associated
generalized bilinear equation, we will construct a class of rational solutions to the presented Boussinesq-like
equation, which have a specific requirement on the degrees of the spatial variable and the temporal variable.
A conjecture will be presented during our analysis that the resulting class of rational solutions contain all
such rational solutions to the Boussinesq-like equation, and a few concluding remarks will be given at the
end of the paper.

2. A Boussinesq-like equation

We consider a generalized bilinear differential equation of Boussinesq type:

(D2
3,t +D4

3,x)f · f = 2fttf − 2f2t + 6f2xx = 0. (2.1)

This equation possesses the same bilinear type as the standard Boussinesq one [19]. The bilinear differential
operators involved above are a kind of generalized bilinear differential operators presented in [1,20,21]:

Dmp,xD
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, m, n ≥ 0, (2.2)

where αsp is computed as follows:

αsp = (−1)rp(s), s = rp(s) mod p. (2.3)

Note that

αipα
j
p ̸= αi+jp , i, j ≥ 0,

when p is a prime number greater than 2. If taking p = 3, we have

α3 = −1, α2
3 = 1, α3

3 = 1, α4
3 = −1, α5

3 = 1, α6
3 = 1,

and thus

D2
3,tf · f = 2fttf − 2f2t , D4

3,xf · f = 6f2xx.

In the case of p = 2, which is the Hirota case, we have

D2
2,tf · f = 2fttf − 2f2t , D4

2,xf · f = 2fxxxxf − 8fxxxfx + 6f2xx,

which generates the standard bilinear Boussinesq equation [19]:

(D2
2,t +D4

2,x)f · f = 2fttf − 2f2t + 2fxxxxf − 8fxxxfx + 6f2xx = 0, (2.4)

and the Boussinesq equation:

utt + (u2)xx + uxxxx = 0, (2.5)

under the transformation u = 6(ln f)xx [11].
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Motivated by Bell polynomial theories [20,21], we use a dependent variable transformation

u = 2(ln f)x, (2.6)

to introduce a Boussinesq-like scalar nonlinear differential equation

utt + 3uxuxx + 3uu2x + 3
2u

3ux + 3
2u

2uxx = 0, (2.7)

from the generalized bilinear equation (2.1). By virtue of the transformation (2.6), we actually have the
following equality: 

(D2
3,t +D4

3,x)f · f
f2


x

= utt + 3uxuxx + 3uu2x + 3
2u

3ux + 3
2u

2uxx, (2.8)

and thus, if f is a solution to (2.1), then u = 2(ln f)x solves the Boussinesq-like equation (2.7). The
Boussinesq-like equation (2.7) is much more complicated than the standard one (2.5), while their bilinear
counterparts just have an opposite characteristic (i.e., (2.1) is simpler than (2.4)).

Resonant solutions in terms of the two kinds of transcendental functions: exponential functions and
trigonometric functions, have been discussed for generalized bilinear equations [20–22]. In what follows, we
would like to consider rational solutions to the Boussinesq-like equation (2.7), based on polynomial solutions
to the generalized bilinear equations (2.1).

3. Rational solutions

By a Maple computation on

f =
7
i=0

7
j=0
cijx

itj ,

we find that any such polynomial solution f does not allow the degree of t greater than 1. We conjecture
that this is true, namely, any polynomial solution f to the generalized bilinear equation (2.1) must have the
degree of t not greater than 1.

We formulate a polynomial solution to the generalized bilinear equation (2.1) as

f =
n
i=0
pit
i =

n
i=0
pi(x)ti, (3.1)

where n is a nonnegative integer and the pi’s are polynomials of x with pn ̸= 0. Assume that n ≥ 2. We
want to present a contradiction to this assumption. Since n ≥ 2, we can compute that
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=
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This is a polynomial in t with coefficients being polynomials in x. Obviously, the coefficients of the first five
highest orders are

t2n : 3p2n,xx,
t2n−1 : 6pn,xxpn−1,xx,

t2n−2 : −np2n + 3p2n−1,xx + 6pn−2,xxpn,xx,

t2n−3 : −2(n− 1)pn−1pn + 6pn−3,xxpn,xx + 6pn−2,xxpn−1,xx,

t2n−4 : −2(n− 3)pn−2pn − (n− 1)p2n−1 + 6pn−4,xxpn,xx + 6pn−3,xxpn−1,xx + 3p2n−2,xx,

(3.2)

where we adopt pi = 0 if i < 0. Thus, balancing the coefficients of t2n in (2.1), we have

pn,xx = 0, (3.3)

which guarantees that the coefficients of t2n−1 get balanced, and then a balance of the coefficients of t2n−2

tells

−np2n + 3p2n−1,xx = 0, (3.4)

which leads to

pn−1,xx = ε
√

3n
3 pn, ε = ±1. (3.5)

The above two equalities present a specific requirement on the structure of polynomial solutions to (2.1).
Assume that n = 2. We would like to derive a contradiction to this assumption. From the above sums of

coefficients of powers ti with i = 4, 2, 1 in (3.2), we obtain

p2,xx = 0, p1,xx = ε
√

6
3 p2, p0,xx = ε

√
6

6 p1, (3.6)

and the sum of coefficients of t3 is automatically zero, based on (3.2). Then, upon setting

p2 = 6ax+ 2b, a, b = consts.,

the sum of coefficients of the constant terms in (2.1) becomes

2(2p0p2 − p21 + 3p20,xx) = 4p0p2 − p21 = − 4
15a

2x6 − 8
15abx

5 − 2
9b

2x4 + q(x),

where q is a third-order polynomial in x. It should be equal to zero, which implies that a = b = 0. This fact
contradicts that p2 ̸= 0, i.e., the assumption of n = 2. Therefore, it is impossible that n = 2.

Let us now set n = 1. At this moment, we have

p0,xx = ε
√

3
3 p1, (3.7)

which is guaranteed by a balance of the constant terms in (2.1). Since we have (3.3), i.e., p1,xx = 0, we can
set

p1 = ε
√

3(6ax+ 2b), (3.8)

which neatly generates

p0 = ax3 + bx2 + cx+ d, (3.9)

where a, b, c, d are arbitrary constants. This way, we obtain a class of polynomial solutions to (2.1):

f = ε
√

3(6ax+ 2b)t+ (ax3 + bx2 + cx+ d), (3.10)
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Fig. 1. Pictures of (3.12) with ε = 1: 3d plot (left) and density plot (right).

Fig. 2. Pictures of (3.12) with ε = −1: 3d plot (left) and density plot (right).

with a, b, c, d being arbitrary constants. Further, the corresponding rational solutions to the Boussinesq-like
equation (2.7) read

u = 2(ε6
√

3at+ 3ax2 + 2bx+ c)
ε
√

3(6ax+ 2b)t+ (ax3 + bx2 + cx+ d)
, (3.11)

where ε = ±1 and a, b, c, d are arbitrary constants.
We conjecture that the class of rational solutions in (3.11) exhaust all rational solutions to the Boussinesq-

like equation (2.7), which are generated from polynomial solutions to the generalized bilinear equation (2.1).
More concretely, the conjecture is equivalent to the following statement.

Conjecture. If a polynomial f = f(x, t) in x and t solves the bilinear equation fttf − f2t + 3f2xx = 0, then
the degree of f with respect to t must be less than or equal to 1.

Two special solutions of (3.11) with a = 1, b = 2, c = 2 and d = 3 are

u = 2(ε6
√

3t+ 3x2 + 4x+ 2)
ε
√

3(6x+ 4)t+ (x3 + 2x2 + 2x+ 3)
. (3.12)

Two pictures of the solution (3.12) with ε = 1 are given in Fig. 1, and two pictures of the solution (3.12)
with ε = −1 are given in Fig. 2.
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4. Concluding remarks

Based on the standard Boussinesq equation, we introduced a Boussinesq-like nonlinear differential
equation through a generalized bilinear equation of Boussinesq type, and constructed one class of rational
solutions to the resulting Boussinesq-like equation. The basic starting point is the generalized bilinear
differential operators D3,x and D3,t presented in [1,20,21].

We point out that it is worth checking if there are any Wronskian solutions and multiple soliton type
solutions to the Boussinesq-like nonlinear equation (2.7), which even solve its Cauchy problem (see, e.g., [23]
for analysis on the Burgers type equations). A conjecture is that the presented class of rational solutions in
(3.11) contains all rational solutions to the Boussinesq-like nonlinear equation (2.7), generated from poly-
nomial solutions to the generalized bilinear equation (2.1) through the transformation (2.6). Interestingly,
the standard Boussinesq equation has infinitely many classes of rational solutions [11].

Similarly, a kind of generalized tri-linear differential equations was discussed in [24], together with resonant
solutions. Rational solutions to generalized tri-linear differential equations, which can always be viewed
as continuous functions of the extended complex variables, particularly rogue wave solutions, will be of
considerable interest. Higher-order rogue wave solutions should be connected with generalized Wronskian
solutions [25] and generalized Darboux transformations [26]. Exact periodic wave solutions to generalized
bilinear equations would be another interesting topic [27].
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