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ARTICLE INFO ABSTRACT

Keywords: Two integrable counterparts of the D-Kaup-Newell soliton hierarchy are constructed from
Zero curvature equation a matrix spectral problem associated with the three dimensional special orthogonal Lie
Soliton hierarchy algebra so(3,R). An application of the trace identity presents Hamiltonian or quasi-
Symmetry Hamiltonian structures of the resulting counterpart soliton hierarchies, thereby showing

Trace identity

I their Liouville integrability, i.e., the existence of infinitely many commuting symmetries
Hamiltonian structure

and conserved densities. The involved Hamiltonian and quasi-Hamiltonian properties are
shown by computer algebra systems.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Soliton equations generated from zero curvature equations provide concrete examples of integrable equations possessing
Hamiltonian structures (see, e.g., [1-5]). It is a starting point of generating soliton equations to formulate matrix spectral
problems (or Lax pairs) associated with given matrix loop algebras. The trace identity [6] and the variational identity 7] offer
powerful techniques for furnishing their Hamiltonian structures.

Soliton equations usually come in hierarchies. The zero curvature formulation (see, e.g., [6,8]) provides a practical
approach for building soliton hierarchies. Typical examples of soliton hierarchies which fit into this formulation include
the Korteweg-de Vries hierarchy [9], the Ablowitz-Kaup-Newell-Segur hierarchy [10], the Dirac hierarchy [11], the
Kaup-Newell hierarchy [12] and the Wadati-Konno-Ichikawa hierarchy [13]. Note that those hierarchies only involve
one or two dependent variables. The case of three or more dependent variables is highly complicated and needs a consid-
erable investment of time. Integrable couplings are such examples with a large number of dependent variables, possessing
triangular forms.

Very recently, the three-dimensional special orthogonal Lie algebra so(3,R) has been used in constructing soliton hierar-
chies (see, e.g., [14,15]). This simple Lie algebra can be realized through 3 x 3 skew-symmetric matrices, and thus, it has the
following basis

0 0 -1 00 O 0 -1 0
ee=10 0 0],e=]0 0 -1|,es=|1 0 0], (1.1)
1 0 O 01 O 0 0 O
whose commutation relations read
[e1,e2] = e3, [ex, €3] =e1, [e3,e1] =e€. (1.2)
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Its derived algebra is the algebra itself, and thus, it is also 3-dimensional. The only other three-dimensional real Lie algebra
with a three-dimensional derived algebra is the special linear algebra sl(2,R), which has been widely used in studying soliton
equations in soliton theory (see, e.g., [9-13]).

The matrix loop algebra we shall adopt in this paper is

i=0

S0(3,R) = {ZM,-).“|M,~ €s0(3,R), i>0, ne z}‘ (1.3)

It is the space of all Laurent series in /1 with coefficients in so(3, R) and a finite regular part. Particular examples of this loop
algebra so(3,R) are linear combinations of the form:

pi(2)er +pa(A)ex + ps(2)es

with arbitrary Laurent polynomials p,,p,,p; in 4, which constitute a Lie subalgebra. Due to the circular commutation rela-
tions (1.2), the loop algebra so(3, R) provides a good structural basis for our study of soliton equations possessing Hamilto-
nian structures and quasi-Hamiltonian structures, and several new soliton hierarchies have been already worked out from
s0(3,R), indeed (see, e.g., [14-19]).

In this paper, we would like to use so(3, R) to introduce a counterpart matrix spectral problem for the D-Kaup-Newell
spectral problem (see [20]), and compute two integrable counterpart hierarchies of the D-Kaup-Newell soliton hierarchy
[20] by zero curvature equations. An application of the trace identity will engender Hamiltonian or quasi-Hamiltonian struc-
tures for every member in the resulting two counterpart soliton hierarchies, and thus, the counterpart soliton hierarchies are
Liouville integrable. The new counterpart hierarchies provide two other interesting examples of soliton hierarchies associ-
ated with the matrix loop algebra so0(3, R). A few concluding remarks and comments will finish the paper.

2. Integrable counterparts of the D-Kaup-Newell hierarchy

To generate integrable counterparts, associated with so(3,R), of the D-Kaup-Newell soliton hierarchy [20], let us intro-
duce a new 3 x 3 matrix spectral problem:

p ¢
¢x = U¢ = U(uﬂ A)¢7 u=.4qj, ¢ = d)Z ’ (21)
r ¢3

where the spectral matrix U is chosen as
0 —iq —-r
U="U(u,r = (72 +1)e; + ipe, + iqe; = q 0 —/p | €50(3,R). (2.2)
P+r ap 0
This linear combination is the selfsame as the D-Kaup-Newell one associated with sl(2,R) [20].
Once a matrix spectral problem is chosen, it becomes a standard routine to compute soliton hierarchies from the matrix
spectral problem by the zero curvature formulation (see [6,8]). First, we solve the stationary zero curvature equation

W,=[UW], Weso3,R). (2.3)
If we assume W to be
0 —c -a
W =ae; +be;+ces=|c 0 —b]|, (2.4)
a b 0
then the Eq. (2.3) becomes
ay = pc — Aqb,
b, = —2*c —rc + Jqa, (2.5)

Cx = —Apa + 2*b +rb.

Further, let a, b and ¢ possess the following Laurent expansions in /:

a=Yai? b= bi?", =it (2.6)

i>0 i>0 i>0
and take the initial data
a=1 bo=p, c=gq (2.7)

which are required by the equations on the highest powers of / in (2.5):
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dox = PCo — by, bo =pay, o= qao.

Then, the system (2.5) leads equivalently to

Qiy1x = —pb;y — qCiy — 1(DC; — gby),
biy1 = cix +paj, —1b;, i>0, (2.8)
Ciy1 = _bi,x +4a;4 — TG,

the first of which is because from (2.5), we have
—2a, = —i%(pc — gb) = p(by + rc — 1qa) + q(cx + Apa — rb) = pb, + qc, + r(pc — gb).

While using the above recursion relations (2.8), we impose the condition that the constants of integration take the value of
Zero:

Gily—o = bilyg = Ciluo =0, i>1, (2.9)

lu=

to determine the sequence of {a;, b;,c;|i > 1} uniquely. This way, the first two sets can be computed as follows:

a = %(p2 +q), b =gy~ %p(p2 ) = pr, €= —py - %(p2 +4%)a - qr;
@ = D0 P+ 307+ )+ (),
by =~ — % (P +q%)qy = 20,7 — gy + %p(ﬁ )+ %p(p2 +a)r+pr,
€2 = —Gu+ %px(pz + )+ 2D+ P+ qrt ‘;3 (P +qh)ar + % ¥ +a")'q.
We point out that the localness of the first two sets of {a;,b;,c;|i > 1} is not an accident, and actually, the functions

a;,b;,c;, i > 1, are all local. We state and prove this localness property as follows.

Proposition 1. The functions a;,b;,c;, i = 1, recursively defined by (2.8) from the initial values of (2.7), are all local.

Proof. Since the condition (2.9) does not create any nonlocalness problem, we can assume that this condition (2.9) holds,
that is, the constants of integration take the value of zero, as we need in our discussion.
First from Wy = [U, W], where W is defined by (2.4) with (2.6), we can have

%tr(Wz) = 2tr(WW,) = 2tr(W[U, W]) = 0,

and so, due to tr(W?) = —2(a® + b* + c?), we arrive at
@b+ = (@ b+, =1,
the last step of which follows from the initial data (2.7) and the condition (2.9). Then, this implies, by using (2.6), that
1 1 1 .
a=-= Z Uty = Z bkbtfj Z e, =1

k+l=i, k1>1 k+l=i-1,k]1>0 k+l=i-1,k]1>0

Based on this recursion relation and the last two recursion relations in (2.8), an application of the mathematical induction
finally shows that all the functions a;, b;,c;, i > 1, are differential functions in u, and so, they are all local. O

Now as usual, let us calculate

0 —(Cmyx — Tbm) 0
(AZ™W)), — U (™ W), ] = | MCmx — Thm) 0 —Abmx+1CR) |, m =0,
0 A(bmx +1Cm) 0
where for a matrix A = (aj),,;, we defined (A"A), = ((4"ay),),,,, in which f denotes the polynomial part of a particular ser-
ies f:
n X n A
fo=>fi/, whenf=>"fi n=>o0. (2.10)
i=0 i=—cc

The above matrix is not the same type as the Gateaux derivative matrix U’, and so, we need to introduce modification terms
in Lax operators to get soliton equations. In what follows, we shall present two kinds of such modification terms.
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Noting
[U,e4] = iqe, — ipes,

we take a sequence of Lax operators with the first kind of modification terms:

v[l’"] = 222™W), + Aim, Aim = Bamiier €50(3,R), m >0, (2.11)
where g is an arbitrarily given constant. Then, we arrive at
0 —MCmx — b + PPay.1) —Bmi1x
(VI — U, V™) = | A(Cmx — Thim + BPAy,1) 0 —(bmx +TCn — pqa,,) |, m =0,
ﬁamﬂ,x )v(bm.x +1Cm — ﬁqamﬂ) 0
and further, the corresponding zero curvature equations
Uy, — (Vi"), + U, V"] =0, m >0, (2.12)
equivalently yield a hierarchy of soliton equations:
p bm.x +1Cm — ﬁqam+1
u, = |q =Kim=|Cmx—Tbhn+ppa,., |, m=0. (2.13)
r ﬁamﬂ.x

tm

Every system in this counterpart soliton hierarchy is local, since the functions a;, b;,c;, i > 1, are all local. The first two sys-
tems in the counterpart hierarchy (2.13) read

Py, = Px +qr +38(0* + 4%)q,
i, = Gx — PT =3 Bp(P* + ¢%), (2.14)
Tty = —B(PPy + 4Gx),

and
Di, = Qo — 302Dy — 1D0% — PG — 2D, — Pry — qr* — 1 (P2 + q2)ar — 2 B(0* + ¢%)°q — B(p,q — P4,)q — B(P* + )ar,
Gty = P — 20,F — QT — 2P°q, — PPG — 30,07 + 1p(P* + @)1 + pr + Bp(peq — Pa,) + BP(P? + G2)r + 2 fp(p* + ¢2)°,
Tty = BPwd — PG + 3 (DxP + Gxq) (P* + %) + 2(DuD + Q)T + (P* + G*)1-

(2.15)
Let us now take a sequence of Lax operators with the second kind of modification terms:
VI = 2(2™ W), + Agm, Ao = famer € S0(3,R), m >0, (2.16)
where $ is an arbitrarily given constant. Similarly, we obtain
0 —MCmx — b + ppa,,) —Bam
(VA = [U,VI™) = | A(Cimx — Thim + BPG,,) 0 —i(bmx +TCn — fqa,) |, m =0,
Bl x jv(bm,x +rcm — fqay,) 0
and thus, the corresponding zero curvature equations
Uy, = (V3" + U V"] =0, m > 0, (2.17)
present a second hierarchy of soliton equations:
p bm,x +rcm — fqay,
utm =19 :Kz.m = | Cmx — rbm +ﬁpam , m = 07 (218)
r ﬁamx

tm

where every member is local. The first two systems in the counterpart hierarchy (2.18) are

P, = Dx +qr — Bp,
i, = 9« — br + fp, (2.19)
rtg = 07
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and
Pr, = G — 3Px(P* + 4%) — P(PPx + qy) — 2P, — Pry — 3 (P* + G*)qr — qr* — 3 Bq(p* + %),
i, = —Pxx — 2057 — Ty — (PPx + 499 — 3 (> + 4*)q + 3P(P* + @*)r + pr* + 3 fp(P* + ¢°), (2.20)
Ty, = B(DuP + q4y)-

3. Hamiltonian and quasi-Hamiltonian structures

We shall show that all systems in the counterpart soliton hierarchies (2.13) and (2.18) are Liouville integrable. Let us first
establish Hamiltonian structures for the first counterpart hierarchy (2.13) and quasi-Hamiltonian structures for the second
counterpart hierarchy (2.18).

We shall use the trace identity [6,8]:

o [, [oU Nl o Ad 2
u tr((,M W) dx =1 &). tr(aW) yf—jalmtr(w )], (3.1)
or generally, the variational identity (see [7,21]). It is direct to see that
U 0 —q -2 U 00 O U 0 -2 0 U 0 0 -1
— = o -p|, —=|0 0 -4|, —=|4 0 0|, —=1|0 0 O
0L op ) oq or
2. p 0 0 2 O 0 0 O 1 0 O

and so, we have

ou ou ou ou
tr (Wﬁ_)> = —4)a — 2qc — 2pb, tr(W%) = -2)b, tr(Wa—q> =-2Jc, tr<W—> = -2a.

Then, the trace identity (3.1) gives rise to
b
9 /(2&a+ c+ b)dx—/l"’g”/ C
su WCEPOIE=2"327 17
a

A balance of coefficients of 22™! for each m > 0 in the equality leads to
b b
51 /(Zamﬂ +qc, +pby)dx=(y-2m)|cn |, m = 0.
am

The identity with m =1 tells y = 0, and thus, we can obtain

P D
spHtm=|cm|, m=0, (3.2)
am

with the Hamiltonian functionals being defined by

HO:/ Yo v @) +r|ax Hm:/ _20m1 +on F PO g s g (33)
2 2m
Obviously, it follows from (2.8) that
—Cmi1 + QA g — fqap. 4 —Cmy1 + (1 = B)qa,, 4
Kim= | bmi1 =Py + BPAp.y | = | bmir — (1= B)pap,, |, m =0,
/))amﬂ‘x ﬁamﬂ.x

and so, we obtain

bm+1 0 -1 (1 - ﬂ)q
Kl.m :]1 Cmi1 | ]1 = 1 0 _(1 - ﬁ)p ; m = 0. (34)
A1 -1-pg A1-Bp (2-1)0

A direct and easy computation by Maple shows that J; is a Hamiltonian operator. It follows now that the first counterpart
soliton hierarchy (2.13) has the Hamiltonian structures:

U, =Kim=J;——, m=0, (3.5)
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where the Hamiltonian functionals, {Hn},,_,, are given by (3.3) and the Hamiltonian operator J; is defined as in (3.4).
Similarly, we can have

by 0 r —pq
Kom=J]|Cnl|, L=|-1 0 pp |, m=0. (3.6)
am pa —pp 2po

This operator is skew-symmetric but does not satisfy the Jacobi identity, which can be shown by using computer algebra
systems. From this, we see that the second counterpart soliton hierarchy (2.18) has the quasi-Hamiltonian structures:

U, :KZ.m :]26;;—(7“’”7 m= 07 (37)

where H,,’s are given by (3.3) and J, is defined as in (3.6).

The resulting functionals correspond to common conservation laws for each soliton system in the counterpart soliton
hierarchy (2.13) or (2.18). We point out that such differential polynomial conservation laws can also be generated either
directly by computer algebra codes (see, e.g., [22]) or from some Riccati equation obtained from the underlying matrix spec-
tral problems (see, e.g., [23-25]).

Based on the Hamiltonian structures in (3.5) and the quasi-Hamiltonian structures in (3.7), we can now state that the
counterpart soliton hierarchies (2.13) and (2.18) are Liouville integrable, i.e., they possesses infinitely many commuting con-
served functionals and symmetries:

SH\ T, M, )
{Hk,H:},i=_/ <W> Jig, dx=0, i=12 kl>0, (3.8)
and
[Kix, Kit] = Kip(W)[Kif] = Kiy(w)[Kiy] =0, i=1,2, kl>0. (3.9

These commuting relations are also consequences of the Virasoro algebra of Lax operators. See [26-28] for a detailed and
systematical study on algebraic structures of Lax operators and zero curvature equations.

4. Concluding remarks

Starting with the matrix loop algebra so(3, R), we introduced a counterpart matrix spectral problem of the D-Kaup-New-
ell spectral problem by using the same linear combination of basis matrices, and generated two integrable counterparts of
the D-Kaup-Newell soliton hierarchy. All members in the resulting counterpart soliton hierarchies are Hamiltonian or quasi-
Hamiltonian, and so, Liouville integrable, i.e., possess infinitely many commuting symmetries and conserved densities.

It is noted that the soliton hierarchy (2.13) is different from a soliton hierarchy presented in [29]. Although the two spec-
tral problems of the two hierarchies look very similar and the two first nonlinear systems are almost the same, it is direct to
see that the two hierarchies are very different from each other, if one checks the derivative terms in the two second nonlin-
ear systems. Moreover, we did not find a second class of Hamiltonian structures for our soliton hierarchy (2.13) which needs
to be compatible with the presented one (3.5). This is pretty different from the bi-Hamiltonian situation, particularly in the
Drinfel’d-Sokolov hierarchies corresponding to the affine twisted Lie algebras [30], and also shows a big difference between
our soliton hierarchy (2.13) and the soliton hierarchy by Xia et al. in [29], which was proved to possess a bi-Hamiltonian
structure. Quasi-Hamiltonian structures can imply integrability as showed in the recent literature (see, e.g., [7]), but of
course, they do not behave like bi-Hamiltonian structures, either.

We point out that among typical discussed spectral matrices associated with so(3, R) are the following three:

U(u, 1) = Ze1 + pe, + qes,
U(u, %) = 2e;, + Ape, + iqes,

U(u, 1) = Ze1 + Ape, + Aqe;,

where u = (p,q)" includes two dependent variables. Our examples are two new soliton hierarchies with three dependent
variables, fitting into the zero curvature formulation. We hope more examples of such soliton hierarchies with three depen-
dent variables or even more dependent variables, such as four or five dependent variables, can be presented. It is recognized
that given a starting matrix loop algebra, it normally needs only a considerable amount of time and computational dexterity
to compute hierarchies of integrable equations. Higher-order matrix spectral problems can lead to soliton hierarchies but
normally need a more considerable investment of time (see, e.g., [31-36]). Integrable couplings (see, e.g., [37-41]) associated
with enlarged matrix loop algebras [42] provide more specific examples of soliton hierarchies generated from higher-order
matrix spectral problems. They possess triangular forms [37,21] and their conserved densities can be generated by applying
the variational identity [7,21].
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