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Integrable couplings are associated with non-semisimple Lie algebras. In this paper, we
propose anew method to generate new integrable systems through making perturbation
in matrix spectral problems for integrable couplings, which is called the “comple-
tion process of integrable couplings.” As an example, the idea of construction is
applied to the Ablowitz-Kaup-Newell-Segur integrable coupling. Each equation in the
resulting hierarchy has a bi-Hamiltonian structure furnished by the component-trace
identity. Published by AIP Publishing. https://doi.org/10.1063/1.4990534

l. INTRODUCTION

Recently, seeking for new integrable couplings has received considerable attention and formed
a pretty important area of research in mathematical physics.!~>® Integrable couplings are coupled
systems which contain given integrable equations as their sub-systems. Mathematically, for a given
integrable equation u, = K(u) = K(x, t, u, uy, uyy, . . .), its integrable coupling is an enlarged triangular
integrable system of the following form:

{ut=K(u), (1

vy =S(u,v).
A well-known example of integrable couplings is the first-order perturbation system'

u; = K(u),
v =K'(w)[v],

where K’(u)[v] denotes the Gateaux derivative K'(u)[v] = % le=0K(u+ &v, ity + &0y, - - - ). It is known
that an arbitrary Lie algebra over a field of characteristic zero has a semi-direct sum structure of a
solvable Lie algebra and a semisimple Lie algebra, which is stated by the Levi-Mal’tsev theorem.
Therefore, zero curvature equations over semi-direct sums of Lie algebras, i.e., non-semisimple
Lie algebras, lay the foundation for generating integrable couplings. Integrable couplings usually
show various specific mathematical structures, such as block matrix type Lax representations, bi-
Hamiltonian structures, infinitely many symmetries, and conservation laws of triangular form. A
general structure of integrable couplings connected with these kinds of algebras has recognized
recently and some examples have been presented such as the Ablowitz-Kaup-Newell-Segur (AKNS),
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Wadati-Konono-Ichikawa (WKI), Kaup-Newell (KN), Korteweg-de Vries, Boiti-Pempinelli-Tu, and
Volterra integrable couplings.”23

The simplest non-semisimple Lie algebra g consists of square matrices of the following block
form:
A1 Ay

0 A

M(A1,Az) =

A| and A, are two arbitrary square matrices of the same order. This algebra has two subalgebras
g={M(A;,0)} and §.={M(0,A,)} which form a semi-direct sum: g =g & §.. The notion of semi-
direct sums means that the two subalgebras g and §,. satisfy [§, §.] € §.. We also require the closure
property between g and §. under the matrix multiplication: §g., §.9 € g.. In what follows, we give
a brief account of the procedure for building AKNS integrable coupling associated with g.

Step 1: One needs to select an appropriate spectral matrix U = U(#, 1) with the spectral parameter
A to form a spatial spectral problem

D é1

- _ |4 @2
d=Ud, u= ) o= , (1.2)

r @3

s b4

where

A p 0o r

_ U U qg -1 s 0
= = (1.3)

0 U 0 O A p

0 O q -4

In fact, ¢, = U¢ is nothing but the classical 2 x 2 AKNS spatial spectral problem.?*~3?

. .= W w
Step 2: We construct a particular solution W = [ 0 Wl
stationary zero curvature equation W, =[U, W], which is used to obtain recursion relations. One also
needs to prove the localness property for W based on the relations.
Step 3: By means of the solution W obtained in the previous step, we introduce temporal spectral prob-
lems ¢, = V™ @, V™ = (1"W), +A,, so that the zero curvature equations U, — V" + [U , \7[’”]] =0

generate the AKNS integrable coupling i,, = K.

] expressed in terms of Laurent series to the

Step 4: Finally, by using the component-trace identity (or the variational identity)?>
o oU,; ou _, 0 o ou
— [ u|W—+ W — |dx =27 =2t (W—+ W — |, 1.4
6u/r( a2 laa) a2 r( on lau) (14

we can furnish a bi-Hamiltonian structure

= -0 A m -0 F m—
i, = Ry =3 2 _ O
" ou ou
for the obtained AKNS integrable coupling.
In this paper, we would like to generalize the spatial spectral problem of AKNS integrable

coupling (1.3) by using the perturbation technique, namely, adding a nonlinear perturbation term £,

, m>1,

A+h p 0 r
g |V || 4 Ak * . h=e(ps+qr). (1.5)
0 U 0 0 A+h
0 0 q -A-h

Obviously, this generalized spatial spectral problem is reduced to the case of AKNS integrable
coupling (1.3) for € =0. With the additional nonlinear term #, the generalized matrix spectral problem
U = k (M, U)7

generates a generalization of the AKNS integrable coupling, which takes the form {v ~S(u.v)
= s .
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When € = 0, the resulting integrable system becomes the standard AKNS integrable coupling. In
this sense, we call the generalization of integrable couplings the “completion process of integrable
couplings.”

The rest of this paper is organized as follows. In Sec. II, we will construct a generalization of the
AKNS integrable coupling from zero curvature equations, based on the above-mentioned generalized
spatial spectral problem (1.5). In Sec. III, the bi-Hamiltonian structure will be furnished by using
the component-trace identity (1.4), thereby, all the resulting equations in the new hierarchy possess
infinitely many commuting symmetries and conservation laws. For the sake of convenience, we
will use the mathematical software Maple to deal with some complicated symbolic computations.
Section IV is devoted to conclusions and discussions.

Il. COMPLETION OF THE AKNS INTEGRABLE COUPLING

Now, let us assume that W has the following form:

a b e f
vy Ve
0 0 c -a
and solve the stationary zero curvature equation W, = [U, W], namely,
W, =[U, W],
Wi, =[U, W11+ [Uy, W]. (2.2)
Obviously, the above equations become
ay=pc —gb,
by =2(A + h)b — 2pa,
Ccx=—2(1+ h)c + 2qa, 2.3)
as well as
ex=pg —qf +rc —sb,
fe=2(1+ h)f —2pe — 2ra,
gx=—2(1+h)g +2qe + 2sa. 2.4

By assuming the following Laurent series expansions:

aziai/l_i, bzibi/l_i, c=
i=0 i=0
ezie,’ﬂf", fzifi/l*i, g=2gi/17i, (2.5)

i=0 i=0 i=0
and substituting (2.5) into (2.3) and (2.4), we arrive at

C,‘/l_l,

* 1M

Aix =pCi — qbi»
1
bivi = Zbix + pai = hbi,
1
Cisl ==5Cix + qai = hc;, i>0, (2.6)

eix =pgi — qf;i + rc; — sb,

1
Jier = Sfix + pei + rai = f;,
1

8irl = =7 8ix + qei + 5di hgi, i>0, 2.7
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and
bo=co=fo=80=0. (2.8)
To guarantee the uniqueness of {a;, b;, ¢;, e;, fi, gi, i =0}, we let agp = ep = 1 and also need to impose
the integration conditions
ailu:O = bi|u=0 = Ci|u=0 =0,
€ilu=0 =filu=0 = gilu=0=0.
Under the above assumptions, by means of the symbolic computation software Maple, we can obtain
{a;, bi, ci, e, fi, gi, 1 >0} explicitly. The first four sets are listed as follows:
bp=0, c¢o=0, ap=1, fo=0, go=0, ey=1;

bi=p, c=q, a1=0, fi=p+r, gi=q+s, e =0;

1 1 1
by = pr —ep(ps+qr), c= —qu —eq(ps+qr), ar= —qu,

1 1 1 1
fLo=opet Sre— €+ )ps+ar). g2=—74x — 5c — €(q+5)(ps+qr),

1
er= —E(Pq +ps+qr);

1 1 1 1 3 1
b3 = pw = 5174 - e(zrqu + 38" + SDeSp+ 1Peq + 5rpqx) +Ep(ps +qr)’,

1 1, 1, 1 1 3 5 5
3= 7Gx = SPG + €\ SIG + 55PG + SSPaq +5Pax + 541Gy | + € q(ps +qr)”,
1

1
a3 = 3pqx = gPxq + epq(ps +qr),

7 1 N 1 1, | 1 N 1 N 1 . 3
=- —Fw— =p°q— =Sp” —1pq — €| =r =7 =7 =
3 4pxx s 219 q ZSP pPq — € 3 xPq 3 SPx 3 PSx prSp

3 1 1, | 2 2
+§qrrx + spry + Erpqx +1pyq + Er gy + Esxp +e(p+r)ps+qr),

B +1 1 , 1, N 1 +1 +1 2 +3
g3—4%cx 4sxx 21761 qu spq + € 2squ ZVSQX 261 Ix ZSXSP

1 1 1 3
+§s2px + zqsrx + Esqpx + Spqy + Eqrqx + qrsx) + 62(q +5)(ps + qr)z,

1 1 1 1 1 1
€3= 7 PGx = gPxqd = ZPxS T 74Tt gPSxt 1 qar + €(pq + ps + qr)(ps + qr).

The localness of the first four sets is not a coincidence. In fact, the functions
{a;, b;, ci, ei,f;, gi, 1 =0} are all local. First from W, = [U, W], we have

d
atr(wz) =2tr(WW,) = 2tr(W[U, W]) = 0.
Since tr(W?2) = 2(a? + bc), we can obtain

@ +bc= (a2+bc)|u=0: 1,

based on the initial data (2.8). Then, by using the Laurent expansions (2.5), a balance of coefficients
of A* for each i > 0 tells that

a,-+|=—% Z ajay + Z bjcy |.

j+kk:i*lf1 Jk=i+1
Jok>
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Similarly, we have
d
E(Zae + fc + gb) =2aye + 2aey + f.c + fcx + gxb + gby
=2(pc — gb)e + 2a(pg + rc — sb — gf )
+[2(A + h)f — 2pe — 2ra]c + f[-2(A + h)c + 2qa]
+[-2(A + h)g + 2ge + 25alb + g[2(A + h)b — 2pal]
=0.
Thus we can obtain
2ae + fc + gb = (2ae + fc + gb)|,_, = 2.
Then, by means of the Laurent expansions (2.5), a balance of coefficients of Al for each i > 0 tells

that
1 1
€irl = —div1 — E djex — 5 E fiek =5 E 8jbk

jf/j(:i*lrl Jtk=i+1 Jtk=i+1
Jkz
1 1 1 1
=3 DL wmty ) b= ) ae—5 ) femg Y, gbe
jfkk=iT1 Jk=i+1 jfkk=iT1 JHk=i+1 Jtk=i+1
Jok= Jok>

Based on the recursion relations (2.6) and (2.7), an application of the mathematical induction finally
shows that all functions {a;, b;, ¢;, e;,f;, g, i >0} are differential functions in #, and so, they are all
local.

Now, taking
VM = (AW, + A,
o a A" o b 0 e Zﬁofi/lmfi
~ :10 C,'/lm_i _ :10 a,'/lm_i Z:ZO g,'/l’"_" _ :1;0 e,'/lm_i
0 0 :’;0 a; A"t ;10 b A"
0 27;0 Ci/lm_i - ;-10 a,-/lm_i
F, O 0 0
0 -F, 0 0
+ 9
0 F, O
0 0 0 -F,

the zero curvature equations

0, - V" +[0,7"] =0,  m=0

give

Pty =2bms1 + 2pFy,

qr,, = —2Cma1 — 2qF oy,

1, = 2fme1 + 2rFy,

Sty = —28m+1 — 25Fp,

Fx =hy,. (2.9)
Substituting the first four equations into the fifth one, we can compute

me = htm
=e(py, s +psi, +qi, 7 +qr,)
= E[(zbmﬂ +2pF)s + p(=28me1 — 25F) + (=2¢ms1 — 2qF )7 + g2fns1 + 2rFm)]

= 2E(Sbm+l —P8m+1 —ICpy1 + qu+l)
=-2€emy1y-
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Thus we introduce

F,=-2€e1, (2.10)

and then we have generated a complete system i;, = K,,(it) of the AKNS integrable coupling

2bpy1 — 4€P€m+1

b

—2Cm41 +4eqeni

= R m>0. (2.11)
2fme1 — A€rema

~

=)

b Lm28me1 +4€seny

A nonlinear example in the above new system is

1
P = 5Px = P*q+ €(papx = 2peq = 2xsp = 2pgs = P*qx = 25.:p°)

—2€°p(ps + qr)(qr +2pq + ps),
1 2 2 2
Gn=—54x+Pq + e(apgx — ’px = 25p2q — 2471 — 279 — 25pgs)
+262q(ps + qr)(gr + 2pq + ps),
1 1
iy = 5Tec+ SPee = D'q = 'S = 200G = €(pxq + 3psp + 2reqr + 1pq + 20 ps

+2r2q, + 2rpqy + 2rps, + sxpz) — 26X (ps + qr)(r’q + pqr + rsp — sp*),
s——ls—l+2+2+2—( +2 + 257+ qPry +2
n =75 %w qux Pq tq 1T+ aSpq — €\SPqx + 28Pxq t+ 25 Py T q Tx + 2GSTy
+3qrq, + 2qrs, + spq + 25psy) + 2€2(ps + qr)(s*p + pgs + rsq — rq>).

In Sec. III, we will show that this new generalized system (2.11) is bi-Hamiltonian.

lil. BI-HAMILTONIAN STRUCTURE

In this section, we will establish bi-Hamiltonian structures for the generalized (2.11) by using
the component-trace identity (1.4). It is direct to see

WUl oy, 2U [ (w2 e, 2Y) 2o

o1 " 'aa |ge | oA leal

U, (9U__ese 0 Uy ou\ _
WE-FWIE__ 0 g+ ese , tI'(WE+W1%)—g+2ES8,

U, ou [ere+f 0 U, ou\ _ )
Wa—q+Wla—q— - 0 Ere]’ tr(Wa—q+W1%) —f+2EV€,
oU, ou _eqe 0 oU, ou\ )
W TMa T 0 cregel “(WWWW)-”W’
U, AU [b+epe 0 U, ou
wl9 Lw, oY o | WL e wi ZE) = b+ 2epe.
as " a5 | 0 6176] r( as 135) Toepe

Now the corresponding component-trace identity (1.4) becomes

g + 2ese
0 0 + 2ere
—_/2edx=/l_“/—/17 ! .
ol 0 c+2eqe

b+ 2epe
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Balancing coefficients of each power of A in the above equality, we have

8m—1 +2€sep1
P n—1 + 2€re,,_
—_/Zemdxz(y—m+l) Jn-1 !
o Cm-1+2€qe,-1

bm—l + 2€P€m—1
Consider the particular case with m = 2, we have y = 0. Therefore, we obtain

8m+1 +2€Semy
i_ —2€m+2dx: Smr1 +2€repy . 3.0
ou) m+l Cmel + 2€q€ 41

b1 + 2€P€m+1

In order to establish the relation between the new integrable hierarchy (2.11) and the variational
derivative formula (3.1), we first compute

2bi+1 — 4€pemss = 2(byv1 + 2€pems1) — 8€pepi
= 2(bme1 +2€pens1) = 8€pd ™ (Pgmet + et = bt = Gfonst)
=2(bpy1 +2€pens1) — SEpﬁ_lp(gmH +2€es€41) — 8€p6_1r(cm+1 +2€eqemi1)
+ 86p6_1s(bm+1 +2epenil) + 86p6_1q(fm+1 +2€reps1);

—2Cme1 + 4qum+l ==2(Cms1 + 2€q€m+1) + SEq€m+1
= —=2(Cme1 + 2€4€me1) + 8690 (PGt + FCme1 — Sbimet — qfns1)
==2(cnt1 +2€qemy1) + Seqailp(gmﬂ +2esep1) + 86qailr(cm+1 +2€qems1)

—8€q0™" s(bys1 + 2€pems) + 8G9 q(fins1 + 2€rems1);

2fmr1 — d€repp1 =2(fins1 +2€rep,11) — 8€reyy
=2(fins1 + 2€r€41) — Sfra_l(pgmﬂ + 1Cpi1 = Shint1 — qfms1)
=2(fprl +2€reps1) — 8€rd ™ P(gme1 + 2€5€me1) — 8€rd ™ F(Cpst + 2€q€mir)

+8erd 's(bya + 2epem+1) + 86r6_1q(fm+| +2€rens);

—28ms1 +4€Sepi1 = —2(gm1 + 2€5€p11) + B€S€p11
= —2(gm+1 + 2€5€ms1) + 8650 (Pgms1 + ICmr1 — Sbys1 — Qfs1)
= =2(gm+1 + 2€s€1m41) + 8653_1P(gm+1 +2€sepmy1) + 8Esa_lr(cmﬁ +2€qemt1)

- Sesails(bmﬂ +2€epemy1) — 86S67151(fm+1 +2€remy1).

Consequently, we obtain the following Hamiltonian structure for (2.11):

_ _6H
ity, =K =J—=, (3.2)
ou
with the Hamiltonian operator
—8epd~'p 8epd~lq —8epd~'r 2+ 8epdls
8eqd~'p —8eqd'q  —2+8eqd”'r —8eqd's

J=
—8erd™'p  2+8erd7lg —8erd'r 8erdls
—2+8es07'p  —8esdlg 8esd~!r —8esd s
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and the Hamiltonian functionals

,;[[m :/ _2em+2dx

m+1
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m > 0.

It is now a direct computation to show that all members in the new integrable hierarchy (2.11)
are bi-Hamiltonian. We compute the recursion operator @ = (®;j)4x4 through

2by+1 — 4€pens1 Dy
—2Cn+1 + 4€gemt B Dy
et — derepss | | O3
—28ms1 +4€Sepy Dy

First, we have

2bmy1 — 4Epem+1

()
O3%)
kY]
Dy

D13 Dy |[ 2b, — 4epen
©Oy3 Doy || —2¢1 + 4egen,
D33 Dy 2fm — derey,

Qy3 Dyqy || 28 + desey,

= by +2pay — 2hby, — 4EP(9_I(Pgm+1 + 7Cms1 — Sbps1 — Gfins1)

1 1
= by, + 2pay, — 2hb,, — 4ep6_1p(§gmx +qey, + say — hgm) - 45p6_1r(—§cmx +qgay, — hcm)

1 1
+46p8_1s Ebmx + pay, — hbm) + 4ep6_1q(§fmx +gep + ray — hfm)

=Dy + 2Pty — 2hby, — 4epd~ (=phgy, — rhey, + shby, + ghf,) + 2€pd = pg,.

+2epd~rep, + 2epd~ sy, + 26p6_1qux

= by + 2007 (pCin — Gby) — 2hb,y, + 4epd ™ hdey, + 2epd T pgp, + 2€pd e,y

+2epd~ sy, + 26p(9_1qux

1
= E(’i(me — 4epey,) —pﬁflp(—Zcm +4eqey) —p@flq(me —4epen,) — h(2b,, — 4epeyy)

—epﬁ_lpa(—2gm +4esey,) — epﬁ_lra(—Zcm +4eqgey,) + epﬁ_lsa(Ebm — 4depeyy,)

+6p6’1q8(2fm —4derey,) + 266p6’1 (pgm +rem

+86(9p(9_1h(pgm + rcm — Sy — qfin)

— sby — qfin)

1
= (56 —pd~lqg—h+epdlsd — edpdls - 4ep8_1hs)(2bm — 4epe,y,)

+(—p6_1p —epd~'rd — edpd~lr - 4ep6_1hr)(—2cm +4deqgey,)
+(Ep8_lq6 —edpd~lq - 4€p6_1hq) 2fin — derey,)
+(—6p6_1p(9 —edpd~p - 4ep6_1hp)(—2gm + 4esen)
=011(2b,, — 4epey,) + O12(—2c), + degey,) + O 132 — 4erey,) + Ora(—2g,, + 4e€se,,),

which tells

1
D)= 56 —pd~ g —h+epd'sd — edpd's — 4epd ' hs,

@ =—pd~'p—epd'rd — edpd~'r — 4epd ' hr,
®13=epd g0 — €dpd~'q — 4epd~ " hq,
Oy =—epd~'pd — €dpd~'p — 4epd~ ' hp.
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Similarly, we have

Oy =0~ g — €qd7'50 + €0g0™ s + 4eqd ' bis,

1
Oy = —58 +q07'p—h+eqd™'rd + €0qd™ ' r + 4eqd hr,
D3 = —€qd ' qd + €dqd ™" q + 4eqd ' hg,
Doy = €qgd~'pd + €0q0~ ' p + 4eqd ™ hp;
O3 =—r0 g+ erd'sd — €drd's — pd~'s — 4erd ' hs,
O3 = —r[")_lp —erd~lrd - edro~r —p[i_lr - 46r¢9_1hr,

1

D33 = 58 —h+erd'qd —edrd"q — pd~'q — 4erd ' hg,
O34 =—€rd ' pd — €drd~'p — pd~'p — 4erd~"hp;
Oy =507 g — €507 50 — €050 s + pd~'s + 4esd s,
Oy =50""'p+es07'rd — €8s r + pd~"r + 4esd " hr,
Oy3=—€50""'q0 — €050 q+pd~' q + 4es0 hg,

1
DOy = —56 —h+esd ' pd — €dsd ™ p+pd~'p+4esd hp.

So we finally arrive at

) _ O Hyn
Y S LT LTS (3.3)
" oi ou
where the second Hamiltonian operator M is given by
M=aJ]. (3.4)

So far, we are ready to see that the new integrable hierarchy (2.11) is integrable in the sense of
Liouville. That is, it possesses infinitely many independent commuting symmetries and conservation
laws. In particular, we have the Abelian algebra of symmetries,

[Ki, Kj1 = K/ (@[K;] - K/ @)[K;] =0, i,j20,

and the Abelian algebras of conserved functionals,
- OH,; 5H,
{Hl»,H,},:/( ) J—Ldx=0,  ijz0

and

o oH; -57'11 ..
{/Hi,,Hj}M—/(E) i —dx =0, i,j>0.

IV. CONCLUSIONS AND DISCUSSIONS

It is known that once a generating scheme associated with a non-semisimple Lie algebra is
established, it can be used to construct integrable couplings. The following non-semisimple Lie

algebras formed by 2 x 2, 3 x 3, and 4 x 4 block matrices:>>33-3*
A, A Ay An Az
0 A +As s 0 Ai+aAy PAy+aAz|,
- 0 0 A1+ aA,
[Aq Aj Aj Ay
0 A +aA @Aj BA> + @Ay
0 0 Al+adrs+pd;  vA;s
0 o 0 Ay +aAs
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have been used to construct integrable couplings, where «, 8, u, v are arbitrary constants. Certain
kinds of integrable couplings based on the above non-semisimple Lie algebras have been obtained
recently.>>® We have proposed the idea of using perturbation to construct new integrable systems,
which generalizes the corresponding integrable couplings. As an example, the complete system
of the AKNS integrable coupling, together with the recursion operator @ and the bi-Hamiltonian
structure (3.3), is generated successfully to illustrate the idea. The key step is that a perturbation
term h = e(ps + gr) is introduced and actually, the perturbation term could take a more general-
ized form h = Zjl\i | €j(ps + qr)jx. The resulting construction procedure can be applied to many other
cases, including the Dirac, multi-component AKNS, WKI, KN, super-AKNS, and Volterra spectral
problems.>28:33.34

In addition, we mention that finite-dimensional irreducible representations>? of some Lie algebras
can also be used to create integrable couplings. For instance, a spectral matrix using V,

(30 p O 0 r 0
3g 12 2p O 0
SIS PO @
0 0 0 0 A p
[0 0 O 0 qg -]
could be another example. Replacing A with A + & in the above matrix and setting
(3¢ b 0 0 f 0]
3c a 2b O e f
- 0 2¢ —-a 3b g e
W= , 4.2)
0 0 ¢ -3a 0 ¢
0o 0 O 0 a b
|10 0 0 0 c -a|

we can also construct new completion of the AKNS integrable coupling in the same manner. For
convenience, we omit the construction process and the associated results.
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