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A B S T R A C T

This study is dedicated to presenting a new solution of the field equations in the Rastall theory with a
quintessence field defined by the parameter 𝜔𝑞 as −1 < 𝜔𝑞 < − 1

3
by considering the isotropic matter content

inside the sphere. The Finch–Skea ansatz (𝐹𝑆) is used in a static and spherically symmetric geometry to obtain
the feasible relativistic solution. The results obtained in the physical evaluation are analyzed analytically and
graphically. In the appropriate limit of the Rastall coupling parameter, one can regain the original results in
the General Relativity. This complete analysis considers five different compact stars: 𝐻𝑒𝑟𝑋 − 1 with mass
0.88𝑀⊙ and radius 7.7 km, 𝑉 𝑒𝑙𝑎𝑋 − 12 with mass 1.77𝑀⊙ and radius 9.99 km, 𝑆𝐴𝑋𝐽1808 − 3658(𝑆𝑆𝐼)
with mass 1.435𝑀⊙ and radius 7.07 km, 4𝑈1608 − 52 with mass 1.74𝑀⊙ and radius 9.30 km, 4𝑈1538 − 52
with mass 0.87𝑀⊙ and radius 7.86 km and 𝑃𝑆𝑅𝐽1416 − 2230 with mass 1.97𝑀⊙ and radius 10.30 km. The
physical validity of the obtained solution is verified by computing the necessary physical parameters like energy
density and pressure, quintessence density, energy conditions, sound speed via the Herrera cracking concept,
hydrostatic equilibrium of forces, mass function, compactness, Buchdahl limit, and surface redshift and analyze
their behavior graphically. To investigate the demeanor of these parameters more closely, we computed the
numerical values and manifested them in tabular form. We conclude that our presented mathematical model of
compact stars in the Finch–Skea geometry with quintessence field fulfills all the requirements for a physically
viable solution.
. Introduction

The general theory of relativity (GR) has been beneficial for explain-
ng gravitational dynamics in the current era. But in the 1920s, Edwin
ubble’s innovative observations revealed that our universe is not static

ather it is accelerating which makes the GR stagnant to explain such
henomena and opens the door for the researcher’s community to
iscover modified theories of GR to deal with such phenomena [1–11].
8 percent of the universe is made up of Dark Energy (DE), which is
he pivotal factor in the expansion of the universe. Over time, many
odified theories have been discovered to understand this expansion

f the universe and to explain many other mysterious features of the
niverse that remain consistent with the observational data. A part of
hem, in 1972, Rastall [12] also suggested a modified theory by mod-
fying the conservation law of energy–momentum tensor represented
EMT) as ∇𝑏T𝑏𝑎 ∝ R,𝑎 by using a dimensionless parameter called Rastall

∗ Corresponding authors.
E-mail addresses: dr.rizwanshahzad@bzu.edu.pk (M.R. Shahzad), asifamustafa3828@gmail.com (A. Ashraf), aq187530@gmail.com (M.A. Qarni),

.Mahmoud@tu.edu.sa (E.E. Mahmoud), wma3@usf.edu (W.-X. Ma).
1 First two authors have equal contribution.

parameter. In this modification, the covariant divergence of the EMT
does not vanish but remains directly proportional to the gradient of
the scalar curvature. Moreover, in exception, by keeping the value of
the Rastall parameter equal to zero, the GR can be restored.

In modern astrophysics, the advancements in cosmology, more pre-
cise observations, and simulations have led us to the fascinating realm
of celestial objects with such unusual properties, extremes of density
and gravity, and behaviors that challenge our current knowledge of
physics [13,14]. The development of these highly dense celestial ob-
jects is the result of supernova [15]. Based on compactness, compact
objects are classified into different classes, including white dwarfs, neu-
tron stars, and black holes. Several authors have proposed the models
of stellar structures to understand their interior structure and celestial
properties in different modified theories of gravity. In this regime
Maurya et al. [16–22] proposed several models of stellar structures and
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discussed their interior properties which are compatible with the obser-
vational studies. Mustafa and his collaborators [23–28] investigated the
structure of compact objects in different modified gravity theories.

Several studies in astrophysics have also been carried out recently
by using different metric potentials and in different scenarios in the
realm of RT [29–31]. Saleem et al. [32] studied the implications of the
RT by considering the generic form of the metric potential functions.
Majeed and Abbas [33] proposed a gravastar model in the RT and
discussed its properties by taking into account the Tolman–Kuchowicz
solution. Moradpour and Salako [34] analyze the constraints of RT
by applying the Newtonian limit on GR and further in [35], showed
the better role of RT than GR by observing the comparison of ther-
modynamics quantities like entropy and energy in both RT and GR
counterpart. Fabris et al. [36] also studied the characteristics of the
celestial models in the realm of RT. Darabi et al. [37] oppose Visser’s
claim [38] by contrasting the RT with GR and explaining their dif-
ference by considering the example of the well-studied 𝑓 (𝑅) gravity
theory.

Later, Hansraj et al. [39] also considered the same dispute as Darabi
et al. [37] and the results are again in favor of Darabi et al. [37]
study. In this study, they presented the comparative analysis of the RT
and GR to challenge Visser’s claim. They showed that RT adequately
fulfills the necessary basic requirements for a viable stellar model in
most of the cases, while the gGR model shows deviations from these
conditions. Indeed, experimental evidence has been shown against the
Visser’s claim. Hansraj and Banerjee [40] later replicated their earlier
findings to challenge Visar’s claim. They studied physical parameters
for modeling stellar structures in RT and GR. Again, they observed
that the RT model seemed to fit with these constraints, while the GR
model violated some basic constraints. Empirical results support the
results of Darabi et al. (2018) to dispute Visser’s claim. As a result of
the present discussion, Shahzad along with his collaborators [41–50]
have delved into this debate and propounded several relativistic stellar
models by employing various techniques. These investigations also
support the nonequivalence of these two theories. Recently, marvelous
achievement made by Nashed [51] also opposed the speculation of
the Visser’s claim. Furthermore, in [52–58] some perceptual results of
astronomy have been studied including inflation problems and rapid
expansion of the universe. To check the accuracy, limits, and bound-
aries of gravitational theory, a solar system test(SST) is applied to
it and observe whether it illustrates the interior structure of stellar
objects or not. Recently, [59] conducted the SST in the realm of RT by
considering a celestial body as a neutral regular Hayward black hole to
study the relativistic effect. In [60], some vigorous black hole solutions
have been observed and compared with GR. A novel BH solution has
been proposed in the Rastall framework when applying to nonlinear
electrodynamics [61]. Recently Nashed and El Hanafy [62] proposed
a new class of stellar structure in the 𝑅𝑇 consistent with the obser-
vational outcomes. Moreover, El Hanafy [63–65] further investigated
the implications of the 𝑅𝑇 on the mass and radius of Pulsars. Afshar
et al. [66] studied the primary inflationary and reheating eras in the 𝑅𝑇
concluding that the outcomes are well consistent with the observational
data as compared to the 𝐺𝑅. Dayanandan et al. [67] investigated the
Finch–Skea geometry to develop reliable relativistic anisotropic models
of the stellar objects by utilizing the class one solution.

Motivated by the recent interesting consequences of RT, this
manuscript explores some new solutions of field equations by using
Finch–Skea geometry in the framework of RT for an isotropic matter
content in a static and symmetrical symmetric geometry. The sequence
of the study is as follows: the next section deals with the formation
of the field equation and corresponding new solution in the RT. In
Section 3, we present matching conditions to determine the values
of the unknown constants involved, Section 4 deals with the physical
analysis of the obtained model to check the physical plausibility. In the

last section, we present a brief summary and conclude our findings.

2 
2. Rastall field equations and their solution

By assuming Finch–Skea geometry [68], the spherically symmetric
line-element for a static geometry is represented as;

𝑑𝑠2 = −𝑒𝜙(𝑟)𝑑𝑡2 + 𝑒𝜓(𝑟)𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2, (1)

where metric potentials 𝜓 and 𝜙 are differentiable and functions
of 𝑟, the radial coordinate, such that 𝜓(𝑟) = 𝑐𝑟2 + 1 and 𝜙(𝑟) =
(

𝐴 + 1
2𝐵𝑟

√

𝑐𝑟2
)2

[68], where 𝐴,𝐵, 𝑐 are constants determined by

matching conditions. Several authors have successfully employed the
Finch–Skea ansatz to study the well-behaved stellar structures in differ-
ent modified gravity theories [69–76]. The energy–momentum tensor
(EMT) T𝜆𝜈 representing the isotropic matter distribution is

T𝜆𝜈 = (𝑝 + 𝜌)𝜉𝜆𝜉𝜈 + 𝑝𝑔𝜆𝜈 , (2)

where 𝑝 and 𝜌 are pressure and energy density respectively. Moreover,
𝜉𝑎 representing the four-velocity satisfying the constraints 𝜉𝜆 = 𝑒−

𝜙
2 𝛿𝜆0 ,

𝜉𝜆𝜉𝜆 = −1.
Rastall’s amendment [77] for energy–momentum conservation law

is given as;

∇𝜈T𝜈𝜆 = 𝛼R,𝜆, (3)

where 𝛼 is the Rastall parameter, the deflection of Rastall’s theory
from standard 𝐺𝑅, and shows the combination of matter field with
configuration. The modification, for acquiring field equations, is given
as ;

𝐺𝜆𝜈 + 𝛼𝜅𝑔𝜆𝜈R = 𝜅T𝜆𝜈 , (4)

here 𝜅 is gravitational coupling constant of 𝑅𝑇 . The trace of Eq. (4)
yield, R(4𝛼𝜅 − 1) = T, where T is the trace of the EMT, from which
one can observe that 𝑇 will become zero for 𝛼𝜅 = 1

4 that is not allowed
ecause T may not be always zero. Also the equations for 𝛼 and 𝜅, by
sing Newtonian limit and Rastall dimensionless parameter 𝛾 = 𝛼𝜅, can

be represented as [78]

𝜅 =
(4 − 1

𝛾

6 − 1
𝛾

)

8𝜋, (5)

𝛼 =
(4 − 1

𝛾

6 − 1
𝛾

)

𝛾
8𝜋
, (6)

rom Eqs. (5) and (6) one can observe that for 𝛾 = 1
6 and 𝛾 = 1

4 , both
and 𝛼 will become undefined, so these two values are not acceptable

or physical solutions in the 𝑅𝑇 . So the Rastall’s field equations can be
btained as;

𝜆𝜈 + 𝛾𝑔𝜆𝜈R = 8𝜋T𝜆𝜈

(4 − 1
𝛾

6 − 1
𝛾

)

, (7)

And also in terms of the quintessence field, Eq. (7) becomes;

𝐺𝜆𝜈 + 𝛾𝑔𝜆𝜈R = 8𝜋(𝜏𝜆𝜈 + T𝜆𝜈 )
(4 − 1

𝛾

6 − 1
𝛾

)

, (8)

where 𝜏𝜆𝜈 is the 𝐸𝑀𝑇 for quintessence field, suggested by Kiselev [79]
that should satisfy the conditions of linearity and additivity. Thus 𝜏𝜆𝜈
in component form read as;

𝜏𝑡𝑡 = 𝜏𝑟𝑟 = 𝜌𝑞 , (9)

𝜏𝜃𝜃 = 𝜏𝜙𝜙 =
3𝜔𝑞 + 1

2
𝜌𝑞 , (10)

here 𝜔𝑞 is the quintessence parameter constrained as −1 < 𝜔𝑞 < − 1
3 ,

and equations. (1), (2) and (7) ;

8𝜋(𝜌 + 𝜌𝑞)
(

1 − 4𝛾
)

= 𝑒−𝜓
[

𝑒𝜓 − 1 +
𝜓 ′

+ 𝛾
{

𝜙′′ − 𝜓 ′𝜙′ + 𝜙′2

1 − 6𝛾 𝑟2 𝑟
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Table 1
Estimated values of 𝐴 and 𝐵.

Compact star 𝑀(𝑀⊙) 𝑅 (km) 𝑐 (km−2) 𝐴 𝐵 (km−1)

𝑆𝐴𝑋𝐽1808.4 − 3658(𝑆𝑆𝐼) 1.435 7.07 0.01424235696 0.46323821878 0.03994212933
𝑉 𝑒𝑙𝑎𝑋 − 12 1.77 9.99 0.01097191713 0.50175825917 0.03618423648
𝐻𝑒𝑟𝑋 − 1 0.88 7.7 0.00857852402 0.71063568642 0.03770389876
𝑃𝑆𝑅𝐽1614 − 2230 1.97 10.3 0.01220429124 0.44645623624 0.03646349459
4𝑈1608 − 52 1.74 9.3 0.01424235696 0.46323821878 0.03994212933
4𝑈1538 − 52 0.87 7.86 0.00784789636 0.72118270739 0.03635020124
+ 2
𝑟
(𝜓 ′ − 𝑒𝜓

𝑟2
+ 1
𝑟
− 𝜙′)

}]

, (11)

8𝜋(𝑝 − 𝜌𝑞)
(

1 − 4𝛾
1 − 6𝛾

)

= 𝑒−𝜓
[

1 − 𝑒𝜓

𝑟2
+
𝜙′

𝑟
− 𝛾

{

𝜙′′ − 𝜓 ′𝜙′ + 𝜙′2

+ 2
𝑟
(𝜓 ′ − 𝑒𝜓

𝑟2
+ 1
𝑟
− 𝜙′)

}]

, (12)

4𝜋(2𝑝 + (3𝜔𝑞 + 1)𝜌𝑞)
(

1 − 4𝛾
1 − 6𝛾

)

= 𝑒−𝜓
[

(𝜙′ − 𝜓 ′)(
𝜓 ′

4
+ 1

2𝑟
) +

𝜙′′

2

− 𝛾
{

𝜙′′ − 𝜓 ′𝜙′ + 𝜙′2

+ 2
𝑟
(𝜓 ′ − 𝑒𝜓

𝑟2
+ 1
𝑟
− 𝜙′)

}]

. (13)

By assuming Finch Skea symmetry [68] the equation. (11) to (13) can
be solved and involved material variables can be manipulated as (see
Table 1),

𝜌 = − 1

24𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
√

𝑐𝑟2(𝑐𝑟2 + 1)2(2𝐴 + 𝐵𝑟
√

𝑐𝑟2)2

×
[

𝑐(6𝛾 − 1)(4𝐴2
√

𝑐𝑟2(𝑐𝑟2(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 9(2𝛾 − 1)(𝜔𝑞 + 1))) + 4𝐴𝐵𝑟(6𝛾(𝜔𝑞 + 1)(𝑐𝑟2 − 1)(𝑐𝑟2 + 3)

−𝑐𝑟2(𝑐𝑟2(3𝜔𝑞 + 1) + 9𝜔𝑞 + 11))

+𝐵2𝑟2
√

𝑐𝑟2(6𝛾(𝜔𝑞 + 1)(𝑐𝑟2 − 5)(𝑐𝑟2 + 2)

−𝑐𝑟2(𝑐𝑟2(3𝜔𝑞 + 1) + 9𝜔𝑞 + 13))
]

𝑝 = 1

24𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
√

𝑐𝑟2(𝑐𝑟2 + 1)2(2𝐴 + 𝐵𝑟
√

𝑐𝑟2)2

×
[

𝑐(6𝛾 − 1)(4𝐴2
√

𝑐𝑟2(𝑐𝑟2(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 3(6𝛾 − 1)(𝜔𝑞 + 1)) + 4𝐴𝐵𝑟(𝑐2𝑟4(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+𝑐𝑟2(12𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 + 1) − 6(3𝛾 − 1)(𝜔𝑞 + 1))

+𝐵2𝑟2
√

𝑐𝑟2(𝑐2𝑟4(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+𝑐𝑟2(−18𝛾(𝜔𝑞 + 1) + 9𝜔𝑞 + 5) − 12(5𝛾 − 1)(𝜔𝑞 + 1)))
]

𝜌𝑞 =
𝑐(6𝛾 − 1)𝑟

(

4𝐴2𝑐𝑟 + 4𝐴𝐵
(

𝑐𝑟2 − 1
)

√

𝑐𝑟2 + 𝐵2𝑐𝑟3
(

𝑐𝑟2 − 2
)

)

12𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
(

𝑐𝑟2 + 1
)2

(

2𝐴 + 𝐵𝑟
√

𝑐𝑟2
)2

(14)

3. Matching conditions

The constants (A, B, c) involved in Finch Skea metric potential
and appearing in the above expressions can be obtained by using
matching conditions at the boundary. So the corresponding exterior
Schwarzschild metric is,

𝑑𝑠2 = −𝑊 𝑑𝑡2 + 1 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2), (15)

𝑊

3 
Table 2
Calculated values of matter variables for 4𝑈1538 − 52 in the RT. In the following
Tables 2–7, 𝜌0, 𝜌𝑠, 𝑝0 represent the central density, surface density, and central pressure,
respectively.
𝛾 Mass from 2𝑀

𝑅
𝑍𝑠 𝜌0 𝜌𝑠 𝑝0

our model 𝑔𝑚 (cm)−3 𝑔𝑚 (cm)−3 𝑑𝑦𝑛 (cm)−2

(km) ×1013 ×1013

0 1.22790 0.31244 < 8
9

0.20599 5.81143 5.14750 1.13761 × 1036

0.01 1.19121 0.30310 < 8
9

0.19789 6.75733 5.62500 1.10430 × 1036

0.02 1.15282 0.29333 < 8
9

0.18958 7.64334 6.06612 1.02258 × 1036

0.03 1.11248 0.28307 < 8
9

0.18103 8.46132 6.46592 1.03263 × 1036

0.04 1.06991 0.27224 < 8
9

0.17221 9.20152 6.81848 9.93775 × 1035

Table 3
Calculated values of matter variables for (𝑉 𝑒𝑙𝑎𝑋 − 12) in the RT.
𝛾 Mass from 2𝑀

𝑅
𝑍𝑠 𝜌0 𝜌𝑠 𝑝0

our model 𝑔𝑚 (cm)−3 𝑔𝑚 (cm)−3 𝑑𝑦𝑛 (cm)−2

(km) ×1013 ×1013

0 2.41301 0.48308 < 8
9

0.39088 2.22037 8.16456 1.59046 × 1036

0.01 2.34534 0.46953 < 8
9

0.37300 2.28193 8.38188 1.54762 × 1036

0.02 2.27411 0.45527 < 8
9

0.35491 2.33447 8.56648 1.50235 × 1036

0.03 2.19882 0.44020 < 8
9

0.33655 2.37678 8.71392 1.45431 × 1036

0.04 2.11890 0.42420 < 8
9

0.31785 2.39052 8.76133 1.43424 × 1036

Table 4
Calculated values of matter variables for 4𝑈1608 − 52 in the RT.
𝛾 Mass from 2𝑀

𝑅
𝑍𝑠 𝜌0 𝜌𝑠 𝑝0

our model 𝑔𝑚 (cm)−3 𝑔𝑚 (cm)−3 𝑑𝑦𝑛 (cm)−2

(km) ×1014 ×1014

0 2.35967 0.50745 < 8
9

0.42487 3.40261 1.05055 2.06454 × 1036

0.01 2.29481 0.49350 < 8
9

0.40512 3.45639 1.07161 2.01031 × 1036

0.02 2.22640 0.47879 < 8
9

0.38514 3.49823 1.08878 1.95285 × 1036

0.03 2.15396 0.46321 < 8
9

0.36490 3.52652 1.10153 1.89174 × 1036

0.04 2.07691 0.44664 < 8
9

0.34431 3.53931 1.10923 1.82645 × 1036

here 𝑊 = 𝑟−2𝑀
𝑟 and M is the mass of the star. Now by comparing the

coefficient of Eqs. (1) and (15), we get the values of unknowns (A, B,
c),

𝐴 = 2𝑅 − 5𝑀

2
√

𝑅
√

𝑅 − 2𝑀
(16)

𝐵 =

√

𝑀
√

2𝑅
3
2

(17)

𝑐 = 2𝑀
𝑅2(𝑅 − 2𝑀)

. (18)

4. Some physical features of the proposed model

This section deals with the physical plausibility of our proposed
model. To do so, we evaluate some mathematical consequences and
check their physical essence, arithmetically as well as graphically. Also,

their numerical values are given in tabular form (see Fig. 3).
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Fig. 1. Profile of the energy density describing the distribution of energy density along the radial coordinate with various values of 𝛾 for two different stars indicated in the left
and right panels of the first row (i.e., first panel for 4𝑈1538 − 52 and second for Vela X-12). The second row features the conduct of pressure along the radial coordinate.

Fig. 2. Behavior of the radial derivative of energy density describing the influence of 𝛾 on the optimal criterion of the energy density (first row), which is indicated at the center.
The trend of the radial derivative of pressure is indicated in the second row for various values of 𝛾 and a small portion is magnified to clearly observe the different curves.
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Fig. 3. Double derivative of energy density along the radial coordinate to confirm whether the optimal point is maxima (or minima) by using the double derivative test (first
row), which indicates that the density is maximum at the core of the star. The second line represents the graphical conduct of the double derivative of pressure to confirm the
maximal point (the point at which the pressure is maximum) for different chosen values of 𝛾.

Fig. 4. Graphical behavior of quintessence energy density 𝜌𝑞 (appeared due to the quintessence field) along the radial coordinate (first row) and the range of the equation of state
parameter 𝐸𝑜𝑆 parameter 𝜔𝑞 is represented in the second row for considered two different stars. In both cases (i.e. for both considered stats) the 𝜔𝑞 remains in the stable region
(0,1).
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Fig. 5. Graphical conduct of the energy conditions represented by inequalities given in Eq. (25) along the radial coordinate for the considered stars in this study, for different
values of the Rastall parameter. In all the cases (i.e. for both stars and all chosen values of 𝛾), the inequalities Eq. (25) holds good.
Table 5
Calculated values of matter variables for 𝑆𝐴𝑋1808.4 − 3658(𝑆𝑆1) in the RT.
𝛾 Mass from 2𝑀

𝑅
𝑍𝑠 𝜌0 𝜌𝑠 𝑝0

our model 𝑔𝑚 (cm)−3 𝑔𝑚 (cm)−3 𝑑𝑦𝑛 (cm)−2

(km) ×1014 ×1014

0 1.40096 0.39631 < 8
9

0.28704 9.53819 2.13931 4.32767 × 1036

0.01 1.36310 0.38560 < 8
9

0.27577 9.53013 2.16126 4.22036 × 1036

0.02 1.32310 0.37428 < 8
9

0.26419 9.49597 2.17626 4.10599 × 1036

0.03 1.28067 0.36228 < 8
9

0.25223 9.43216 2.18336 3.98362 × 1036

0.04 1.23547 0.34949 < 8
9

0.23986 9.33445 2.18143 3.85209 × 1036

4.1. Physical attributes of pressure and energy density

For the physical acceptance of energy density(𝜌) and pressure (p),
both 𝜌 and p should remain positive within the radius and also should
be monotonically decreasing as the radius increases. Moreover, it
should remain singularity-free through the entire radius. To fulfill all
these conditions, we check out it graphically as shown in Fig. 1 satis-
fying the condition (positive essence of energy density and pressure).
6 
Table 6
Calculated values of matter variables for 𝐻𝑒𝑟𝑋 − 1 in the RT.
𝛾 Mass from 2𝑀

𝑅
𝑍𝑠 𝜌0 𝜌𝑠 𝑝0

our model 𝑔𝑚 (cm)−3 𝑔𝑚 (cm)−3 𝑑𝑦𝑛 (cm)−2

(km) ×1014 ×1013

0 1.23986 0.32204 < 8
9

0.21450 6.70944 × 1013 5.71808 1.24352 × 1036

0.01 1.20288 0.31243 < 8
9

0.20599 7.72547 × 1013 6.21816 1.20721 × 1036

0.02 1.16418 0.30238 < 8
9

0.19726 8.67589 × 1013 6.67923 1.16913 × 1036

0.03 1.12350 0.29181 < 8
9

0.18830 9.55175 × 1013 7.09599 1.12903 × 1036

0.04 1.08058 0.28067 < 8
9

0.17906 1.03423 × 1014 7.46209 1.08664 × 1036

Also, in order to check their optimal values, we also plot the gradients
of density and pressure (Fig. 2) which remain negative throughout the
entire layout and vanish as 𝑟 → 0, indicating optimal values at the
core. The negative values of gradients of 𝜌 and p are shown in Fig. 2
and Fig. 3 indicate the decreasing nature of 𝜌 and p. The graphical
representation of the quintessence energy density (𝜌𝑞) Fig. 4 (left panel)
increases as the radius increases and also it vanishes at the core. The
numerical values of 𝜌 and p at the core and surface density for different
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Table 7
Calculated values of matter variables for 𝑃𝑆𝑅𝐽1614 − 2230 in the RT.
𝛾 Mass from 2𝑀

𝑅
𝑍𝑠 𝜌0 𝜌𝑠 𝑝0

our model 𝑔𝑚 (cm)−3 𝑔𝑚 (cm)−3 𝑑𝑦𝑛 (cm)−2

(km) ×1014 ×1013

0 2.66589 0.51764 < 8
9

0.43985 3.13595 8.95018 1.76910 × 1036

0.01 2.59334 0.50356 < 8
9

0.41927 3.17097 9.10597 1.72321 × 1036

0.02 2.51676 0.48869 < 8
9

0.39848 3.19567 9.22973 1.67453 × 1036

0.03 2.43558 0.47292 < 8
9

0.37741 3.20863 9.31706 1.62269 × 1036

0.04 2.34915 0.45614 < 8
9

0.35599 3.20820 9.36278 1.56723 × 1036

values of 𝛾 are given in Tables 2–7 and for different stars. The equations
for the maximum 𝜌 and p at the core can be acquired as:

𝜌0 = −
(6𝛾 − 1)(9𝑎(2𝛾 − 1)(𝜔𝑞 + 1) − 18𝐵𝛾(𝜔𝑞 + 1))

24𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
, (19)

𝑝0 =
(6𝛾 − 1)(3𝑎(6𝛾 − 1)(𝜔𝑞 + 1) − 6𝐵(3𝛾 − 1)(𝜔𝑞 + 1))

24𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
, (20)

nd the derivatives of density and pressure are
d𝜌
dr = 1

12𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
√

𝑐𝑟2(𝑐𝑟2 + 1)3(2𝐴 + 𝐵𝑟
√

𝑐𝑟2)3

×
[

𝑐(6𝛾 − 1)𝑟(8𝐴3𝑐
√

𝑐𝑟2(𝑐𝑟2(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 30𝛾(𝜔𝑞 + 1) − 15𝜔𝑞 − 17)

+4𝐴2𝐵𝑐𝑟(3𝑐2𝑟4(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+𝑐𝑟2(78𝛾(𝜔𝑞 + 1) − 5(9𝜔𝑞 + 11)) − 60𝛾(𝜔𝑞 + 1) + 4)

+2𝐴𝐵2
√

𝑐𝑟2(6𝛾(𝜔𝑞 + 1)(3𝑐𝑟2(𝑐𝑟2(𝑐𝑟2 + 3) − 8) − 2)

−𝑐𝑟2(3𝑐2𝑟4(3𝜔𝑞 + 1) + 9𝑐𝑟2(5𝜔𝑞 + 7) − 4))

+𝐵3𝑐𝑟3(6𝛾(𝜔𝑞 + 1)(𝑐𝑟2(𝑐𝑟2 − 10)(𝑐𝑟2 + 3) − 10)

− 𝑐2𝑟4(𝑐𝑟2(3𝜔𝑞 + 1) + 5(3𝜔𝑞 + 5))))
]

, (21)

dp
dr = − 1

12𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
√

𝑐𝑟2(𝑐𝑟2 + 1)3(2𝐴 + 𝐵𝑟
√

𝑐𝑟2)3

×
[

𝑐(6𝛾 − 1)𝑟(8𝐴3𝑐
√

𝑐𝑟2(𝑐𝑟2(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 30𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 5) + 4𝐴2𝐵𝑐𝑟(3𝑐2𝑟4(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 𝑐𝑟2(78𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 − 7)

+4(−15𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 + 4))

+2𝐴𝐵2
√

𝑐𝑟2(3𝑐3𝑟6(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1) + 9𝑐2𝑟4(6𝛾(𝜔𝑞 + 1)

+3𝜔𝑞 + 1) + 4𝑐𝑟2(−36𝛾(𝜔𝑞 + 1) + 12𝜔𝑞 + 13)

−12(𝛾 − 1)(𝜔𝑞 + 1)) + 𝐵3𝑐𝑟3(𝑐3𝑟6(6𝛾(𝜔𝑞 + 1)

− 3𝜔𝑞 − 1) + 𝑐2𝑟4(−42𝛾(𝜔𝑞 + 1) + 21𝜔𝑞 + 11)

−36𝑐(5𝛾 − 1)𝑟2(𝜔𝑞 + 1) − 12(5𝛾 − 1)(𝜔𝑞 + 1)))
]

, (22)

𝑑2𝜌
dr2

= − 1

12𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
√

𝑐𝑟2(𝑐𝑟2 + 1)4(2𝐴 + 𝐵𝑟
√

𝑐𝑟2)4

×
[

𝑐(6𝛾 − 1)(16𝐴4𝑐
√

𝑐𝑟2(3𝑐2𝑟4(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 2𝑐𝑟2(66𝛾(𝜔𝑞 + 1) − 33𝜔𝑞 − 41)

−30𝛾(𝜔𝑞 + 1) + 15𝜔𝑞 + 17)

+32𝐴3𝐵𝑐𝑟(3𝑐3𝑟6(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+𝑐2𝑟4(123𝛾(𝜔𝑞 + 1) − 66𝜔𝑞 − 85) + 𝑐𝑟2(5(3𝜔𝑞 + 5)

−96𝛾(𝜔𝑞 + 1)) + 15𝛾(𝜔𝑞 + 1) − 1)
2 2

√

𝑐𝑟2(6𝛾(𝜔 + 1)(𝑐𝑟2(𝑐𝑟2(9𝑐𝑟2(𝑐𝑟2 + 6) − 94) + 6)
+8𝐴 𝐵 𝑞
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+1) + 𝑐𝑟2(4 − 𝑐𝑟2(9𝑐𝑟2(𝑐𝑟2(3𝜔𝑞 + 1) + 22𝜔𝑞 + 30) − 45𝜔𝑞 − 103)))

+8𝐴𝐵3𝑐𝑟3(3𝛾(𝜔𝑞 + 1)(𝑐𝑟2(𝑐𝑟2(𝑐𝑟2(6𝑐𝑟2 + 29) − 94) + 13) + 10)

+𝑐𝑟2(3 − 𝑐𝑟2(𝑐𝑟2(3𝑐𝑟2(3𝜔𝑞 + 1) + 66𝜔𝑞 + 101) − 15𝜔𝑞 − 37)))

+𝐵4𝑟2(𝑐𝑟2)3∕2(6𝛾(𝜔𝑞 + 1)

×(𝑐𝑟2(𝑐𝑟2(𝑐𝑟2(3𝑐𝑟2 − 38) − 203) − 120) − 30)

− 𝑐2𝑟4(𝑐𝑟2(3𝑐𝑟2(3𝜔𝑞 + 1) + 66𝜔𝑞 + 122) − 5(3𝜔𝑞 + 5))))
]

, (23)

and
𝑑2𝑝
dr2

= 1

12𝜋(4𝛾 − 1)(𝜔𝑞 + 1)
√

𝑐𝑟2(𝑐𝑟2 + 1)4(2𝐴 + 𝐵𝑟
√

𝑐𝑟2)4

×
[

𝑐(6𝛾 − 1)(16𝐴4𝑐
√

𝑐𝑟2(3𝑐2𝑟4(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 2𝑐𝑟2(66𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 11)

−30𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 + 5)

+32𝐴3𝐵𝑐𝑟(3𝑐3𝑟6(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+𝑐2𝑟4(123𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 − 16) + 𝑐𝑟2(−96𝛾(𝜔𝑞 + 1)

+9𝜔𝑞 + 19) + 15𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 4)

+8𝐴2𝐵2
√

𝑐𝑟2(9𝑐4𝑟8(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+18𝑐3𝑟6(18𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 − 1)

+𝑐2𝑟4(−564𝛾(𝜔𝑞 + 1) + 75𝜔𝑞 + 133) + 4𝑐𝑟2(9𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 2)

+6(𝛾 − 1)(𝜔𝑞 + 1)) + 8𝐴𝐵3𝑐𝑟3(3𝑐4𝑟8(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+𝑐3𝑟6(87𝛾(𝜔𝑞 + 1) + 51𝜔𝑞 + 16)

+𝑐2𝑟4(−282𝛾(𝜔𝑞 + 1) + 87𝜔𝑞 + 109)

+3𝑐𝑟2(13𝛾(𝜔𝑞 + 1) + 11𝜔𝑞 + 12) + 6(5𝛾 + 1)(𝜔𝑞 + 1))

+𝐵4𝑟2(𝑐𝑟2)3∕2(3𝑐4𝑟8(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+2𝑐3𝑟6(−114𝛾(𝜔𝑞 + 1) + 57𝜔𝑞 + 29)

+ 𝑐2𝑟4(−1218𝛾(𝜔𝑞 + 1) + 231𝜔𝑞 + 241)

−144𝑐(5𝛾 − 1)𝑟2(𝜔𝑞 + 1) + 36(1 − 5𝛾)(𝜔𝑞 + 1)))
]

. (24)

In order to satisfy the non-exotic nature of our system Fig. 4 (right
plot) shows that the 𝐸𝑜𝑆 parameter 𝑤 = 𝑝

𝜌 is bounded within the limit,
between zero to one.

4.2. Energy constraints

This section delves into the properties of physical characteristics
of stellar structures, focusing on some energy conditions necessary for
their stability. A stellar model is deemed viable physically when it
adheres to necessary energy constraints throughout its interior. In the
context of stellar modeling, these energy conditions are of paramount
importance. Utilizing basic framework of GR, we can express energy
conditions as local inequalities that regulate the relationship between
energy density (𝜌) and pressure (𝑝), constrained by particular con-
ditions. While there are numerous methods for establishing energy
criteria, our primary focus is on the energy condition governing by the
following constraints,

𝜌 ≥ 0, 𝜌 + 𝑝 ≥ 0, 𝜌 + 3𝑝 ≥ 0, 𝜌 ≥ |𝑝|. (25)

In order to satisfy the above inequalities, we plot their graphs Fig. 5,
which satisfy these inequalities and show the non-exotic nature of
matter in essence which adds more value to our proposed model.

4.3. TOV equation

This study portion investigates hydrostatic equilibrium within the
stellar interior due to the influence of gravitational, hydrostatic forces
along with an extra force due to the modified gravity (usually called

Rastall force). The Tolman–Oppenheimer–Volkoff (TOV) equation
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Fig. 6. Graphical evolution of forces acting on the system along the radial coordinate for various values of the Rastall parameter 𝛾, which indicates that our model is in the
hydrostatic equilibrium state. The role of the force 𝐹𝑟 due to the RT is significant to counterbalance the net effect of the total forces.
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serves as a key tool in characterizing the internal structure of the
compact object. The TOV equation mathematically encapsulates the
balance of these forces, ensuring that the stellar model remains in a
state of equilibrium. By analyzing the contributions of gravitational,
hydrostatic, and Rastall forces, we can ascertain the conditions under
which a star can maintain its stability against perturbations. The TOV
equation in the RT involving these forces can be stated as:
(

1
4 − 1

𝛾

)

𝑑
𝑑𝑟

(𝜌 − 3𝑝) +
𝜙′

2
(−𝜌 − 𝑝) −

𝑑𝑝
𝑑𝑟

= 0, (26)

The first, second, and third terms in the above equation respectively
represent the Rastall, gravitational, and hydrostatic forces.

The equilibrium state of these forces is graphically represented in
Fig. 6 which consolidates the proposed model. For 𝛾 = 0 the Rastall
orce will vanish and we can get the TOV equation in the 𝐺𝑅 case.

.4. Stability analysis

Here is a way to check the stability of the proposed model which
s called Stability via sound speed. We will use Herrera’s cracking con-
ept [80] to check the casualty condition. For this, the squared sound
peed of the system must remain positive throughout the configuration
nd never exceed the limit of the speed of light, which means 0 < 𝑉 2

𝑠 =
𝑑𝑝
𝑑𝜌 ≤ 1. Here 𝑉 2

𝑠 for isotropic model is formulated as:

2
𝑠 =

𝑑𝑝
𝑑𝜌

=
𝑉1
𝑉2
, (27)

which gives 𝑉 2
𝑠 = 𝑉1

𝑉2
, where

1 = −(8𝐴3𝑐
√

𝑐𝑟2(𝑐𝑟2(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+30𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 5) + 4𝐴2𝐵𝑐𝑟(3𝑐2𝑟4(6𝛾(𝜔𝑞 + 1)

−3𝜔𝑞 − 1) + 𝑐𝑟2(78𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 − 7)

+4(−15𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 + 4))

+2𝐴𝐵2
√

𝑐𝑟2(3𝑐3𝑟6(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1)

+9𝑐2𝑟4(6𝛾(𝜔𝑞 + 1) + 3𝜔𝑞 + 1) + 4𝑐𝑟2(−36𝛾(𝜔𝑞 + 1)

+12𝜔𝑞 + 13) − 12(𝛾 − 1)(𝜔𝑞 + 1))

+𝐵3𝑐𝑟3(𝑐3𝑟6(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1) + 𝑐2𝑟4(−42𝛾(𝜔𝑞 + 1)

+21𝜔𝑞 + 11) − 36𝑐(5𝛾 − 1)𝑟2(𝜔𝑞 + 1) − 12(5𝛾 − 1)(𝜔𝑞 + 1)),

𝑉2 = 8𝐴3𝑐
√

𝑐𝑟2(𝑐𝑟2(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1) + 30𝛾(𝜔𝑞 + 1) − 15𝜔𝑞 − 17)

+4𝐴2𝐵𝑐𝑟(3𝑐2𝑟4(6𝛾(𝜔𝑞 + 1) − 3𝜔𝑞 − 1) + 𝑐𝑟2(78𝛾(𝜔𝑞 + 1)

−5(9𝜔𝑞 + 11)) − 60𝛾(𝜔𝑞 + 1) + 4)

+2𝐴𝐵2
√

𝑐𝑟2(6𝛾(𝜔𝑞 + 1)(3𝑐𝑟2(𝑐𝑟2(𝑐𝑟2 + 3) − 8) − 2)

−𝑐𝑟2(3𝑐2𝑟4(3𝜔 + 1) + 9𝑐𝑟2(5𝜔 + 7) − 4))
𝑞 𝑞
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+𝐵3𝑐𝑟3(6𝛾(𝜔𝑞 + 1)(𝑐𝑟2(𝑐𝑟2 − 10)(𝑐𝑟2 + 3) − 10) − 𝑐2𝑟4(𝑐𝑟2(3𝜔𝑞 + 1)

+5(3𝜔𝑞 + 5)))),

The graphical demonstration of 𝑉 2
𝑠 is given in Fig. 7 indicating that

ur proposed model fulfills the causality condition.

.5. Mass-radius relation

Herein, we described that how the connection between the radius
nd mass of the stellar body influenced the viability of the proposed
odel. The formulation for the relativistic mass is as follows:

(𝑟) = ∫

𝑟

0
4𝑟2𝜋𝜌𝑑𝑟 (28)

The relation between mass and radius should be such that, as the
adius approaches zero the mass of the celestial object should also
pproach zero and the mass 𝑀(𝑟) remains singularity-free throughout
he whole configuration. For this, the physical deportment of 𝑀(𝑟) in
ig. 8 is represented showing that mass remains singularity-free and
hows regular behavior at the core also.

Moving towards, the specific constraint 2𝑀
𝑅 < 8

9 suggested by
Buchdahl [81] in 1959 for mass and radius relationship is considered.
To satisfy this constraint numerically, we find out the value of 2𝑀

𝑅 for
different stars shown in Tables 2–6 which remains consonant with our
proposed model.

Moreover, the connection between radius and mass is termed as the
compactness and is obtained as:

𝑢 = 𝑀
𝑅
. (29)

The demeanor of 𝑢(𝑟) has been plotted in Fig. 8 (upper right plot) which
is increasing and has not crossed the Buchdahl limit. Our model is
compatible with another important feature.

4.6. Surface redshift

For the given above compactness 𝑢 = 𝑀
𝑅 , the surface redshift 𝑍𝑠(𝑟)

for the stellar object is represented as:

𝑍𝑠 = (1 − 2𝑢)−
1
2 − 1. (30)

For the maximum value of surface redshit for a realistic model of a
stellar object, many researchers have applied constraints in different
conditions (Isotropic, anisotropic, etc.). Such as, for an isotropic matter,
this optimal value in the absence of the cosmological constant is 2 [81–
83]. Now for anisotropic matter with cosmological constant, according
to Bohmer and Harko [84], this value should be 𝑍𝑠 < 5 and also in the
same criteria, Ivanov [85] suggested the constraint which is 𝑍𝑠 ≤ 5.211.
Now coming towards our proposed model we observed that our model
remains consistent with the maximum allowed value as one can see
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Fig. 7. Graphical representation of the squared sound speed along the radial coordinate illustrating the role of 𝛾. For both the considered stars and for all chosen 𝛾, the value of
the squared sound speed remains in the stable region (0,1), as suggested by Herrera.

Fig. 8. In this plot, the first row represents the mass function obtained in the current study in the RT along 𝑟 for two different stars considered in this study and for numerous 𝛾
values considered for this study. The conduct increases along the radius and reaches to maximum at the boundary of the star. The second row indicates the graphical illustration of
the compactness (𝑢 = 𝑀

𝑟
) along the radial coordinate to confirm that the presented model obeys the Buchdahl limit for both the stars and for all curves. The third row demonstrates

another important physical requirement, the behavior of the surface redshift and the maximum value of the surface redshift.
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9 



M.R. Shahzad et al. Physics of the Dark Universe 46 (2024) 101646 
graphically in Fig. 8. The numerical values of maximum 𝑍𝑠 for chosen
representatives of the compact stellar structure have been shown in
Tables 2–7.

5. Conclusions

We construct a new relativistic model of isotropic compact stars in
the 𝑅𝑇 by considering the Finch Skea symmetry in the quintessence-
like field. For this, we employed the observational data of six different
compact stars to verify the physical characteristics of the obtained
model. Our model is concurrent with the necessary physical require-
ments of the realistic model. Some salient traits of the proposed model
are discussed in detail in the following points:

• Matter density and pressure: The First feature of our model is
that the matter density 𝜌 and the pressure 𝑝 remain positive
throughout the configuration(within the radius) attaining their
maximum value at the core as one can see it graphically in Fig. 1
and numerically in Tables 2–6.

• Energy conditions: For the physical plausibility of a model, energy
conditions Eq. (25) should be satisfied, and our proposed model
is also consistent with all energy conditions (see Fig. 4).

• Dynamical equilibrium of Forces: To check the behavior of differ-
ent forces acting on our system, we used the TOV equation and
observed that for the non-zero value of 𝛾, our system balanced
the total effect (Fig. 6) and for 𝛾 = 0 the third force called Rastall
force 𝐹𝑟 vanishes which shows that the proposed model behaved
well according to the conditions.

• Stability analysis: The stability of the model is evaluated through
sound speed with the help of casualty condition which suggested
that squared sound speed should remain less than the speed of
light which is equal to 1 in a realistic unit. We illustrate the 𝑉𝑠
graphically and observe that it remains less than 1 which adds
more consistency to the proposed model.

• Mass function and Buchdahl Limit: It is necessary for model to
be realistic that the mass-to-radius ratio (Compactness) must be
regular in the entire configuration, increase towards the surface,
and remain zero at the origin. Moreover, the mass function must
be non-singular throughout the entire radius. While considering
it, we observed that the compactness of our model remains regu-
lar, and also mass function remains non-singular throughout the
entire radius Fig. 8. In addition, we also satisfy the constraint
2𝑀
𝑅 < 8

9 suggested by Buchdahl [81] as one can see in Tables 2–6
for five different stars.

• Surface redshift: In different conditions, different researchers [81–
83] suggested different maximum limit values for surface redshift.
The proposed model also satisfied the maximum allowed limit
value of surface redshift Fig. 8 and also the numerical values of
surface redshift are given in Tables 2–6 for different stars.
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