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A B S T R A C T

The objective of this manuscript is to examine the nonlinear characteristics of the modified equal width
equation that is used to simulate the one-dimensional wave propagation nonlinear media, incorporating the
dispersion process. Utilizing the traveling wave transformations, we are able to convert the nonlinear partial
differential equations (NLPDES) into ordinary differential equations (NLODEs). In this study, an analytical
technique is used to utilize the exact soliton solutions of this proposed model. This efficient method is known
as the modified auxiliary equation method. This extraction of soliton solutions contains various types of
solutions such as trigonometric, hyperbolic, and rational solutions. For a graphical representation, we utilize
Mathematica and Maple software to depict the solutions in 3𝐷, 2𝐷, contour plots, and density plots. The main
novelty of this paper is to explore the qualitative study, which includes the chaotic behavior, bifurcation,
sensitivity, and stability analysis of this problem. For this, first, we apply the Galilean transformation, we
convert the NLODEs into two systems of equations. Moreover, the qualitative dynamics of the time-varying
dynamical system are examined by employing chaos theory. We explore the intricacies of 3𝐷 and 2𝐷 phase
portraits, time series, and Poincaré maps as powerful tools for detecting the elusive nature of chaos in self-
governing dynamic systems. Sensitivity and stability analysis is also studied by using the various initial
conditions, revealing the remarkable stability of the system under investigation. The system’s stability is
confirmed by the fact that even small changes to the initial conditions have no appreciable effect on the
solutions. The results of this study are novel and valuable for further investigation of equations which are
helpful for the incoming researchers.
1. Introduction

It is generally recognized that nearly all non-linear physical pro-
cesses may be explained using mathematical equations, often known
as non-linear differential equations. Nonlinear phenomena have been
extensively explored through the use of models such as nonlinear par-
tial differential equations (NLPDEs), which stand out as being of utmost
importance in this field. Nonlinear (PDEs) have proven to be a potent
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tool in effectively characterizing a vast array of physical phenomena
across a diverse range of disciplines [1–4].

In recent years, there has been a particular focus on the modi-
fied equal width (MEW) equation involving nonlinear medium and
dispersion processes. This has led to a rising interest in the explo-
ration of ‘‘exact solutions’’ for NPDEs. Solitons hold a crucial position
within soliton theory, with various types documented in literature
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such as dark soliton, bright soliton, singular soliton, and others. Due
to their significant mathematical properties and wide-ranging appli-
cations, multiple techniques have been proposed to study different
physical phenomena related to nonlinear wave equations. It is rec-
ognized that the effectiveness of these approaches varies depending
on the specific problem at hand; while some techniques are suitable
for certain issues, they may not apply to others. The analytical so-
lutions of NPDEs are pivotal in comprehending the qualitative traits
and physical implications of numerous phenomena. Various methods
have been successfully devised and utilized in the existing literature
to derive analytical solutions for NPDEs, such as (𝐺

′

𝐺 ) expansion ap-
proach [5,6], modified exp-function approach [7], exponential rational
unction approach [8,9], inverse scattering approach [10], general-
zed unified approach [11], Hirota bilinear approach [12], simpli-
ied Hirota bilinear approach [13], Bäcklund and Darboux transforma-
ions approach [14–16], modified auxiliary equation approach [17],
odified extended tanh function [18], generalized Kudryashov ap-
roach [19], extended algebraic approach [20], extended simple equa-
ion approach [21], homogeneous balancing approach [22], planner
ynamical system scheme [23,24], and numerous other approaches
hat have not yet been discovered. The literary canon is full of answers
hat have been discovered via careful investigation. These astounding
nswers cover a wide range: they are breather wave solutions to solitary
ave solutions, hyperbolic solutions to rogue wave solutions, peri-
dic solutions to logical solutions, and many qualitative analysis [25–
0]. One can find different types of solutions are discussed. Notably,
olutions such as [41–46] stand out as exceptionally exceptional.

Nonlinear physical systems have experienced a surge in recognition
n recent times. Chaos has become more common in models. Qualitative
esearch based on theory [47–53] has become crucial for exploring the
tructures of dynamical models.

The term ‘‘chaos’’ has been assigned to the occurrence of unpre-
ictable and erratic temporal changes within different nonlinear sys-
ems. Chaos is common in nonlinear systems, characterized by the
ystem’s inability to repeat its former behavior. Despite its apparent un-
redictability, chaotic dynamical systems are governed by deterministic
quations. Chaotic systems are set apart by their remarkable sensitivity
o initial conditions. The wide number of beginning conditions pro-
uces an unmatched variety of orbits. These differences, however, end
n almost similar paths in systems devoid of chaos. For chaos to man-
fest in continuous-time systems, a trinity of independent dynamical
ariables and nonlinearity must exist. These prerequisites are crucial
or detecting chaos in such systems. A chaotic system is defined as one
hat is highly sensitive to initial conditions. As such, the exact definition
f chaos can be stated as follows: A chaotic system is characterized as a
oherent system that displays unexpected and random behavior, with
ts distinctive feature being the fragile reliance on initial conditions.
he examination of chaos and the mathematical concepts underpinning

t holds significant importance in the twenty-first century.
When bounded solutions diverge locally rather than exhibiting pe-

iodic or quasi-periodic behavior, a dynamical system is considered
haotic .

There are various methods for recognizing chaos. This examination
dentifies the most useful ones. These are as follows:

∙ Time series,
∙ Phase portraits,
∙ Poincaré maps.
The discussion explores a thorough examination of the system sen-

itivity and stability analysis. The authors claim that this study is a
nique and intriguing commitment that is unheard of in the setting of
he system in issues. In recent years, there has been a growing trend in
ubjecting nonlinear physical models to qualitative investigation based
n bifurcation [54]. The analysis of bifurcation aims to explore the
otential changes in the trajectory of a dynamical system as its parame-

ers undergo variations. Common bifurcation patterns such as pitchfork,
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saddle–node, and Hopf bifurcations, along with period-doubling bifur-
cation and bifurcations leading to chaos from quasi-periodic motion,
are generally considered to be typical occurrences The current investi-
gation explores the complexities of the Modified Equal Width Equation
(MEWE), which can be represented as follows.

𝑡 + 𝑣2𝑥 − 𝜌𝑥𝑥𝑡 = 0, (1.1)

ere 𝑣 and 𝜌 are constant. This particular equation holds immense im-
ortance in fluid mechanics and has therefore received much attention
rom the scientific community. Erudite researchers have undertaken
ountless studies to delve into the complexities of this equation and
ts implications on various physical phenomena. Several investiga-
ions have been conducted on the MEW equation, yielding diverse
esults. Wazwaz [55], ingeniously generated a variety of exact solutions
or the equation, while Lu [56], employed the variational iteration
ethod to numerically analyze this type of equation. Finite difference
ethod [57], was utilized to derive solitary wave solutions, and a

umped Galerkin method [58], was adopted to numerically tackle the
EWE. Integral bifurcation technique [59], was employed to construct

raveling wave solutions of the equation, and exact solutions were
ound through the (𝐺

′

𝐺 )-expansion method [60]. The homotopy per-
turbation method [61], was applied to present numerical results of
the MEWE, while Fourier spectral method [62], was utilized to obtain
numerical results. The Exp-function method [63], was used to derive
soliton solutions of the MEW equation, and the method of dynamical
system [64], was employed to obtain exact solutions.

The manuscript is summarized as follows: Section 2 describes the
conversion of the governing model to a reduced form. Section 3 dis-
cussed the qualitative analysis like bifurcation and chaotic analysis
with 2𝐷, 3𝐷 phase portraits, Poincare map, and time series. Sections

discussed the sensitivity and stability analysis with phase and group
elocity of a wave expatiated. Section 5 describes the structure of
ifferent types of soliton profiles and graphical simulation of the ob-
ained result by using the suitable parameter values and the last section
iscusses the conclusion.

. Mathematical analysis

General NLPDE has the form

( ,𝑥,𝑥𝑥𝑥𝑡,𝑥𝑥𝑥. . . ) = 0, (2.1)

whereas the function 𝑠 = 𝑠(𝑥, 𝑡) remains unknown, the application of
the subsequent transformations permits the conversion of the given
NLPDE, as denoted by Eq. (1.1), into a nonlinear ODE through the
implementation of the ensuing transformation:

(𝑥, 𝑡) = 𝜓(𝜁 ), 𝜁 = 𝑥 −𝑤𝑡. (2.2)

In result, ODE of the form

𝛺(𝜓, 𝜓 ′, 𝜓 ′′, 𝜓 ′′′, ...) = 0. (2.3)

To determine the precise solutions of Eq. (1.1), it is imperative to
presuppose that the aforementioned equation allows for the implemen-
tation of traveling wave transformations. This presupposition is based
on the compatibility of Eq. (1.1) with the transformations mentioned.

(𝑥, 𝑡) = 𝜓(𝜁 ), 𝜁 = 𝑥 −𝑤𝑡. (2.4)

ubstitute Eq. (2.2) into Eq. (1.1), we change Eq. (1.1) into ODE of the
orm

−𝑤𝜓 ′ + 𝑣𝜓2𝜓 ′ + 𝜌𝑤𝜓 ′′′ = 0. (2.5)

he result of doing one integration of Eq. (2.5) concerning 𝜁 while
etting the integration of constant is equal to zero the following result
s obtained:

−𝑤𝜓 + 𝑣𝜓3 + 𝜌𝑤𝜓 ′′ = 0. (2.6)

3
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Fig. 1. The bifurcation diagram of a dynamical system of (3.1) when (a)𝑃 > 0 and 𝑄 > 0, and (b) 𝑃 > 0 and 𝑄 < 0 .
3. Qualitative analysis

In this segment, our primary focus is to examine the dynamic
characteristics of the two-dimensional system described in Eq. (2.6).
Subsequently, we delve into a more comprehensive analysis of the dy-
namic behavior of two-dimensional dynamical systems by introducing
a minor perturbation term

3.1. Bifurcation and phase portrait

In this section, we will explore Eq. (1.1) by utilizing the concept of
bifurcation analysis. By the study of Galilean transformation, we change
Eq. (2.6) into the planer dynamical system as:

𝑑𝜓
𝑑𝜁 = 𝑈,
𝑑𝑈
𝑑𝜁 = 𝑃𝜓 −𝑄𝜓3.

⎫

⎪

⎬

⎪

⎭

(3.1)

here 𝑃 = 1
𝜌 and 𝑄 = 𝑣

3𝜌𝜔 . With the Hamiltonian system,

𝐻(𝜓,𝑈 ) = 1
2
𝑈2 − 𝑃

2
𝜓2 + 𝑄

4
𝜓4 = ℎ. (3.2)

The planner dynamical system (3.1) has three equilibrium points, that
are given by

𝑎0(𝐴0, 0), 𝑎1(𝐴1, 0), 𝑎2(𝐴2, 0), (3.3)

where 𝐴0 = 0, 𝐴1 =
√

𝑃
𝑄 and 𝐴2 = −

√

𝑃
𝑄 from jacobian of the system

(3.1), obtain the following system.

𝐽 (𝑈,𝜓) = −𝑃 + 3𝑄𝜓2 (3.4)

Consequently, the point (𝐴0, 0) exhibits a saddle-like behavior if 𝐽 (𝑎0) <
0, indicates a center if 𝐽 (𝑎0) > 0, and displays a cuspidal point if
𝐽 (𝑎0) = 0.

At the point (𝐴1, 0) illustrates a saddle point if 𝐽 (𝑎1) < 0, shows a
center if 𝐽 (𝑎1) > 0, and represents a cuspidal point if 𝐽 (𝑎1) = 0.

Similarly, the point (𝐴2, 0) illustrates a saddle point if 𝐽 (𝑎2) < 0,
shows a center if 𝐽 (𝑎2) > 0, and represents a cuspidal point if 𝐽 (𝑎2) = 0.

It is crucial to note that the values for parameters p and Q can
be real and are selected precisely. Consequently, we obtain many
situations for various conceivable parameter selections, each of which
is described in detail (see Fig. 1).

3.2. Chaotic behavior

This section examines Eq.’s quasi-periodic and chaotic dynamics
(1.1). To make it more intriguing, a perturbation term 𝑁(𝜁 ) has been
introduced into Eq. (3.1). Consequently, the following system can be
written using Eq. (3.1) along with the aforementioned perturbed term.
3 
The dynamical system that is planar (3.1) and has a perturbation term
is capable of being expressed as follows,

𝑑𝜓
𝑑𝜁 = 𝑈,
𝑑𝑈
𝑑𝜁 = 1

𝜌𝜓 − 𝑣
3𝜌𝜔𝜓

3 +𝑁(𝜁 ).

⎫

⎪

⎬

⎪

⎭

(3.5)

Where 𝑁(𝜁 ) = 𝜂𝑐𝑜𝑠(𝜃𝜁 ), 𝐴𝑒−0.02𝜁 and 𝜃 represents the frequency, 𝜂
denotes the intensity of the perturbed term. Notably, the system (3.5)
encompasses an external periodic power that is absent in the system
(3.1). The aim is to explore the periodic and chaotic dynamics of
Eq. (1.1) under the influence of a disturbance term with undefined
parameters. We have effectively predicted the quasi-periodic and turbu-
lent dynamics of the system (3.5) and demonstrated this phenomenon
by applying several methods of chaos detection, including time series,
Poincaré maps, 2𝐷 and 3𝐷 phase portraits, and others.

4. Stability analysis of dynamical system Eq. (1.1)

Consider the perturbed solution of Eq. (1.1) has the form [65]

𝑠(𝑥, 𝑡) = 𝐴1 + 𝜂𝑊 (𝑥, 𝑡). (4.1)

It is readily apparent that any constant value 𝐴1 can be identified
as a stable state solution for Eq. (1.1). By substitution Eq. (4.1) into
Eq. (1.1), we obtained the following result,

𝜂𝑊𝑡 + 𝑣𝜂𝐴2
1𝑊𝑥 + 𝑣𝜂3𝑊 2𝑊𝑥 + 2𝐴1𝜂

2𝑊𝑊𝑥 − 𝜌𝜂3𝑊𝑥𝑥𝑡 = 0. (4.2)

Linearization of the Eq. (4.2) gives the following result,

𝑊𝑡 + 𝑣𝐴2
1𝑊𝑥 = 0. (4.3)

Suppose that Eq. (4.3) has solution of the form,

𝑤(𝑥, 𝑡) = 𝑒𝜄(𝑘𝑥+𝜂𝑡). (4.4)

Solving for 𝜂 gives us

𝜂(𝑘) = −𝑣𝐴2
1𝑘. (4.5)

This is a dispersion relation, since the real part of Eq. (4.5) is negative
for all values then, any superposition of solution will appear to decay,
therefore dispersion relation is stable.

4.1. Phase velocity and group velocity

To derive the phase velocity 𝜂(𝑘)
𝑘 , we endeavor to obtain a solution

that conforms to a specific form.

𝑤(𝑥, 𝑡) = 𝑒𝜄(𝑘𝑥+𝜂𝑡). (4.6)
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Fig. 2. The bifurcation diagram of a dynamical system (3.1) when (a) 𝑃 < 0 and 𝑄 > 0, and (b) 𝑃 < 0 and 𝑄 < 0 .
Fig. 3. The graphical visualization of chaotic behaviors for the dynamical system (3.5) with perturbation term 𝑁(𝜁 ) = 0.8 cos(1.2𝜉) .
Substituting the Eq. (4.6) in Eq. (4.5) for solving 𝜂(𝑘)
𝑘 , gives us.

𝜂(𝑘)
𝑘

= −𝑣𝐴2
1, (4.7)

the group velocity, which refers to the velocity at which the energy
of a wave packet propagates, exhibits a value that is twice the value
of the phase velocity. It is worth noting that the phase velocity is a
quantity that varies according to the value of 𝑘. Consequently, when
a superposition of multiple waves is taken into account, it appears to
spread out or disperse.
4 
4.2. Sensitivity analysis of dynamical system Eq. (1.1)

In this part of the research, we investigate the sensitivity analysis of
the dynamical system Eq. (1.1) by using the different initial conditions.
First, we convert the Eq. (2.6) into two systems of equations by utilizing
the Galilean transformation. Let 𝜓 ′ = 𝑈 the Eq. (2.6) is converted into
the following system [66,67]

𝑑𝜓
𝑑𝜁 = 𝑈,
𝑑𝑈 1 𝑣 3

}

(4.8)

𝑑𝜁 = 𝜌𝜓 − 3𝜌𝜔𝜓 .
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Fig. 4. The graphical visualization of chaotic behaviors for the dynamical system with perturbation term 𝑁(𝜁 ) = 10𝑒−0.02𝜁 .
Using two different initial conditions, we conduct a detailed sensitivity
analysis of the dynamical system (1.1) in this section of the study.
The two solutions, using appropriate parameter values like 𝜌 = 2, 𝑣 =
3, 𝜔 = 2, have been effectively demonstrated in Figs. 6–9. In particular,
two solutions are shown in Fig. 6: (𝑈,𝜓) = (0.1, 0) in red (solid) and
(𝑈,𝜓) = (0.2, 0) in navy blue (solid).

Fig. 7 highlights two solutions, namely (𝑈,𝜓) = (0.1, 0) in red color
(solid) and (𝑈,𝜓) = (0.3, 0). In the figure presented in green color, two
solutions are shown.

Similarly, Fig. 8 depicts two solutions in the navy blue color solid
line and green color solid line, respectively, denoted by (𝑈,𝜓) = (0.2, 0)
and (𝑈,𝜓) = (0.3, 0).

The solutions are compared at initial conditions in Fig. 9. Solid red,
(𝑈,𝜓) = (0.1, 0); (𝑈,𝜓) = (0.2, 0) in the color dash-dot of navy blue
and (𝑈,𝜓) = (0.3, 0)in the color green. A dynamical system’s solution
may shift slightly in response to small changes in the initial conditions.
Stated differently, the two solution curves never intersect under any
situation. Thus, we can infer that the governing model exhibits a degree
of sensitivity, albeit not excessively sensitive.

5. Structure of soliton solutions

5.1. Modified auxiliary equation method

Following the modified auxiliary equation methodology, we explore
the resolution of Eq. (2.3) by considering the subsequent solution in the
following manner:

𝜓(𝜁 ) = 𝑚0 +
𝑁
∑

[𝑚𝑗 (𝑔)𝑗ℎ(𝜁 ) + 𝑛𝑗 (𝑔)−𝑗ℎ(𝜁 )], (5.1)

𝑗=1

5 
where 𝑚𝑗 , 𝑛𝑗 are constants to be determined and ℎ(𝜁 ) satisfies the
following auxiliary equation.

ℎ′(𝜁 ) =
𝜃 + 𝜂𝑔−ℎ + 𝜎𝑔ℎ

ln𝑔 . (5.2)

The constants 𝜂, 𝜃, 𝜎 and 𝑔 are arbitrary values with 𝑔 > 0, 𝑔 ≠ 0.
Eq. (5.2) has the following solutions.
∙ If 𝜃2 − 4𝜂𝜎 < 0 and 𝜎 ≠ 0, then

𝑔ℎ(𝜁 ) =
−𝜃 +

√

4𝜂𝜎 − 𝜃2 tan(
√

4𝜂𝜎−𝜃2𝜁
2 )

2𝜎
or

𝑔ℎ(𝜁 ) = −
𝜃 +

√

4𝜂𝜎 − 𝜃2 cot(
√

4𝜂𝜎−𝜃2𝜁
2 )

2𝜎
.

(5.3)

∙ If 𝜃2 − 4𝜂𝜎 > 0 and 𝜎 ≠ 0, then

𝑔ℎ(𝜁 ) = −
𝜃 +

√

𝜃2 − 4𝜂𝜎 tanh(
√

𝜃2−4𝜂𝜎𝜁
2 )

2𝜎
or

𝑔ℎ(𝜁 ) = −
𝜃 +

√

𝜃2 − 4𝜂𝜎 coth(
√

𝜃2−4𝜂𝜎𝜁
2 )

2𝜎
.

(5.4)

∙ If 𝜃2 − 4𝜂𝜎 = 0 and 𝜎 ≠ 0, then

𝑔ℎ(𝜁 ) = −
2 + 𝜃𝜁
2𝜎𝜁

. (5.5)

5.2. Utilization of the modified auxiliary equation technique

First of all, we determine the value of the positive integer 𝑁 =
1 using the homogeneous balance principle by comparing the non-
linear term with the highest-degree ‘‘𝜓3’’ and the linear term with
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Fig. 5. The graphical visualization of chaotic behaviors for the dynamical system with perturbation term 𝑁(𝜁 ) = 10𝑒−0.02𝜁 .
Fig. 6. Sensitivity analysis of the dynamical system Eq. (4.8) by using the different initial conditions such as (𝑈,𝜓) = (0.1, 0) in red (solid) and (𝑈,𝜓) = (0.2, 0) in navy blue (solid).
highest-order ‘‘𝜓 ′′’’ in Eq. (2.6). This is essential for obtaining accurate
solutions to Eq. (1.1) through the modified auxiliary equation method.

𝜓(𝜁 ) = 𝑚0 + 𝑚1𝑔
ℎ(𝜁 ) + 𝑛1𝑔−ℎ(𝜁 ). (5.6)

By substituting the values from Eq. (5.6) and Eq. (5.2) into Eq. (2.6) and
setting the coefficients of different powers of 𝑔ℎ(𝜁 ) to zero, a system
6 
of algebraic equations is derived. By solving this system of equations
simultaneously, we obtain the following set of solutions.

Set 1.

𝜔 = 𝜔, 𝜌 = 2
4𝜂𝜎 − 𝜃2

, 𝑣 = 𝑣, 𝑚0 =

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜃, (5.7)

𝑚1 = 2

√

− 3𝜔
2
𝜎, 𝑛1 = 0.
4𝜂𝜎𝑣 − 𝜃 𝑣
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Fig. 7. Sensitivity analysis of the dynamical system Eq. (4.8) by using the different initial conditions such as (𝑈,𝜓) = (0.1, 0) in red color (solid) and (𝑈,𝜓) = (0.3, 0) in green
(solid).

Fig. 8. Sensitivity analysis of the dynamical system Eq. (4.8) by using the different initial conditions such as two solutions in the navy blue color solid line and green color solid
line, respectively, denoted by (𝑈,𝜓) = (0.2, 0) and (𝑈,𝜓) = (0.3, 0).

Fig. 9. Sensitivity analysis of the dynamical system Eq. (4.8) by using the different initial conditions such as in three solutions Solid red, (𝑈,𝜓) = (0.1, 0); (𝑈,𝜓) = (0.2, 0) in the
color of navy blue and (𝑈,𝜓) = (0.3, 0) in the color green .
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Fig. 10. Graphical visualization of derived solution of (5.3) such as (a) 3D surface, (b) 2D surface, (c) contour plot (d) density plot, when |𝜓1(𝑡, 𝑥)| = 𝑣 = 0.1, 𝜂 = −1, 𝜃 = 2, 𝜎 =
1, 𝜔 = 0.2, 𝑤 = 1.
By utilizing the numerical values attributed to Set 1, we have identified
various clusters of solutions to the equation expressed in (1.1).

Family 1.
∙ When 𝜃2 − 4𝜂𝜎 < 0 and 𝜎 ≠ 0, then obtain the trigonometric

solution.

𝜓1(𝑥, 𝑡) =

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜃

+

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

(

−𝜃 +
√

4𝜂𝜎 − 𝜃2 tan
( 1
2

√

4𝜂𝜎 − 𝜃2𝜉
))

.

(5.8)

∙ When 𝜃2 − 4𝜂𝜎 > 0 and 𝜎 ≠ 0, then obtain the hyperbolic solution.

𝜓2(𝑥, 𝑡) =

√

− 3𝜔
2
𝜃

4𝜂𝜎𝑣 − 𝜃 𝑣

8 
−

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

(

𝜃 +
√

−4𝜂𝜎 + 𝜃2 tanh
( 1
2

√

−4𝜂𝜎 + 𝜃2𝜉
))

.

(5.9)

∙ When 𝜃2 − 4𝜂𝜎 = 0 and 𝜎 ≠ 0, then obtain the algebraic solution.

𝜓3(𝑥, 𝑡) =

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜃 −

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜃𝜉 + 2
𝜉

. (5.10)

Set 2.

𝜔 = 𝜔, 𝜌 = 2
4𝜂𝜎 − 𝜃2

, 𝑣 = 𝑣, 𝑚0 =

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜃, 𝑚1 = 0,

𝑛1 = 2

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜂.

(5.11)
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Fig. 11. Graphical visualization of derived solution of (5.3) such as (a) 3D surface, (b) 2D surface, (c) contour plot (d) density plot, when |𝜓2(𝑡, 𝑥)| = 𝑣 = 0.11, 𝜂 = −0.5, 𝜃 = 1, 𝜎 =
1, 𝜔 = 0.3, 𝑤 = 1.
Utilizing the numerical values present in Set 2, we have derived multi-
ple sets of solutions for Eq. (1.1).

Family 2.
∙ When 𝜃2 − 4𝜂𝜎 < 0 and 𝜎 ≠ 0, then obtain the trigonometric

solution.

𝜓4(𝑥, 𝑡) =

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜃 +
4
√

− 3𝜔
4𝜂𝜎𝑣−𝜃2𝑣 𝜂𝜎

−𝜃 +
√

4𝜂𝜎 − 𝜃2 tan
(

1
2

√

4𝜂𝜎 − 𝜃2𝜉
) .

(5.12)

∙ When 𝜃2 − 4𝜂𝜎 > 0 and 𝜎 ≠ 0, then obtain the hyperbolic solution.

𝜓5(𝑥, 𝑡) =

√

− 3𝜔
4𝜂𝜎𝑣 − 𝜃2𝑣

𝜃 −
4
√

− 3𝜔
4𝜂𝜎𝑣−𝜃2𝑣 𝜂𝜎

𝜃 +
√

−4𝜂𝜎 + 𝜃2 tanh
(

1
2

√

−4𝜂𝜎 + 𝜃2𝜉
) .

(5.13)

∙ When 𝜃2 − 4𝜂𝜎 = 0 and 𝜎 ≠ 0, then obtain the algebraic solution.

𝜓6(𝑥, 𝑡) =

√

− 3𝜔
2
𝜃 −

4
√

− 3𝜔
4𝜂𝜎𝑣−𝜃2𝑣 𝜂𝜎𝜉

. (5.14)

4𝜂𝜎𝑣 − 𝜃 𝑣 𝜃𝜉 + 2
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6. Graphical representation

In this specific section of the manuscript, we examine the graphical
characteristics of the various obtained solutions. It is essential to assign
suitable values to the arbitrary constants to produce clearly defined
visual representations of the solutions in 3D, 2D, contour plots, and
density plots.

Part (a) of the figures illustrates a 3D surface plot depicting the trav-
eling wave behavior. Section (b) presents a 2D surface plot displaying
the variation of the wave behavior for different values of t. The figures
in section (b) utilize contour plots to visually convey the structural
composition of the solutions, and part (d) shows the density plot of
the derived solutions.

Fig. 10 indicates the behavior of dark soliton with suitable param-
eter values when |𝜓1(𝑡, 𝑥)| = 𝑣 = 0.1, 𝜂 = −1, 𝜃 = 2, 𝜎 = 1, 𝜔 = 0.2, 𝑤 =
1.

Fig. 11 depicts the kink soliton with different parameter values
when |𝜓2(𝑡, 𝑥)| = 𝑣 = 0.11, 𝜂 = −0.5, 𝜃 = 1, 𝜎 = 1, 𝜔 = 0.3, 𝑤 = 1.

Fig. 12 shows the behavior of kink wave solution with different
parameter values when |𝜓4(𝑡, 𝑥)| = 𝑣 = 0.06, 𝜂 = 3, 𝜃 = 2, 𝜎 = 1, 𝜔 =
0.03, 𝑤 = 0.5.

Fig. 13 shows the behavior of singular soliton solution with different
parameter values when |𝜓5(𝑡, 𝑥)| = 𝑣 = 2, 𝜂 = −0.1, 𝜃 = −2, 𝜎 = 1, 𝜔 =
0.3, 𝑤 = 1.
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Fig. 12. Graphical visualization of derived solution of (5.3) such as (a) 3D surface, (b) 2D surface, (c) contour plot (d) density plot, when |𝜓4(𝑡, 𝑥)| = 𝑣 = 0.06, 𝜂 = 3, 𝜃 = 2, 𝜎 =
1, 𝜔 = 0.03, 𝑤 = 0.5.
7. Conclusion

In this manuscript, we have analyzed the nonlinear characteristics
of wave propagation to the (1+1)-dimensional modified equal width
equation (MEWE) that is used to simulate the one-dimensional wave
propagation nonlinear media, incorporating the dispersion process. By
applying the traveling wave transformation, we converted the NLPDES
into ODEs. Using the Galilean transformations Eq. (2.6) was converted
into a coupled planar dynamical system and qualitative analysis was
investigated. First, bifurcation analysis of the system Eq. (5.2) has been
analyzed. Phase portraits of the bifurcation analysis are represented at
equilibrium points of the planar dynamical system shown in Fig. 2.
We have investigated many approaches for identifying chaos, which is
defined as its random and unpredictable nature, in self-regulating dy-
namic systems to illustrate the chaotic tendencies inside the perturbed
dynamic system. As shown in (Figs. 3, 4, 5), these techniques include
the use of time series, Poincaré maps, 2𝐷 and 3𝐷 phase portraits, and
time series. . Furthermore, a thorough presentation of the sensitivity
and stability analysis for a range of initial conditions has been provided,
demonstrating the intrinsic stability of the system under investigation.
This is demonstrated by the fact that abrupt changes in the solutions do
not occur from even little perturbations in the initial circumstances, as
10 
illustrated in (Figs. 6, 7, 8, 9). By applying efficient techniques to find
the exact soliton solutions known as the modified auxiliary equation
method. Utilizing this technique in Eq. (2.6), we see the different
types of solutions like trigonometric, hyperbolic, and rational solutions
These new findings demonstrate the role of the MEW equation, which
opens the door to a more complete description of nonlinear dynamical
systems and soliton theory.

CRediT authorship contribution statement

Syed Asif Ali Shah: Writing – original draft, Formal analysis, Con-
ceptualization. Ejaz Hussain: Writing – review & editing, Validation,
Software, Resources, Methodology, Formal analysis, Conceptualization.
Wen-Xiu Ma: Visualization, Validation, Supervision, Project admin-
istration. Zhao Li: Visualization, Formal analysis, Conceptualization.
Adham E. Ragab: Validation, Investigation, Formal analysis, Data
curation. Tamer M. Khalaf: Resources, Validation, Visualization.

Declaration of competing interest

I declare that we have no competing interest in publishing this
article on behalf of all the authors.



S.A.A. Shah et al. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 187 (2024) 115353 
Fig. 13. Graphical visualization of derived solution of (5.3) such as (a) 3D surface, (b) 2D surface, (c) contour plot (d) density plot, when |𝜓5(𝑡, 𝑥)| = 𝑣 = 2, 𝜂 = −0.1, 𝜃 = −2, 𝜎 =
1, 𝜔 = 0.3, 𝑤 = 1.
Data availability

Data will be made available on request.
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