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Abstract Based on the Hirota bilinear operators and their generalized bilinear derivatives, we formulate two new
(2+1)-dimensional nonlinear partial differential equations, which possess lumps. One of the new nonlinear differ-
ential equations includes the generalized Calogero-Bogoyavlenskii-Schiff equation and the generalized Bogoyavlensky-
Konopelchenko equation as particular examples, and the other has the same bilinear form with different Dp-operators.
A class explicit lump solutions of the new nonlinear differential equation is constructed by using the Hirota bilinear
approaches. A specific case of the presented lump solution is plotted to shed light on the charateristics of the lump.
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1 Introduction

The investigation of exact solutions to nonlinear par-
tial differential equations is one of the most important
problems. Many kinds of soliton solutions are studied
by a variety of methods including the inverse scatter-
ing transformation,[!! the Darboux transformation, 23]
the Hirota bilinear method, and symmetry reductions, !
etc.[0710] Recently, lump solutions which are rational, an-
alytical and localized in all directions in the space,!!!—20]
have attracted much attention. As another kind of ex-
act solutions, it exsits potential applications in physics,
partically in atmospheric and oceanic sciences.!?!]

The Hirota bilinear method in soliton theory pro-
vides a powerful approach to finding exact solutions.!*
A kind of lump solutions can be also obtained by means
of the Hirota bilinear formuation. Recently, the general-
ized bilinear operators are proposed by exploring the lin-
ear superposition principle.?? Many new nonlinear sys-
tems are constructed by using the generalized Hirota bi-
linear operators.[23=26] The lump solutions and integrable
propertites for those new nonlinear systems are interesting
topic in nonlinear science.

The paper is organized as follows. In Sec. 2, a new
nonlinear differential equation is constructed by means

of the bilinear formulation. The new nonlinear equation
includes a Calogero-Bogoyavlenskii-Schiff equation and a
Bogoyavlensky-Konopelchenko (gCBS-BK) equation. A
class of gCBS-BK-like equations can be obatined by using
the generalized bilinear method. In Sec. 3, a lump solu-
tion to the newly presented gCBS-BK systems is obtained
bsaed on the Maple symbolic computations. Two figures
are given theoretically and graphically. The last section is
devoted to summary and discussions.

2 A Generalized gCBS-BK Equation

We consider a (2+41)-dimensioanl nonlinear partial dif-
ferential equation
Ut + Ugagy + SUgly + 61Uy + O2Wyy + 03Uy

+ 04 (3U2 + Ugaa) + 55(3w5y + Wyyyy)

+ 06 (BuyWyy + Uyyy) =0,
where §;,7 = 1,2,...,6 are arbitrary constants. While the
constants satisfy d3 = §4 = d5 = dg = 0 and 05 = dg = 0,
(1) becomes a generalized Calogero-Bogoyavlenskii-Schiff
(CBS) equation!'®] and a generalized!'®:27] Bogoyavlensky-
Konopelchenko (BK) equation,!*) respectively. The CBS
equation was constructed by the modified Lax formalism
and the self-dual Yang-Mills equation respectively.[28—29]

Uy = W, (1)
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The BK equation is described as the interaction of a Rie-  dimensional nonlinear differential equation (1) is thus
mann wave propagating along y-axis and a long wave
propagating along z-axis.’% These two equations have
been widely studied in different ways.1=32 The (24+1)- gCBS-BK equation (1) has

|
DDy + DDy + 6Dy Dy, + 6,D;, + 63D7 + 64D} + 65D, + 66Dy D)
+52(fyyf - fy2) + 53(fzzf - fg) + 64(fzz:vmf - 4fzfzzz - 3]0395)

called gCBS-BK equation. The Hirota bilinear form of

+55(ffyyyy - 4fyfyyy + Sfy2y) + 66(ff:cyyy - fxfyyy - 3fyfxyy =+ 3f:cyfyy)) = O, (2)
by the relationship between u,w, and f
w=2(nf)ze = W, u=2(nf), = % (3)

Based on the generalized bilinear thoery,[??l the generalized bilinear operators read

(Dyre Dy ) f (1) - f(2',1) = (O + p0u)™ (O + ap0pr )" f (2, 1) (@, 1) a1 =a 1=t

m n m n i amfi 82 8n7j 8j
= Z Z ( i ) (]) O(pOég) axmfi 63,‘/(1) atn,j 8t/(]) f(x7t)f(x/7tl)|x/::};,t’:t
i=0

=0 j=0

- z”: m n iJ 3m+n7iijf(xa t) aiJrjf('T: t) (4)

= ala . : —~

L £ i j) PP Qpm—igin—i Oxt Ot

1=0 j=0
where m,n > 0 and aj = (=1)"*() if s = r,(s) mod p. Here a, is a symbol. For a prime number p > 2, we can not
write the relationship

el =altl i j>0. (5)

Taking the prime number p = 3, we have
azs=-1, ai=1 a3=1, a3=-1, a3=1, ao§f=1, ..., (6)
and then, we have the concrete operators
DsDsof - f =2fuef —2foft, D5 ,.Dsy=6frafoy, DsaDsy=2fuyf —2fufy,
D5, =2fyf—2f), Di,=2feaf =27, D3, =6f7,, Ds,=6fy, DszDj,=6fyfay.  (7)
By the above analysis, the corresponding bilinear form of the gCBS-BK equation (1) in p = 3 reads
D3 D3 . + Déf,ng,y +01D3 2 D3 + 52D§7y + 53D§7x + 54D§7x + 55D§7y + 56D3,yD§,y
= 2(furf = fefo + 3fuafuy + 61 (Foy f = fufy) + 82(Fyy f = 1) + 03(fouf — [2)
+364f2, + 38512, + 306 fyy fuy) = 0] - )

Bell polynomial theories suggest a dependent variable | to get new nonlinear partial differential equations. This
transfomation provides a useful method to get new nonlinear systems

uw=2(Inf),, (9) that possess bilinear forms. In this paper, we shall fo-
cus on the gCBS-BK equation (1) and the gCBS-BK-like
equation (10) for the prime number p = 3.

to transfrom bilinear equations to nonlinear equations. By
selecting the variable transformation (9), a gCBS-BK-like

equation is obtained from the generalized bilinear form (8) 3 A Search for Lump Solution

3 3 3 3
Ut + iu2uy + o Uatly + 7 Wy + §u3wy Based on the bilinear form, a quadratic function solu-
3 ) ) tion to the (2+1)-dimensional bilinear gCBS-BK equation
+ 011y + dawyy + d3us + §54(U + 2u,) (2) and bilinear gCBS-BK-like equation (8), is defined by
3 3 _ 2 2
S0 )+ 20003 ), 2 =0, f=g+8ta,
& =z +axy +ast +ag,
Uy = W. (10)

By selecting the prime number p = 3, we get a new gCBS- §2 = asv +agy +art + as, (11)
BK-like equtaion (10). We can aslo select p = 5,7,9,... where a;, 1 < i < 9 are constant parameters to be de-
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termined. Substituting the expression (11) into Eqgs. (2) parameters for Eqs. (2) and (8). The following set of so-
and (8) and vanishing the coefficients of different powers lutions for the parameters as, a7, and ag
of x,y, and ¢, we can get the same relationship among

(b)

y=0,t=0 (c)
y=-10,t=-10 0.31
y=10, t=10 .

(d)

20 40 60 —60 —40 —20 O 20 40 60

—0.1+

—0.24

—0.3+

Fig. 1 (Color online) Profiles of the lump solution (13). (a) 3D lump plot with the time ¢ = 0, (b) the corresponding

density plot, (c) the curve by selecting different parameters y and ¢, (d) the curve by selecting different parameters x
and t.

da(ar1a3 — aja2 + 2asasae)

a3 = —01as — d3a1 — ,
3 142 3U1 a% n ag
ar = —(51 (a1a2 + a6) _ 52 (a1a2 + a5a6)22_ (a12a6 — a2a5)2 _ (53 a% + a% _ a1a3’
as as(af + af) as as
3(ai + a3)? ( 2, 2 (a3 + a3)? (a3 + a3)(a1az + asag)
ag = — aras + asag + d4(ai + a 1) ) ), 12
9 Sa(arag — azas)? 102 + asag + 0a(ai + az) + 05 a? +a? + 06 at +a? (12)
which need to satisfy the following conditions
(i) a5 # 0, to guarantee the well-posedness for f;
2 2)2 2, 2
(ii) b9 (a1a2 + asag + 64(a? + a?) + 65 (a22+ a62) + 6 (a; + a6)2(a1a22+ a5a6)> < 0, to have the positivity of f;
ai + az aj + az

(iil) a1a6 — azas # 0, to ensure the localization of w,w in all directions in the space.
The parameters take a1 = 1,a9 = —2,a4 = —2,a5 = —2,a6 = 2,a3 = 1,01 = 1,05 = 1,03 = 1,04 = 1,05 = 1,06 = 2.
By substituting Eq. (11) into Eq. (9) and combining the relationship (12), we get the lump solution
B 16(27t — 252 + 30y + 20) (13)
10022 + 160y2 — 240xy + 240y — 160z + 240t + 304yt — 216tz + 14812 + 2875
The 3D plot, density plot, and curve plot for this lump solution are depicted in Fig. 1. The parameters take a; = 1,
ag = 1, ay = 1, as = —2, ag = 3, ag = 1, 51 = 1, 52 = 1, 53 = 1, 54 = 1, (55 = —2, 56 = 2. The lump solution has the

u =
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following form
B 4(5x — by — 1)
Y7 522 1 10y? — 102y + 8y — 20 + 6t + 10yt + 512 + 182
The 3D plot, density plot and curve plot for the lump solution are shown in Fig. 2.
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Fig. 2 (Color online) Profiles of the lump solution (14). (a) 3D lump plot with the time ¢ = 0, (b) the corresponding
density plot, (c) the curve by selecting different parameters y and ¢, (d) the curve by selecting different parameters x
and t.

4 Summary and Discussions

In summary, the gCBS-BK equation was derived in terms of Hirota bilinear forms. By selecting the prime number
p = 3, a gCBS-BK-like equation was formulated by the generalized Hirota operators. The lump solution of the
gCBS-BK equation and the gCBS-BK-like equation was generated by their Hirota bilinear forms. The phenomena
of lump solutions were presented by figures. The results provide a new example of (2+1)-dimensional nonlinear
partial differential equations, which possess lump solutions. Other new nonlinear equations can be also obtained
by seleting the prime numbers p = 5,7,... It is demonstrated that the generalized Hirota operators are very useful
in constructing new nonlinear differential equations, which possess nice math properties. In the meanwhile, lump-
kink interaction solutions,®*~35 lump-soliton interaction solutions,8! lump type solutions for the (34+1)-dimensional
nonlinear differential equations®5—38] and solitons-cnoidal wave interaction solutions®*~4 are important and will be
explored in the future.
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