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Abstract Based on the Hirota bilinear operators and their generalized bilinear derivatives, we formulate two new
(2+1)-dimensional nonlinear partial differential equations, which possess lumps. One of the new nonlinear differ-
ential equations includes the generalized Calogero-Bogoyavlenskii-Schiff equation and the generalized Bogoyavlensky-
Konopelchenko equation as particular examples, and the other has the same bilinear form with different Dp-operators.
A class explicit lump solutions of the new nonlinear differential equation is constructed by using the Hirota bilinear
approaches. A specific case of the presented lump solution is plotted to shed light on the charateristics of the lump.
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1 Introduction
The investigation of exact solutions to nonlinear par-

tial differential equations is one of the most important
problems. Many kinds of soliton solutions are studied
by a variety of methods including the inverse scatter-
ing transformation,[1] the Darboux transformation,[2−3]

the Hirota bilinear method,[4] and symmetry reductions,[5]

etc.[6−10] Recently, lump solutions which are rational, an-
alytical and localized in all directions in the space,[11−20]

have attracted much attention. As another kind of ex-
act solutions, it exsits potential applications in physics,
partically in atmospheric and oceanic sciences.[21]

The Hirota bilinear method in soliton theory pro-
vides a powerful approach to finding exact solutions.[4]

A kind of lump solutions can be also obtained by means
of the Hirota bilinear formuation. Recently, the general-
ized bilinear operators are proposed by exploring the lin-
ear superposition principle.[22] Many new nonlinear sys-
tems are constructed by using the generalized Hirota bi-
linear operators.[23−26] The lump solutions and integrable
propertites for those new nonlinear systems are interesting
topic in nonlinear science.

The paper is organized as follows. In Sec. 2, a new
nonlinear differential equation is constructed by means

of the bilinear formulation. The new nonlinear equation
includes a Calogero-Bogoyavlenskii-Schiff equation and a
Bogoyavlensky-Konopelchenko (gCBS-BK) equation. A
class of gCBS-BK-like equations can be obatined by using
the generalized bilinear method. In Sec. 3, a lump solu-
tion to the newly presented gCBS-BK systems is obtained
bsaed on the Maple symbolic computations. Two figures
are given theoretically and graphically. The last section is
devoted to summary and discussions.

2 A Generalized gCBS-BK Equation
We consider a (2+1)-dimensioanl nonlinear partial dif-

ferential equation

ut + uxxy + 3uxuy + δ1uy + δ2wyy + δ3ux

+ δ4(3u
2
x + uxxx) + δ5(3w

2
yy + wyyyy)

+ δ6(3uywyy + uyyy) = 0 , ux = w , (1)

where δi, i = 1, 2, . . . , 6 are arbitrary constants. While the
constants satisfy δ3 = δ4 = δ5 = δ6 = 0 and δ5 = δ6 = 0,
(1) becomes a generalized Calogero-Bogoyavlenskii-Schiff
(CBS) equation[18] and a generalized[18,27] Bogoyavlensky-
Konopelchenko (BK) equation,[19] respectively. The CBS
equation was constructed by the modified Lax formalism
and the self-dual Yang-Mills equation respectively.[28−29]
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The BK equation is described as the interaction of a Rie-
mann wave propagating along y-axis and a long wave
propagating along x-axis.[30] These two equations have
been widely studied in different ways.[31−32] The (2+1)-

dimensional nonlinear differential equation (1) is thus

called gCBS-BK equation. The Hirota bilinear form of

gCBS-BK equation (1) has

DtDx +D3
xDy + δ1DxDy + δ2D

2
y + δ3D

2
x + δ4D

4
x + δ5D

4
y + δ6DxD

3
y

= 2(fxtf − ftfx + fxxxyf − fxxxfy − 3fxxyfx + 3fxxfxy + δ1(fxyf − fxfy)

+ δ2(fyyf − f2
y ) + δ3(fxxf − f2

x) + δ4(fxxxxf − 4fxfxxx − 3f2
xx)

+ δ5(ffyyyy − 4fyfyyy + 3f2
yy) + δ6(ffxyyy − fxfyyy − 3fyfxyy + 3fxyfyy)) = 0, (2)

by the relationship between u,w, and f

w = 2(ln f)xx =
2(fxxf − f2

x)

f2
, u = 2(ln f)x =

2fx
f

. (3)

Based on the generalized bilinear thoery,[22] the generalized bilinear operators read

(Dm
p,xD

n
p,t)f(x, t) · f(x′, t′) = (∂x + αp∂x′)m(∂t + αp∂t′)

nf(x, t)f(x′, t′)|x′=x,t′=t

=

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
αi
pα

j
p

∂m−i

∂xm−i

∂i

∂x′(i)

∂n−j

∂tn−j

∂j

∂t′(j)
f(x, t)f(x′, t′)|x′=x,t′=t

=
m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
αi
pα

j
p

∂m+n−i−jf(x, t)

∂xm−i∂tn−j

∂i+jf(x, t)

∂xi∂tj
, (4)

where m,n ≥ 0 and αs
p = (−1)rp(s) if s = rp(s) mod p. Here αp is a symbol. For a prime number p > 2, we can not

write the relationship

αi
pα

j
p = αi+j

p , i, j ≥ 0. (5)

Taking the prime number p = 3, we have

α3 = −1, α2
3 = 1, α3

3 = 1, α4
3 = −1, α5

3 = 1, α6
3 = 1, . . . , (6)

and then, we have the concrete operators

D3,tD3,xf · f = 2fxtf − 2fxft , D3
3,xD3,y = 6fxxfxy , D3,xD3,y = 2fxyf − 2fxfy ,

D2
3,y = 2fyyf − 2f2

y , D2
3,x = 2fxxf − 2f2

x , D4
3,x = 6f2

xx , D4
3,y = 6f2

yy , D3,xD
3
3,y = 6fyyfxy . (7)

By the above analysis, the corresponding bilinear form of the gCBS-BK equation (1) in p = 3 reads

D3,tD3,x +D3
3,xD3,y + δ1D3,xD3,y + δ2D

2
3,y + δ3D

2
3,x + δ4D

4
3,x + δ5D

4
3,y + δ6D3,yD

3
3,y

= 2(fxtf − ftfx + 3fxxfxy + δ1(fxyf − fxfy) + δ2(fyyf − f2
y ) + δ3(fxxf − f2

x)

+ 3δ4f
2
xx + 3δ5f

2
yy + 3δ6fyyfxy) = 0| . (8)

Bell polynomial theories suggest a dependent variable
transfomation

u = 2(ln f)x, (9)

to transfrom bilinear equations to nonlinear equations. By
selecting the variable transformation (9), a gCBS-BK-like
equation is obtained from the generalized bilinear form (8)

ut +
3

4
u2uy +

3

2
uxuy +

3

4
uuxwy +

3

8
u3wy

+ δ1uy + δ2wyy + δ3ux +
3

8
δ4(u

2 + 2ux)
2

+
3

2
δ5(w

2
y + wyy)

2 +
3

8
δ6(w

2
y + wyy)(uwy + 2uy) = 0 ,

ux = w . (10)

By selecting the prime number p = 3, we get a new gCBS-
BK-like equtaion (10). We can aslo select p = 5, 7, 9, . . .

to get new nonlinear partial differential equations. This
provides a useful method to get new nonlinear systems
that possess bilinear forms. In this paper, we shall fo-
cus on the gCBS-BK equation (1) and the gCBS-BK-like
equation (10) for the prime number p = 3.

3 A Search for Lump Solution

Based on the bilinear form, a quadratic function solu-

tion to the (2+1)-dimensional bilinear gCBS-BK equation

(2) and bilinear gCBS-BK-like equation (8), is defined by

f = ξ21 + ξ22 + a9 ,

ξ1 = a1x+ a2y + a3t+ a4 ,

ξ2 = a5x+ a6y + a7t+ a8 , (11)

where ai, 1 ≤ i ≤ 9 are constant parameters to be de-
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termined. Substituting the expression (11) into Eqs. (2)

and (8) and vanishing the coefficients of different powers

of x, y, and t, we can get the same relationship among

parameters for Eqs. (2) and (8). The following set of so-

lutions for the parameters a3, a7, and a9

Fig. 1 (Color online) Profiles of the lump solution (13). (a) 3D lump plot with the time t = 0, (b) the corresponding
density plot, (c) the curve by selecting different parameters y and t, (d) the curve by selecting different parameters x
and t.

a3 = −δ1a2 − δ3a1 −
δ2(a1a

2
2 − a1a

2
6 + 2a2a5a6)

a21 + a25
,

a7 = −δ1

(a1a2
a5

+ a6

)
− δ2

(a1a2 + a5a6)
2 − (a1a6 − a2a5)

2

a5(a21 + a25)
− δ3

a21 + a25
a5

− a1a3
a5

,

a9 = − 3(a21 + a25)
2

δ2(a1a6 − a2a5)2

(
a1a2 + a5a6 + δ4(a

2
1 + a25) + δ5

(a22 + a26)
2

a21 + a25
+ δ6

(a22 + a26)(a1a2 + a5a6)

a21 + a25

)
, (12)

which need to satisfy the following conditions
(i) a5 ̸= 0, to guarantee the well-posedness for f ;

(ii) δ2

(
a1a2 + a5a6 + δ4(a

2
1 + a25) + δ5

(a22 + a26)
2

a21 + a25
+ δ6

(a22 + a26)(a1a2 + a5a6)

a21 + a25

)
< 0, to have the positivity of f ;

(iii) a1a6 − a2a5 ̸= 0, to ensure the localization of u,w in all directions in the space.
The parameters take a1 = 1, a2 = −2, a4 = −2, a5 = −2, a6 = 2, a8 = 1, δ1 = 1, δ2 = 1, δ3 = 1, δ4 = 1, δ5 = 1, δ6 = 2.

By substituting Eq. (11) into Eq. (9) and combining the relationship (12), we get the lump solution

u = − 16(27t− 25x+ 30y + 20)

100x2 + 160y2 − 240xy + 240y − 160x+ 240t+ 304yt− 216tx+ 148t2 + 2875
. (13)

The 3D plot, density plot, and curve plot for this lump solution are depicted in Fig. 1. The parameters take a1 = 1,
a2 = 1, a4 = 1, a5 = −2, a6 = 3, a8 = 1, δ1 = 1, δ2 = 1, δ3 = 1, δ4 = 1, δ5 = −2, δ6 = 2. The lump solution has the
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following form

u =
4(5x− 5y − 1)

5x2 + 10y2 − 10xy + 8y − 2x+ 6t+ 10yt+ 5t2 + 182
. (14)

The 3D plot, density plot and curve plot for the lump solution are shown in Fig. 2.

Fig. 2 (Color online) Profiles of the lump solution (14). (a) 3D lump plot with the time t = 0, (b) the corresponding
density plot, (c) the curve by selecting different parameters y and t, (d) the curve by selecting different parameters x
and t.

4 Summary and Discussions
In summary, the gCBS-BK equation was derived in terms of Hirota bilinear forms. By selecting the prime number

p = 3, a gCBS-BK-like equation was formulated by the generalized Hirota operators. The lump solution of the
gCBS-BK equation and the gCBS-BK-like equation was generated by their Hirota bilinear forms. The phenomena
of lump solutions were presented by figures. The results provide a new example of (2+1)-dimensional nonlinear
partial differential equations, which possess lump solutions. Other new nonlinear equations can be also obtained
by seleting the prime numbers p = 5, 7, . . . It is demonstrated that the generalized Hirota operators are very useful
in constructing new nonlinear differential equations, which possess nice math properties. In the meanwhile, lump-
kink interaction solutions,[34−35] lump-soliton interaction solutions,[36] lump type solutions for the (3+1)-dimensional
nonlinear differential equations[36−38] and solitons-cnoidal wave interaction solutions[39−41] are important and will be
explored in the future.
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