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a b s t r a c t

A bilinear form for the modified dispersive water wave (mDWW) equation is presented
by the truncated Painlevé series, which does not lead to lump solutions. In order to get
lump solutions, a pair of quartic–linear forms for the mDWW equation is constructed
by selecting a suitable seed solution of the mDWW equation in the truncated Painlevé
series. Rational solutions are then computed by searching for positive quadratic function
solutions. A regular nonsingular rational solution can describe a lump in this model.
By combining quadratic functions with exponential functions, some novel interaction
solutions are founded, including interaction solutions between a lump and a one-kink
soliton, a bi-lump and a one-stripe soliton, and a bi-lump and a two-stripe soliton. Concrete
lumps and their interaction solutions are illustrated by 3d-plots and contour plots.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Solitarywave solutions of nonlinear partial differential equations (PDEs) play an important role in a variety of science and
engineering applications. Various efficient methods have been used to study soliton solutions of PDEs, such as the inverse
scatter method [1], the Lie group method [2], the Darboux transformation [3], the multi-variable separation method [4] and
the Hirota bilinear method [5] and so on [6,7]. Recently, lump solutions, another kind of rational solutions, have attracted
much attention in nonlinear science fields. Lump solutions are found to be localized in all directions of the space. Lump
solutions have been investigated in fluids [8,9], plasmas [10], and optic media [11]. The Darboux transformation [12–14]
and the Hirota bilinear method [15–28] are the effective direct methods to construct lump solutions. Particular examples of
lump solutions are given for many integrable equations, such as the Kadomtsev–Petviashvili (KP) equation [15,16], the KP–
Boussinesq equation [17,18] and the generalized KP equation [19]. Besides, interaction solutions among solitons and other
kinds of complicatedwaves are studied by the localization procedure relatedwith the nonlocal symmetry and the consistent
tanh expansion method [29–31]. Like these interaction solutions, mixed lump-kink [26–28] and lump-soliton [32–34]
solutions to nonlinear evolution equations have been studied by combining a positive quadratic functionwith an exponential
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function. Lumps and their interaction solutions are rarely given in multi-component nonlinear systems. The examination of
interaction solutions for multi-component equations is an especially intriguing topic. In this paper, we shall focus on lumps
and their interaction solutions of the two-component modified dispersive water wave (mDWW) equation.

The (2+1)-dimensional mDWW equation reads [35]

uyt + uxxy − 2wxx − 2(uuy)x = 0, (1)
wt − wxx − 2(uw)x = 0.

It can describe the nonlinear and dispersive long gravity waves traveling in two horizontal directions on shallow waters of
uniform depth. Abundant localized excitations are obtainedwith the help of the Painlevé – Bäcklund transformation and the
multi-linear variable separation approach [36]. Themultiple soliton solutions and fusion interaction phenomena are derived
by means of the Bäcklund transformation and the Hirota bilinear method [37].

This paper is organized as follows. In Section 2,we try to get lump solutions of themDWWequation by the standardHirota
bilinear method. It cannot get lump solutions from a bilinear form of themDWWequation that wewill present. In Section 3,
we introduce a pair of quartic–linear forms of the mDWW equation to get lump solutions. Some novel lump solutions are
derived by solving a pair of quartic–linear forms of the mDWW equation. In Section 4, by adding an exponential and two
exponential terms to the quadratic function, interaction solutions between a bi-lump and one line-soliton solutions, and a
bi-lump and two line-soliton solutions are obtained, respectively. Section 5 is a simple summary and discussion.

2. Study on lump solutions based on a bilinear form

Based on Painlevé analysis, the Painlevé – Bäcklund transformation of the mDWW equation reads

u =
u0

φ
+ u1, w =

w0

φ2 +
w1

φ
+ w2, (2)

where φ is an arbitrary function of variables x, y and t , and the pair of functions u1 and w2 is also a solution of the mDWW
equation. By substituting (2) into (1) and balancing the coefficients φ−4 and φ−4, we get

u0 = φx, w0 = −φxφy, (3)

Gathering the coefficients φ−3 and φ−3, we obtain

u1 =
φt + φxx

2φx
, w1 = −φxy. (4)

By substituting (3) and (4), the transformation (2) and the seed solution u1 = w2 = 0, the following equation is yielded

2∂y
(φφxt − φtφx − φφxxx + φxφxx

φ2

)
= 0. (5)

It can be easily seen that φ satisfies the bilinear form

φφxt − φtφx − φφxxx + φxφxx = 0. (6)

To get lump solutions of the mDWW equation, we take a quadratic function for φ

φ = g2
+ h2

+ a9, (7)
g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8.

By substituting (7) into (6) and balancing the different powers of x, y and t , we get the solutions for the parameters

a1 = 0, a5 = 0, or a2 = 0, a6 = 0. (8)

Therefore, we cannot obtain any non-trivial lump solution by using the above standard bilinear form (6).

3. Rational solutions form a pair of quartic–linear forms

In order to get non-trivial quadratic function solutions, we try to select a different seed solution for u1 andw1. We assume

u =
φx

φ
+

φt + φxx

2φx
, w =

φxφy

φ2 +
φxy

φ
, (9)

with the seed solution

u1 =
φt + φxx

2φx
, w2 = 0. (10)



2088 B. Ren, W.-X. Ma and J. Yu / Computers and Mathematics with Applications 77 (2019) 2086–2095

Fig. 1. Profile of the solution u in (16). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.

Substituting (9) into (1), we get the following two quartic–linear equations

φφtφxxφxy + φtφ
2
xφxy − φ3

xφyt + φφxytφ
2
x − φφtφxφxxy − φφ2

xφxxy (11)
+ φφxφxxφxxy + φ3

xφxxy + φ3
xφxxy − φφ2

xxφxy − φ2
xφxxφxy + φφxφxyφxxx = 0,

φxφ
2
t φxxy + φttyφ

3
x − φ2

xφttφxy − 2φ2
xφxtφyt + 2φxφxxφtφyt (12)

+ 4φxφxyφtφxt − 2φtφxytφ
2
x − 3φ2

t φxxφxy + 2φ2
xφxxxφxxy − 3φxφ

2
xxφxxy

− 4φxφxxφxyφxxx + 2φ2
xφxxφxxxy + φ2

xφxyφxxxx − φ3
xφxxxxy + 3φ3

xxφxy = 0.

Wewant to find a solution φ which satisfies (11) and (12) simultaneously. It seems more complicated to solve (11) and (12)
than one equation (6). Actually, we can get some kinds of lump solutions by solving (11) and (12). To obtain lump solutions,
a quadratic function solution to (11) and (12) is similarly defined by

φ = g2
+ h2

+ a9, (13)
g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8,

where ai (1 ≤ i ≤ 9) are constant parameters to be determined. Substituting the expression (13) into Eqs. (11) and (12) and
vanishing the coefficients of different powers of x, y and t , we can get the relationship among the parameters which satisfy
(11) and (12) simultaneously. The relationship for the parameters reads

a1 = −
a5a6
a2

, a3 = −
a6a7
a2

, (14)

which needs to satisfy a2 ̸= 0, a9 > 0 to guarantee thewell-definedness, the positiveness and the localization of the resulting
solution. The parameters in the set (14) yield the positive quadratic function solution (13) as

φ = (−
a5a6
a2

x + a2y −
a6a7
a2

t + a4)2 + (a5x + a6y + a7t + a8)2 + a9. (15)

The rational solution of (11) and (12) can be generated through the transformation: (9)

u =

2a5h −
2a5a6
a2

g

φ
+

a25a
2
6

a22
+ a25

2a5h −
2a6
a2

g
+

−
a6a7
a2

g + a7h

2a5h −
2a5a6
a2

g
, (16)

w =

4(− a5a6
a2

g + a5h)(a2g + a6h)

φ2 ,

where g = −
a5a6
a2

x + a2y −
a6a7
a2

t + a4 and h = a5x + a6y + a7t + a8. To describe this kind of rational solutions, we select
the parameters a2 = 1, a4 = 3, a5 = 1, a6 = 1, a7 = −3, a8 = 2, a9 = 6. The solution for u and w is shown in Figs. 1 and
2. It exits a singularity for the solution u. The kind of the solution u is different from usual lump solution. A special rational
solution of u and a bi-lump of w are given in Figs. 1 and 2, respectively. The characteristics of these rational solutions are
different from ones of lumps by calculations of the bilinear form [15–19].
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Fig. 2. Profile of the solution w in (16). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.

4. Interaction solutions between lumps and soliton solutions

4.1. Between lumps and one line-soliton solutions

Interaction solutions between lumps and other type solutions can be obtained by combining the quadratic function with
other type functions. In order to find interaction solutions between lump solutions and one line-soliton, we assume an
interaction solution as a sum of a quadratic function and an exponential function

φ = g2
+ h2

+ a9 + k1 exp(k2x + k3y + k4t + k5), (17)
g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8,

with ki (i = 1, 2, . . . , 5) being five undetermined real parameters. By substituting (17) into Eqs. (11) and (12) and vanishing
the different powers of x, y and t , we obtain the following four sets of constraining relations for the parameters.

Case I.

a1 =
a3a5
a7

, a8 =
3a23a5 + 3a5a27 − 2a3a4a7k2

2k2a27
, k3 = 0, k4 =

k2(a7 ± k2a5)
a5

, (18)

which should satisfy the constraint conditions

k2a5a7 ̸= 0, k1 > 0, a9 > 0, (19)

to guarantee that the corresponding solution φ is positive, analytical and localization in all directions in the (x, y)-plane.
Substituting (17) into (9) and combining the parameters relations (18), we get a class of interaction solutions of the mDWW
equation (1):

uI
=

2a3a5
a7

g + 2a5h + k1k2 exp(f )

φ
+

a3g + a7h +
k1k2
2 ( a7a5 ± k2) exp(f ) +

a23a
2
5

a27
+ a25

2a3a5
a7

g + 2a5h + k1k2 exp(f )
,

wI
=

2[ 2a3a5a7
g + 2a5h + k1k2 exp(f )](a2g + a6h)

φ2 +

2a2a3a5
a7

+ 2a5a6
φ

, (20)

where

φ = g2
+ h2

+ a9 + k1 exp(f ), (21)

g =
a3a5
a7

x + a2y + a3t + a4,

h = a5x + a6y + a7t +
3a23a5 + 3a5a27 − 2a3a4a7k2

2k2a27
,

f = k2x +
k2(a7 ± k2a5)

a5
t + k5.
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Case II.

a1 = −
a5a6
a2

, a3 = −
a2a8
a2

, a4 = ±
a2a8
a6

, k2 = k4 = 0, (22)

which should satisfy the constraint conditions

a2a6 ̸= 0, k1 > 0, a9 > 0, (23)

to guarantee that the corresponding solution φ is positive, analytical and localization in all directions in the (x, y)-plane. By
using the parameters relations (22) and the transformation (9), the second class of interaction solutions between rational
solutions and one line-soliton to the mDWW equation (1) reads

uII
=

−
2a5a6
a2

g + 2a5h

φ
+

−
a2a8
a2

g + a7h +
a25a

2
6

a22
+ a25

−
2a5a6
a2

g + 2a5h
, (24)

wII
=

2(− a5a6
a2

g + a5h)[2a2g + 2a6h + k1k3 exp(f )]

φ2 ,

where

φ = g2
+ h2

+ a9 + k1 exp(f ), (25)

g = −
a5a6
a2

x + a2y −
a2a8
a2

t ±
a2a8
a6

,

h = a5x + a6y + a7t +
3a23a5 + 3a5a27 − 2a3a4a7k2

2k2a27
,

f = k3y + k5,

Case III.

a1 = −
a5a6
a2

, a3 = −
a2a8
a2

, a4 = ±
a2a8
a6

, k3 = 0, (26)

which should satisfy the constraint conditions

a2a6 ̸= 0, k1 > 0, a9 > 0, (27)

to guarantee that the corresponding solution φ is positive, analytical and localization in all directions in the (x, y)-plane. By
using Eqs. (17) and (26) and the transformation (9), the third class of interaction solutions is

uIII
=

−
2a5a6
a2

g + 2a5h + k1k2 exp(f )

φ
+

−
a2a8
a2

g + a7h +
k1
2 (k4 + k22) exp(f ) +

a25a
2
6

a22
+ a25

−
2a5a6
a2

g + 2a5h + k1k2 exp(f )
,

wIII
=

2[− 2a5a6
a2

g + 2a5h + k1k2 exp(f )](a2g + a6h)

φ2 , (28)

where

φ = g2
+ h2

+ a9 + k1 exp(f ), (29)

g = −
a5a6
a2

x + a2y −
a2a8
a2

t ±
a2a8
a6

,

h = a5x + a6y + a7t + a8,

f = k2x + k4t + k5.

The parameters are selected to be a2 = 1, a5 = 1, a6 = 1, a7 = 1, a8 = 1, a9 = 3, k1 = 3, k2 = 1, k4 = 3, k5 = 2 in case
III. The symbol of ‘‘ ± " in (26) takes as ‘‘ − " to plot Figs. 3 and 4. The interaction solution between a lump and a one-kink
soliton of u is presented in Fig. 3. The interaction solution between a bi-lump and a stripe soliton of w is plotted in Fig. 4.

Case IV.

a1 = −
a5a6
a2

, a4 = ±
a2a8
a6

, a7 =
k4a5
k2

+
a3a6
a2

+
a5a26k4
a22k2

, k3 = 0, k4 = −
a2k2k3
a5a6

, (30)
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Fig. 3. Profile of the solution (28). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.

Fig. 4. Profile of the solution (28). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.

which should satisfy the constraint conditions

k2a2a5a6 ̸= 0, k1 > 0, a9 > 0, (31)

to guarantee that the corresponding solution φ is positive, analytical and localization in all directions in the (x, y)-plane. By
using Eqs. (17) and (30) and the transformation (9), the fourth class of interaction solutions is

uIV
=

−
2a5a6
a2

g + 2a5h + k1k2 exp(f )

φ
+

M +
a25a

2
6

a22
+ a25

−
2a5a6
a2

g + 2a5h + k1k2 exp(f )
,

wIV
=

(− 2a5a6
a2

g + 2a5h + k1k2 exp(f ))(2a2g + 2a6h)

φ2 , (32)

where

φ = g2
+ h2

+ a9 + k1 exp(f ), (33)

g = −
a5a6
a2

x + a2y −
a2a8
a2

t ±
a2a8
a6

,

h = a5x + a6y +

(k4a5
k2

+
a3a6
a2

+
a5a26k4
a22k2

)
t + a8,

f = k2x −
a2k2k3
a5a6

t + k5,

M = −
a2a8
a2

g +

(k4a5
k2

+
a3a6
a2

+
a5a26k4
a22k2

)
h +

k1k2
2

(
k2 −

a2k3
a5a6

)
exp(f ).
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Fig. 5. Profile of the solution (32). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.

Fig. 6. Profile of the solution (32). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.

The parameters are selected to be a2 = 1, a3 = 2, a5 = 1, a6 = 1, a7 = 1, a8 = 1, a9 = 3, k1 = 3, k2 = 1, k4 = 3, k5 = 2
in case IV. The symbol of ‘‘ ± " in (30) takes as ‘‘ − " to plot Figs. 5 and 6. The special interaction solution between a rational
and a one-soliton of u is plotted in Fig. 5. The bi-lumps soliton catch up with a one-stripe soliton is given in Fig. 6.

4.2. Between lumps and a pair of line soliton solutions

For interaction solutions between lumps and a two-stripe solitary, we use a quadratic function with two exponential
functions. Based on the quartic–linear form, the interaction solution of Eqs. (11) and (12) is defined by

φ = g2
+ h2

+ a9 + k1 exp(f ) + k6 exp(−f ), (34)
g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8,
f = k2x + k3y + k4t + k5.

By substituting (34) into (11) and (12) and collecting the coefficients of x, y, t , the following two sets of constraining relations
for the parameters are yielded by solving the algebraic equations.

Case I.

a1 = −
a5a6
a2

, a3 = −
a6a7
a2

, k2 = k4 = 0, (35)

which should satisfy the constraint conditions

a2 ̸= 0, k1 > 0, a9 > 0, k6 > 0, (36)
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to guarantee that the corresponding solution φ is positive, analytical and localization in all directions in the (x, y)-plane. By
using Eqs. (34) and (35) and the transformation (9), the first class of interaction solutions is

uI
=

−
2a5a6
a2

g + 2a5h

φ
+

−
a6a7
a2

g + a7h +
a25a

2
6

a22
+ a25

−
a5a6
a2

g + a5h
,

wI
=

4(− a5a6
a2

g + a5h)(a2g + a6h)

φ2 , (37)

where

φ = g2
+ h2

+ a9 + k1 exp(f ) + k6 exp(−f ), (38)

g = −
a5a6
a2

x + a2y −
a6a7
a2

t + a4,

h = a5x + a6y + a7t + a8,
f = k3y + k5.

Case II.

a1 = −
a5a6
a2

, a3 = −
a6a7
a2

, k3 = 0, (39)

which satisfy the same constraint conditions (36) to guarantee that the corresponding solution φ is positive, analytical and
localization in all directions in the (x, y)-plane. By using Eqs. (34) and (39) and the transformation (9), the second class of
interaction solutions reads

uII
=

N
φ

+

M +
a26a

2
7

a22
+ a27

N
,

wII
=

2N(a2g + a6h)
φ2 , (40)

where

φ = g2
+ h2

+ a9 + k1 exp(f ) + k6 exp(−f ), (41)

g = −
a5a6
a2

x + a2y −
a6a7
a2

t + a4,

h = a5x + a6y + a7t + a8,
f = k2x + k4t + k5,

N = −
2a5a6
a2

g + 2a5h + k1k2 exp(f ) − k2k6 exp(−f ),

M = −
a6a7
a2

g + a7h +
k1
2
(k4 + k22) exp(f ) −

k6
2
(k4 + k22) exp(−f ).

The parameters are selected as a2 = 2, a4 = 3, a5 = 1, a6 = −2, a7 = 2, a8 = −2, a9 = 6, k1 = 2, k2 = −1, k4 = −3, k5 =

−2, k6 = 2. The special interaction solution between a rational and a soliton solution of u is shown in Fig. 7. The bi-lumps
catch up with a two-stripe soliton is given in Fig. 8.

5. Conclusion

In summary, some novel interaction solutions between lumps and stripe solitons of the mDWW equation are considered
in this paper. First, we construct a bilinear form of the mDWW equation by the truncated Painlevé series. The positive
quadratic function is used for finding lump solutions. However, we fail to obtain lump solutions due to the trivial parameters
in (7). Then, we construct a pair of quartic–linear forms of themDWWequation by selecting a different seed solution in (10).
Some novel interaction solutions between lumps and soliton solutions are studied by solving the pair of quartic–linear forms
of the mDWW equation. A bi-lump, a lump in a one-kink soliton background, the interaction solution between a lump and a
one-stripe soliton, the interaction solutions between a bi-lump and a two-stripe soliton are studied in detail. In this paper,we
select the seed solution (10) to get the quartic–linear forms of themDWWequation. Some novel lumps and their interaction
solutions are obtained with the quartic–linear forms of the mDWW equation. We can also select the seed solution

u1 = 0, w2 =
φyt

φx
−

φxxy

φx
−

φtφxy

φ2
x

−
φxxφxy

φ2
x

, (42)

to yield different multi-linear forms of the mDWW equation. We can study lumps and their interaction solutions by solving
different multi-linear forms. In addition, we find a new idea to get lump solutions by solving the quartic–linear forms of the
mDWW equation. We can explore lumps and their interaction solutions by multi-linear forms of the nonlinear differential
equations, which are not usually given by their bilinear forms.
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Fig. 7. Profile of the solution (40). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.

Fig. 8. Profile of the solution (40). (a) 3-dimensional plot with the time t = 0, (b) the corresponding density plot.
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