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A B S T R A C T

We extend the (1+1)-dimensioanl Sharma-Tasso-Olver (STO) equation to a (2+1)-dimensional
one by adding one additional term uyy. A tri-linear form of the (2+1)-dimensional STO equation
is obtained by the Painlevé analysis. A family of rational solutions for the (2+1)-dimensional
STO equation is constructed by using the resulting tri-linear form. Associated 3-dimensional plot
and density plot with particular choices of the involved parameters are given to show the
charateristics of the rational solutions.

1. Introduction

Exact solutions of nonlinear partial differetial equations are very important to predict and understand possible behaviors of
physics phenomena [1–3]. As a kind of special localized wave solutions, special lump solutions which are rationally decaying in all
directions in the space, were obtained for the Kadomtsev-Petviashvili by Manakov et. al. [4]. Subsequently, a class of rational
solutions was investigated with many methods [5–10]. These wave solutions have potential applications in the open ocean and
coastal areas [11]. Therefore, direct methods for construction of these kinds of solutions have attracted particular attention in
mathematical physics [8–26]. Several traditional methods are developed to construct these kinds of waves, such as the inverse
scattering transformation [12], the Bäcklund transformation [13], the Darboux transformation [14] and the Hirota bilinear method
[15–31].

In this paper, we shall focus on rational solutions of a new (2+1)-dimensional STO equation by solving a tri-linear STO form that
we are going to present. The paper is organized as follows. In Section 2, a (2+1)-dimensional STO equation is constructed by adding
one additional term uyy. A dipole-mode soliton solution and lump-like solutions of the (2+1)-dimensional STO equation can be
obtained by solving the tri-linear form. The last section is devoted to summary and discussions.

2. Rational solutions of a (2+1)-dimensional STO equation

The (1+1)-dimensional STO equation reads
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where α is an arbitary constant. The (1+1)-dimensional STO equation can describe the propagation of nonlinear dispersive waves in
inhomogeneous media. This equation has gained much attentions due to its appearance in scientific applications. Many integrability
properties for the STO Eq. (1) have been obtained [32–35]. The fission and fusion of the solitary wave were found by means of the
Hirota direct method and the Bäcklund transformation [32]. The symmetry reduction procedure was used to obtain infinitely many
symmetries and exact solutions [33,34].

The (2+1)-dimensional KP equation can be taken a generalized two-spatial dimensional version of the (1+1)-dimensional
Korteweg-de Vries (KdV) equation. According to the form of the KP equation, we take a (2+1)-dimensional STO equation as the
following form as a generalization of the (1+1)-dimensional STO equation
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where β is an arbitary constant. By the truncated Painlevé analysis [36], the solution for the STO Eq. (2) reads

= +u u
ϕ
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(3)

where u and u1 are the solution of the STO Eq. (2). By substituting of the expansion (3) into (2) and vanishing the coefficient of −ϕ ,5

we get

=u ϕ .x0 (4)

By substituting (3) and (4) into (2), a tri-linear form for the (2+1)-dimensional STO equation is obtained
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We want to use a tri-linear Eq. (5) to calculate rational solutions. The quadratic function solutions to a (2+1)-dimensional tri-
linear Eq. (5) assume
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where ai, 1≤ i≤ 9 are constant parameters to be determined. Substituting the expression (6) into (5) and vanishing the coefficients
of different powers of x, y and t, we can get the relationship among parameters for the Eq. (5). Two sets for the parameters ai are
expressed as the following forms.
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The corresponding quadratic function solution of (5) yields
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It is easily seen that the coefficients of x and y are direct ratio for the square terms in (8). It can not be given lump solution in case I.
By substituting (4), (6) and (7) into (3), the solution of (2) writes
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and ϕ satifies (8). By selecting the parameters
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The 3-dimensional plot and density plot for a dipole-mode soliton (10) are depicted in Fig. 1. The dipole-mode soliton solution can be
viewed a slit laser beam propagates in Kerr-type nonlinear, nonlocal media with exponential response function [37].

Case II.
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which need to satisfy the condition a1a5≠ 0 to guarantee the well-posedness. It will yield the lump-like solution due to =a 09 . The
corresponding quadratic function solution of (5) yields
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The solution for (2) gives

=
+

u
a ξ a ξ

ϕ
2 2

,1 1 5 2

(13)

where = + − +− +
+

ξ a x a y β t a ,a a a a a a a
a a1 1 2

2
4

1 2
2 1 6

2 2 5 6

1
2

5
2 = + − +− +

+
ξ a x a y β t aa a a a a a a

a a2 5 6
2

8
5 6

2 5 2
2 1 2 6

1
2

5
2 and ϕ satisfies (12). The critical point of

the lump-like wave (13) is calculated by taking the partial derivatives ϕx and ϕy be zero. The moving path of the lump-like wave is
read [38]
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The lump-like wave move along the route line

= − +
+

+
− + − − +

+ −
y a a a a

a a
x

a a a a a a a a a a a a a a a a
a a a a a a

2( ) ( 2 ) ( 2 )
( )( )

,1 2 5 6

2
2

6
2

8 1 2
2

1 6
2

2 5 6 4 5 6
2

2
2

5 1 2 6

2
2

6
2

1 6 2 5 (15)

with the velocities
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To describe this kind of lump-like solution (13), we take the parameters = = − = − = = − = =β a a a a a a1, 1, 5, 2, 2, 2, 11 2 4 5 6 8 . The
lump-like solution reads
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The 3-dimensional plot and density plot for this lump-like solution (17) are presented in Fig. 2.

Fig. 1. Profile of a dipole-mode soliton (10). (a) 3-dimensional plot with the time =t 0, (b) the corresponding density plot.

Fig. 2. Profile of the lump-like solution (17). (a) 3-dimensional plot with the time =t 0, (b) the corresponding density plot.
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3. Summary and discussions

In summary, a (2+1)-dimensional STO equation is derived by adding one term uyy. The tri-linear form of the (2+1)-dimensional
STO equation is obtained by the Painlevé analysis. By solving the tri-linear form, we get two cases solutions of (8) and (12) by
introducing the quadratic function solution. A dipole-mode soliton and the lump-like solution of the (2+1)-dimensional STO
equation are generated by using the tri-linear form. The phenomena of the dipole-mode soliton and the lump-like solution are given
by figures. Like the Hirota bilinear form, the lump-like solution can be also obtained with the tri-linear form. In this paper, we
construct a new (2+1)-dimensional STO equation. We can study other integrability properties of the new (2+1)-dimensional STO
equation in the future, such as lump-kink interaction solutions [39,40], lump-soliton interaction solutions [41–43], diversity of wave
solutions [44] and interaction solutions among solitons and other complicated waves [45–49].
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