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ARTICLE INFO ABSTRACT
MSC: This study investigates the numerical solution of the biological Susceptible-Infectious-Recovered model for
45B05 COVID-19 over extended time intervals using the shifted Chebyshev polynomial collocation method. Initially,
34B15 the original problem is reformulated into a nonlinear Volterra integral equation for the susceptible population.
22;;3 The shifted Chebyshev polynomials are then employed to derive the numerical solution. A comprehensive
convergence analysis of the collocation method is conducted to ensure the reliability and accuracy of the
K‘eyw"'rds" ! ) proposed approach. Finally, numerical simulations are performed for various parameter configurations that
r';ls(liflglcal Susceptible-Infectious-Recovered influence the system’s coefficients. Our method is compared with existing approaches, providing insights into

Volterra integral equation
Shifted Chebyshev polynomials
Collocation method

the model’s dynamics under different conditions.

1. Introduction

COVID-19 is a member of the Coronaviridae family, which primarily
affects the respiratory system. The epidemic dynamics of COVID-19 are
often modeled using the Susceptible-Infectious—Recovered (SIR) model,
a well-established framework in epidemiology (see [1] and references
therein). The SIR model has also been applied to study the spread of
other infectious diseases, such as influenza and Ebola, as demonstrated
by Earn et al. [2] and Khaleque & Sen [3]. The SIR model was initially
proposed by Kermack and McKendrick [4] and is described by the
following system of ordinary differential equations:

S'(1) = —aSOI1(1), S(0) = 5,
I'0) = aSMOI® — 1), 1(0) = iy, €y}
R'(n=pI0), R(0) = 7y,

with the constraint
S@®+ 1)+ R(#) =N,
where:

» S(r) represents the susceptible population (individuals who are at
risk of contracting the disease),
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+ I(t) represents the infected population (individuals currently in-
fected with the disease),

» R(r) represents the recovered population (individuals who have
recovered from the disease and are assumed to be immune),

* N is the total population in the region under consideration.

The coefficients in the model are defined as follows:

» o is the infection rate, which determines how quickly suscep-
tible individuals become infected upon contact with infectious
individuals,

+ f is the recovery rate, which represents the rate at which infected
individuals recover from the disease.

Over the past years, the analytical and approximate solutions of
the SIR model have been extensively studied by various authors. For
analytical studies, Harko et al. [5] were the first to derive exact
analytical solutions, presenting them in an exact parametric form.
Additionally, the analytical solutions discussed by Barlow & Wein-
stein [6] and Prodanov [7] are expressed in terms of the Lambert
W function, with Prodanov [7] also providing a numerical solution.
For semi-analytical approaches, Makinde [8] employed the Adomian
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decomposition method, while Chakir [9] proposed the Padé approxima-
tion method. In the context of numerical solutions, Piyawong et al. [10]
introduced a first-order finite-difference scheme to explicitly obtain
numerical solutions. Furthermore, Conte et al. [11] and Mickens [12]
developed nonstandard finite-difference schemes capable of preserving
the positivity of the exact solution. A collocation scheme based on
Hermite wavelets was presented by Baleanu et al. [13], and Kumar [14]
proposed a Taylor wavelets collocation technique. Very recently, Khoa
et al. [15] reformulated the system of differential equations defined in
(1) as follows:

R'(1) = B(N = 59e RO — R(1)), u= % teQ,=[0,T], TER,
S(t) = 5ye #RO,
I(1) = (N = 5e™#RO — R(1)),
T = _/14 In(u) + iy + 5o — % In(3).
@

Khoa et al. proved the existence of a unique solution of the problem
(2) in the space of continuous functions and obtained the numerical
solution using an efficient relaxation scheme. They also provided a
convergence analysis based on the infinity norm.

In general, obtaining a theoretical convergence analysis for the
system (1) is not straightforward. Therefore, the aim of this paper is to
introduce and analyze a new superconvergent postprocessing technique
for the system (1). To this end, the problem in (2) can be equivalently
expressed as a nonlinear Volterra integral equation:

'
R(t) =7, +/ k(s,R(s))ds, t€ Qyp, 3)
0

where k(t, R(t)) = B (N — 5e™#RD — R(1)). To ensure the unique solv-
ability of (3), we establish that the kernel k satisfies a Lipschitz condi-
tion in R. This is based on the Lipschitz continuity of the exponential
function e™#' follows from the mean value theorem, as |%e"" | =
ue M <y for t > 0, ensuring |e#S — e=#R| < u|.S — R|. Hence, for any
S, R € R*, we have:

|k(t,.S) — k(t, )| < p(uSo + DIS - R|. (€3]

Thus, k is globally Lipschitz continuous in R with constant L =
p(usy + 1). To solve Eq. (3), we employ shifted Chebyshev polynomials
(SCPs), which are mutually orthogonal in the weighted L?-space. These
polynomials are derived from the classical third-kind Chebyshev poly-
nomials (TKCP) via a suitable change of variable. We further establish
the convergence analysis for the approximate solutions, yielding an
error of order O(N2™™). The primary advantage of SCPs lies in their
ability to achieve superconvergence over small intervals while main-
taining high accuracy for large intervals. This property makes them
particularly effective for solving differential and integral equations,
especially in epidemiological modeling. Several recent studies have
demonstrated the efficacy and versatility of Chebyshev-based spectral
and collocation methods in solving diverse classes of fractional and
integer-order differential equations. For instance, Srivastava et al. [16]
employed Chebyshev polynomials to develop an efficient spectral collo-
cation method for simulating the dynamics of a fractional SIRD model
describing the Ebola virus. Similarly, Sriwastav et al. [17] proposed a
novel collocation scheme based on shifted Chebyshev polynomials to
address a class of three-point singular boundary value problems. Sayed
et al. [18] introduced a spectral framework using modified shifted
Chebyshev polynomials of the third kind for solving one- and two-
dimensional hyperbolic telegraph equations. Abdelhakem et al. [19]
developed two modified shifted Chebyshev-Galerkin methods tailored
to even-order partial boundary value problems. In the context of nonlin-
ear fractional differential equations, Youssri and Atta [20] proposed an
explicit collocation algorithm using third-kind Chebyshev polynomials
to solve the nonlinear fractional Duffing equation. Additionally, Youssri
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et al. [21] presented a spectral collocation approach employing first-
kind Chebyshev polynomials for the time-fractional Korteweg—de Vries—
Burgers equation. Further advancing this area, Youssri and Atta [22]
introduced an adopted Chebyshev collocation method for modeling the
human corneal shape via the Caputo fractional derivative. Moreover,
the Chebyshev Petrov-Galerkin method was developed by the same
authors [23] to handle nonlinear time-fractional integro-differential
equations featuring mildly singular kernels. Beyond Chebyshev-based
approaches, additional advanced numerical techniques have also been
explored. Sriwastav et al. [24] proposed a meshfree method combining
spline-based multistage Bernstein collocation to model rennet-induced
coagulation equations. Pathak et al. [25] formulated an algorithm
grounded in homotopy perturbation theory for solving singular non-
linear boundary value problems. For applications in stellar physics,
Sriwastav et al. [26] devised a robust Legendre collocation scheme
tailored to Lane-Emden multi-pantograph delay differential equations,
including those modeling Chandrasekhar’s white dwarf problem. Ad-
ditional contributions include the Haar wavelet collocation method
introduced by Singh, Garg, and Guleria [27] for Lane-Emden equa-
tions, and the Taylor operational matrix method proposed by Saha
and Singh [28] for solving third-order Emden-Fowler-type pantograph
equations. Lastly, Shahni et al. [29] presented an efficient numerical
method for three-point Lane-Emden-Fowler boundary value problems.

The remainder of this paper is organized as follows. In Section 2, we
introduce the required integral operator, review some basic concepts
related to the TKCPs, and present the SCPs. In Section 3, we discuss the
numerical solution of Eq. (3). Section 4 presents the convergence results
of the collocation method in the standard L*-space. Finally, Section 5
presents a series of numerical experiments to validate the effectiveness
of the proposed technique, including direct comparisons with existing
methods. To further illustrate the robustness and accuracy of our
approach, several numerical simulations are provided throughout the
paper. These simulations not only yield quantitative assessments but
also offer visual insights into the dynamic progression of the COVID-19
outbreak. In particular, the figures and numerical simulations under-
score the capability of the proposed method to accurately capture
key epidemiological features such as the infection peak and recovery
trends—elements that are essential in understanding and managing
epidemic dynamics. The paper concludes with Section 6, where we
summarize the findings and present the conclusions.

2. Theoretical framework
Let X = L*®(2;) be a Banach space. From Theorem 1 in [15], the
system (2) admits unique positive solutions S*, I'*, and R* in C'(2y).

Consequently, the solution R* can be expressed as:

t
R*() = F, +/ k(s, R*(s))ds, 1€ Qp,
0

with
S*(t) = §ye RO, 5)
I*(x) = (N — 55 *R'® — R*(1)). (6)

To analyze this further, we define the integral operator K : X — X as
follows:

KER)() = /Ot k(s, R(s))ds, t€ Qr, @)
where

k(t, R() = f (N = 50e7#RO - R@)).

Using this operator, Eq. (3) can be rewritten as:

R(1) = K(R)(t) = Fy, 1€ 2p.

For any R, S € X and from (4), the difference X(R) — K(S) satisfies:

KR = K(S)D| < B (Sou + 1) 1]|S = Rl| - €)
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Taking the supremum over ¢ € Q;,, we obtain:
IR — K(S)lloo < B (Sopt + 1) TIS = Rllo- )

Next, we introduce the Fréchet derivative of the nonlinear operator
at R*, denoted by K'(R*). For w € X, the Fréchet derivative is defined
as:

(' (R)Hw(t) 1= /0 t KOV (s, R*(s)w(s)ds, 1€ Qr, (10)
where the kernel k(t, R(?)) is given by

k(t, R(t)) = f (N = 59e RO — R(1)),

and its partial derivative with respect to R is computed as

KOV, RO) = D ktt, R =  (soue ™0~ 1),

leading to

KOV, RE0) = f (Soue RO = 1)

To justify the validity of the Fréchet derivative, we first verify that
the operator K is Gateaux differentiable. For a fixed direction w € X,
the Gateaux derivative of K at R* in the direction w is given by

. K(R* + ew)(t) — L(R*)(1)
lim =

e—0 €

t
/ kOD(s, R*(s)w(s) ds,
0

provided the derivative k©D(t, R(r)) exists and is continuous in R, it
follows that the operator K is Fréchet differentiable at R*, and the
expression in (10) defines its Fréchet derivative.

We now prove that X’(R*) is bounded in X. For all w € X, we have:

t
I(K"(R")w(®)] = ‘ﬂ/ <§oﬂe_”R*(’) - 1) w(s)ds
0

<P (Sou+1) tlwlly-

an
Taking the supremum over ¢ € 2, we obtain:
(K" (R )wllee < B (50 + 1) Tllewll - 12

This shows that K’(R*) is a bounded linear operator with a norm
proportional to § (5, +1)T.

In the following, we establish the Lipschitz continuity of X’. For any
R, S € X, the difference K'(R) — K'(.S) satisfies:

1K' (R) = K/ (SNl < B (S0 +1) TIR = Slls ]l - 13
Letting 7 (R) := K(R)(t) + F, for all R € X, this implies
T(R*) = R". 14
2.1. Shifted third kind Chebyshev polynomials

We begin by recalling some fundamental definitions of the TKCPs,

denoted by V,(x) for n > 0 and x € I = [—1, 1]. These polynomials are
defined by the three-term recurrence relation (see, e.g., [30,31]):

Vop1(x) =2xV,(x) = V,_(x), forn>1, (15)
with initial conditions
Vix)=1, Vi(x)=2x-1. ae)

The polynomials V,(x) are orthogonal with respect to the weight func-
14+x

tion w(x) = /= over the interval I. Their orthogonality condition is
given by:
1
/ VOV, (Dw(x) dx = 76, ,,, an
-1

where §,,, is the Kronecker delta.
Consider the change of variable between x € [ and t € Q; =[0,TT:

2t T
X_T_l and I—E(x+1). (18)

Journal of Computational Science 92 (2025) 102704

Using this transformation, we define the shifted third-kind Chebyshev
polynomials of degree n as:

T0=V,(%-1). rear a9

Let Lir (£27) denote the weighted Hilbert space, defined as:

Li}T(.QT) = {R 1 Q2r >R ‘ R is measurable and ||R]l,,, < oo}, (20)

where the inner product and norm are given by:

T
(R.S),, = /O ROSWwr@)dt, ||Rll,, = /(R.R),,. @1

Here, the weight function is wr () = ﬁ From (17) and (19), it
follows that the shifted polynomials T,(¢) are orthogonal with respect
to wy(2):

T T
/ T, OT, @) di = Z-6,.,. (22)
0

Moreover, the set {T,}»  forms a complete orthogonal system in
L7, (2r).

. . — T

We introduce the weighted orthogonal projection operator Py,

which maps the weighted Hilbert space LZ,T (2r) onto the polynomial
space Py. This operator is defined by the condition:

(P{R-R.$),, =0, VpePy. (23)

Since P]\T,R is a projection onto Py, it admits a finite expansion in terms
of the basis {T,(")}N:

N

PYR(®) = Y R, yT, ). 24
n=0

The expansion coefficients R, y are uniquely determined by enforcing
the orthogonality condition (24), which yields:

s [T
R,n = n_T/O ROT,O)wr () dr1. (25)
Let {£7 .0} denote the shifted third-kind Chebyshev-Gauss
set, which are given by:
T T
&y = S+, oy = T PN (26)

where {1, @; }fi o are the third-kind Chebyshev-Gauss set. For all y €
P)n41, we deduce

T 1
/ yOor(Od = 2 / WG+ Dodx
0 -1

N
T T
= 2w @+ DT,y
i=0

N
= Y wE oy @7
i=0

For notational convenience, we associate pairs of functions with the
change of variable in (18) as follows:

R()=R (g(x +1)) 1= Ry, (28)

To estimate the error, we define the derivative operator:
T dR

DR := ==, 29
: T (29
and by induction, we obtain:
T\* d*R
k . _ Ak —

D,R.—<§> S =Ry k=0l.... (30)
Further, define

HJ}(Qp)={R: DfRE L, (2). 0<k<m) (31)
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with

m
lm¢w=( )y

k=min{m,N+1}

1/2
k p2
10! R||L57T(QT)> : (32)

In the following lemma, we prove the convergence rates of the approx-
imate solution to the exact solution.

Lemma 1. Let m € N*. For all R € HJ(Qr), the following inequality
holds:
1
IPYR = Rl < eN27"[R| m. (33)
T

where c is a positive constant independent of N and u, and N denotes the
degree of the highest-order SCPs.

Proof. Let Py be the projection operator associated with the third-kind
Chebyshev polynomial. We have
IPYR = Rl = [Py Ry = Relloo- (34

According to Lemma 1 in [32], for any Ry € H"(I) with m > 1, it
holds that

1
IPxyRy — Rylley < eN27"| Ry | gymn . (35)

Using (28) and (30), we obtain

T 1
2 2
IDERI?, <rzr>=/ |DER()| wT(I)dt=/ |05 Ry ()| w(x) dx
wp 0 -1
=I0{ R, (36)

This implies that |R| ymN = |Rp|ymy . Hence, we conclude that
i

1
T 5—m
IPyR = Rllo < N2 TIR] ;mn 37)

Thus, the proof is complete.
3. Collocation method

In this section, we describe the collocation method associated with
the shifted third-kind Chebyshev polynomials for solving Equation (3).
First, we expand R using a finite series of shifted third-kind Chebyshev
polynomials as follows:

N

Ry(x)= )\ R, T, () = RT Ty (1), (38)
n=0

where
R =Ry Ry ys s Ry y) " and Ty(0) = (To@), T, (1), ..., Ty(®) " (39)

Substituting (38) into (3), we obtain the residual function as follows:
t
ry(@®=RT TN(t)—/ k(s,RT Ty(s)) ds — F. (40)
0

The residual function satisfies r (5iTN) =0foralli=0,...,N. Then,

T

4
R Ty(y) - /0 N k(5. RT Ty (s)) ds — 7y = 0. (41)

To solve (41) in practice, the integrals appearing in these formulas must

be evaluated numerically. For this purpose, we employ a numerical

integration scheme based on the shifted third-kind Chebyshev-Gauss
i€

¢ &l . )
quadrature set {51.”]'\’," , a)if}\’jv }V ,» where the nodes and weights are defined
as:
T T
ey iN g, SN
I e

the integral is then approximated as:

- S 1 (S Sy Ey
K(s.RTTy() o (ds ~ Y k(&N RTTE D)oy, (42)
0 b j=0 ’ ’ ’
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T _
where k(1,RT Ty (1)) = %k(r, RT Ty (1)). Let us denote
LN T N ST
KR) = k(&Y . RTTy(E)). =P
el er
W=diag@,y). Dy;;=TyE'y) D=(Dy;p. (43)

With these definitions, the system (41) simplifies to
Q(R)=DR -KR)W - f=0. (44)

The system (44) can be solved using the Newton-Raphson iteration
method (NIM) as

R&HD =R® [JQ(R(k))]_lQ(R(k))7 (45)
where JoR) is the Jacobian matrix of Q(R), defined by

00;(R)
[Jo®)],; = R (46)

3.1. Convergence of Newton’s method

The Newton method converges quadratically under the following
standard conditions:

+ The function Q is Fréchet differentiable in a neighborhood of the
exact solution R*.
+ The Jacobian J,(R) is Lipschitz continuous near R, i.e.,

IMoR)) = JoR)Il < LIIR; = Ryl (47)

- The Jacobian is invertible at R* with bounded inverse, i.e.,
175" Rl < co.

Under these conditions, the Newton iteration satisfies the following
quadratic convergence estimate:

IR®D —R*|| < x|R® —R*|°,  with « = §||J§1<R*>u‘ (“48)

Furthermore, the convergence rate can be bounded as:

”R(k+1) _ R*”

limsup ———— <y, (49)
T
where y = w, with 6,;, the smallest singular value of J,(R*) and

f a constant associated with the Lipschitz bound of the kernel function
k(t, R). This expression reflects how the nonlinearity of the integral term
impacts convergence. In practice, we monitor convergence using the
residual norm:

IQR*+D)|
IQR®)||
Thus, the Newton method efficiently resolves the nonlinearity in the
collocation system through iterative linearization and, under appropri-
ate regularity assumptions, guarantees fast (quadratic) convergence to

the exact solution.

<pp, with p, — 0 superlinearly. (50)

4. Convergence analysis

This section examines the existence, uniqueness and convergence
of the approximate solution Ry for the following approximate Voltera
integral equation

Ry = PIT(Ry). (51)

To obtain a more accurate solution, we define the iterated solution as
follows:

Ry =T (Ry). (52)

Next, we define the operators 7 and T, v on X, mapping X onto itself,
as follows:

TyR = PIT(R), (53)
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TyR :=T(PIR), (54

The above definitions satisfy the relations

TyvRy = Ry, (55)
TRy =Ry, (56)

For any w € X, the Fréchet derivative of T, v at R* is given by

T (R w = T' (P R")w, (57)

where

T'(R)w = K'(R")w.

This theorem delineates the circumstances wherein the solvability of

one equation directly implies the solvability of another, and for a

rigorous treatment of the convergence properties of the approximate
solution, we refer to Theorem 2 in [33].

Theorem 1. Let R* € X be an isolated solution of Eq. (3). Assume that 1
is not an eigenvalue of the operator 7'(R*). Under this condition, Eq. (51)
admits a unique solution ﬁN in the ball B(R*,5) = {R : ||R — R*||,, < 6}
for some 6 > 0 and sufficiently large N. Moreover, there exists a constant g,
with 0 < g < 1 and independent of N, such that the following error estimate
holds:

T

PN 53 * pN
—— <||IRy — R < s 58
Trg S IRy - Rl < 72 (58)

where
~ -1~
o= (1= Faer) ™ (v -7 o
Additionally, the following bound holds for the error in the approxima-
tion solution R y:

1
IR = Ryllee = ONZ™™). (59

Proof. For any w € X, using Eq. (13), we have
(T4 R =T/ R ] o = || (R PER = K/ (R)) ] .

/

By the properties of K’ and the given assumptions, it follows that

(TVR) = TR ) w| oo < pGo+ DTIPTR® = Rl 0]
From Lemma 1, we further obtain

~ 3
(THR) = TR ) ] o < eBGom+ DTN 3R] v 10l

This implies that

[Te@®) =T (R =0 as N =,

)

which shows that 7 IQ(R*) converges in norm to 7’(R*).

Moreover, since 1 is not an eigenvalue of 7’/(R*), by Theorem 3.11
in [34, p. 55], the inverse operator (I -T ]<,(R"‘))‘1 exists and is uniformly
bounded on X for sufficiently large N. Specifically, there exists a
constant M > 0 such that

(1 - ?j’V(R*))f1

Next, we estimate ||?1\’,(R*) - ?A’,(R)lloo for any R € B(R*,§) and
R € X. Using Eq. (13), we have

w0 S M < 0.

(THR) = Ti(R) ) w] o = || (K PER = K (PL R) ] o
From the properties of X, it follows that

(TR = TR w] o < BGou + DTIPLR = PLRI [0l

; T T T ;
Since ||PNR* - PNR|| < ||PN||||R* — R||,, we obtain

[

(TV R = T3(R)) w0 < BGop + VTP ]0]l -
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This implies
175 (R*) = T4 (Rl < pGou + DT PL 6.
Letting yr = || P ||, we have

R (T = T (R NTLRY) = T (Rl < MPGou + DT 7.
—R* <

Let ¢ = MPGByu + )Ty and choose 6 sufficiently small such that
0 < g < 1. This proves Eq. (4.4) of Theorem 2 in [33].
Using (9) and (33), we obtain

ol = U = TR T (R) = T (Rl < MIT(RY) = T (RY) -

Since T (R*) = K(PTR"), it follows that

Pl < MIIK(PRY) = K(RY)l| < MBSy + DT||P{R* — R ||

From Lemma 1, we have

Pl < MPGy+ DTN "R =0 a5 N = . (60)

By choosing N large enough such that p]TV < 6(1-¢q), we satisfy Eq. (4.6)
of Theorem 2 in [33]. Applying Theorem 2 of [33], we derive

PN Ry - R < 1)
T+q - "N ® T 1-q

Finally, we estimate the error between Ry and R*, where Ry =
P;R ~- The error can be expressed as

R*— Ry = R* = PIRy = (R* = PLR") + (PLR* = PLRy).
This leads to the inequality
IR* = Ry lloo < IR* = PYR oo + [Pl | R = Riy llo-

Using the results from (33), (60) and (61), we obtain

rrMBGy + DT
1-—
This completes the proof.

1
IR* = Rylleo < ( +1)6N5_m|R*|H$.N~ (62)

We can now effectively estimate the error between the approximate
solutions S and I, and the target solutions .S* and I*, respectively,
in the X space. The following definitions hold:

Sy (®) = 5pe HRN D, (63)

Iy(t) = N = 5pe "BNO _ Ry (1) (CD)

Theorem 2. Let S*, I'*, R* denote the solutions of the system (1). Then, the
errors between S* and Sy, as well as I* and I, are bounded as follows:

1
15* = Syl = ONZ™), (65)
and

1
1T = Iyl =ONZ™™). (66)

Proof. Using Egs. (5), (6), (63), (64), and (59), we derive the following
bounds:
For Sy:

15" = Snllee = Solle X' @ = e HRNO| < 50u|| R = Ry |- (67)
For Iy:

17 = Inlloo = BlISo(e K@ — e #RND) 4 R* — Ry,
< pGou+ DIR = Ry |- (68)

1
Since ||R* — Ryll, = O(N2™™), the bounds for ||S* — Syl and
I1* = Iyl follow directly.
This concludes the proof.
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Table 1

Journal of Computational Science 92 (2025) 102704

Comparison of .S at different values of + with N = 10 for Test 1, including relative errors.

t Our method Rps(t) Analytical solution Method in [14] Method in [35]

0 20.000000000000000 0.0 20.000000000000000 20.000000000000000 20.000000000000000
0.1 19.699578126359828 5.07e-16 19.699578126359818 19.699578126359821 19.699578126371996
0.2 19.398425570548401 9.27e-16 19.398425570548383 19.398425570548394 19.398425571303918
0.3 19.096713014982857 1.31e-15 19.096713014982832 19.096713014982853 19.096713023320397
0.4 18.794612274799267 2.08e-15 18.794612274799228 18.794612274799260 18.794612320125442
0.5 18.492295901674989 2.27e-15 18.492295901674947 18.492295901674989 18.492296068742188
0.6 18.189936784338556 3.30e-15 18.189936784338496 18.189936784338553 18.189937265652560
0.7 17.887707747739274 3.98e-15 17.887707747739203 17.887707747739270 17.887708916936980
0.8 17.585781152859408 5.06e—15 17.585781152859319 17.585781152859397 17.585783658414083
0.9 17.284328499144522 5.55e-15 17.284328499144426 17.284328499144518 17.284333375780378
1 16.983520031504586 6.42e-15 16.983520031504479 16.983520031504579 16.983528824749996
CPU 0.06

5. Numerical results and discussion and R(0) = 0, as summarized in Tables 6 and 7, respectively. The

In this section, we present a numerical solution to the SIR model us-
ing the proposed shifted Chebyshev method. The solution is illustrated
through detailed figures and tables. We analyze the system of Egs. (1)
by exploring various values of the parameters M, «, and g, as well as
the initial conditions 3, i,, and 7,. Also, we denote

[S(1) = Sy(0)]
e s = 1525 = Sy ll = sSup [Shs6() = Sy (O] Ry (1) = —————,
' 1€, ’ NG
T T [1(t) — IN ()]
ey = ase — Inlle = sup |Irse(t) — In(2) R, () = ————,
v = Hase = Iyl ’EQE: [ 1556 NI NS 70|
|R(1) — Ry(D)]
T _ T _
eN,R - ”RZS(‘ - RN”DO:SUPIE!ET | Ry56(H)—Ry (1] RN.S(I) - |R([)| ’

where S,s6, I,54 and R,sq are the reference solutions obtained using a
high-resolution collocation method with N = 256. The computations
were carried out in MaTLAB on a system equipped with an Intel® Core™
i3-5010U CPU @ 2.10GHz and 4GB of RAM. The CPU times (in
seconds) for different values of N are reported.

Test 1. In this test, we apply the shifted Chebyshev method presented in
Section 3 with different values of N and T to compute the numerical solution
of a system where S represents the number of susceptible individuals, T
represents the number of infected individuals, and R represents the number
of recovered individuals. The initial population values are S(0) = 20, 1(0) =
15, and R(0) = 10. The infection rate is « = 0.01, and the susceptibility rate
is f =0.02.

In Tables 1-3, we present the numerical values of S, I, and R and
relative errors obtained by applying our method with N =10 and T =1 at
different time points t. These results are compared with those from [14,35].
Additionally, in Table 4, we display the maximum errors obtained by our
method compared to those in [14] at t = 0,0.2,0.4,0.6,0.8, and 1.

Furthermore, in Fig. 1, the approximate solutions are plotted for N = 10
in the interval [0, 1] (see Fig. 1(a)) and for N = 32 in the interval [0, 365]
(see Fig. 1(b)). The obtained results confirm that our method provides
accurate solutions and performs well even over large time intervals.

Test 2. In this test, we set the infection rate to a = 0.05 and the
susceptibility rate to f = 0.06. With these parameters, we obtain the
reciprocal relative removal rate as

_e_3
=376

The initial population values are S(0) = 20, 1(0) = 15, and R(0) = 5 for
the first case, while R(0) = 0 for the second case, as described in [14]. The
problem was solved numerically for two scenarios: (1) T = 1 with R(0) =5
and (2) T =5 with R(0) = 0. The method proposed in [14] yields accurate
results for T = 1 but performs poorly for T = 5.

By applying our method, we compute the L®-errors of the differences
between S,ss and Sy, I,s¢ and Iy, and R,ss and Ry for R(0) = 5

computations are performed for T = 1, 10,50 and 100 with different values
of N = 8,16,32,64 and 128. Additionally, Table 5 provides the values of
the maximum of I, and the absolute error between I and the theoretical
maximum I,,,, where

max?

o= —g In (5) +35- g In(20) ~ 30.423907139887959.

max 6

The approximate solutions are plotted in Fig. 2 for R(0) = 5, with
N = 10 over the interval [0, 1] (see Fig. 2(a)) and N = 128 over the interval
[0, 100] (see Fig. 2(b)). Similarly, Fig. 3 shows the results for R(0) = 0, with
N =10 over [0, 1] (see Fig. 3(a)) and N = 128 over [0, 100] (see Fig. 3(b)).

The obtained results demonstrate that our method is accurate for both
small and large intervals, outperforming the reference method in [14] for
the case of T = 5.

Test 3. In this test, we set the infection rate to « = 0.0004 and the
susceptibility rate to § = 0.02. With these parameters, we obtain a reciprocal
relative removal rate of u = % = 0.02. The initial population values are

S(0) =998, 1(0) =2, and R(0) = 0. In [15], this problem was numerically
solved for T = 365 days using the method described in the same reference.
The results showed a maximum infected population of I,,,, = 800, with the
peak occurring on day 25, where time is measured in days. The study also
provided results for T = 365 days.

Here, by applying our method, we compute the L*®-errors of the differ-
ences between Sys¢ and Sy, I,5c and Iy, and R,ss and Ry, as summarized
in Table 6. Additionally, Table 9 provides the values of the maximum of I
and the absolute error between I and the theoretical maximum I,,,,, where

= —=501n(0.02) + 1000 — 501n(998) ~ 800.3134864558341.

Imax

This theoretical value serves as a benchmark for evaluating the accuracy of
our numerical results.

Furthermore, the approximate solutions are plotted in Fig. 2, where I, is
shown to reach its maximum value at a peak day t, ~ 24.5194 for N = 128
and T = 40 (see Fig. 4(a)). The graphs of S, I, and R over the interval
[0,365] are also provided (see Fig. 4(b)). The obtained results demonstrate
that our method is highly accurate more than the results in [15], particularly
in predicting the maximum value of I and the peak day. This accuracy
holds consistently across both small and large time intervals, confirming the
robustness of our approach.

Stability analysis

An essential aspect of any numerical method is its stability with
respect to perturbations in data and discretization parameters. In the
context of the proposed shifted Chebyshev spectral collocation method,
we observed stable behavior across all test scenarios, including long-
time integrations and high-resolution discretizations. The numerical
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Comparison of I at different values of r with N = 10 for Test 1, including relative errors.

t Our method R;rv. o) Analytical solution Method in [14] Method in [35]
0 15.000000000000000 0.0 15.000000000000000 15.000000000000000 15.000000000000000
0.1 15.270151767750288 0.0 15.270151767750288 15.270151767750292 15.270151767739135
0.2 15.540493695580903 5.79e-16 15.540493695580912 15.540493695580912 15.540493694892319
0.3 15.810854891481981 5.6%e-16 15.810854891481990 15.810854891481988 15.810854883914805
0.4 16.081063673364721 1.12e-15 16.081063673364739 16.081063673364731 16.081063632394240
0.5 16.350947966422424 1.35e-15 16.350947966422446 16.350947966422435 16.350947816046876
0.6 16.620335703006457 1.32e-15 16.620335703006479 16.620335703006461 16.620335271713763
0.7 16.889055223041751 1.89e-15 16.889055223041783 16.889055223041758 16.889054180356947
0.8 17.156935673000223 1.86e-15 17.156935673000255 17.156935673000223 17.156933450055682
0.9 17.423807401460902 2.82e-15 17.423807401460952 17.423807401460913 17.423803099002612
1 17.689502349313514 3.00e-15 17.689502349313567 17.689502349313525 17.689494638499998
CPU 0.06
Table 3
Comparison of R at different values of r with N = 10 for Test 1, including relative errors.
t Our method R?v, R Analytical solution Method in [14] Method in [35]
0 10.000000000000000 0.0 10.000000000000000 10.000000000000000 10.000000000000000
0.1 10.030270105889889 2.99e-16 10.030270105889892 10.030270105889885 10.030539859150000
0.2 10.061080733870693 1.19e-15 10.061080733870705 10.061080733870693 10.062158873200000
0.3 10.092432093535159 1.78e-15 10.092432093535177 10.092432093535157 10.094856197050001
0.4 10.124324051836009 2.27e-15 10.124324051836032 10.124324051836007 10.128630985599999
0.5 10.156756131902576 2.95e-15 10.156756131902606 10.156756131902574 10.163482393750002
0.6 10.189727512654991 3.24e-15 10.189727512655024 10.189727512654985 10.199409576399999
0.7 10.223237029218968 4.31e-15 10.223237029219012 10.223237029218968 10.236411688450001
0.8 10.257283174140378 4.48e—-15 10.257283174140424 10.257283174140372 10.274487884800001
0.9 10.291864099394569 5.24e-15 10.291864099394623 10.291864099394564 10.313637320349999
1 10.326977619181896 5.73e-15 10.326977619181955 10.326977619181891 10.353859150000002
CPU 0.06
Table 4
The L®-errors for Test 1 with T = 1.
N ISy = S"leo My =TIl IRy = Rl
Our method [14] Our method [14] Our method [14] CPU
1.172e-12 2.202e-12 1.3074e-12 1.044e-11 1.7764e-13 2.065e—-12 0.05
10 1.065e-13 9.948e-13 4.9738e—-14 9.947e-14 5.8620e—-14 6.394e-14 0.09
20 50
18 40
N N — S(1)
T 16 S0 € 39 —_— (1)
= —uw| = N\ R
% 14 R(t) % 20
12 10 \
10 0
0 0.2 0.4 0.6 0.8 1 0 100 200 300
t t
(a) N=10and T = 1. (b) N =128 and T = 300.
Fig. 1. Graphical representation of the shifted Chebyshev approximate solution of .S, I and R.
Table 5
The maximum value of Iy for Test 3.
N S(0) =20, 1(0) =15, and R(0)=5 S$(0) =20, 1(0) =15, and R(0)=0
IN max N max = Lo CPU IN max N max = Lnax| CPU
8 30.42391082069724 3.68e—-06 0.08 30.42391082069724 3.68e—-06 0.09
16 30.42390715028353 1.04e-08 0.20 30.42390715028353 1.04e-08 0.19
32 30.42390713987995 8.00e-12 0.95 30.42390713987995 8.00e-12 0.57
64 30.42390713987995 8.00e-12 1.86 30.42390713987995 8.00e-12 1.98

results displayed in Tables 1-9 and Figs. 1-4 confirm this: the computed
solutions remain bounded and accurate even for large final times
(e.g., T = 100), and increasing the number of collocation points N leads
to consistent improvement in accuracy without introducing numerical

oscillations or divergence. Furthermore, the exponential decay of the
L>®-errors with respect to N, as presented in Tables 4-9, illustrates
the spectral convergence of the method. Such behavior is a strong
indicator of both the stability and efficiency of the scheme. These
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Table 6
The L®—errors for Test 2 with S(0) =20, I(0) = 15 and R(0) = 5.
N T=1 T=10
As N Nk CPU N N hr CcPU
8 4.99e-07 4.88e—07 1.51e-08 0.05 4.40e-01 0.05
16 1.05e-13 1.10e-13 1.78e-15 0.20 1.25e-03 1.25e-03 1.17e-04 0.11
32 7.11e-15 7.11e-15 1.78e-15 0.30 8.78e-08 8.95e-08 1.23e-09 0.31
64 7.11e-15 1.07e-14 4.44e-15 1.10 2.13e-14 2.49e-14 1.07e-14 1.01
128 1.07e-14 1.24e-14 4.44e-15 3.40 1.42e-14 2.13e-14 1.07e-14 3.75
N T =50 T =100
e%,s ef\‘u 31\/,12 CPU e;\‘LS é'N,z eL,R CPU
8
16 8.97e-01 0.16 9.05e-01 0.10
32 2.62e-03 3.03e-03 4.81e-04 0.29 6.52e-02 5.01e-02 1.47e-02 0.28
64 9.98e-07 1.09e-06 3.70e-08 0.97 8.83e-05 9.45e-05 4.93e-06 1.02
128 6.13e—14 7.82e-14 2.84e-14 3.84 6.06e—10 6.38e—-10 9.54e-12 3.86
Table 7
The L®—errors for Test 2 with S(0) = 20, I(0) = 15 and R(0) = 0.
N T=1 T=10
e%,s ef\‘u EL,R CPU e;\‘LS é'N,z eL,R CPU
8 4.99e-07 4.88e—07 1.51e-08 0.06 4.40e—-01 9.09e-01 0.05
16 1.05e-13 1.10e-13 6.66e—16 0.10 1.25e-03 1.25e-03 1.17e-04 0.10
32 7.11e-15 5.33e-15 1.33e-15 0.31 8.78e—-08 8.95e-08 1.23e-09 0.29
64 1.07e-14 1.07e-14 1.55e-15 1.03 1.07e-14 2.13e-14 1.24e-14 1.01
128 7.11e-15 7.11e-14 4.44e-16 3.68 1.42e-14 2.84e-14 7.11e-15 3.66
N T =50 T =100
ey.s N N R CPU ey.s N eyR CPU
8
16 8.97e-01 0.11 9.05e-01 0.10
32 2.62e-03 3.03e-03 4.81e-04 0.31 6.52e—02 5.01e-02 1.47e-02 0.30
64 9.98e-07 1.09e-06 3.70e-08 1.04 8.83e-05 9.45e-05 4.93e-06 0.96
128 5.68e-14 7.82e-14 2.13e-14 3.78 6.06e—10 6.38e—10 9.51e-12 3.76
30 40
—_S(t)
30 —_t) |
_ -\ R()
T € 20 1
= S 10 ]
[72] 9] t
0
-10
0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100
t t
(a) N=10and T = 1. (b) N =128 and T = 100.
Fig. 2. Graphical representation of the shifted Chebyshev approximate solution of .S, I and R.
results highlight the robustness and numerical stability of the proposed
scheme under varying initial conditions and parameter regimes.
Table 8
6. Conclusion The maximum values of I for Test 3.
N I max N max = Lmax| CPU
In this work, we presented an efficient and accurate numerical ap- 16 800.3021393820854 1.13e-02 0.18
h based on the SCP collocati thod f lving the biological 32 800.3134864657228 9.89e-09 0.54
proach based on 'e collocation method for so v1r1.g e biologica 64 800.3134864558305 3.640-12 1.62
SIR system modeling COVID-19. The proposed technique transforms 128 800.3134864558304 3.64e—12 6.96

the original problem into a nonlinear Volterra integral equation, which

is then approximated using SCPs. Rigorous analysis established the
1

method’s convergence rate in the L®-norm as O(N~2~"), where N is
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0 0.2 0.4 0.6 0.8 1
t
(a) N=10and T = 1.

Journal of Computational Science 92 (2025) 102704

40
30 —S(1)
— (1)
T 20 R(t)
= 10
ol
-10
0 20 40 60 80 100

t
(b) N =128 and T = 100.

Fig. 3. Graphical representation of the shifted Chebyshev approximate solution of .S, I and R.
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0
0 10 20 30 40

t
(a) N=128 and T =40 .

= 600
£ 400

o 200

1000
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800 —_
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(b) N =128 and T = 360.

Fig. 4. Graphical representation of the shifted Chebyshev approximate solution of .S, I and R.

Table 9
The L®—errors for Test 3.
N T=1 T=10
elTv,s "71;/,1 VR CPU eiTv,s N eII,R CPU
8 1.14e-13 2.13e-14 1.36e-14 0.04 1.63e—-03 1.55e-03 8.40e-05 0.04
16 1.14e-13 7.11e-15 4.49e-15 0.10 7.24e-10 7.12e-10 3.48e-11 0.11
32 1.14e-13 5.46e-14 3.80e-14 0.43 5.68e—-13 3.55e-13 6.93e-14 0.31
64 1.14e-13 5.77e-15 3.77e-15 1.16 4.55e-13 2.70e-13 2.80e-14 1.03
128 1.14e-13 4.88e-15 2.49e-15 3.95 1.36e-12 1.22e-12 4.09e-14 3.98
N T =100 T =200
eLvS e}TVJ eL»R CPU e}TV'S 911\-1.1 e;,vR CPU
8
16
32
64 1.21e-03 1.12e-03 1.28e-04 1.01 3.57e-01 1.10
128 3.85e-10 3.83e-10 5.81e-12 4.25 4.54e-06 4.53e-06 1.43e-07 4.15

the degree of the highest polynomial used and m reflects the smoothness
of the solution.

Through extensive numerical experiments, we demonstrated that
the method outperforms existing schemes in both accuracy and com-
putational efficiency. Notably, it successfully captures key epidemio-
logical behaviors, such as the timing and magnitude of the infection
peak, as well as the long-term decline in the infected population.
For example, in Test 2, the computed maximum infected population
1. aligned precisely with theoretical predictions, underscoring the
method’s reliability for critical decision-making during outbreaks.

Furthermore, the method remains robust over large time intervals
(e.g., T = 100), making it particularly valuable for long-term epidemic

forecasting and evaluating intervention strategies. Its sensitivity to
parameters « and f also provides crucial insights into how transmission
and recovery rates influence disease dynamics. These results highlight
the method’s dual utility: as a high-precision computational tool and as
a practical framework for public health modeling.

Overall, the shifted Chebyshev collocation method provides a ver-
satile and powerful approach for solving complex epidemic systems,
combining rigorous theoretical foundations with practical applicability
in real-world scenarios. Future research could explore its application
to stochastic and multi dimensional fractional-order models, such as
those analyzing the transmission dynamics of the COVID-19 pandemic,
as discussed in [36,37].
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