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 A B S T R A C T

This study investigates the numerical solution of the biological Susceptible–Infectious–Recovered model for 
COVID-19 over extended time intervals using the shifted Chebyshev polynomial collocation method. Initially, 
the original problem is reformulated into a nonlinear Volterra integral equation for the susceptible population. 
The shifted Chebyshev polynomials are then employed to derive the numerical solution. A comprehensive 
convergence analysis of the collocation method is conducted to ensure the reliability and accuracy of the 
proposed approach. Finally, numerical simulations are performed for various parameter configurations that 
influence the system’s coefficients. Our method is compared with existing approaches, providing insights into 
the model’s dynamics under different conditions.
1. Introduction

COVID-19 is a member of the Coronaviridae family, which primarily 
affects the respiratory system. The epidemic dynamics of COVID-19 are 
often modeled using the Susceptible–Infectious–Recovered (SIR) model, 
a well-established framework in epidemiology (see [1] and references 
therein). The SIR model has also been applied to study the spread of 
other infectious diseases, such as influenza and Ebola, as demonstrated 
by Earn et al. [2] and Khaleque & Sen [3]. The SIR model was initially 
proposed by Kermack and McKendrick [4] and is described by the 
following system of ordinary differential equations:
𝑆′(𝑡) = −𝛼𝑆(𝑡)𝐼(𝑡), 𝑆(0) = 𝑠̃0,

𝐼 ′(𝑡) = 𝛼𝑆(𝑡)𝐼(𝑡) − 𝛽𝐼(𝑡), 𝐼(0) = 𝑖0, (1)
𝑅′(𝑡) = 𝛽𝐼(𝑡), 𝑅(0) = 𝑟0,

with the constraint
𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁,

where:

• 𝑆(𝑡) represents the susceptible population (individuals who are at 
risk of contracting the disease),
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• 𝐼(𝑡) represents the infected population (individuals currently in-
fected with the disease),

• 𝑅(𝑡) represents the recovered population (individuals who have 
recovered from the disease and are assumed to be immune),

• 𝑁 is the total population in the region under consideration.

The coefficients in the model are defined as follows:

• 𝛼 is the infection rate, which determines how quickly suscep-
tible individuals become infected upon contact with infectious 
individuals,

• 𝛽 is the recovery rate, which represents the rate at which infected 
individuals recover from the disease.

Over the past years, the analytical and approximate solutions of 
the SIR model have been extensively studied by various authors. For 
analytical studies, Harko et al. [5] were the first to derive exact 
analytical solutions, presenting them in an exact parametric form. 
Additionally, the analytical solutions discussed by Barlow & Wein-
stein [6] and Prodanov [7] are expressed in terms of the Lambert 
W function, with Prodanov [7] also providing a numerical solution. 
For semi-analytical approaches, Makinde [8] employed the Adomian 
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decomposition method, while Chakir [9] proposed the Padé approxima-
tion method. In the context of numerical solutions, Piyawong et al. [10] 
introduced a first-order finite-difference scheme to explicitly obtain 
numerical solutions. Furthermore, Conte et al. [11] and Mickens [12] 
developed nonstandard finite-difference schemes capable of preserving 
the positivity of the exact solution. A collocation scheme based on 
Hermite wavelets was presented by Baleanu et al. [13], and Kumar [14] 
proposed a Taylor wavelets collocation technique. Very recently, Khoa 
et al. [15] reformulated the system of differential equations defined in 
(1) as follows: 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅′(𝑡) = 𝛽(𝑁 − 𝑠̃0𝑒−𝜇𝑅(𝑡) − 𝑅(𝑡)), 𝜇 = 𝛼
𝛽
, 𝑡 ∈ 𝛺𝑇 = [0, 𝑇 ], 𝑇 ∈ R+,

𝑆(𝑡) = 𝑠̃0𝑒−𝜇𝑅(𝑡),

𝐼(𝑡) = (𝑁 − 𝑠̃0𝑒−𝜇𝑅(𝑡) − 𝑅(𝑡)),

𝐼max = − 1
𝜇
ln(𝜇) + 𝑖0 + 𝑠̃0 −

1
𝜇
ln(𝑠̃0).

(2)

Khoa et al. proved the existence of a unique solution of the problem 
(2) in the space of continuous functions and obtained the numerical 
solution using an efficient relaxation scheme. They also provided a 
convergence analysis based on the infinity norm.

In general, obtaining a theoretical convergence analysis for the 
system (1) is not straightforward. Therefore, the aim of this paper is to 
introduce and analyze a new superconvergent postprocessing technique 
for the system (1). To this end, the problem in (2) can be equivalently 
expressed as a nonlinear Volterra integral equation: 

𝑅(𝑡) = 𝑟0 + ∫

𝑡

0
𝑘(𝑠, 𝑅(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝛺𝑇 , (3)

where 𝑘(𝑡, 𝑅(𝑡)) = 𝛽
(

𝑁 − 𝑠̃0𝑒−𝜇𝑅(𝑡) − 𝑅(𝑡)
)

. To ensure the unique solv-
ability of (3), we establish that the kernel 𝑘 satisfies a Lipschitz condi-
tion in 𝑅. This is based on the Lipschitz continuity of the exponential 
function 𝑒−𝜇𝑡 follows from the mean value theorem, as | 𝑑𝑑𝑡 𝑒−𝜇𝑡| =
𝜇𝑒−𝜇𝑡 ≤ 𝜇 for 𝑡 ≥ 0, ensuring |𝑒−𝜇𝑆 − 𝑒−𝜇𝑅| ≤ 𝜇|𝑆 − 𝑅|. Hence, for any 
𝑆,𝑅 ∈ R+, we have: 
|𝑘(𝑡, 𝑆) − 𝑘(𝑡, 𝑅)| ≤ 𝛽(𝜇𝑠̃0 + 1)|𝑆 − 𝑅|. (4)

Thus, 𝑘 is globally Lipschitz continuous in 𝑅 with constant 𝐿 =
𝛽(𝜇𝑠̃0 + 1). To solve Eq. (3), we employ shifted Chebyshev polynomials 
(SCPs), which are mutually orthogonal in the weighted 𝐿2-space. These 
polynomials are derived from the classical third-kind Chebyshev poly-
nomials (TKCP) via a suitable change of variable. We further establish 
the convergence analysis for the approximate solutions, yielding an 
error of order (𝑁 1

2−𝑚). The primary advantage of SCPs lies in their 
ability to achieve superconvergence over small intervals while main-
taining high accuracy for large intervals. This property makes them 
particularly effective for solving differential and integral equations, 
especially in epidemiological modeling. Several recent studies have 
demonstrated the efficacy and versatility of Chebyshev-based spectral 
and collocation methods in solving diverse classes of fractional and 
integer-order differential equations. For instance, Srivastava et al. [16] 
employed Chebyshev polynomials to develop an efficient spectral collo-
cation method for simulating the dynamics of a fractional SIRD model 
describing the Ebola virus. Similarly, Sriwastav et al. [17] proposed a 
novel collocation scheme based on shifted Chebyshev polynomials to 
address a class of three-point singular boundary value problems. Sayed 
et al. [18] introduced a spectral framework using modified shifted 
Chebyshev polynomials of the third kind for solving one- and two-
dimensional hyperbolic telegraph equations. Abdelhakem et al. [19] 
developed two modified shifted Chebyshev–Galerkin methods tailored 
to even-order partial boundary value problems. In the context of nonlin-
ear fractional differential equations, Youssri and Atta [20] proposed an 
explicit collocation algorithm using third-kind Chebyshev polynomials 
to solve the nonlinear fractional Duffing equation. Additionally, Youssri 
2 
et al. [21] presented a spectral collocation approach employing first-
kind Chebyshev polynomials for the time-fractional Korteweg–de Vries–
Burgers equation. Further advancing this area, Youssri and Atta [22] 
introduced an adopted Chebyshev collocation method for modeling the 
human corneal shape via the Caputo fractional derivative. Moreover, 
the Chebyshev Petrov–Galerkin method was developed by the same 
authors [23] to handle nonlinear time-fractional integro-differential 
equations featuring mildly singular kernels. Beyond Chebyshev-based 
approaches, additional advanced numerical techniques have also been 
explored. Sriwastav et al. [24] proposed a meshfree method combining 
spline-based multistage Bernstein collocation to model rennet-induced 
coagulation equations. Pathak et al. [25] formulated an algorithm 
grounded in homotopy perturbation theory for solving singular non-
linear boundary value problems. For applications in stellar physics, 
Sriwastav et al. [26] devised a robust Legendre collocation scheme 
tailored to Lane–Emden multi-pantograph delay differential equations, 
including those modeling Chandrasekhar’s white dwarf problem. Ad-
ditional contributions include the Haar wavelet collocation method 
introduced by Singh, Garg, and Guleria [27] for Lane–Emden equa-
tions, and the Taylor operational matrix method proposed by Saha 
and Singh [28] for solving third-order Emden–Fowler-type pantograph 
equations. Lastly, Shahni et al. [29] presented an efficient numerical 
method for three-point Lane–Emden–Fowler boundary value problems.

The remainder of this paper is organized as follows. In Section 2, we 
introduce the required integral operator, review some basic concepts 
related to the TKCPs, and present the SCPs. In Section 3, we discuss the 
numerical solution of Eq. (3). Section 4 presents the convergence results 
of the collocation method in the standard 𝐿∞-space. Finally, Section 5 
presents a series of numerical experiments to validate the effectiveness 
of the proposed technique, including direct comparisons with existing 
methods. To further illustrate the robustness and accuracy of our 
approach, several numerical simulations are provided throughout the 
paper. These simulations not only yield quantitative assessments but 
also offer visual insights into the dynamic progression of the COVID-19 
outbreak. In particular, the figures and numerical simulations under-
score the capability of the proposed method to accurately capture 
key epidemiological features such as the infection peak and recovery 
trends—elements that are essential in understanding and managing 
epidemic dynamics. The paper concludes with Section 6, where we 
summarize the findings and present the conclusions.

2. Theoretical framework

Let X = 𝐿∞(𝛺𝑇 ) be a Banach space. From Theorem 1 in [15], the 
system (2) admits unique positive solutions 𝑆∗, 𝐼∗, and 𝑅∗ in 𝐶1(𝛺𝑇 ). 
Consequently, the solution 𝑅∗ can be expressed as:

𝑅∗(𝑡) = 𝑟0 + ∫

𝑡

0
𝑘(𝑠, 𝑅∗(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝛺𝑇 ,

with

𝑆∗(𝑡) = 𝑠̃0𝑒
−𝜇𝑅∗(𝑡), (5)

𝐼∗(𝑥) = (𝑁 − 𝑠̃0𝑒−𝜇𝑅
∗(𝑡) − 𝑅∗(𝑡)). (6)

To analyze this further, we define the integral operator  ∶ X → X as 
follows: 

(𝑅)(𝑡) = ∫

𝑡

0
𝑘(𝑠, 𝑅(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝛺𝑇 , (7)

where

𝑘(𝑡, 𝑅(𝑡)) = 𝛽
(

𝑁 − 𝑠̃0𝑒−𝜇𝑅(𝑡) − 𝑅(𝑡)
)

.

Using this operator, Eq. (3) can be rewritten as:
𝑅(𝑡) −(𝑅)(𝑡) = 𝑟0, 𝑡 ∈ 𝛺𝑇 .

For any 𝑅,𝑆 ∈ X and from (4), the difference (𝑅) −(𝑆) satisfies: 
|(𝑅)(𝑡) −(𝑆)(𝑡)| ≤ 𝛽

(

𝑠̃ 𝜇 + 1
)

𝑡‖𝑆 − 𝑅‖ . (8)
0 ∞
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Taking the supremum over 𝑡 ∈ 𝛺𝑇 , we obtain: 
‖(𝑅) −(𝑆)‖∞ ≤ 𝛽

(

𝑠̃0𝜇 + 1
)

𝑇 ‖𝑆 − 𝑅‖∞. (9)

Next, we introduce the Fréchet derivative of the nonlinear operator 
at 𝑅∗, denoted by ′(𝑅∗). For 𝑤 ∈ X, the Fréchet derivative is defined 
as: 

(′(𝑅∗))𝑤(𝑡) ∶= ∫

𝑡

0
𝑘(0,1)(𝑠, 𝑅∗(𝑠))𝑤(𝑠) 𝑑𝑠, 𝑡 ∈ 𝛺𝑇 , (10)

where the kernel 𝑘(𝑡, 𝑅(𝑡)) is given by
𝑘(𝑡, 𝑅(𝑡)) = 𝛽

(

𝑁 − 𝑠̃0𝑒−𝜇𝑅(𝑡) − 𝑅(𝑡)
)

,

and its partial derivative with respect to 𝑅 is computed as

𝑘(0,1)(𝑡, 𝑅(𝑡)) = 𝜕
𝜕𝑅

𝑘(𝑡, 𝑅(𝑡)) = 𝛽
(

𝑠̃0𝜇𝑒
−𝜇𝑅(𝑡) − 1

)

,

leading to
𝑘(0,1)(𝑡, 𝑅∗(𝑡)) = 𝛽

(

𝑠̃0𝜇𝑒
−𝜇𝑅∗(𝑡) − 1

)

.

To justify the validity of the Fréchet derivative, we first verify that 
the operator  is Gâteaux differentiable. For a fixed direction 𝑤 ∈ X, 
the Gâteaux derivative of  at 𝑅∗ in the direction 𝑤 is given by

lim
𝜖→0

(𝑅∗ + 𝜖𝑤)(𝑡) −(𝑅∗)(𝑡)
𝜖

= ∫

𝑡

0
𝑘(0,1)(𝑠, 𝑅∗(𝑠))𝑤(𝑠) 𝑑𝑠,

provided the derivative 𝑘(0,1)(𝑡, 𝑅(𝑡)) exists and is continuous in 𝑅, it 
follows that the operator  is Fréchet differentiable at 𝑅∗, and the 
expression in (10) defines its Fréchet derivative. 

We now prove that ′(𝑅∗) is bounded in X. For all 𝑤 ∈ X, we have:

|(′(𝑅∗))𝑤(𝑡)| =
|

|

|

|

|

𝛽 ∫

𝑡

0

(

𝑠̃0𝜇𝑒
−𝜇𝑅∗(𝑠) − 1

)

𝑤(𝑠) 𝑑𝑠
|

|

|

|

|

≤ 𝛽
(

𝑠̃0𝜇 + 1
)

𝑡‖𝑤‖∞.

(11)

Taking the supremum over 𝑡 ∈ 𝛺𝑇 , we obtain: 
‖(′(𝑅∗))𝑤‖∞ ≤ 𝛽

(

𝑠̃0 + 1
)

𝑇 ‖𝑤‖∞. (12)

This shows that ′(𝑅∗) is a bounded linear operator with a norm 
proportional to 𝛽 (𝑠̃0 + 1

)

𝑇 .
In the following, we establish the Lipschitz continuity of ′. For any 

𝑅,𝑆 ∈ X, the difference ′(𝑅) −′(𝑆) satisfies: 
‖(′(𝑅) −′(𝑆))𝑤‖∞ ≤ 𝛽

(

𝑠̃0 + 1
)

𝑇 ‖𝑅 − 𝑆‖∞‖𝑤‖∞. (13)

Letting  (𝑅) ∶= (𝑅)(𝑡) + 𝑟0, for all 𝑅 ∈ X, this implies 
 (𝑅∗) = 𝑅∗. (14)

2.1. Shifted third kind Chebyshev polynomials

We begin by recalling some fundamental definitions of the TKCPs, 
denoted by 𝑉𝑛(𝑥) for 𝑛 ≥ 0 and 𝑥 ∈ 𝐼 = [−1, 1]. These polynomials are 
defined by the three-term recurrence relation (see, e.g., [30,31]): 
𝑉𝑛+1(𝑥) = 2𝑥𝑉𝑛(𝑥) − 𝑉𝑛−1(𝑥), for 𝑛 ≥ 1, (15)

with initial conditions 
𝑉0(𝑥) = 1, 𝑉1(𝑥) = 2𝑥 − 1. (16)

The polynomials 𝑉𝑛(𝑥) are orthogonal with respect to the weight func-
tion 𝜔(𝑥) =

√

1+𝑥
1−𝑥  over the interval 𝐼 . Their orthogonality condition is 

given by: 

∫

1

−1
𝑉𝑚(𝑥)𝑉𝑛(𝑥)𝜔(𝑥) 𝑑𝑥 = 𝜋𝛿𝑛,𝑚, (17)

where 𝛿𝑛,𝑚 is the Kronecker delta.
Consider the change of variable between 𝑥 ∈ 𝐼 and 𝑡 ∈ 𝛺𝑇 = [0, 𝑇 ]:

𝑥 = 2𝑡 − 1 and 𝑡 = 𝑇 (𝑥 + 1). (18)

𝑇 2

3 
Using this transformation, we define the shifted third-kind Chebyshev 
polynomials of degree 𝑛 as: 

T𝑛(𝑡) = 𝑉𝑛
( 2𝑡
𝑇

− 1
)

, 𝑡 ∈ 𝛺𝑇 . (19)

Let 𝐿2
𝜔𝑇

(𝛺𝑇 ) denote the weighted Hilbert space, defined as: 

𝐿2
𝜔𝑇

(𝛺𝑇 ) =
{

𝑅 ∶ 𝛺𝑇 → R |

|

|

𝑅 is measurable and ‖𝑅‖𝜔𝑇 < ∞
}

, (20)

where the inner product and norm are given by: 

(𝑅,𝑆)𝜔𝑇 = ∫

𝑇

0
𝑅(𝑡)𝑆(𝑡)𝜔𝑇 (𝑡) 𝑑𝑡, ‖𝑅‖𝜔𝑇 =

√

(𝑅,𝑅)𝜔𝑇 . (21)

Here, the weight function is 𝜔𝑇 (𝑡) =
√

𝑡
𝑇−𝑡 . From (17) and (19), it 

follows that the shifted polynomials T𝑛(𝑡) are orthogonal with respect 
to 𝜔𝑇 (𝑡): 

∫

𝑇

0
T𝑚(𝑡)T𝑛(𝑡)𝜔𝑇 (𝑡) 𝑑𝑡 =

𝜋𝑇
2
𝛿𝑛,𝑚. (22)

Moreover, the set {T𝑛}∞𝑛=0 forms a complete orthogonal system in 
𝐿2
𝜔𝑇

(𝛺𝑇 ).
We introduce the weighted orthogonal projection operator 𝑃 𝑇𝑁 , 

which maps the weighted Hilbert space 𝐿2
𝜔𝑇

(𝛺𝑇 ) onto the polynomial 
space P𝑁 . This operator is defined by the condition: 

(𝑃 𝑇𝑁𝑅 − 𝑅,𝜙)𝜔𝑇 = 0, ∀𝜙 ∈ P𝑁 . (23)

Since 𝑃 𝑇𝑁𝑅 is a projection onto P𝑁 , it admits a finite expansion in terms 
of the basis {T𝑛(𝑡)}𝑁𝑛=0: 

𝑃 𝑇𝑁𝑅(𝑡) =
𝑁
∑

𝑛=0
𝑅𝑛,𝑁T𝑛(𝑡). (24)

The expansion coefficients 𝑅𝑛,𝑁  are uniquely determined by enforcing 
the orthogonality condition (24), which yields: 

𝑅𝑛,𝑁 = 2
𝜋𝑇 ∫

𝑇

0
𝑅(𝑡)T𝑛(𝑡)𝜔𝑇 (𝑡) 𝑑𝑡. (25)

Let {𝜉𝑇𝑖,𝑁 , 𝜔𝑇𝑖,𝑁}𝑁𝑖=0 denote the shifted third-kind Chebyshev–Gauss 
set, which are given by: 

𝜉𝑇𝑖,𝑁 = 𝑇
2
(𝑡𝑖 + 1), 𝜔𝑇𝑖,𝑁 = 𝑇

2
𝜔𝑖,𝑁 , (26)

where {𝑡𝑖, 𝜔𝑖,𝑁}𝑁𝑖=0 are the third-kind Chebyshev–Gauss set. For all 𝜓 ∈
P2𝑁+1, we deduce 

∫

𝑇

0
𝜓(𝑡)𝜔𝑇 (𝑡)𝑑𝑡 =

𝑇
2 ∫

1

−1
𝜓(𝑇

2
(𝑥 + 1))𝜔(𝑥)𝑑𝑥

=
𝑁
∑

𝑖=0
𝜓(𝑇

2
(𝑡𝑖 + 1))𝑇

2
𝜔𝑖,𝑁

=
𝑁
∑

𝑖=0
𝜓(𝜉𝑇𝑖,𝑁 )𝜔𝑇𝑖,𝑁 . (27)

For notational convenience, we associate pairs of functions with the 
change of variable in (18) as follows: 

𝑅(𝑡) = 𝑅
(𝑇
2
(𝑥 + 1)

)

∶= 𝑅𝑇 (𝑥). (28)

To estimate the error, we define the derivative operator: 

𝐷𝑡𝑅 ∶= 𝑇
2
𝑑𝑅
𝑑𝑡
, (29)

and by induction, we obtain: 

𝐷𝑘
𝑡 𝑅 ∶=

(𝑇
2

)𝑘 𝑑𝑘𝑅
𝑑𝑡𝑘

= 𝜕𝑘𝑥𝑅𝑇 , 𝑘 = 0, 1,… . (30)

Further, define 

𝐻𝑚(𝛺 ) = {𝑅 ∶ 𝐷𝑘𝑅 ∈ 𝐿2 (𝛺 ), 0 ≤ 𝑘 ≤ 𝑚}, (31)
𝑇 𝑇 𝑡 𝜔𝑇 𝑇
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with 

|𝑅|𝐻𝑚,𝑁
𝑇

=

( 𝑚
∑

𝑘=min{𝑚,𝑁+1}
‖𝐷𝑘

𝑡 𝑅‖
2
𝐿2
𝜔𝑇 (𝛺𝑇 )

)1∕2

. (32)

In the following lemma, we prove the convergence rates of the approx-
imate solution to the exact solution. 

Lemma 1.  Let 𝑚 ∈ N∗. For all 𝑅 ∈ 𝐻𝑚
𝑇 (𝛺𝑇 ), the following inequality 

holds: 
‖𝑃 𝑇𝑁𝑅 − 𝑅‖∞ ≤ 𝑐𝑁

1
2−𝑚

|𝑅|𝐻𝑚,𝑁
𝑇

. (33)

where 𝑐 is a positive constant independent of 𝑁 and 𝑢, and 𝑁 denotes the 
degree of the highest-order SCPs.

Proof.  Let 𝑃𝑁  be the projection operator associated with the third-kind 
Chebyshev polynomial. We have 
‖𝑃 𝑇𝑁𝑅 − 𝑅‖∞ = ‖𝑃𝑁𝑅𝑇 − 𝑅𝑇 ‖∞. (34)

According to Lemma 1 in [32], for any 𝑅𝑇 ∈ 𝐻𝑚(𝐼) with 𝑚 ≥ 1, it 
holds that 
‖𝑃𝑁𝑅𝑇 − 𝑅𝑇 ‖∞ ≤ 𝑐𝑁

1
2−𝑚

|𝑅𝑇 |𝐻𝑚,𝑁 . (35)

Using (28) and (30), we obtain

‖𝐷𝑘
𝑡 𝑅‖

2
𝐿2
𝜔𝑇 (𝛺𝑇 )

= ∫

𝑇

0
|𝐷𝑘

𝑡 𝑅(𝑡)|
2𝜔𝑇 (𝑡) 𝑑𝑡 = ∫

1

−1
|𝜕𝑘𝑥𝑅𝑇 (𝑥)|

2𝜔(𝑥) 𝑑𝑥

= ‖𝜕𝑘𝑥𝑅𝑇 ‖
2
𝐿2
𝜔(𝐼)

. (36)

This implies that |𝑅|𝐻𝑚,𝑁
𝑇

= |𝑅𝑇 |𝐻𝑚,𝑁 . Hence, we conclude that 

‖𝑃 𝑇𝑁𝑅 − 𝑅‖∞ ≤ 𝑐𝑁
1
2−𝑚

|𝑅|𝐻𝑚,𝑁
𝑇

. (37)

Thus, the proof is complete.

3. Collocation method

In this section, we describe the collocation method associated with 
the shifted third-kind Chebyshev polynomials for solving Equation (3). 
First, we expand 𝑅 using a finite series of shifted third-kind Chebyshev 
polynomials as follows: 

𝑅𝑁 (𝑥) =
𝑁
∑

𝑛=0
𝑅𝑛,𝑁 T𝑛(𝑡) = 𝐑𝑇 𝐓𝑁 (𝑡), (38)

where 
𝐑 =

(

𝑅0,𝑁 , 𝑅1,𝑁 ,… , 𝑅𝑁,𝑁
)T and 𝐓𝑁 (𝑡) =

(

T0(𝑡),T1(𝑡),… ,T𝑁 (𝑡)
)T. (39)

Substituting (38) into (3), we obtain the residual function as follows: 

𝑟𝑁 (𝑡) = 𝐑𝑇 𝐓𝑁 (𝑡) − ∫

𝑡

0
𝑘
(

𝑠,𝐑𝑇 𝐓𝑁 (𝑠)
)

𝑑𝑠 − 𝑟0. (40)

The residual function satisfies 𝑟𝑁 (𝜉𝑇𝑖,𝑁 ) = 0 for all 𝑖 = 0,… , 𝑁 . Then, 

𝐑𝑇 𝐓𝑁 (𝜉𝑇𝑖,𝑁 ) − ∫

𝜉𝑇𝑖,𝑁

0
𝑘
(

𝑠,𝐑𝑇 𝐓𝑁 (𝑠)
)

𝑑𝑠 − 𝑟0 = 0. (41)

To solve (41) in practice, the integrals appearing in these formulas must 
be evaluated numerically. For this purpose, we employ a numerical 
integration scheme based on the shifted third-kind Chebyshev–Gauss 
quadrature set {𝜉𝜉

𝑇
𝑖,𝑁
𝑖,𝑁 , 𝜔

𝜉𝑇𝑖,𝑁
𝑖,𝑁 }𝑁𝑖=0, where the nodes and weights are defined 

as:

𝜉
𝜉𝑇𝑖,𝑁
𝑖,𝑁 =

𝜉𝑇𝑖,𝑁
2

(𝑡𝑖 + 1), 𝜔
𝜉𝑇𝑖,𝑁
𝑖,𝑁 =

𝜉𝑇𝑖,𝑁
2
𝜔𝑖,𝑁 ,

the integral is then approximated as: 

∫

𝜉𝑇𝑖,𝑁
𝑘̃
(

𝑠,𝐑𝑇 𝐓𝑁 (𝑠)
)

𝜔𝜉𝑇𝑖,𝑁
(𝑡)𝑑𝑠 ≈

𝑁
∑

𝑘̃
(

𝜉
𝜉𝑇𝑖,𝑁
𝑗,𝑁 ,𝐑

𝑇 𝐓𝑁 (𝜉
𝜉𝑇𝑖,𝑁
𝑗,𝑁 )

)

𝜔
𝜉𝑇𝑖,𝑁
𝑗,𝑁 , (42)
0 𝑗=0

4 
where 𝑘̃(𝑡,𝐑𝑇 𝐓𝑁 (𝑡)
)

=

√

𝜉𝑇𝑖,𝑁−𝑡

𝑡 𝑘
(

𝑡,𝐑𝑇 𝐓𝑁 (𝑡)
)

. Let us denote

K(𝐑) = 𝑘̃
(

𝜉
𝜉𝑇𝑖,𝑁
𝑗,𝑁 ,𝐑

𝑇 𝐓𝑁 (𝜉
𝜉𝑇𝑖,𝑁
𝑗,𝑁 )

)

, f = (𝑟0,… , 𝑟̃0)T,

W = diag(𝜔
𝜉𝑇𝑖,𝑁
𝑗,𝑁 ), 𝐷𝑁,𝑖,𝑗 = 𝐓𝑁 (𝜉

𝜉𝑇𝑖,𝑁
𝑗,𝑁 ), D = (𝐷𝑁,𝑖,𝑗 ). (43)

With these definitions, the system (41) simplifies to 
Q(𝐑) = D𝐑 − K(𝐑)W − f = 0. (44)

The system (44) can be solved using the Newton–Raphson iteration 
method (NIM) as 
𝐑(𝑘+1) = 𝐑(𝑘) − [𝐽Q(𝐑(𝑘))]−1Q(𝐑(𝑘)), (45)

where 𝐽Q(𝐑) is the Jacobian matrix of Q(𝐑), defined by 
[

𝐽Q(𝐑)
]

𝑖𝑗 =
𝜕𝑄𝑖(𝐑)
𝜕𝑅𝑛,𝑁

. (46)

3.1. Convergence of Newton’s method

The Newton method converges quadratically under the following 
standard conditions:

• The function Q is Fréchet differentiable in a neighborhood of the 
exact solution 𝐑∗.

• The Jacobian 𝐽Q(𝐑) is Lipschitz continuous near 𝐑∗, i.e., 

‖𝐽𝑄(𝐑1) − 𝐽𝑄(𝐑2)‖ ≤ 𝐿‖𝐑1 − 𝐑2‖. (47)

• The Jacobian is invertible at 𝐑∗ with bounded inverse, i.e.,
‖𝐽−1

𝑄 (𝐑∗)‖ <∞.

Under these conditions, the Newton iteration satisfies the following 
quadratic convergence estimate: 

‖𝐑(𝑘+1) − 𝐑∗
‖ ≤ 𝜅‖𝐑(𝑘) − 𝐑∗

‖

2, with 𝜅 = 𝐿
2
‖𝐽−1

𝑄 (𝐑∗)‖. (48)

Furthermore, the convergence rate can be bounded as: 

lim sup
𝑘→∞

‖𝐑(𝑘+1) − 𝐑∗
‖

‖𝐑(𝑘) − 𝐑∗
‖

2
≤ 𝛾, (49)

where 𝛾 = 𝛽(𝜇𝑠̃0+1)
2𝜎min

, with 𝜎min the smallest singular value of 𝐽𝑄(𝐑∗) and 
𝛽 a constant associated with the Lipschitz bound of the kernel function 
𝑘(𝑡, 𝑅). This expression reflects how the nonlinearity of the integral term 
impacts convergence. In practice, we monitor convergence using the 
residual norm: 
‖Q(𝐑(𝑘+1))‖
‖Q(𝐑(𝑘))‖

≤ 𝜌𝑘, with 𝜌𝑘 → 0 superlinearly. (50)

Thus, the Newton method efficiently resolves the nonlinearity in the 
collocation system through iterative linearization and, under appropri-
ate regularity assumptions, guarantees fast (quadratic) convergence to 
the exact solution.

4. Convergence analysis

This section examines the existence, uniqueness and convergence 
of the approximate solution 𝑅𝑁  for the following approximate Voltera 
integral equation 
𝑅𝑁 = 𝑃 𝑇𝑁 (𝑅𝑁 ). (51)

To obtain a more accurate solution, we define the iterated solution as 
follows: 
𝑅𝑁 =  (𝑅𝑁 ). (52)

Next, we define the operators 𝑁  and ̃𝑁  on X, mapping X onto itself, 
as follows:
 𝑅 ∶= 𝑃 𝑇  (𝑅), (53)
𝑁 𝑁
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̃𝑁𝑅 ∶=  (𝑃 𝑇𝑁𝑅), (54)

The above definitions satisfy the relations
𝑁𝑅𝑁 = 𝑅𝑁 , (55)

̃ 𝑅𝑁 = 𝑅𝑁 , (56)

For any 𝑤 ∈ X, the Fréchet derivative of ̃𝑁  at 𝑅∗ is given by 
̃ ′
𝑁 (𝑅∗)𝑤 = 𝑇 ′(𝑃 𝑇𝑁𝑅

∗)𝑤, (57)

where

𝑇 ′(𝑅∗)𝑤 = ′(𝑅∗)𝑤.

This theorem delineates the circumstances wherein the solvability of 
one equation directly implies the solvability of another, and for a 
rigorous treatment of the convergence properties of the approximate 
solution, we refer to Theorem 2 in [33].

Theorem 1.  Let 𝑅∗ ∈ X be an isolated solution of Eq.  (3). Assume that 1
is not an eigenvalue of the operator  ′(𝑅∗). Under this condition, Eq. (51) 
admits a unique solution 𝑅𝑁  in the ball (𝑅∗, 𝛿) = {𝑅 ∶ ‖𝑅 − 𝑅∗

‖∞ ≤ 𝛿}
for some 𝛿 > 0 and sufficiently large 𝑁 . Moreover, there exists a constant 𝑞, 
with 0 < 𝑞 < 1 and independent of 𝑁 , such that the following error estimate 
holds: 
𝜌𝑁
1 + 𝑞

≤ ‖𝑅𝑁 − 𝑅∗
‖∞ ≤

𝜌𝑇𝑁
1 − 𝑞

, (58)

where

𝜌𝑇𝑁 =
‖

‖

‖

‖

(

𝐼 − ̃ ′
𝑁 (𝑅∗)

)−1 (
̃𝑁 (𝑅∗) −  (𝑅∗)

)

‖

‖

‖

‖

∞.

Additionally, the following bound holds for the error in the approxima-
tion solution 𝑅𝑁 : 

‖𝑅∗ − 𝑅𝑁‖∞ = (𝑁
1
2−𝑚). (59)

Proof.  For any 𝑤 ∈ X, using Eq. (13), we have
‖

‖

‖

‖

(

̃ ′
𝑁 (𝑅∗) −  ′(𝑅∗)

)

𝑤
‖

‖

‖

‖

∞ = ‖

‖

‖

(

′(𝑃 𝑇𝑁𝑅
∗) −′(𝑅∗)

)

𝑤‖‖
‖

∞.

By the properties of ′ and the given assumptions, it follows that
‖

‖

‖

‖

(

̃ ′
𝑁 (𝑅∗) −  ′(𝑅∗)

)

𝑤
‖

‖

‖

‖

∞ ≤ 𝛽(𝑠̃0𝜇 + 1)𝑇 ‖𝑃 𝑇𝑁𝑅
∗ − 𝑅∗

‖∞‖𝑤‖∞.

From Lemma  1, we further obtain
‖

‖

‖

‖

(

̃ ′
𝑁 (𝑅∗) −  ′(𝑅∗)

)

𝑤
‖

‖

‖

‖

∞ ≤ 𝑐𝛽(𝑠̃0𝜇 + 1)𝑇𝑁
3
4−𝑚

|𝑅|𝐻𝑚,𝑁
𝑇

‖𝑤‖∞.

This implies that
‖

‖

‖

̃ ′
𝑁 (𝑅∗) −  ′(𝑅∗)‖‖

‖

∞ → 0 as 𝑁 → ∞,

which shows that ̃ ′
𝑁 (𝑅∗) converges in norm to  ′(𝑅∗).

Moreover, since 1 is not an eigenvalue of  ′(𝑅∗), by Theorem 3.11 
in [34, p. 55], the inverse operator (𝐼−̃ ′

𝑁 (𝑅∗))−1 exists and is uniformly 
bounded on X for sufficiently large 𝑁 . Specifically, there exists a 
constant 𝑀 > 0 such that
‖

‖

‖

‖

(

𝐼 − ̃ ′
𝑁 (𝑅∗)

)−1
‖

‖

‖

‖

∞ ≤𝑀 < ∞.

Next, we estimate ‖̃ ′
𝑁 (𝑅∗) − ̃ ′

𝑁 (𝑅)‖∞ for any 𝑅 ∈ (𝑅∗, 𝛿) and 
𝑅 ∈ X. Using Eq. (13), we have
‖

‖

‖

‖

(

̃ ′
𝑁 (𝑅∗) − ̃ ′

𝑁 (𝑅)
)

𝑤
‖

‖

‖

‖

∞ = ‖

‖

‖

(

′(𝑃 𝑇𝑁𝑅
∗) −′(𝑃 𝑇𝑁𝑅)

)

𝑤‖‖
‖

∞.

From the properties of ′, it follows that
‖

‖

‖

‖

(

̃ ′
𝑁 (𝑅∗) − ̃ ′

𝑁 (𝑅)
)

𝑤
‖

‖

‖

‖

∞ ≤ 𝛽(𝑠̃0𝜇 + 1)𝑇 ‖𝑃 𝑇𝑁𝑅
∗ − 𝑃 𝑇𝑁𝑅‖∞‖𝑤‖∞.

Since ‖𝑃 𝑇𝑁𝑅∗ − 𝑃 𝑇𝑁𝑅‖∞ ≤ ‖𝑃 𝑇𝑁‖‖𝑅∗ − 𝑅‖∞, we obtain
‖

‖

(

̃ ′ (𝑅∗) − ̃ ′ (𝑅)
)

𝑤
‖

‖ ≤ 𝛽(𝑠̃ 𝜇 + 1)𝑇 ‖𝑃 𝑇 ‖𝛿‖𝑤‖ .

‖

‖

𝑁 𝑁 ‖

‖

∞ 0 𝑁 ∞

5 
This implies
‖̃ ′

𝑁 (𝑅∗) − ̃ ′
𝑁 (𝑅)‖∞ ≤ 𝛽(𝑠̃0𝜇 + 1)𝑇 ‖𝑃 𝑇𝑁‖𝛿.

Letting 𝛾𝑇 = ‖𝑃 𝑇𝑁‖, we have

sup
‖𝑅−𝑅∗

‖∞≤𝛿
‖(𝐼 − ̃ ′

𝑁 (𝑅∗))−1(̃ ′
𝑁 (𝑅∗) − ̃ ′

𝑁 (𝑅))‖∞ ≤𝑀𝛽(𝑠̃0𝜇 + 1)𝑇 𝛾𝑇 𝛿.

Let 𝑞 = 𝑀𝛽(𝑠̃0𝜇 + 1)𝑇 𝛾𝑇 𝛿 and choose 𝛿 sufficiently small such that 
0 < 𝑞 < 1. This proves Eq. (4.4) of Theorem 2 in [33].

Using (9) and (33), we obtain
𝜌𝑇𝑁 = ‖(𝐼 − ̃ ′

𝑁 (𝑅∗))−1(̃ (𝑅∗) −  (𝑅∗))‖∞ ≤𝑀‖̃ (𝑅∗) −  (𝑅∗)‖∞.

Since ̃ (𝑅∗) = (𝑃 𝑇𝑁𝑅
∗), it follows that

𝜌𝑇𝑁 ≤𝑀‖(𝑃 𝑇𝑁𝑅
∗) −(𝑅∗)‖∞ ≤𝑀𝛽(𝑠̃0 + 1)𝑇 ‖𝑃 𝑇𝑁𝑅

∗ − 𝑅∗
‖∞.

From Lemma  1, we have 

𝜌𝑇𝑁 ≤𝑀𝛽(𝑠̃0 + 1)𝑇 𝑐𝑁
1
2−𝑚

|𝑅∗
|𝐻𝑚,𝑁

𝑇
→ 0 as 𝑁 → ∞. (60)

By choosing 𝑁 large enough such that 𝜌𝑇𝑁 ≤ 𝛿(1−𝑞), we satisfy Eq. (4.6) 
of Theorem 2 in [33]. Applying Theorem 2 of [33], we derive 
𝜌𝑇𝑁
1 + 𝑞

≤ ‖𝑅𝑁 − 𝑅∗
‖∞ ≤

𝜌𝑇𝑁
1 − 𝑞

. (61)

Finally, we estimate the error between 𝑅𝑁  and 𝑅∗, where 𝑅𝑁 =
𝑃 𝑇𝑁𝑅𝑁 . The error can be expressed as

𝑅∗ − 𝑅𝑁 = 𝑅∗ − 𝑃 𝑇𝑁𝑅𝑁 = (𝑅∗ − 𝑃 𝑇𝑁𝑅
∗) + (𝑃 𝑇𝑁𝑅

∗ − 𝑃 𝑇𝑁𝑅𝑁 ).

This leads to the inequality
‖𝑅∗ − 𝑅𝑁‖∞ ≤ ‖𝑅∗ − 𝑃 𝑇𝑁𝑅

∗
‖∞ + ‖𝑃 𝑇𝑁‖∞‖𝑅∗ − 𝑅𝑁‖∞.

Using the results from (33), (60) and (61), we obtain 

‖𝑅∗ − 𝑅𝑁‖∞ ≤ (
𝛾𝑇𝑀𝛽(𝑠̃0 + 1)𝑇

1 − 𝑞
+ 1)𝑐𝑁

1
2−𝑚

|𝑅∗
|𝐻𝑚,𝑁

𝑇
. (62)

This completes the proof.

We can now effectively estimate the error between the approximate 
solutions 𝑆𝑁  and 𝐼𝑁 , and the target solutions 𝑆∗ and 𝐼∗, respectively, 
in the X space. The following definitions hold:
𝑆𝑁 (𝑡) = 𝑠̃0𝑒

−𝜇𝑅𝑁 (𝑡), (63)

𝐼𝑁 (𝑡) = 𝑁 − 𝑠̃0𝑒−𝜇𝑅𝑁 (𝑡) − 𝑅𝑁 (𝑡). (64)

Theorem 2.  Let 𝑆∗, 𝐼∗, 𝑅∗ denote the solutions of the system (1). Then, the 
errors between 𝑆∗ and 𝑆𝑁 , as well as 𝐼∗ and 𝐼𝑁 , are bounded as follows: 

‖𝑆∗ − 𝑆𝑁‖∞ = (𝑁
1
2−𝑚), (65)

and 
‖𝐼∗ − 𝐼𝑁‖∞ = (𝑁

1
2−𝑚). (66)

Proof.  Using Eqs. (5), (6), (63), (64), and (59), we derive the following 
bounds:

For 𝑆𝑁 : 

‖𝑆∗ − 𝑆𝑁‖∞ = 𝑠̃0‖𝑒
−𝜇𝑅∗(𝑡) − 𝑒−𝜇𝑅𝑁 (𝑡)

‖∞ ≤ 𝑠̃0𝜇‖𝑅
∗ − 𝑅𝑁‖∞. (67)

For 𝐼𝑁 :
‖𝐼∗ − 𝐼𝑁‖∞ = 𝛽‖𝑠̃0(𝑒−𝜇𝑅

∗(𝑡) − 𝑒−𝜇𝑅𝑁 (𝑡)) + 𝑅∗ − 𝑅𝑁‖∞

≤ 𝛽(𝑠̃0𝜇 + 1)‖𝑅∗ − 𝑅𝑁‖∞. (68)

Since ‖𝑅∗ − 𝑅𝑁‖∞ = (𝑁
1
2−𝑚), the bounds for ‖𝑆∗ − 𝑆𝑁‖∞ and 

‖𝐼∗ − 𝐼𝑁‖∞ follow directly.
This concludes the proof.
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Table 1
Comparison of 𝑆 at different values of 𝑡 with 𝑁 = 10 for Test  1, including relative errors.
 𝑡 Our method 𝑅𝑇𝑁,𝑆 (𝑡) Analytical solution Method in [14] Method in [35]  
 0 20.000000000000000 0.0 20.000000000000000 20.000000000000000 20.000000000000000 
 0.1 19.699578126359828 5.07e−16 19.699578126359818 19.699578126359821 19.699578126371996 
 0.2 19.398425570548401 9.27e−16 19.398425570548383 19.398425570548394 19.398425571303918 
 0.3 19.096713014982857 1.31e−15 19.096713014982832 19.096713014982853 19.096713023320397 
 0.4 18.794612274799267 2.08e−15 18.794612274799228 18.794612274799260 18.794612320125442 
 0.5 18.492295901674989 2.27e−15 18.492295901674947 18.492295901674989 18.492296068742188 
 0.6 18.189936784338556 3.30e−15 18.189936784338496 18.189936784338553 18.189937265652560 
 0.7 17.887707747739274 3.98e−15 17.887707747739203 17.887707747739270 17.887708916936980 
 0.8 17.585781152859408 5.06e−15 17.585781152859319 17.585781152859397 17.585783658414083 
 0.9 17.284328499144522 5.55e−15 17.284328499144426 17.284328499144518 17.284333375780378 
 1 16.983520031504586 6.42e−15 16.983520031504479 16.983520031504579 16.983528824749996 
 CPU 0.06  
5. Numerical results and discussion

In this section, we present a numerical solution to the SIR model us-
ing the proposed shifted Chebyshev method. The solution is illustrated 
through detailed figures and tables. We analyze the system of Eqs. (1) 
by exploring various values of the parameters 𝑀 , 𝛼, and 𝛽, as well as 
the initial conditions 𝑠̃0, 𝑖0, and 𝑟0. Also, we denote

𝑒𝑇𝑁,𝑆 = ‖𝑆256 − 𝑆𝑁‖∞ = sup
𝑡∈𝛺𝑇

|𝑆256(𝑡) − 𝑆𝑁 (𝑡)| 𝑅𝑇𝑁,𝑆 (𝑡) =
|𝑆(𝑡) − 𝑆𝑁 (𝑡)|

|𝑆(𝑡)|
,

𝑒𝑇𝑁,𝐼 = ‖𝐼256 − 𝐼𝑁‖∞ = sup
𝑡∈𝛺𝑇

|𝐼256(𝑡) − 𝐼𝑁 (𝑡)| 𝑅𝑇𝑁,𝑆 (𝑡) =
|𝐼(𝑡) − 𝐼𝑁 (𝑡)|

|𝐼(𝑡)|
,

𝑒𝑇𝑁,𝑅 = ‖𝑅256 − 𝑅𝑁‖∞=sup𝑡∈𝛺𝑇 |𝑅256(𝑡)−𝑅𝑁 (𝑡)| 𝑅𝑇𝑁,𝑆 (𝑡) =
|𝑅(𝑡) − 𝑅𝑁 (𝑡)|

|𝑅(𝑡)|
,

where 𝑆256, 𝐼256 and 𝑅256 are the reference solutions obtained using a 
high-resolution collocation method with 𝑁 = 256. The computations 
were carried out in Matlab on a system equipped with an Intel® Core™ 
i3-5010U CPU @ 2.10GHz and 4GB of RAM. The CPU times (in 
seconds) for different values of 𝑁 are reported. 

Test 1.  In this test, we apply the shifted Chebyshev method presented in 
Section 3 with different values of 𝑁 and 𝑇  to compute the numerical solution 
of a system where 𝑆 represents the number of susceptible individuals, 𝐼
represents the number of infected individuals, and 𝑅 represents the number 
of recovered individuals. The initial population values are 𝑆(0) = 20, 𝐼(0) =
15, and 𝑅(0) = 10. The infection rate is 𝛼 = 0.01, and the susceptibility rate 
is 𝛽 = 0.02.

In Tables  1–3, we present the numerical values of 𝑆, 𝐼 , and 𝑅 and 
relative errors obtained by applying our method with 𝑁 = 10 and 𝑇 = 1 at 
different time points 𝑡. These results are compared with those from [14,35]. 
Additionally, in Table  4, we display the maximum errors obtained by our 
method compared to those in [14] at 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, and 1.

Furthermore, in Fig.  1, the approximate solutions are plotted for 𝑁 = 10
in the interval [0, 1] (see Fig.  1(a)) and for 𝑁 = 32 in the interval [0, 365]
(see Fig.  1(b)). The obtained results confirm that our method provides 
accurate solutions and performs well even over large time intervals.

Test 2.  In this test, we set the infection rate to 𝛼 = 0.05 and the 
susceptibility rate to 𝛽 = 0.06. With these parameters, we obtain the 
reciprocal relative removal rate as

𝜇 = 𝛼
𝛽
= 5

6
.

The initial population values are 𝑆(0) = 20, 𝐼(0) = 15, and 𝑅(0) = 5 for 
the first case, while 𝑅(0) = 0 for the second case, as described in [14]. The 
problem was solved numerically for two scenarios: (1) 𝑇 = 1 with 𝑅(0) = 5
and (2) 𝑇 = 5 with 𝑅(0) = 0. The method proposed in [14] yields accurate 
results for 𝑇 = 1 but performs poorly for 𝑇 = 5.

By applying our method, we compute the 𝐿∞-errors of the differences 
between 𝑆  and 𝑆 , 𝐼  and 𝐼 , and 𝑅  and 𝑅  for 𝑅(0) = 5
256 𝑁 256 𝑁 256 𝑁

6 
and 𝑅(0) = 0, as summarized in Tables  6 and 7, respectively. The 
computations are performed for 𝑇 = 1, 10, 50 and 100 with different values 
of 𝑁 = 8, 16, 32, 64 and 128. Additionally, Table  5 provides the values of 
the maximum of 𝐼𝑁  and the absolute error between 𝐼𝑁  and the theoretical 
maximum 𝐼max, where

𝐼max = −6
5
ln
( 5
6

)

+ 35 − 6
5
ln(20) ≈ 30.423907139887959.

The approximate solutions are plotted in Fig.  2 for 𝑅(0) = 5, with 
𝑁 = 10 over the interval [0, 1] (see Fig.  2(a)) and 𝑁 = 128 over the interval 
[0, 100] (see Fig.  2(b)). Similarly, Fig.  3 shows the results for 𝑅(0) = 0, with 
𝑁 = 10 over [0, 1] (see Fig.  3(a)) and 𝑁 = 128 over [0, 100] (see Fig.  3(b)).

The obtained results demonstrate that our method is accurate for both 
small and large intervals, outperforming the reference method in [14] for 
the case of 𝑇 = 5.

Test 3.  In this test, we set the infection rate to 𝛼 = 0.0004 and the 
susceptibility rate to 𝛽 = 0.02. With these parameters, we obtain a reciprocal 
relative removal rate of 𝜇 = 𝛼

𝛽
= 0.02. The initial population values are 

𝑆(0) = 998, 𝐼(0) = 2, and 𝑅(0) = 0. In [15], this problem was numerically 
solved for 𝑇 = 365 days using the method described in the same reference. 
The results showed a maximum infected population of 𝐼max = 800, with the 
peak occurring on day 25, where time is measured in days. The study also 
provided results for 𝑇 = 365 days.

Here, by applying our method, we compute the 𝐿∞-errors of the differ-
ences between 𝑆256 and 𝑆𝑁 , 𝐼256 and 𝐼𝑁 , and 𝑅256 and 𝑅𝑁 , as summarized 
in Table  6. Additionally, Table  9 provides the values of the maximum of 𝐼𝑁
and the absolute error between 𝐼𝑁  and the theoretical maximum 𝐼max, where
𝐼max = −50 ln (0.02) + 1000 − 50 ln(998) ≈ 800.3134864558341.

This theoretical value serves as a benchmark for evaluating the accuracy of 
our numerical results.

Furthermore, the approximate solutions are plotted in Fig.  2, where 𝐼𝑁  is 
shown to reach its maximum value at a peak day 𝑡𝑝 ≈ 24.5194 for 𝑁 = 128
and 𝑇 = 40 (see Fig.  4(a)). The graphs of 𝑆, 𝐼 , and 𝑅 over the interval 
[0, 365] are also provided (see Fig.  4(b)). The obtained results demonstrate 
that our method is highly accurate more than the results in [15], particularly 
in predicting the maximum value of 𝐼 and the peak day. This accuracy 
holds consistently across both small and large time intervals, confirming the 
robustness of our approach.

Stability analysis

An essential aspect of any numerical method is its stability with 
respect to perturbations in data and discretization parameters. In the 
context of the proposed shifted Chebyshev spectral collocation method, 
we observed stable behavior across all test scenarios, including long-
time integrations and high-resolution discretizations. The numerical 
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Table 2
Comparison of 𝐼 at different values of 𝑡 with 𝑁 = 10 for Test  1, including relative errors.
 t Our method 𝑅𝑇𝑁,𝐼 (𝑡) Analytical solution Method in [14] Method in [35]  
 0 15.000000000000000 0.0 15.000000000000000 15.000000000000000 15.000000000000000 
 0.1 15.270151767750288 0.0 15.270151767750288 15.270151767750292 15.270151767739135 
 0.2 15.540493695580903 5.79e−16 15.540493695580912 15.540493695580912 15.540493694892319 
 0.3 15.810854891481981 5.69e−16 15.810854891481990 15.810854891481988 15.810854883914805 
 0.4 16.081063673364721 1.12e−15 16.081063673364739 16.081063673364731 16.081063632394240 
 0.5 16.350947966422424 1.35e−15 16.350947966422446 16.350947966422435 16.350947816046876 
 0.6 16.620335703006457 1.32e−15 16.620335703006479 16.620335703006461 16.620335271713763 
 0.7 16.889055223041751 1.89e−15 16.889055223041783 16.889055223041758 16.889054180356947 
 0.8 17.156935673000223 1.86e−15 17.156935673000255 17.156935673000223 17.156933450055682 
 0.9 17.423807401460902 2.82e−15 17.423807401460952 17.423807401460913 17.423803099002612 
 1 17.689502349313514 3.00e−15 17.689502349313567 17.689502349313525 17.689494638499998 
 CPU 0.06  
Table 3
Comparison of 𝑅 at different values of 𝑡 with 𝑁 = 10 for Test  1, including relative errors.
 𝑡 Our method 𝑅𝑇𝑁,𝑅(𝑡) Analytical solution Method in [14] Method in [35]  
 0 10.000000000000000 0.0 10.000000000000000 10.000000000000000 10.000000000000000 
 0.1 10.030270105889889 2.99e−16 10.030270105889892 10.030270105889885 10.030539859150000 
 0.2 10.061080733870693 1.19e−15 10.061080733870705 10.061080733870693 10.062158873200000 
 0.3 10.092432093535159 1.78e−15 10.092432093535177 10.092432093535157 10.094856197050001 
 0.4 10.124324051836009 2.27e−15 10.124324051836032 10.124324051836007 10.128630985599999 
 0.5 10.156756131902576 2.95e−15 10.156756131902606 10.156756131902574 10.163482393750002 
 0.6 10.189727512654991 3.24e−15 10.189727512655024 10.189727512654985 10.199409576399999 
 0.7 10.223237029218968 4.31e−15 10.223237029219012 10.223237029218968 10.236411688450001 
 0.8 10.257283174140378 4.48e−15 10.257283174140424 10.257283174140372 10.274487884800001 
 0.9 10.291864099394569 5.24e−15 10.291864099394623 10.291864099394564 10.313637320349999 
 1 10.326977619181896 5.73e−15 10.326977619181955 10.326977619181891 10.353859150000002 
 CPU 0.06  
Table 4
The 𝐿∞−errors for Test  1 with 𝑇 = 1.
 N ‖𝑆𝑁 − 𝑆∗

‖∞ ‖𝐼𝑁 − 𝐼∗‖∞ ‖𝑅𝑁 − 𝑅∗
‖∞  

 Our method [14] Our method [14] Our method [14] CPU 
 7 1.172e−12 2.202e−12 1.3074e−12 1.044e−11 1.7764e−13 2.065e−12 0.05 
 10 1.065e−13 9.948e−13 4.9738e−14 9.947e−14 5.8620e−14 6.394e−14 0.09 
Fig. 1. Graphical representation of the shifted Chebyshev approximate solution of 𝑆, 𝐼 and 𝑅.
Table 5
The maximum value of 𝐼𝑁 for Test  3.
 N 𝑆(0) = 20, 𝐼(0) = 15, and 𝑅(0) = 5 𝑆(0) = 20, 𝐼(0) = 15, and 𝑅(0) = 0

 𝐼𝑁,max |𝐼𝑁,max − 𝐼max| CPU 𝐼𝑁,max |𝐼𝑁,max − 𝐼max| CPU 
 8 30.42391082069724 3.68e−06 0.08 30.42391082069724 3.68e−06 0.09 
 16 30.42390715028353 1.04e−08 0.20 30.42390715028353 1.04e−08 0.19 
 32 30.42390713987995 8.00e−12 0.95 30.42390713987995 8.00e−12 0.57 
 64 30.42390713987995 8.00e−12 1.86 30.42390713987995 8.00e−12 1.98 
results displayed in Tables  1–9 and Figs.  1–4 confirm this: the computed 
solutions remain bounded and accurate even for large final times 
(e.g., 𝑇 = 100), and increasing the number of collocation points 𝑁 leads 
to consistent improvement in accuracy without introducing numerical 
7 
oscillations or divergence. Furthermore, the exponential decay of the 
𝐿∞-errors with respect to 𝑁 , as presented in Tables  4–9, illustrates 
the spectral convergence of the method. Such behavior is a strong 
indicator of both the stability and efficiency of the scheme. These 
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Table 6
The 𝐿∞−errors for Test  2 with 𝑆(0) = 20, 𝐼(0) = 15 and 𝑅(0) = 5.
 N 𝑇 = 1 𝑇 = 10

 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 
 8 4.99e−07 4.88e−07 1.51e−08 0.05 4.40e−01 0.05 
 16 1.05e−13 1.10e−13 1.78e−15 0.20 1.25e−03 1.25e−03 1.17e−04 0.11 
 32 7.11e−15 7.11e−15 1.78e−15 0.30 8.78e−08 8.95e−08 1.23e−09 0.31 
 64 7.11e−15 1.07e−14 4.44e−15 1.10 2.13e−14 2.49e−14 1.07e−14 1.01 
 128 1.07e−14 1.24e−14 4.44e−15 3.40 1.42e−14 2.13e−14 1.07e−14 3.75 
 N 𝑇 = 50 𝑇 = 100

 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 
 8  
 16 8.97e−01 0.16 9.05e−01 0.10 
 32 2.62e−03 3.03e−03 4.81e−04 0.29 6.52e−02 5.01e−02 1.47e−02 0.28 
 64 9.98e−07 1.09e−06 3.70e−08 0.97 8.83e−05 9.45e−05 4.93e−06 1.02 
 128 6.13e−14 7.82e−14 2.84e−14 3.84 6.06e−10 6.38e−10 9.54e−12 3.86 
Table 7
The 𝐿∞−errors for Test  2 with 𝑆(0) = 20, 𝐼(0) = 15 and 𝑅(0) = 0.
 N 𝑇 = 1 𝑇 = 10

 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 
 8 4.99e−07 4.88e−07 1.51e−08 0.06 4.40e−01 9.09e−01 0.05 
 16 1.05e−13 1.10e−13 6.66e−16 0.10 1.25e−03 1.25e−03 1.17e−04 0.10 
 32 7.11e−15 5.33e−15 1.33e−15 0.31 8.78e−08 8.95e−08 1.23e−09 0.29 
 64 1.07e−14 1.07e−14 1.55e−15 1.03 1.07e−14 2.13e−14 1.24e−14 1.01 
 128 7.11e−15 7.11e−14 4.44e−16 3.68 1.42e−14 2.84e−14 7.11e−15 3.66 
 N 𝑇 = 50 𝑇 = 100

 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 
 8  
 16 8.97e−01 0.11 9.05e−01 0.10 
 32 2.62e−03 3.03e−03 4.81e−04 0.31 6.52e−02 5.01e−02 1.47e−02 0.30 
 64 9.98e−07 1.09e−06 3.70e−08 1.04 8.83e−05 9.45e−05 4.93e−06 0.96 
 128 5.68e−14 7.82e−14 2.13e−14 3.78 6.06e−10 6.38e−10 9.51e−12 3.76 
Fig. 2. Graphical representation of the shifted Chebyshev approximate solution of 𝑆, 𝐼 and 𝑅.
results highlight the robustness and numerical stability of the proposed 
scheme under varying initial conditions and parameter regimes.

6. Conclusion

In this work, we presented an efficient and accurate numerical ap-
proach based on the SCP collocation method for solving the biological 
SIR system modeling COVID-19. The proposed technique transforms 
the original problem into a nonlinear Volterra integral equation, which 
is then approximated using SCPs. Rigorous analysis established the 
method’s convergence rate in the 𝐿∞-norm as (𝑁− 1

2−𝑚), where 𝑁 is 
8 
Table 8
The maximum values of 𝐼𝑁 for Test  3.
 N 𝐼𝑁,max |𝐼𝑁,max − 𝐼max| CPU 
 16 800.3021393820854 1.13e−02 0.18 
 32 800.3134864657228 9.89e−09 0.54 
 64 800.3134864558305 3.64e−12 1.62 
 128 800.3134864558304 3.64e−12 6.96 
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Fig. 3. Graphical representation of the shifted Chebyshev approximate solution of 𝑆, 𝐼 and 𝑅.
Fig. 4. Graphical representation of the shifted Chebyshev approximate solution of 𝑆, 𝐼 and 𝑅.
Table 9
The 𝐿∞−errors for Test  3.
 N 𝑇 = 1 𝑇 = 10

 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 
 8 1.14e−13 2.13e−14 1.36e−14 0.04 1.63e−03 1.55e−03 8.40e−05 0.04 
 16 1.14e−13 7.11e−15 4.49e−15 0.10 7.24e−10 7.12e−10 3.48e−11 0.11 
 32 1.14e−13 5.46e−14 3.80e−14 0.43 5.68e−13 3.55e−13 6.93e−14 0.31 
 64 1.14e−13 5.77e−15 3.77e−15 1.16 4.55e−13 2.70e−13 2.80e−14 1.03 
 128 1.14e−13 4.88e−15 2.49e−15 3.95 1.36e−12 1.22e−12 4.09e−14 3.98 
 N 𝑇 = 100 𝑇 = 200

 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 𝑒𝑇𝑁,𝑆 𝑒𝑇𝑁,𝐼 𝑒𝑇𝑁,𝑅 CPU 
 8  
 16  
 32  
 64 1.21e−03 1.12e−03 1.28e−04 1.01 3.57e−01 1.10 
 128 3.85e−10 3.83e−10 5.81e−12 4.25 4.54e−06 4.53e−06 1.43e−07 4.15 
the degree of the highest polynomial used and 𝑚 reflects the smoothness 
of the solution.

Through extensive numerical experiments, we demonstrated that 
the method outperforms existing schemes in both accuracy and com-
putational efficiency. Notably, it successfully captures key epidemio-
logical behaviors, such as the timing and magnitude of the infection 
peak, as well as the long-term decline in the infected population. 
For example, in Test  2, the computed maximum infected population 
𝐼max aligned precisely with theoretical predictions, underscoring the 
method’s reliability for critical decision-making during outbreaks.

Furthermore, the method remains robust over large time intervals 
(e.g., 𝑇 = 100), making it particularly valuable for long-term epidemic 
9 
forecasting and evaluating intervention strategies. Its sensitivity to 
parameters 𝛼 and 𝛽 also provides crucial insights into how transmission 
and recovery rates influence disease dynamics. These results highlight 
the method’s dual utility: as a high-precision computational tool and as 
a practical framework for public health modeling.

Overall, the shifted Chebyshev collocation method provides a ver-
satile and powerful approach for solving complex epidemic systems, 
combining rigorous theoretical foundations with practical applicability 
in real-world scenarios. Future research could explore its application 
to stochastic and multi dimensional fractional-order models, such as 
those analyzing the transmission dynamics of the COVID-19 pandemic, 
as discussed in [36,37].
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