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A B S T R A C T

The work studies some integrable properties and soliton type solutions of a non-autonomous Gardner equation
with damping and forcing terms. A bilinear form, a bilinear Bäcklund transformation and a Lax pair are
derived for the considered Gardner equation explicitly. 𝐾-Soliton solution with proper existence condition,
smooth positons, breathers and their interaction solutions are presented via the bilinear form. Moreover, the
amplitude as well as velocity of the soliton solutions are derived, and a first-order breather solution and a
second-order smooth positon are generated from the two-soliton solution. The interaction between a single-
breather solution and the single-soliton solution and the interaction of a second-order smooth positon and the
single-soliton solution are studied analytically, based on the three-soliton solution. Profiles of various types of
the obtained solutions and their interactions are illustrated graphically.
1. Introduction

The study of the dispersion of solitary waves in diverse nonlinear
systems has recently attracted a lot of attention. Soliton approaches
are widely applicable in many physics and engineering disciplines. In
a number of physical systems, the Korteweg–de Vries (KdV) equation,
or some of its relatives, has come to be recognized as a classic model
for the characterization of long waves with weak nonlinearity and
weak dispersion [1,2]. For example, internal waves of gravity in canals
with altering section widths [3,4], ion-acoustic waves in plasmas [5,6],
Bose–Einstein condensates in weakly interaction molecular gases, and
shallow water flows in canals and seas have all been studied using the
KdV equation and its variants with the quadratic nonlinearity [7,8].
Again, the modified KdV-type equations along with cubic nonlinearity
have emerged in areas like interfacial waves in a different-layer liquid
with changing depths [9] and Alfven waves in different plasma envi-
ronment [10,11]. One particular type of extended KdV equation, also
known as the Gardner equation, was created with the KdV quadratic
nonlinearity as well as the modified KdV cubic nonlinearity. It can refer
to charecterize the dust-acoustic waves in a dusty plasma [12], the
internal waves in organized shear flows in the sea or atmosphere [13],
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and the propagation of wave in a plasma environment consisting with
negative ions [14]. The Gardner model shows the rivalry between cubic
and quadratic nonlinearities, and dispersion. Based on the asymptotic
derivation, the Gardnar equation, defined as follows,

𝜒𝑡 + 𝐴𝜒𝜒𝑥 + 𝐵𝜒2𝜒𝑥 + 𝐶𝜒𝑥𝑥𝑥 = 0 (1)

can describe various events of fluid dynamics in different environments
well [1,2]. Here, the study of the dynamics of the basic localized
travelling waves of the Gardner model is the primary objective of the
current research. A lot of studies show how the extended KdV equation
has lately gained popularity as a framework for the explanation of
internal solitary waves in shallow waters [15–17].

Again, it is generally known that particle interactions produce a
damping impact to increase in any physical environment. There are
numerous more events that can result in dissipation in a dynamical
system, such as the resonant energy transfer between molecules and an
electrostatic wave in a plasma atmosphere. Investigations conducted
on space plasma revealed a considerable impact of various types of
outwardly induced damping on wave transmission in plasma environ-
ments [18–26]. Additionally, external forces may manifest themselves
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in certain circumstances, such as when flowing water crosses a bottom
topography or waves are produced by going ships [27,28]. In accor-
dance with the aforementioned factors, in this essay, we focus on the
subsequent non-autonomous Gardner having with external forcing and
damping which is presented as,

𝜒𝑡 + 𝐴𝜒𝜒𝑥 + 𝐵𝜒2𝜒𝑥 + 𝐶𝜒𝑥𝑥𝑥 + 𝐿𝜒 = 𝛬(𝑡). (2)

Here, the function 𝜒(𝑥, 𝑡) incorporates the space and time variables
𝑥 and 𝑡. The coefficients, 𝐴,𝐵 and 𝐶 represent the coefficients of
quadratic nonlinearity, cubic nonlinearity, and dispersion respectively,
whereas the damping and forcing coefficients are, respectively repre-
sented by 𝐿 and 𝛬(𝑡).

The most efficient method for locating various soliton solutions
using the dependent variable conversion and the traditional parameter
expansion is Hirota’s bilinear method [29,30]. On the grounds of
Bell polynomials [31], Lambert showed a compact and constructive
approach [32,33] for generating Lax pairs and bilinear Bäcklund trans-
formations (BTs) of some integrable systems. As a result of bilinear
BTs, it is possible to formulate new NLEE solutions based on the
existing ones [34]. Many times, the integrability of a nonlinear partial
differential equation can be determined in consequence of the Painlevé
property [35,36], Lax pair [37], and symmetries [38]. By virtue of a Lax
pair for a nonlinear system, a chain of integrable properties viz. Hamil-
tonian structures [39], infinitely many conserved quantities [40,41],
bi-Hamiltonian structures [42], and Darboux transformations [43], can
be shown. Hence, the AKNS scheme [44] is exercised to fabricate the
Lax pair of Eq. (2), and the integrability of the said system is claimed
under some constraints.

Recently, there has been increasing interest in observing more com-
plex nonlinear coherent structures, such as multi-solitons, multi-shocks,
breathers, lumps, and rogue waves, etc. [45–52] to nonlinear evolution
equations. For the nonlinear Maccari system, Ma et al. [53] investi-
gated the soliton resonances, soliton molecules, especially the V-type
and Y-type soliton molecules. In the Caudrey-Dodd-Gibbon equation, Li
and Ma [54] also show breathers, soliton molecules, soliton fusions and
fissions, and lump waves under constrained conditions. Furthermore,
they examined some parametric constraints of a (3 + 1)-dimensional
Geng equation [55] in consideration of hybrid soliton and breather
waves, solution molecules, and breather molecules. There is no doubt
that breathers as a localized periodic wave are of great significance
in water wave dynamics, ion-acoustic wave theory in plasma environ-
ment, optics, and biophysics, etc. In general, a breather is an unsteady
wave that travels in one direction [56,57]. It is additionally established
that the modified KdV and Gardner equations possess breather solutions
that correspond with breathing wave packets [58–62] in the event of
a positive cubic nonlinearity. Solitons and breathers work together to
define the asymptotics of the wave field. The breather solutions have
the same polarity as this family of solitons and have densities that
range from zero to the previously stated algebraic soliton. While the
interactions of two solitons with the same polarization were substan-
tially comparable to the instance for the KdV equation, Slyunyaev [61]
got the two-soliton solution for this case under some conditions, using
the Darboux transformation, and demonstrated that the interaction of
two solitons with opposing directions generated a few virtually distinct
characteristics. The main objective of this paper is to find explicit
features of the interaction between solitons and breathers.

In the year 1992, Matveev introduced the positon solution for the
KdV equation, an actual singular real solution of the KdV equation
that has remarkable relevance for quantum physical systems containing
supertransparent potentials [63]. As Matveev explained in the liter-
ature [64], the positons are analogous to solitons in that they are
slowly decreasing and oscillating solutions. Positons are in general
weakly localized solutions as opposed to solitons, which decay ex-
ponentially after mutual collisions, and two positons are stable even
after mutual collisions [65,66]. Recently, positons are studied pur-
2

posefully in diverse nonlinear equations or systems, viz. the extended
KdV equation [67], the Hirota-Satsuma coupled KdV system [68], etc.
It is interesting to note that, during a soliton-positon collision, the
soliton keeps its same shape, while a positon’s carrier wave and its
envelope both exhibit finite phase shifts [65,69]. It has the property of
being super reflectionless that positons slowly decay and are oscillating
solutions which arise in many completely integrable nonlinear partial
differential equations [70]. Spectral problems associated with positon
solutions have positive eigenvalues, embedded in continuous spec-
trums. Positon solutions many times remain singular ones for various
models, viz. the defocusing mKdV equation [71,72], the SG equa-
tion [73], and the Toda lattice [74]. Again, relations among solitons,
positons, and breathers are illustrated and studied in [75]. A number of
examples of 𝑛-pole solutions contain a smooth positon solution of 𝑛th-
order [76,77]. The finding of breather positons, which are essentially
a transition phase from higher-order breather waves to rogue waves, is
a highly important development [78].

To the very best of our understanding, there is no information in the
currently available research about multi-breathers, interacting between
breathers and solitons, or positon solutions in the occurrence of damped
and forced terms. The issue at hand is how to easily and swiftly extract
higher-level soften positons and breather positons through the general
𝑁-soliton solution. Specifically, we are attempting to obtain explicit
expressions for solitons and breathers’ interaction in this paper. We
address an extremely inventive limit method that gives second-order
smooth positons, higher-order smooth positons and breather positons
for Eq. (2). The article is arranged as follows:

In Section 2, a bilinear form, a bilinear Bäcklund transformation,
a Lax pair are constructed to check the integrability of Eq. (2) un-
der some constraint. Section 3 presents 𝐾-solitons which are derived
directly from the bilinear form of the said equation. The interactions
between breathers and solitons are derived from the 𝐾-soliton solution
in Section 4. In Section 5, using the 𝐾-soliton solution, smooth positons,
breathers positons, and soliton positons are achieved using an inven-
tive limit method. In Section 6, the interacting natures of breathers
and solitons, and the propagating properties of smooth positons, are
illustrated numerically, and significant effects of damping and forcing
terms are illustrated numerically with sincere care. Finally, the article
is concluded in Section 7.

2. Bilinear form, bilinear BT, and Lax pair

It is crucial to look for many soliton solutions to the non-autonomous
Gardner equation in order to comprehend many nonlinear elements
in various scientific domains. There are various methods for locating
numerous soliton solutions to nonlinear evolution equation problems.
Hirota’s approach is particularly appealing, because it is both elegant
and straightforward. It can also be used to obtain phase changes.
Here, we use Hirota’s method to determine exact solutions to the
non-autonomous Gardner equation [29].

2.1. Bilinear form

Using the transformation

𝜒 = 𝑅(𝑡)
([

ln 


]

𝑥
+ 𝜒0

)

+𝑀(𝑡), (3)

e get the following bilinear form, resulting from an application of the
ransformation to Eq. (2).
2
𝑥 ⋅  = 0, (4a)

[

𝐷𝑡 + 𝐶𝐷3
𝑥 + 𝑃 (𝑡)𝐷𝑥

]

 ⋅  = 0, (4b)

hich satisfies the conditions

𝑅(𝑡)2 = −6𝐶, 𝐴 = −2𝐵(𝜒0𝑅(𝑡) +𝑀(𝑡)), (5)

here 𝑅(𝑡), 𝑀(𝑡) and 𝑃 (𝑡) are given by

(𝑡) = 𝑠0𝑒
−𝐿𝑡, 𝑀(𝑡) = 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡,

2
𝑃 (𝑡) = 𝐴[𝑀(𝑡) + 𝜒0𝑅(𝑡)] + 𝐵[𝜒0𝑅(𝑡) +𝑀(𝑡)] . (6)
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Here 𝑠0 is chosen as an integrating constant. Further, if 𝐿 = 0 and
(𝑡) = 0, it is clear note that 𝜒 = 𝜒0 is a seed solution of Eq. (1),

in which 𝜒0 is a free real disturbance parameters. Again, if 𝐿 ≠ 0
and 𝛥(𝑡) ≠ 0, the seed solution of Eq. (2) can be presented as 𝜒 =
𝑠0𝑒−𝐿𝑡𝜒0+𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡. Now, a different form can be used to describe
the bilinear equations (4a)–(4b) of Eq. (2) as below,

1(𝐷𝑥, 𝐷𝑡, 𝐷
2
𝑥, 𝐷

3
𝑥, ..) ⋅  = 0, (7a)

2(𝐷𝑥, 𝐷𝑡, 𝐷
2
𝑥, 𝐷

3
𝑥, ..) ⋅  = 0, (7b)

here 1 in a function of 𝐷𝑥, 𝐷𝑡, 𝐷3
𝑥 and 2 in a function of 𝐷2

𝑥 without
onstant term. The remaining works dealt with conclusions about 1, 2,
, and 𝐾-soliton solution conditions that were formed utilizing these
ilinear equations (7a)–(7b).

.2. Bilinear BT

Now let us present a bilinear BT of the non-autonomous Gardner
quation. Assuming that (′,′) and (,) are two different solutions

of Eq. (2), we will consider the following:

𝑄1 = [𝐷2
𝑥(

′ ⋅ ′)]𝐺 − [𝐷2
𝑥(.)]

′′ = 0, (8a)

2 = [(𝐷𝑡 + 𝑃 (𝑡)𝐷𝑥 + 𝐶𝐷3
𝑥)

′.′] − [(𝐷𝑡 + 𝑃 (𝑡)𝐷𝑥 + 𝐶𝐷3
𝑥).𝐺]

′′ = 0.

(8b)

y considering

𝑥′ ⋅  = 𝜆1′, 𝐷𝑥 ⋅ ′ = 𝜆2′ (9)

here 𝜆1, 𝜆2 are arbitrary constants, we notice that they satisfy the first
quation 𝑄1 and from the second equation 𝑄2, we find

𝐷𝑡 + (𝑃 (𝑡) + 3𝜆1𝜆2)𝐷𝑥 +𝐷3
𝑥)

′ ⋅ = 0, (10a)

𝐷𝑡 + (𝑃 (𝑡) + 3𝜆1𝜆2)𝐷𝑥 +𝐷3
𝑥)

′ ⋅  = 0. (10b)

herefore, a bilinear BT for Eq. (2) becomes

𝑥′ ⋅  = 𝜆1′, (11a)

𝑥 ⋅ ′ = 𝜆2′, (11b)

𝐷𝑡 + (𝑃 (𝑡) + 3𝜆1𝜆2)𝐷𝑥 +𝐷3
𝑥)

′ ⋅ = 0, (11c)

(𝐷𝑡 + (𝑃 (𝑡) + 3𝜆1𝜆2)𝐷𝑥 +𝐷3
𝑥)

′ ⋅  = 0. (11d)

2.3. Lax pair

A Lax pair is often considered to ensure a kind of integrability of an
NLEE. The unique Laurent series solution to a partial differential equa-
tion can frequently be found when the equation is Painlevé integrable.
For a fully integrable system, a Hamiltonian structure, a Lax pair, and
an 𝑁-soliton solution always exist. In the current study, we assert that
Eq. (2) is completely integrable under the constraint:

𝐴 = −2𝐵𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, 𝐶 = −1
6
𝐵
(

𝑠0𝑒
−𝐿𝑡)2 , 𝜒0 = 0 (12)

he integrability of the system is claimed through the existence of a
ax pair with a nonautonomous term, where 𝛤 will be used to denote
he spectral eigenvalue. To build a Lax pair of Eq. (2), we launch the
unctions (𝑥, 𝑡, 𝛤 ), (𝑥, 𝑡, 𝛤 ),  (𝑥, 𝑡, 𝛤 ) in the AKNS [44] system, and

then a Lax pair of Eq. (2) can be presented as

𝜙𝑥 = 𝜙 and 𝜙𝑡 = 𝜙, (13)

where

 =

(

𝛤 𝜒(𝑥,𝑡)−𝑀(𝑡)
𝑅(𝑡)

𝜒(𝑥,𝑡)−𝑀(𝑡)
𝑅(𝑡) −𝛤

)

and  =
(

(𝑥, 𝑡, 𝛤 ) (𝑥, 𝑡, 𝛤 )
 (𝑥, 𝑡, 𝛤 ) −(𝑥, 𝑡, 𝛤 )

)

(14)
3

Here  and  are two 2 × 2 null-trace matrices, and the eigenvalue 𝛤
is independent of 𝑥 and 𝑡. In this equation, the function 𝜙 = (𝜙1, 𝜙2)𝑇 ,
pecifying the transpose of a matrix. (𝑥, 𝑡, 𝛤 ), (𝑥, 𝑡, 𝛤 ),  (𝑥, 𝑡, 𝛤 ), are
hree classes that are simultaneously enlarged with respect to 𝛤 as
ollows:

(𝑥, 𝑡, 𝛤 ) = 0(𝑥, 𝑡) +1(𝑥, 𝑡)𝛤 +2(𝑥, 𝑡)𝛤 2 +3(𝑥, 𝑡)𝛤 3 (15a)

(𝑥, 𝑡, 𝛤 ) = 0(𝑥, 𝑡) + 1(𝑥, 𝑡)𝛤 + 2(𝑥, 𝑡)𝛤 2 (15b)

(𝑥, 𝑡, 𝛤 ) = 0(𝑥, 𝑡) + 1(𝑥, 𝑡)𝛤 + 2(𝑥, 𝑡)𝛤 2 (15c)

here

0(𝑥, 𝑡) = 0, 1(𝑥, 𝑡) = 2𝐶
(

𝜒(𝑥, 𝑡) −𝑀
𝑠0𝑒−𝐿𝑡

)2
− 6𝐶 𝑀2

(𝑠0𝑒−𝐿𝑡)2
,

2(𝑥, 𝑡) = 0, 3(𝑥, 𝑡) = −4𝐶,

0(𝑥, 𝑡) = 2𝐶
(

𝜒(𝑥, 𝑡) −𝑀
𝑠0𝑒−𝐿𝑡

)3
− 6𝐶 𝑀2

(𝑠0𝑒−𝐿𝑡)2

(

𝜒(𝑥, 𝑡) −𝑀
𝑠0𝑒−𝐿𝑡

)

−𝐶
𝜒𝑥𝑥(𝑥, 𝑡)
𝑠0𝑒−𝐿𝑡

, 1(𝑥, 𝑡) = −2𝐶

𝜒𝑥(𝑥, 𝑡)
𝑠0𝑒−𝐿𝑡

, 2(𝑥, 𝑡) = −4𝐶
(

𝜒(𝑥, 𝑡) −𝑀
𝑠0𝑒−𝐿𝑡

)

,

0(𝑥, 𝑡) = 2𝐶
(

𝜒(𝑥, 𝑡) −𝑀
𝑠0𝑒−𝐿𝑡

)3
− 6𝐶 𝑀2

(𝑠0𝑒−𝐿𝑡)2

𝜒(𝑥, 𝑡) −𝑀
𝑠0𝑒−𝐿𝑡

)

− 𝐶
𝜒𝑥𝑥(𝑥, 𝑡)
𝑠0𝑒−𝐿𝑡

, 1(𝑥, 𝑡) = 2𝐶
𝜒𝑥(𝑥, 𝑡)
𝑠0𝑒−𝐿𝑡

,

2(𝑥, 𝑡) = −4𝐶
(

𝜒(𝑥, 𝑡) −𝑀
𝑠0𝑒−𝐿𝑡

)

.

It is straightforward to prove that the zero curvature equation holds:

𝑡 − 𝑥 + −  = 0, (16)

with the chosen matrices,  and  . Because Eq. (16) yields three
equations if we substitute  and  there,
𝜕𝛤
𝜕𝑡

− 𝜕
𝜕𝑥

+ 𝑝 − 𝑝 = 0, (17)
𝜕𝑝
𝜕𝑡

− 𝜕
𝜕𝑥

+ 2𝛤 − 2𝑝 = 0, (18)

𝜕𝑝
𝜕𝑡

− 𝜕
𝜕𝑥

+ 2𝑝 − 2𝛤 = 0, (19)

where 𝑝 = 𝜒(𝑥,𝑡)−𝑀
𝑠0𝑒−𝐿𝑡

and 𝑀 =𝑀(𝑡) = 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡.
Eq. (17) is satisfied identically and the presence of non-

utonomous Gardner equation (2), follows directly from Eqs. (18) and
19). So in the sense of existence of lax pairs Eq. (2) becomes integrable.
n the meantime, it should be noted that Eq. (2) is integrable only if the
onstraint (12) is met. This implies non-autonomous Gardner equation
ith constant coefficients are inherently integrable, unlike variable

oefficient Gardner equation [79] and variable coefficient extended
orced KdV equation [80], which have restrictive constraints.

. Multi-soliton solutions

The propagating characteristics of solitons are expressed in three
egments in this section. At first, a multi-soliton solution is derived
or the present system employing Hirota’s bilinear method. Recently,
a in Refs. [30,81] provided a generalized algorithm to demonstrate

he Hirota N-soliton condition of bilinear equations in (1+1), (2+1)-
imensions. Also, the N-soliton solution existence requirements for the
-KdV equation are included in Ref. [82]. The authors’ goal in proving

he 𝐾-soliton condition for the non-autonomous Gardner equation is
he focus of the current section. We introduce the following expansion
o find the K-soliton solutions for Eq. (2),

= 1 + 𝜖1 + 𝜖22 + 𝜖33 +⋯ + 𝜖𝑘𝑘, (20a)

= 1 + 𝜖1 + 𝜖22 + 𝜖33 +⋯ + 𝜖𝑘𝑘 (20b)
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𝑘, 𝑘 (𝑘 = 1, 2, 3,… , 𝐾) are the real functions of 𝑥, 𝑡 and 𝜖 is a
real constant. When expansion (20) is substituted into the bilinear
equation (4), and the coefficients on each power order of 𝜖 are allowed
to disappear, we obtain,

𝜖0 ∶ (𝐷2
𝑥)1.1 = 0 (21a)

(

𝐷𝑡 + 𝐶𝐷3
𝑥 + 𝑃 (𝑡)𝐷𝑥

)

1.1 = 0 (21b)
1 ∶ (𝐷2

𝑥)(1.1 + 1.1) = 0 (21c)
(

𝐷𝑡 + 𝐶𝐷3
𝑥 + 𝑃 (𝑡)𝐷𝑥

)

(1.1 + 1.1) = 0 (21d)

𝜖2 ∶ (𝐷2
𝑥)(2.1 +1.1 + 1.2) = 0 (21e)

(

𝐷𝑡 + 𝐶𝐷3
𝑥 + 𝑃 (𝑡)𝐷𝑥

)

(2.1 +1.1 + 1.2) = 0 (21f)

𝜖3 ∶ (𝐷2
𝑥)(3.1 +2.1 +1.2 + 1.3) = 0 (21g)

(

𝐷𝑡 + 𝐶𝐷3
𝑥 + 𝑃 (𝑡)𝐷𝑥

)

(3.1 +2.1 +1.2 + 1.3) = 0 (21h)
.

.

.

3.1. 1-soliton solution

To obtain the one-solution for Eq. (2), we truncate the formulas (20)
to 1 and 1 based on the differential equation theory and Hirota’s
D-operators properties. Now, setting

1 = 𝑒𝜓1 , 1 = 𝑟1𝑒
𝜓1 , 𝜓1 = 𝐴1𝑥 +𝑤1𝑡 − 𝑖

𝜋
2
+ 𝜉01 (22)

here 𝑟1, 𝐴1, 𝑤1, and 𝜉01 are all nonzero constants. Replacing expres-
ions (22) to Eqs. (21c)–(21d), we obtain

1 = −1, 𝑤1 = −
[

𝑃 (𝑡)𝐴1 + 𝐶𝐴3
1
]

. (23)

y making this decision and taking into account that 2 = 0, 2 = 0,
he coefficient of 𝜖2 is satisfied automatically by using the dispersion
elation (23). We derive the first-order solution to Eq. (2) by setting
= 1, without losing generality as,

(𝑥, 𝑡) = 𝑠0𝑒
−𝐿𝑡

[ 𝜕
𝜕𝑥
𝑙𝑛

( 1 + 𝑒𝜓1
1 − 𝑒𝜓1

)]

+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (24)

where 𝜓1 = 𝐴1𝑥 −
[

𝑃 (𝑡)𝐴1 + 𝐶𝐴3
1
]

𝑡 − 𝑖 𝜋2 + 𝜉01 and 𝑃 (𝑡) = 𝐴[𝑀(𝑡) +
0𝑅(𝑡)] + 𝐵[𝜒0𝑅(𝑡) + 𝑀(𝑡)]2. If the parameters 𝐴1, 𝜉01 are taken as
eal constants, the first-order solution is called a one-soliton solution.
he dispersion relation 1(𝐴1) = 0 i.e., relation (23) is all that the
ne-soliton requirement requires as well.

.1.1. Amplitude and velocity of solitons
Now, we define the amplitude of the soliton solution as

𝑚𝑝
𝑠
= 𝑠0𝐴1𝑒

−𝐿𝑡 +𝑀(𝑡). (25)

he amplitude is almost unchanged during its propagation and the
ypical face of the solitary waves is depicted as

1𝑥 =
[

𝑃 (𝑡)𝐴1 + 𝐶𝐴3
1
]

𝑡 + 𝜉01 . (26)

n the spatial direction, the wave velocity is given as follows:

𝑠 =
[

𝑃 (𝑡) + 𝐶𝐴2
1
]

+ 𝑡𝑃 ′(𝑡). (27)

particular case
In consideration of 𝛬(𝑡) = 𝑔0cos(𝛺𝑡), the amplitude of the one-

soliton solution is derived as

𝐴𝑚𝑝
𝑠
= 𝑠0𝐴1𝑒

−𝐿𝑡 + 𝑔0
𝐿cos(𝛺𝑡) +𝛺sin(𝛺𝑡)

𝐿2 +𝛺2
, (28)

and the velocity reads

𝑉𝑠 = 𝐵
[

𝜒2(𝑠0𝑒−𝐿𝑡)2 + 2𝑠0𝑔0𝑒−𝐿𝑡
𝐿cos(𝛺𝑡) +𝛺sin(𝛺𝑡)

𝜒0
4

0 𝐿2 +𝛺2
+𝑔20

(

𝐿cos(𝛺𝑡) +𝛺sin(𝛺𝑡)
𝐿2 +𝛺2

)2
]

+

𝐴𝑔0
𝐿cos(𝛺𝑡) +𝛺sin(𝛺𝑡)

𝐿2 +𝛺2
+ 𝐶𝐴2

1 + 𝑡𝑃
′(𝑡), (29)

here

(𝑡) = 𝐵
[

𝜒2
0 (𝑠0𝑒

−𝐿𝑡)2 + 2𝑠0𝑔0𝑒−𝐿𝑡
𝐿cos(𝛺𝑡) +𝛺sin(𝛺𝑡)

𝐿2 +𝛺2
𝜒0

+𝑔20

(

𝐿cos(𝛺𝑡) +𝛺sin(𝛺𝑡)
𝐿2 +𝛺2

)2
]

+

𝐴[𝑔0
𝐿cos(𝛺𝑡) +𝛺sin(𝛺𝑡)

𝐿2 +𝛺2
+ 𝜒0𝑠0𝑒−𝐿𝑡]. (30)

Here, 𝑔0 and 𝛺 respectively designate the amplitude and frequency
f an external force. Finally, the velocity of a solitary wave is des-
gnated as 𝑉𝑠 that presents the size and the direction of the spatial
irection’s propagation. The magnitude as well as the sign of the
elocity contribute important roles to govern the wave dynamics by
ixing the speed and direction of the wave.

Figs. 1(a) and 1(b) show that the magnitudes of the forcing (𝑔0)
nd damping (𝐿) terms have a significant impact on the velocities
f the solitons. As expected, faster wave velocities are produced by
igher values of 𝑔0, whereas slower wave velocities are produced by
igher levels of the damping component (see, Fig. 1(c)). The damped
nd forced soliton amplitudes (Fig. 1(d)–1(f)) play a similar role to the
oliton velocity.

.2. 2-soliton solution

We trim the formulas (20) to 2 and 2 and the set given below to
reate the 2-soliton solution for Eq. (2),

1 = 𝑒𝜓1 + 𝑒𝜓2 , 2 = 𝑐12𝑒
𝜓1+𝜓2 , (31a)

1 = 𝑟1𝑒
𝜓1 + 𝑟2𝑒𝜓2 , 2 = 𝑐12𝑒

𝜓1+𝜓2 , (31b)

1 = 𝐴1𝑥 +𝑤1𝑡 − 𝑖
𝜋
2
+ 𝜉01 , (31c)

𝜓2 = 𝐴2𝑥 +𝑤2𝑡 − 𝑖
𝜋
2
+ 𝜉02 . (31d)

By replacing Eqs. (31) in Eqs. (21c)–(21f), and considering the coeffi-
cient of 𝜖 and 𝜖2, provides the results

𝑟𝑖 = −1, 𝑤𝑖 = −
[

𝑃 (𝑡)𝐴𝑖 + 𝐶𝐴3
𝑖
]

, 𝑐12 =
(𝐴1 − 𝐴2)2

(𝐴1 + 𝐴2)2
𝑖 = 1, 2. (32)

he 2-soliton requirement is given by the coefficient 𝜖3 as,

∑

𝜎=±1
(

2
∏

𝑟=1
𝜎𝑟)2(𝜎1𝑤1 + 𝜎2𝑤2, 𝜎1𝐴1 + 𝜎2𝐴2)2(𝜎1𝐴1 − 𝜎2𝐴2) = 0 (33)

here

2(𝜎1𝑤1 + 𝜎2𝑤2, 𝜎1𝐴1 + 𝜎2𝐴2) = (𝜎1𝐴1 + 𝜎2𝐴2)2, (34)

2(𝜎1𝐴1 − 𝜎2𝐴2) = (𝜎1𝐴1 − 𝜎2𝐴2)2. (35)

hus, it is confirmed there exist always a 2-soliton solution for the non-
utonomous Gardner equation (2) under the condition (33). Thus, the
econd-order solution can be gained (when 𝜖 = 1) by substituting

= 1 + 𝑒𝜓1 + 𝑒𝜓2 +
(𝐴1 − 𝐴2)2

(𝐴1 + 𝐴2)2
𝑒𝜓1+𝜓2 , (36a)

= 1 − (𝑒𝜓1 + 𝑒𝜓2 ) +
(𝐴1 − 𝐴2)2

(𝐴1 + 𝐴2)2
𝑒𝜓1+𝜓2 , (36b)

𝑗 = 𝐴𝑗𝑥 −
[

𝑃 (𝑡)𝐴𝑗 + 𝐶𝐴3
𝑗

]

𝑡 − 𝑖 𝜋
2
+ 𝜉0𝑗 , 𝑗 = 1, 2, (36c)

into 𝜒(𝑥, 𝑡) = 𝑠 𝑒−𝐿𝑡
[

𝜕 𝑙𝑛((𝑥,𝑡) )
]

+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡.
0 𝜕𝑥 (𝑥,𝑡)
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Fig. 1. Profiles of single soliton’s velocity, when 𝛬(𝑡) = 𝑔0cos(𝛺𝑡), 𝜒0 = 0.1, 𝐵 = 3, 𝐴1 = 0.5, 𝑡 = 5, 𝑠0 = 0.5, 𝛺 = 1.5.
w

I

.3. 3-soliton solution

Here, our objective is to obtain a 3-soliton for Eq. (2) by truncating
he expression (20) to 3 and 3. The third-order auxiliary function 
nd  yields the following form when 𝜖 = 1 is taken into account,

= 1 + 𝑒𝜓1 + 𝑒𝜓2 + 𝑒𝜓3 + 𝑐12𝑒𝜓1+𝜓2 + 𝑐13𝑒𝜓1+𝜓3

+ 𝑐23𝑒𝜓2+𝜓3 + 𝑐12𝑐13𝑐23𝑒𝜓1+𝜓2+𝜓3 , (37a)
= 1 − (𝑒𝜓1 + 𝑒𝜓2 + 𝑒𝜓3 ) + 𝑐12𝑒𝜓1+𝜓2

+ 𝑐13𝑒𝜓1+𝜓3 + 𝑐23𝑒𝜓2+𝜓3 − 𝑐12𝑐13𝑐23𝑒𝜓1+𝜓2+𝜓3 , (37b)

𝑗 = 𝐴𝑗𝑥 −
[

𝑃 (𝑡)𝐴𝑗 + 𝐶𝐴3
𝑗

]

𝑡 − 𝑖 𝜋
2
+ 𝜉0𝑗 ,

𝑐𝑖𝑗 =
(𝐴𝑖 − 𝐴𝑗 )2

(𝐴𝑖 + 𝐴𝑗 )2
, 𝑖 < 𝑗, 𝑗 = 1, 2, 3. (37c)

Generally, for the case of (37) with the required conditions (5) and (6),
we have discovered several sorts of interaction structures between three
riple-solitons. In order to achieve a third-order soliton solution, equa-
tions from (37) can be substituted into 𝜒(𝑥, 𝑡) = 𝑠0𝑒−𝐿𝑡

[

𝜕
𝜕𝑥 𝑙𝑛(

(𝑥,𝑡)
(𝑥,𝑡) )

]

+
−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡. If all the parameters 𝐴1, 𝐴2, 𝐴3 and 𝜉01 , 𝜉

0
2 , 𝜉

0
3 are taken

s real constants, the corresponding third-order solution becomes a
-soliton in addition to the three soliton condition:
∑

=±1
1(𝜎1𝑤1 + 𝜎2𝑤2 + 𝜎3𝑤3, 𝜎1𝐴1 + 𝜎2𝐴2 + 𝜎3𝐴3)2(𝜎1𝐴1 − 𝜎2𝐴2) ×

2(𝜎2𝐴2 − 𝜎3𝐴3)2(𝜎1𝐴1 − 𝜎3𝐴3) = 0 (38)

where

2(𝜎1𝐴1 − 𝜎2𝐴2) = (𝜎1𝐴1 − 𝜎2𝐴2)2,2(𝜎2𝐴2 − 𝜎3𝐴3)

= (𝜎2𝐴2 − 𝜎3𝐴3)2, 2(𝜎1𝐴1 − 𝜎3𝐴3) =

(𝜎1𝐴1 − 𝜎3𝐴3)2, 1(𝜎1𝑤1 + 𝜎2𝑤2 + 𝜎3𝑤3, 𝜎1𝐴1 + 𝜎2𝐴2 + 𝜎3𝐴3)

= (𝜎1𝑤1 + 𝜎2𝑤2 + 𝜎3𝑤3) + 𝐶(𝜎1𝐴1 + 𝜎2𝐴2 + 𝜎3𝐴3)3

+𝑃 (𝑡)(𝜎1𝐴1 + 𝜎2𝐴2 + 𝜎3𝐴3). (39)

3.4. K-soliton solution

Similarly, in accordance with Hirota’s bilinear method using the
5

bilinear equations (4a)–(4b), the K-soliton solution of Eq. (2) is the
following:

𝜒
𝐾
(𝑥, 𝑡) = 𝜒(𝑥, 𝑡) = 𝑠0𝑒

−𝐿𝑡
[

𝜕
𝜕𝑥
𝑙𝑛

(

(𝑥, 𝑡)
(𝑥, 𝑡)

)]

+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (40)

here

 =
∑

𝑑=0,1
𝑒𝑥𝑝

( 𝐾
∑

𝑟<𝑠
𝑑𝑟𝑑𝑠𝑀𝑟𝑠 +

𝐾
∑

𝑟=1
𝑑𝑟𝜓𝑟

)

, (41a)

 =
∑

𝑑=0,1
(−1)

∑

𝑟 𝑑𝑟𝑒𝑥𝑝

( 𝐾
∑

𝑟<𝑠
𝑑𝑟𝑑𝑠𝑀𝑟𝑠 +

𝐾
∑

𝑟=1
𝑑𝑟𝜓𝑟

)

, (41b)

𝜓𝑟 = 𝐴𝑟𝑥 −
[

𝑃 (𝑡)𝐴𝑟 + 𝐶𝐴3
𝑟
]

𝑡 − 𝑖 𝜋
2
+ 𝜉0𝑟 , (41c)

𝑐𝑟𝑠 = 𝑒𝑟𝑠 =
(𝐴𝑟 − 𝐴𝑠)2

(𝐴𝑟 + 𝐴𝑠)2
, 1 ≤ 𝑟 < 𝑠 ≤ 𝐾, (41d)

with

𝑃 (𝑡) = 𝐴[𝑀(𝑡) + 𝜒0𝑅(𝑡)] + 𝐵[𝜒0𝑅(𝑡) +𝑀(𝑡)]2. (42)

n this soliton, 𝑟, 𝑠 are assumed to have values of 1, 2,… , 𝐾, where 𝐾 de-
notes the soliton number and 𝜉0𝑟 the phase constants. Moreover, ∑𝑑=0,1
and ∑

𝑟<𝑠 express the summation to the conceivable combinations of
𝑑 = 0, 1 (𝑟, 𝑠 = 1, 2,… , 𝐾). The real constants 𝜉0𝑟 (𝑟 = 1, 2,… , 𝐾) are
arbitrarily taken.

We shall demonstrate that a 𝐾-soliton solution (41a)–(41b) exists
for the Hirota bilinear equation (7a)–(7b), if and only if,

∑

𝜎=±1
1(

𝑛
∑

𝑟=1
𝜎𝑟𝒘𝒓,

𝑛
∑

𝑟=1
𝜎𝑟𝑨𝒓)

𝑛
∏

𝑟<𝑠
2(𝜎𝑟𝑨𝒓 − 𝜎𝑠𝑨𝒔) = 0, 𝐟𝐨𝐫 𝑛 = 1, 3, 5,… ≤ 𝐾

(43)

and

∑

𝜎=±1
(
𝑛

∏

𝑟=1
𝜎𝑟)2(

𝑛
∑

𝑟=1
𝜎𝑟𝒘𝒓,

𝑛
∑

𝑟=1
𝜎𝑟𝑨𝒓)

𝑛
∏

𝑟<𝑠
2(𝜎𝑟𝑨𝒓−𝜎𝑠𝑨𝒔) = 0, 𝐟𝐨𝐫 𝑛 = 2, 4, 6,… ≤ 𝐾

(44)

where

1(
𝑛
∑

𝑟=1
𝜎𝑟𝒘𝒓,

𝑛
∑

𝑟=1
𝜎𝑟𝑨𝒓) = (𝜎1𝑤1 + 𝜎2𝑤2 +⋯ + 𝜎𝑛𝑤𝑛) + 𝐶(𝜎1𝐴1 + 𝜎2𝐴2 +⋯ + 𝜎𝑛𝐴𝑛)3 +

𝑃 (𝑡)(𝜎1𝐴1 + 𝜎2𝐴2 +⋯ + 𝜎𝑛𝐴𝑛), (45)
 (𝜎 𝑨 − 𝜎 𝑨 ) = (𝜎 𝐴2 − 𝜎 𝐴2)2, (46)
2 𝑟 𝒓 𝑠 𝒔 𝑟 𝑟 𝑠 𝑠
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2(
𝑛
∑

𝑟=1
𝜎𝑟𝒘𝒓,

𝑛
∑

𝑟=1
𝜎𝑟𝑨𝒓) = (𝜎1𝐴1 + 𝜎2𝐴2 +⋯ + 𝜎𝑛𝐴𝑛)2, (47)

where ∑

𝜎=±1 is the sum of all types of conceivable combinations of 𝜎𝑖
each 𝜎𝑖 takes 1 or −1), and ∏𝑛

𝑟<𝑠 is the product of all types of probable
ombinations of the 𝑛 elements.

It is evident that for 𝑛 = 1, the identity (43) clearly holds and for
= 2, the identity (44) holds also. We will now demonstrate these iden-

ities, (43) and (44). Let us consider the left-hand side of Eq. (43), and
q. (44) as 𝐻1(𝐴1, 𝐴2,… , 𝐴𝑛) and 𝐻2(𝐴1, 𝐴2,… , 𝐴𝑛) respectively. The
erms 𝐻1 and 𝐻2 are discovered to have the following characteristics:

(𝑖) The polynomial 𝐻1 is symmetric as well as homogeneous.
(𝑖𝑖) if 𝐴1 = 𝐴2 then 𝐻1(𝐴1, 𝐴2,… , 𝐴𝑛) = 2(2𝐴1)2

∏𝑛
𝑟=3(𝐴

2
1 − 𝐴

2
𝑟 )

2𝐻1
(𝐴3, 𝐴4,… , 𝐴𝑛).

(𝑖𝑖𝑖) The polynomial 𝐻2 is also symmetric and homogeneous.
(𝑖𝑣) if 𝐴1 = 0, 𝐻2 = 0.
(𝑣) if 𝐴1 = 𝐴2 then 𝐻2(𝐴1, 𝐴2,… , 𝐴𝑛) = −2(2𝐴1)2

∏𝑛
𝑟=3(𝐴

2
1 −

𝐴2
𝑟 )

2𝐻2(𝐴3, 𝐴4,… , 𝐴𝑛).
For 𝑛 = 1, the identity (43) is simply verified. Assume now that

𝑛 − 1 is the limit of the identity. After that, it is shown that using the
properties (𝑖), (𝑖𝑖), 𝐻1 can be factored by a homogeneous polynomial of
degree 2𝑛(𝑛 − 1) as,
𝑛
∏

𝑟<𝑠
(𝐴2

𝑟 − 𝐴
2
𝑠 )

2, (48)

which, is symmetric too. However, Eq. (43) demonstrates that the
degree of 𝐻1 is 𝑛(𝑛 − 1) + 3 (which is less than 2𝑛(𝑛 − 1) for 𝑛 > 1).
The identity has been already established and 𝐻1 must be zero for 𝑛.

Now, for 𝑛 = 2, the identity (44) can be easily confirmed. Assume
that the identity is valid for 𝑛−2. Eventually, we discover that 𝐻2 may
be factored by a symmetric homogeneous polynomial
𝑛
∏

𝑟=1
𝐴𝑟

𝑛
∏

𝑟<𝑠
(𝐴2

𝑟 − 𝐴
2
𝑠 )

2. (49)

of degree 𝑛2 by utilizing the properties (𝑖𝑣), (𝑣), and (𝑣𝑖). In contrast,
Eq. (44) reveals that the degree of 𝐻2 is 𝑛(𝑛 − 1) + 2. Therefore, the
identity has been established and 𝐻2 must be zero for 𝑛. It follows from
this that the Hirota bilinear equation (41a)–(41b) has the 𝐾-soliton
solution, suggesting that the non-autonomous Gardner equation does
as well.

4. Breather, breather-soliton interaction solution from 𝑲-soliton
solution

From the 𝐾-soliton solution (40), we explore breathers and breather-
soliton; finally, their complicated interacting behaviour is demon-
strated through numerical graphs and figures.

4.1. 1-order breather solution from a two-soliton solution

To find a 1-order breather solution from the previous 2-soliton
solution, we consider

𝐴1 = 𝑝1 + 𝑖𝑞1, 𝐴2 = 𝑝1 − 𝑖𝑞1, 𝜉01 = 𝜉011 + 𝑖𝜉
0
12, 𝜉

0
2 = 𝜉011 − 𝑖𝜉

0
12. (50)

Now, the functions  and  in Eq. (36) are expressed as

 = 1 + 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 , (51a)

 = 1 − 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 , (51b)

11 = 𝑝1𝑥 − (𝑃 (𝑡)𝑝1 + 𝐶(𝑝31 − 3𝑝1𝑞21 ))𝑡 + 𝜉
0
11, (51c)

𝜓12 = 𝑞1𝑥 − (𝑃 (𝑡)𝑞1 + 𝐶(3𝑝21𝑞1 − 𝑞
3
1 ))𝑡 + 𝜉

0
12, (51d)
6

v

where 𝜉011, 𝜉
0
12 being real constants. Then, we have the first-order

breather solution:

𝜒
𝑏𝑟
= 𝑠0𝑒

−𝐿𝑡
[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (52)

here ,  are determined by (51a), (51b), respectively.
The parameters are chosen in a realistic manner, i.e., 𝑝1 ≠ 0, and

xp(𝑐12) > 1, and thus, the one-breather solution can be generated.
imilarly, a general breather can also be obtained; in particular, the
eriod of the one-breather in the 𝑥-direction is 2𝜋

𝑞1
. On the other

hand, the breather propagating in the (𝑥, 𝑡)-plane is localized 𝑡-direction
nd periodically occurs in the 𝑥-direction. Accordingly, we assert the
reather solution of Eq. (52) has a periodic oscillating localized wave
rofile moving with the speed

𝑏𝑟 = (𝑃 (𝑡) + 𝐶(3𝑝21 − 𝑞
2
1 ))𝑡 + 𝑡𝑃

′(𝑡). (53)

.2. Interaction between 1-order breather and 1-soliton

The interaction solution between a 1-order breather and a 1-soliton
o the non-autonomous Gardner equation can be derived from a 3-
oliton solution by setting the parameters as follows:

1 = 𝑝1+𝑖𝑞1, 𝐴2 = 𝑝1−𝑖𝑞1, 𝜉01 = 𝜉011+𝑖𝜉
0
12, 𝜉

0
2 = 𝜉011−𝑖𝜉

0
12 and 𝐴3 = (a constant).

(54)

Substituting these into Eq. (37), one can obtain the corresponding
interaction solution to the non-autonomous Gardner equation:

𝜒
𝑏𝑟−𝑠

= 𝑠0𝑒
−𝐿𝑡

[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (55)

here

= 1 + 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 + 𝑒𝜓3−𝑖

𝜋
2

−
𝑞21
𝑝21

[

(𝑝21 − 𝐴
2
3 + 𝑞

2
1 )

2 + 4𝑞21𝐴
2
3
]2

[

(𝑝1 + 𝐴3)2 + 𝑞21
]4

𝑒2𝜓11+𝜓3−𝑖
3𝜋
2 +

2

(

(𝑝21 − 𝐴
2
3 + 𝑞

2
1 )

2 − 4𝑞21𝐴
2
3
)

[

(𝑝1 + 𝐴3)2 + 𝑞21
]2

cos(𝜓12)𝑒𝜓3+𝜓11−𝑖𝜋

−
8𝑞1𝐴3(𝑝21 − 𝐴

2
3 + 𝑞

2
1 )

[

(𝑝1 + 𝐴3)2 + 𝑞21
]2

sin(𝜓12)𝑒𝜓3+𝜓11−𝑖𝜋 , (56a)

= 1 − 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 − 𝑒𝜓3−𝑖

𝜋
2

+
𝑞21
𝑝21

[

(𝑝21 − 𝐴
2
3 + 𝑞

2
1 )

2 + 4𝑞21𝐴
2
3
]2

[

(𝑝1 + 𝐴3)2 + 𝑞21
]4

𝑒2𝜓11+𝜓3−𝑖
3𝜋
2 +

2

(

(𝑝21 − 𝐴
2
3 + 𝑞

2
1 )

2 − 4𝑞21𝐴
2
3
)

[

(𝑝1 + 𝐴3)2 + 𝑞21
]2

cos(𝜓12)𝑒𝜓3+𝜓11−𝑖𝜋

−
8𝑞1𝐴3(𝑝21 − 𝐴

2
3 + 𝑞

2
1 )

[

(𝑝1 + 𝐴3)2 + 𝑞21
]2

sin(𝜓12)𝑒𝜓3+𝜓11−𝑖𝜋 , (56b)

ith

𝜓11 = 𝑝1𝑥 − (𝑃 (𝑡)𝑝1 + 𝐶(𝑝31 − 3𝑝1𝑞21 ))𝑡 + 𝜉
0
11, (57a)

𝜓12 = 𝑞1𝑥 − (𝑃 (𝑡)𝑞1 + 𝐶(3𝑝21𝑞1 − 𝑞
3
1 ))𝑡 + 𝜉

0
12, (57b)

𝜓3 = 𝐴3𝑥 −
(

𝑃 (𝑡)𝐴3 + 𝐶𝐴3
3
)

𝑡 + 𝜉03 . (57c)

nd 𝜉011, 𝜉
0
12 being constants.

.3. Interaction structures between solitons and breathers

In this section, from the solution (41) with Eq. (42) and 𝐾 = 4, using
arious types of breather-solitons interacting with solitons, we are able
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t
b
a
a

 = 1 + 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) + 2𝑒𝜓31−𝑖

𝜋
2 cos(𝜓32) −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 −

𝑞22
𝑝22
𝑒2𝜓31−𝑖𝜋 + 𝑐12𝑐34

(𝑙2 + 𝑙22)
2(𝑙2 + 𝑙21)

2

(𝑘𝑘1)4

𝑒2𝜓11+2𝜓31−𝑖2𝜋 +
𝑙2 − 𝑙22
𝑘2

2cos(𝜓12 + 𝜓31)𝑒𝜓11+𝜓31−𝑖𝜋 +
𝑙2 − 𝑙21
𝑘21

2cos(𝜓12 − 𝜓32)𝑒𝜓11+𝜓31−𝑖𝜋+

𝑐12

[

2
(𝑙2 + 𝑙1𝑙2)2 − (𝑙𝑙2 − 𝑙𝑙1)2

(𝑘𝑘1)2
cos(𝜓32) − 4

(𝑙2 + 𝑙1𝑙2)(𝑙𝑙2 − 𝑙𝑙1)
(𝑘𝑘1)2

sin(𝜓32)
]

𝑒2𝜓11+𝜓31−𝑖
3𝜋
2 +

𝑐34

[

2
(𝑙2 + 𝑙1𝑙2)2 − (𝑙𝑙2 + 𝑙𝑙1)2

(𝑘𝑘1)2
cos(𝜓12) − 4

(𝑙2 − 𝑙1𝑙2)(𝑙𝑙2 + 𝑙𝑙1)
(𝑘𝑘1)2

sin(𝜓12)
]

𝑒𝜓11+2𝜓31−𝑖
3𝜋
2 −

4
𝑙𝑙2
𝑘2

sin(𝜓12 + 𝜓32)𝑒𝜓11+𝜓31−𝑖𝜋 − 4
𝑙𝑙1
𝑘21

sin(𝜓12 − 𝜓32)𝑒𝜓11+𝜓31−𝑖𝜋 , (61a)

 = 1 − 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) − 2𝑒𝜓31−𝑖

𝜋
2 cos(𝜓32) −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 −

𝑞22
𝑝22
𝑒2𝜓31−𝑖𝜋 + 𝑐12𝑐34

(𝑙2 + 𝑙22)
2(𝑙2 + 𝑙21)

2

(𝑘𝑘1)4

𝑒2𝜓11+2𝜓31−𝑖2𝜋 +
𝑙2 − 𝑙22
𝑘2

2cos(𝜓12 + 𝜓31)𝑒𝜓11+𝜓31−𝑖𝜋 +
𝑙2 − 𝑙21
𝑘21

2cos(𝜓12 − 𝜓32)𝑒𝜓11+𝜓31−𝑖𝜋−

𝑐12

[

2
(𝑙2 + 𝑙1𝑙2)2 − (𝑙𝑙2 − 𝑙𝑙1)2

(𝑘𝑘1)2
cos(𝜓32) − 4

(𝑙2 + 𝑙1𝑙2)(𝑙𝑙2 − 𝑙𝑙1)
(𝑘𝑘1)2

sin(𝜓32)
]

𝑒2𝜓11+𝜓31−𝑖
3𝜋
2 −

𝑐34

[

2
(𝑙2 + 𝑙1𝑙2)2 − (𝑙𝑙2 + 𝑙𝑙1)2

(𝑘𝑘1)2
cos(𝜓12) − 4

(𝑙2 − 𝑙1𝑙2)(𝑙𝑙2 + 𝑙𝑙1)
(𝑘𝑘1)2

sin(𝜓12)
]

𝑒𝜓11+2𝜓31−𝑖
3𝜋
2 −

4
𝑙𝑙2
𝑘2

sin(𝜓12 + 𝜓32)𝑒𝜓11+𝜓31−𝑖𝜋 − 4
𝑙𝑙1
𝑘21

sin(𝜓12 − 𝜓32)𝑒𝜓11+𝜓31−𝑖𝜋 , (61b)

Box I.
𝜓

a

𝑐

𝑘

A

4

t
t
e

𝜒

w

𝜓

𝜓

𝜓

𝜓

o generate several brand-new interaction structures. We examine how
reather-solitons interact with different types of solitons, by applying
complex conjugate condition technique. We select the fourth-order

uxiliary function  and  as

 = 1 +
4
∑

𝑖=1
𝑒𝜓𝑖 +

∑

1≤𝑖<𝑗≤4
𝑐𝑖𝑗𝑒

𝜓𝑖+𝜓𝑗 +
∑

1≤𝑖<𝑗<𝑘≤4
𝑐𝑖𝑗𝑘𝑒

𝜓𝑖+𝜓𝑗+𝜓𝑘 + 𝑐1234𝑒
∑4
𝑖=1 𝜓𝑖 ,

(58a)

 = 1 −
4
∑

𝑖=1
𝑒𝜓𝑖 +

∑

1≤𝑖<𝑗≤4
𝑐𝑖𝑗𝑒

𝜓𝑖+𝜓𝑗 −
∑

1≤𝑖<𝑗<𝑘≤4
𝑐𝑖𝑗𝑘𝑒

𝜓𝑖+𝜓𝑗+𝜓𝑘 + 𝑐1234𝑒
∑4
𝑖=1 𝜓𝑖 ,

(58b)

where, 𝑐𝑖𝑗 , 𝑗 = 1, 2, 3; 𝑐123 = 𝑐12𝑐13𝑐23, and 𝑐1234 = 𝑐12𝑐13𝑐14𝑐23𝑐24𝑐34 obey
the results (41d), respectively. By substituting (58) into Eq. (40), the
fourth-order solution is obtained for Eq. (2). For the fourth-order solu-
tion, there are two different sorts of combinations. Below, we discuss
two typical problems: (i) the presentation of a 2-breather through 4.3.1,
and (ii) 4.3.2 exploring interaction properties between a 1-breather and
a 2-soliton.

4.3.1. 2-Order breather solution
The 2-order breather type wave can be directly constructed from a

4-soliton solution by (42) with 𝐾 = 4. The fixed restrictive conditions
can be fulfilled. Similarly to Eq. (50) by taking advantage of the
substitution

𝐴1 = 𝑝1 + 𝑖𝑞1, 𝐴2 = 𝑝1 − 𝑖𝑞1, 𝐴3 = 𝑝2 + 𝑖𝑞2, 𝐴4 = 𝑝2 − 𝑖𝑞2,

𝜉01 = 𝜉011 + 𝑖𝜉
0
12, 𝜉

0
2 = 𝜉011 − 𝑖𝜉

0
12, 𝜉

0
3 = 𝜉031 + 𝑖𝜉

0
32, 𝜉

0
4 = 𝜉031 − 𝑖𝜉

0
32, (59)

we obtain the corresponding 2-breather solution:

𝜒
2𝑏𝑟

= 𝑠0𝑒
−𝐿𝑡

[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (60)

with (see Box I) where
7

𝜓11 = 𝑝1𝑥 − (𝑃 (𝑡)𝑝1 + 𝐶(𝑝31 − 3𝑝1𝑞21 ))𝑡 + 𝜉
0
11, (62a)

𝜓12 = 𝑞1𝑥 − (𝑃 (𝑡)𝑞1 + 𝐶(3𝑝21𝑞1 − 𝑞
3
1 ))𝑡 + 𝜉

0
12, (62b)

𝜓31 = 𝑝2𝑥 − (𝑃 (𝑡)𝑝2 + 𝐶(𝑝32 − 3𝑝2𝑞22 ))𝑡 + 𝜉
0
31, (62c)

32 = 𝑞2𝑥 − (𝑃 (𝑡)𝑞2 + 𝐶(3𝑝22𝑞2 − 𝑞
3
2 ))𝑡 + 𝜉

0
32, (62d)

nd

12 = −
𝑞21
𝑝21
, 𝑐34 = −

𝑞22
𝑝22
, 𝑐13 =

(𝑙 + 𝑖𝑙2)2

𝑘2
, 𝑐14 =

(𝑙 + 𝑖𝑙1)2

𝑘21
,

𝑐24 =
(𝑙 − 𝑖𝑙2)2

𝑘2
, 𝑐23 =

(𝑙 − 𝑖𝑙1)2

𝑘21
,

𝑙 = 𝑝21 − 𝑝
2
2 + 𝑞

2
1 − 𝑞

2
2 , 𝑙1 = 2(𝑞1𝑝2 + 𝑝1𝑞2), 𝑙2 = 2(𝑞1𝑝2 − 𝑝1𝑞2),

𝑘 = (𝑝1 + 𝑝2)2 + (𝑞1 + 𝑞2)2,

1 = (𝑝1 + 𝑝2)2 + (𝑞1 − 𝑞2)2. (63)

lso, 𝜉011, 𝜉
0
12, 𝜉

0
31, 𝜉

0
32, 𝑝1, 𝑞1, 𝑝2, 𝑞2 are arbitrary real constants.

.3.2. Interaction between a 1-order breather and 2-soliton
An interaction solution between a 1-breather and 2-soliton is ob-

ained by choosing 𝐴1 = 𝑝1 + 𝑖𝑞1, 𝐴2 = 𝑝1 − 𝑖𝑞1. Now, we determine
he 1-order breather and 2-soliton solution by substituting ,  in the
quation given below,

1𝑏𝑠𝑝
= 𝑠0𝑒

−𝐿𝑡
[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (64)

here (see Box II) with

11 = 𝑝1𝑥 −
[

𝑃 (𝑡)𝑝1 + 𝐶(𝑝31 − 3𝑝1𝑞21 )
]

𝑡 + 𝜉011, (66a)

12 = 𝑞1𝑥 −
[

𝑃 (𝑡)𝑞1 + 𝐶(−𝑞31 + 3𝑝21𝑞1)
]

𝑡 + 𝜉012, (66b)

3 = 𝐴3𝑥 −
[

𝑃 (𝑡)𝐴3 + 𝐶𝐴3
3
]

𝑡 + 𝜉03 , (66c)

4 = 𝐴4𝑥 −
[

𝑃 (𝑡)𝐴4 + 𝐶𝐴3
4
]

𝑡 + 𝜉04 , (66d)
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t

I
l
𝐾
𝐾
c

𝐾

T

I
b

𝐾

I
r

5
t

p
i

5

s

P

𝜉

 = 1 + 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) + 𝑒

𝜓3−𝑖
𝜋
2 + 𝑒𝜓4−𝑖

𝜋
2 −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 + 𝑐34𝑒𝜓3+𝜓4−𝑖𝜋 + 𝑒𝜓11+𝜓3−𝑖𝜋 [2𝑐131cos(𝜓12)−

2𝑐132sin(𝜓12)] + 𝑒𝜓11+𝜓4−𝑖𝜋
[

2𝑐141cos(𝜓12) − 2𝑐142sin(𝜓12)
]

+ 𝑐12[(𝑐2131 + 𝑐
2
132)𝑒

2𝜓11+𝜓3−𝑖
3𝜋
2 + (𝑐2141+

𝑐2142)𝑒
2𝜓11+𝜓4−𝑖

3𝜋
2 ] + 𝑐34𝑒

𝜓11+𝜓3+𝜓4−𝑖
3𝜋
2
[

2(𝑐131𝑐141 − 𝑐132𝑐142)cos(𝜓12) − 2(𝑐131𝑐142 + 𝑐132𝑐141)sin(𝜓12)
]

+ 𝑐12𝑐34(𝑐2131 + 𝑐
2
132)(𝑐

2
141 + 𝑐

2
142)𝑒

2𝜓11+𝜓3+𝜓4−𝑖2𝜋 , (65a)

 = 1 − 2𝑒𝜓11−𝑖
𝜋
2 cos(𝜓12) − 𝑒

𝜓3−𝑖
𝜋
2 − 𝑒𝜓4−𝑖

𝜋
2 −

𝑞21
𝑝21
𝑒2𝜓11−𝑖𝜋 + 𝑐34𝑒𝜓3+𝜓4−𝑖𝜋 + 𝑒𝜓11+𝜓3−𝑖𝜋 [2𝑐131cos(𝜓12)−

2𝑐132sin(𝜓12)] + 𝑒𝜓11+𝜓4−𝑖𝜋
[

2𝑐141cos(𝜓12) − 2𝑐142sin(𝜓12)
]

− 𝑐12[(𝑐2131 + 𝑐
2
132)𝑒

2𝜓11+𝜓3−𝑖
3𝜋
2 + (𝑐2141+

𝑐2142)𝑒
2𝜓11+𝜓4−𝑖

3𝜋
2 ] − 𝑐34𝑒

𝜓11+𝜓3+𝜓4−𝑖
3𝜋
2
[

2(𝑐131𝑐141 − 𝑐132𝑐142)cos(𝜓12) − 2(𝑐131𝑐142 + 𝑐132𝑐141)sin(𝜓12)
]

+ 𝑐12𝑐34(𝑐2131 + 𝑐
2
132)(𝑐

2
141 + 𝑐

2
142)𝑒

2𝜓11+𝜓3+𝜓4−𝑖2𝜋 , (65b)

Box II.
n



s



l
t

𝜒

w



and

𝑐12 = −
𝑞21
𝑝21
, 𝑐34 =

(𝐴3 − 𝐴4)2

(𝐴3 + 𝐴4)2
, 𝑐131 =

(𝑝21 − 𝐴
2
3 + 𝑞

2
1 )

2 − 4𝑞21𝐴
2
3

[(𝑝1 + 𝐴3)2 + 𝑞21 ]
2

,

𝑐141 =
(𝑝21 − 𝐴

2
4 + 𝑞

2
1 )

2 − 4𝑞21𝐴
2
4

[(𝑝1 + 𝐴3)2 + 𝑞21 ]
2

,

𝑐132 =
4𝑞1𝐴3(𝑝21 − 𝐴

2
3 + 𝑞

2
1 )

[(𝑝1 + 𝐴3)2 + 𝑞21 ]
2
, 𝑐142 =

4𝑞1𝐴4(𝑝21 − 𝐴
2
4 + 𝑞

2
1 )

[(𝑝1 + 𝐴4)2 + 𝑞21 ]
2
. (67)

We conclude through mathematical induction that the following is
rue based on the above results:

nference 1. By maintaining the parameters in complex conjugate re-
ations, it is possible to derive the high-order breather solution from the
-soliton solution (40). The 𝑚-order breather solution is specified by the
-soliton solution (40), if the parameters fulfil the following constraint
onditions.

= 2 𝑚, 𝐴𝑖 = 𝐴∗
𝑖+1, 𝜉

0
𝑖 = 𝜉0∗𝑖+1, 𝑖 = 1,… , 𝐾. (68)

he 𝐾-soliton solution then becomes the 𝑚-order breather solution.

nference 2. It is possible to derive interactive solutions between 𝑚-order
reather and 𝑘-soliton by letting

= 2 𝑚 + 𝑛, 𝐴2𝑚 = 𝐴∗
2𝑚−1, 𝜉

0
2𝑚 = 𝜉0∗2𝑚−1. (69)

n the above declaration, 𝐴2𝑚+𝑗 , 𝜉02𝑚+𝑗 , 𝑗 = 1, 2,… , 𝑘 are arbitrarily chosen
eal constants, in the expression of 𝐾-soliton solution (40).

. Positons, breather-positon interaction, positon-soliton interac-
ion solutions from 𝑲-soliton solution

This section explores smooth positons, positon-soliton and breather-
ositons using the 𝐾-soliton solution (40); finally, their complicated
nterplay is illustrated numerically.

.1. 2nd-order smooth positon from a two-soliton solution

Now, we utilize the following proposition for finding a second-order
mooth positon from a two-soliton solution,

roposition 1. If we set some of the parameters of Eq. (36) to be

0 = ln(−𝛼 ) + 𝜂0, 𝜉0 = ln
(𝛼 ) + 𝜂0, 𝐴 = 𝐴 + 𝛿, (70)
8

1 𝛿 1 2 𝛿 1 2 1
then taking limit as 𝛿 → 0 yields a 2nd-order smooth positon solution to the
on-autonomous Gardner equation (2):

𝜒2𝑠𝑝 = 𝑠0𝑒
−𝐿𝑡

[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (71a)

= 1 + 𝛼𝜕𝐴1
𝑒𝜃1−𝑖

𝜋
2 − 𝛼2

(2𝐴1)2
𝑒2𝜃1−𝑖𝜋 , (71b)

 = 1 − 𝛼𝜕𝐴1
𝑒𝜃1−𝑖

𝜋
2 − 𝛼2

(2𝐴1)2
𝑒2𝜃1−𝑖𝜋 , (71c)

with 𝜃1 = 𝐴1𝑥 − (𝑃 (𝑡)𝐴1 + 𝐶𝐴3
1)𝑡 + 𝜂

0
1 .

Proof. Utilizing Eq. (70),  in Eq. (36) is presented as

 = 1 − 𝛼
𝛿
(−𝑒𝜃1−𝑖

𝜋
2 + 𝑒𝜃2−𝑖

𝜋
2 ) − 𝑐12

𝛼2

𝛿2
𝑒𝜃1+𝜃2−𝑖𝜋 , (72)

where 𝜃𝑖 = 𝐴𝑖𝑥 − (𝑃 (𝑡)𝐴𝑖 + 𝐶𝐴3
𝑖 )𝑡 + 𝜂01 , 𝑖 = 1, 2, which represents the

emi-rational expression, when 𝛿 → 0:

= 1 − 𝛼𝜕𝐴1
𝑒𝜃1−𝑖

𝜋
2 − 𝛼2

(2𝐴1)2
𝑒2𝜃1−𝑖𝜋 . (73)

In a similar manner,  in Eq. (36) is transformed to

 = 1 + 𝛼𝜕𝐴1
𝑒𝜃1−𝑖

𝜋
2 − 𝛼2

(2𝐴1)2
𝑒2𝜃1−𝑖𝜋 . (74)

Hence, Eq. (71) is simply verified.

5.2. 3rd-order smooth positon from a three-soliton solution

To obtain a third-order smooth positon, we show the following
proposition by a similar argument to Proposition 1.

Proposition 2. If we choose the parameters of (37) as 𝜉01 = 𝜂01 +
n( 𝛼
𝛿2
), 𝜉02 = 𝜂01 + ln(−2𝛼

𝛿2
), 𝜉03 = 𝜂01 + ln( 𝛼

𝛿2
), 𝐴2 = 𝐴1 + 𝛿, 𝐴3 = 𝐴1 +2𝛿, then

aking limit as 𝛿 → 0 yields a smooth third-order position solution:

3𝑆𝑃
= 𝑠0𝑒

−𝐿𝑡
[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡 (75)

here

= 1 + 𝛼

(

(

𝜕𝜃1
𝜕𝐴1

)2
+
𝜕2𝜃1
𝜕𝐴2

1

)

𝑒𝜃1−𝑖
𝜋
2 − 8 𝛼3

(2𝐴1)6
𝑒3𝜃1−𝑖

3𝜋
2 +

𝛼2

2

(

4
𝜕2𝑐11
𝜕𝐴2

1

− 8
𝜕𝑐11
𝜕𝐴1

𝜕𝜃1
𝜕𝐴1

− 4𝑐11

(

𝜕𝜃1
𝜕𝐴1

)2
+ 𝑐11

𝜕2𝜃1
𝜕𝐴2

1

)

𝑒2𝜃1−𝑖𝜋 , (76a)

 = 1 − 𝛼

(

(

𝜕𝜃1
)2

+
𝜕2𝜃1

2

)

𝑒𝜃1−𝑖
𝜋
2 + 8 𝛼3

6
𝑒3𝜃1−𝑖

3𝜋
2 +
𝜕𝐴1 𝜕𝐴1
(2𝐴1)
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𝛼2

2

(

4
𝜕2𝑐11
𝜕𝐴2

1

− 8
𝜕𝑐11
𝜕𝐴1

𝜕𝜃1
𝜕𝐴1

− 4𝑐11

(

𝜕𝜃1
𝜕𝐴1

)2
+ 𝑐11

𝜕2𝜃1
𝜕𝐴2

1

)

𝑒2𝜃1−𝑖𝜋 , (76b)

ith 𝑐11 =
1

4𝐴2
1
.

.3. Interaction between a smooth positon and a soliton

roposition 3. By setting the parameters 𝜉01 = 𝜂01+ln(
−𝛼
𝛿 ), 𝜉02 = 𝜂01+ln(

𝛼
𝛿 ),

𝐴2 = 𝐴1 + 𝛿 in Eq. (37) and using the limit technique method as 𝛿 → 0,
e obtain the corresponding interaction solution between a smooth 2-positon
nd a 1-soliton:

2𝑠𝑝−1𝑠𝑜𝑙
= 𝑠0𝑒

−𝐿𝑡
[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (77)

here

= 1 + 𝛼𝑒𝜃1−𝑖
𝜋
2
𝜕𝜃1
𝜕𝐴1

+ 𝑒𝜓3−𝑖
𝜋
2 − 𝛼2

4𝐴2
1

𝑒2𝜃1−𝑖𝜋

+ 𝛼𝑒𝜓3+𝜃1−𝑖𝜋
[

𝜕𝑐13
𝜕𝐴1

+ 𝑐13
𝜕𝜃1
𝜕𝐴1

]

− 𝛼2

4𝐴2
1

𝑐213𝑒
2𝜃1+𝜓3−𝑖

3𝜋
2 , (78a)

 = 1 − 𝛼𝑒𝜃1−𝑖
𝜋
2
𝜕𝜃1
𝜕𝐴1

− 𝑒𝜓3−𝑖
𝜋
2 − 𝛼2

4𝐴2
1

𝑒2𝜃1−𝑖𝜋

+ 𝛼𝑒𝜓3+𝜃1−𝑖𝜋
[

𝜕𝑐13
𝜕𝐴1

+ 𝑐13
𝜕𝜃1
𝜕𝐴1

]

+ 𝛼2

4𝐴2
1

𝑐213𝑒
2𝜃1+𝜓3−𝑖

3𝜋
2 , (78b)

ith 𝜃1 = 𝐴1𝑥 −
[

𝑃 (𝑡)𝐴1 + 𝐶𝐴3
1
]

𝑡 + 𝜂01 , 𝜓3 = 𝐴3𝑥 −
[

𝑃 (𝑡)𝐴3 + 𝐶𝐴3
3
]

𝑡 +

𝜉03 , 𝑐13 =
(𝐴1−𝐴3)2

(𝐴1+𝐴3)2
.

The terms 𝜂0𝑖 and 𝑐𝑖𝑗 have already been defined in Proposition 1.
Again, with the exception of the computation step, the argument for
Proposition 3 is nearly identical to that for Proposition 1.

Inference 3. If the parameters given in Eq. (40) are assigned as follows:

𝐾 = 2 𝑚, 𝐴2 = 𝐴1 + 𝛿, 𝐴4 = 𝐴3 + 𝛿,… , 𝐴2𝑚 = 𝐴2𝑚−1 + 𝛿,

𝜉01 = 𝜂01 + ln
(

−𝛼
𝛿

)

, 𝜉02 = 𝜂01 + ln
(𝛼
𝛿

)

,… , 𝜉02𝑚 = 𝜂02𝑚−1 + ln
(𝛼
𝛿

)

, (79)

then, the 𝐾-soliton solution will yield a 𝑚 second-order smooth position
when 𝛿 → 0.

5.4. 2-order breather-positon solution

To obtain a second-order breather-positon solution from the 4-
soliton solution, we use the following proposition:

Proposition 4. If we consider some certain parameters of Eq. (58) as

𝐴2 = 𝐴1 + 𝛿, 𝐴4 = 𝐴3 + 𝛿, 𝜉01 = 𝜂01 + ln
(

−𝛼
𝛿

)

, 𝜉02 = 𝜂01 + ln
(𝛼
𝛿

)

,

𝜉03 = 𝜂03 + 𝑙𝑛
(

−𝛼
𝛿

)

, 𝜉04 = 𝜂03 + ln
(𝛼
𝛿

)

, (80)

nd take a limit as 𝛿 → 0, we can obtain a second-order breather-positon
olution to the non-autonomous Gardner equation as follows:

2𝑏𝑟−𝑠𝑝
= 𝑠0𝑒

−𝐿𝑡
[

ln 


]

𝑥
+ 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡𝛬(𝑡)𝑑𝑡, (81)

here

= 1 + 𝛼𝑒𝜃1−𝑖
𝜋
2
𝜕𝜃1
𝜕𝐴1

+ 𝛼𝑒𝜃3−𝑖
𝜋
2
𝜕𝜃3
𝜕𝐴3

− 𝛽2𝑐11𝑒2𝜃1−𝑖𝜋 − 𝛽2𝑐33𝑒2𝜃3−𝑖𝜋+

𝛼2
[

𝜕
𝜕𝐴1

𝜕𝑐13
𝜕𝐴3

+
𝜕𝑐13
𝜕𝐴1

𝜕𝜃1
𝜕𝐴1

+
𝜕𝑐13
𝜕𝐴1

𝜕𝜃3
𝜕𝐴3

+ 𝑐13
𝜕𝜃1
𝜕𝐴1

𝜕𝜃13
𝜕𝐴3

]

𝑒𝜃1+𝜃3−𝑖𝜋−

𝛼3𝑐11

(

2𝑐13
𝜕𝑐13
𝜕𝐴3

+ 𝑐213
𝜕𝜃3
𝜕𝐴3

)

𝑒2𝜃1+𝜃3−𝑖
3𝜋
2 −

𝛼3𝑐33

(

2𝑐13
𝜕𝑐13
𝜕𝐴1

+ 𝑐213
𝜕𝜃3
𝜕𝐴3

)

𝑒𝜃1+2𝜃3−𝑖
3𝜋
2 +

𝛼4𝑐 𝑐 𝑐4 𝑒2𝜃1+2𝜃3−𝑖2𝜋 , (82a)
9

11 33 13
 = 1 − 𝛼𝑒𝜃1−𝑖
𝜋
2
𝜕𝜃1
𝜕𝐴1

− 𝛼𝑒𝜃3−𝑖
𝜋
2
𝜕𝜃3
𝜕𝐴3

− 𝛽2𝑐11𝑒2𝜃1−𝑖𝜋 − 𝛽2𝑐33𝑒2𝜃3−𝑖𝜋+

𝛼2
[

𝜕
𝜕𝐴1

𝜕𝑐13
𝜕𝐴3

+
𝜕𝑐13
𝜕𝐴1

𝜕𝜃1
𝜕𝐴1

+
𝜕𝑐13
𝜕𝐴1

𝜕𝜃3
𝜕𝐴3

+ 𝑐13
𝜕𝜃1
𝜕𝐴1

𝜕𝜃13
𝜕𝐴3

]

𝑒𝜃1+𝜃3−𝑖𝜋+

𝛼3𝑐11

(

2𝑐13
𝜕𝑐13
𝜕𝐴3

+ 𝑐213
𝜕𝜃3
𝜕𝐴3

)

𝑒2𝜃1+𝜃3−𝑖
3𝜋
2 +

𝛼3𝑐33

(

2𝑐13
𝜕𝑐13
𝜕𝐴1

+ 𝑐213
𝜕𝜃3
𝜕𝐴3

)

𝑒𝜃1+2𝜃3−𝑖
3𝜋
2 +

𝛼4𝑐11𝑐33𝑐
4
13𝑒

2𝜃1+2𝜃3−𝑖2𝜋 , (82b)

with

𝜃1 = 𝐴1𝑥 − (𝑃 (𝑡)𝐴1 + 𝐶𝐴3
1)𝑡 + 𝜂

0
1 , 𝜃3 = 𝐴3𝑥 − (𝑃 (𝑡)𝐴3 + 𝐶𝐴3

3)𝑡 + 𝜂
0
3 ,

𝑐11 =
1

4𝐴2
1

, 𝑐33 =
1

4𝐴2
3

, 𝑐13 =
(𝐴1 − 𝐴3)2

(𝐴1 + 𝐴3)2
, 𝐴∗

3 = 𝐴1, 𝜂
0
1 = (𝜂03 )

∗.

The terms 𝐴𝑖 and 𝜂0𝑖 and the complex parameters 𝜂0𝑖 and 𝑐𝑖𝑗 are
already given in Proposition 1. It is pointed out that the proof for Propo-
sition 4 is almost identical to that of Proposition 1, and is omitted here.

6. Results and discussions

We will now talk about a few intriguing characteristics of the
presented 1-order breather, soliton-breather, and 2-order breather and
positons of the non-autonomous Gardner equation, by employing Hi-
rota’s bilinear approach. The properties that are discovered above can
be expressed physically in the following ways.

In Fig. 2(a), we see that 𝜒𝑏𝑟 evolves across a line which makes
constant angle with the 𝑥 and 𝑡 axes in the absence of damping

nd forcing (𝐿 = 0, 𝛥(𝑡) = 0). Fig. 2(b) and 2(c) clearly demonstrate
he impact of damping and forcing terms (periodic forcing component
𝛥(𝑡) = 𝑔0cos(𝛺𝑡))). From the visual presentation in Fig. 2(b), it is clear
hat the breather has lost its structure for damping effect as time passes.
n the other hand, a periodic nature is found on the background of

he wave structure in Fig. 2(c) because of acting of external forces,
hich also leads to destruct the smooth form of the breather. Fig. 3(a)–
(c) exhibit the propagation properties of a breather under an action of
yperbolic forcing and constant damping. Externally applied hyperbolic
orcing leads to formation of a kinky-breather type wave. In Fig. 3(b),
e see the significant impact of damping in the formation of a breather
n the hyperbolic background. To exhibit a clear visual presentation of
cting of external excitation, contour plots are drawn in Fig. 3(c).

We will further separate our discussion into two examples, solitons
f being depressed along with those of elevation, in order to provide an
ven greater overview of the phases of interactions that occur between
soliton and a breather. We select the first scenario (Fig. 4) as a

epresentative illustration of a breather heading to the left slamming
nto a depression soliton moving to the right. The breather can be
isualized immediately as two small hills on either side of a large
alley, with polarity switching after half a cycle. The soliton will
nitially crash with the ‘small hill’ on the left, leaving the central valley
early frozen. Despite each of the valleys properly merging, the soliton
nteractions in the middle valley occur via transaction identity after
raversing the minor hill on the left. When the centre valley ultimately
eparates, it moves slowly to the right as a depression soliton, while the
ntire remaining structure exhibits clearly defined oscillating aspects
nd moves to the left for a little respite. With the exception of a few
pecific phase alterations, the breather and the soliton maintain their
riginal identities through all these intermediary phases. In the absence
f damping and any kind of external excitation, the interaction of a
reather and a rarefactive soliton is presented in Fig. 4(a). However, the
tructure is significantly modified in Fig. 4(b), due to an act of damping.
n the other hand, combined effects of damping forcing terms are

ound in Fig. 4(b). A kinky-breather-soliton type wave is formed in
ig. 4(c) when a hyperbolic forcing term is acted. Additionally, we see a
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Fig. 2. The three dimensional graphs of 1-breather via solution (52), by considering 𝛬(𝑡) = 𝑔0cos(𝛺𝜏), 𝐴1 = 1 + 𝑖, 𝐴2 = 1 − 𝑖, 𝐵 = 2.5, 𝜉011 = 0, 𝜉012 = 0, 𝜒0 = 0.1, and (a) when

𝑔0 = 0.0, 𝐿 = 0, (b) when 𝑔0 = 0, 𝐿 = 0.05, 𝛺 = 1, (c) when 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1.
Fig. 3. The three dimensional graphs of 1-breather via solution (52), by considering 𝛬(𝑡) = 𝑔0sech2(𝛺𝑡), 𝐴1 = 1 + 𝑖, 𝐴2 = 1 − 𝑖, 𝐵 = 2.5, 𝜉011 = 0, 𝜉012 = 0, 𝜒0 = 0.1, and (a) when

𝑔0 = 0.3, 𝐿 = 0, (b) when 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1, (c) Contour plots of the corresponding Fig. 3(a).
Fig. 4. The three dimensional graphs of 1-breather-1-soliton solution, by considering : 𝐴1 = 1.2 + 𝑖, 𝐴2 = 1.2 − 𝑖, 𝐴3 = 1, 𝐵 = 2.5, 𝜉011 = 0, 𝜉012 = 0, 𝜉03 = 0, 𝜒0 = 0.1, and (a) when

𝑔0 = 0.0, 𝐿 = 0, (b) when 𝛬(𝑡) = 𝑔0cos(𝛺𝜏), and 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1.5, (c) when 𝛬(𝑡) = 𝑔0sech2(𝛺𝜏), and 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1.5.
diminishing tendency in the evolution of the breather structure because
of damping.

In Fig. 5(a)–5(c), a special type of periodic breather is studied.
Purely, an X-type breather is formed when a smooth space (in the
absence of damping and forcing terms) is considered (Fig. 5(a)). As
before, the breather loses its periodic structure in Fig. 5(b) and 5(c)
when an external excitation is performed along with a damping.

In Fig. 6(a)–6(c), we see the interaction of a breather and a rar-
efactive X-shaped soliton in the smooth as well as non smooth spaces.
10
Fig. 6(a)–6(c) show how the propagating properties vary when external
excitations in the form of trigonometric and hyperbolic forces act.
Under the action of trigonometric forces, the constant background
changes to be a periodic base whereas a kink type background appears
when hyperbolic forcing is proceed. Additionally, there is a significant
bend in the characteristic line of the soliton as well as the breather by
reason of the external excitations and dampings (Fig. 6(b) and 6(c)).

Fig. 7(a)–7(c) exhibit the 3D Profiles of 2nd-order smooth positon
solution of Eq. (71), under consideration of an external periodic force
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Fig. 5. The three dimensional graphs of 2-breather solution, by considering : 𝐴1 = 1.6 + 1.2𝑖, 𝐴2 = 1.6 − 1.2𝑖, 𝐴3 = 1.3 + 1.5𝑖, 𝐴4 = 1.3 − 1.5𝑖, 𝐵 = 2.5, 𝜉011 = 0, 𝜉012 = 0, 𝜉031 = 0, 𝜉032 =
0, 𝜒0 = 0.1, and (a) when 𝑔0 = 0.0, 𝐿 = 0, (b) when 𝛬(𝑡) = 𝑔0cos(𝛺𝜏) and 𝑔0 = 0.15, 𝐿 = 0.05, 𝛺 = 1.5, (c) when 𝛬(𝑡) = 𝑔0sech2(𝛺𝜏) and 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1.5.
Fig. 6. The three dimensional graphs of 1-breather-2-soliton solution, by considering : 𝐴1 = 1 + 𝑖, 𝐴2 = 1 − 𝑖, 𝐴3 = 1, 𝐴4 = 1.5, 𝐵 = 2.5, 𝜉011 = 0, 𝜉012 = 0, 𝜉03 = 0, 𝜉04 = 0, 𝜒0 = 0.1, and
(a) when 𝑔0 = 0.0, 𝐿 = 0, (b) when 𝛬(𝑡) = 𝑔0cos(𝛺𝜏) and 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1.5, (c) when 𝛬(𝑡) = 𝑔0sech2(𝛺𝜏) and 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1.5.
Fig. 7. 3D Profiles of two order smooth positon solution given by (71), by considering : 𝛬(𝑡) = 𝑔0cos(𝛺𝑡), 𝐴1 = 1.5, 𝐵 = 2.5, 𝜒0 = 0.1, 𝛼 = 1, 𝜂01 = 0.5, and (a) when 𝑔0 = 0.0, 𝐿 = 0,
(b) when 𝑔0 = 0, 𝐿 = 0.05, 𝛺 = 1, (c) when 𝑔0 = 0.3, 𝐿 = 0.05, 𝛺 = 1.
(𝛬(𝑡) = 𝑔0cos(𝛺𝑡)) with the adjacency of a damping. Fig. 7(a) presents a
smooth positon in a smooth background when damping and forcing are
all absent. In Fig. 7(b), the smoothness of the positon is affected due to
an act of damping and asymptotically the positon dies out. Additionally,
the direction of the positon remarkably changed because of a damping.
On the other hand, under the influence of periodic forces, a periodic
type of wave backdrop appears in Fig. 7(c). In an approximate ‘bound
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state’, a set of upward and downward waves move to the right (Fig. 8).
In the left far field, the upward wave follows the depressed wave,
but in the opposite right afar field, the order is inverted. Physically,
it is comparable to a breather with almost zero frequency. A dual
pole/two-positon solution and a 2-soliton are fundamentally different
from one another since the former’s peaks are spaced apart like the
logarithm of time 𝑡, making the separation distance almost constant.
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Fig. 8. 3D Profiles of third-order smooth positon solution given by (75), by considering : 𝛬(𝑡) = 𝑔0cos(𝛺𝑡), 𝐴1 = 1.5, 𝛼 = 1, 𝜂01 = 0.5, 𝐵 = 2.5, 𝜔 = 1.5, 𝜒0 = 0.1, and (a) when
𝑔0 = 0.0, 𝐿 = 0, (b) when 𝑔0 = 0, 𝐿 = 0.05, (c) when 𝑔0 = 0.3, 𝐿 = 0.05.
Fig. 9. Interaction profiles of two smooth positon and one soliton solution, by considering : 𝛬(𝑡) = 𝑔0cos(𝛺𝑡), 𝐴1 = 2, 𝐴3 = 1.5, 𝛼 = 1, 𝜂01 = 2, 𝐵 = 2.5, 𝜔 = 1.5, 𝜒0 = 0.1, and (a)
when 𝑔0 = 0.0, 𝐿 = 0, (b) when 𝑔0 = 0, 𝐿 = 0.05, (c) when 𝑔0 = 0.3, 𝐿 = 0.05.
The peaks of a 2-soliton arrangement will differ as the product of
the velocity difference and time. A similar pattern of obsession also
appears for the 3rd-order smooth position solution in Fig. 8(a)–8(c). It
is significant to note that a damping plays a significant part in both
of the aforementioned examples in bending the direction of positon.
The interactive wave profiles of a smooth 2-positons and a 1-soliton
solution are shown in Fig. 9(a)–9(c). The dampening effect in Fig. 9(b)
dulled the positon’s structural details. It is noteworthy to observe that
a dampening also aids in positioning the positon’s orientation. Fig. 9(c)
depicts the propagation of the positon on a periodic backdrop due to
the application of periodic forcing.

7. Conclusion

This article uses the traditional Hirota’s bilinear approach to present
a number of new analytic multi-solitonic, breather, and positon so-
lutions for the non-autonomous Eq. (2). Moreover, the integrability
of the non-autonomous Gardner equation is judged by means of its
Bäcklund transformation and Lax pair. The final outcomes can be
briefly summarized below,

• The integrability of the non-autonomous Gardner equation is
checked via the existence of Bäcklund transformation and Lax
pair under some constraint; and new integrability conditions are
derived.

• The 𝐾-soliton conditions are examined and a set of new analytic
𝐾-soliton solution for the presented bilinear Gardner system is
derived.
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• The corresponding breathers are straightforwardly constructed.
For a visual outlook of breathers and positons in the presented
bilinear system, some 3D graphs are presented.

• The numerical graphs demonstrate that a damping in the non-
autonomous Gardner framework leads to diminish the amplitude
as well as speed of the soliton, and in the asymptotic states the
soliton may dies out finally.

• Various external forces affect the foundation of a wave back-
ground; for instance, a trigonometric force can generate periodic
background, and the periodicity increases as the external force
strength increases. However, applying the hyperbolic forcing term
results in kink-type grounding, and as the magnitude of forcing
continues to increase, the height of the compact kink increases.
In some situations, damping and forcing involve bending the
direction of the soliton also.

• Several parameter constraints are applied to exploration of
breather waves originating from two-soliton solutions; further,
two-breathers emanated from four-soliton solutions. These waves
demonstrate some of their fascinating properties, such as soli-
ton interaction and soliton overlapping, through simulations of
solution wave profiles.

• The positon solution for the presented bilinear system is also
derived, and additionally, damping and forcing terms have a
considerable impact. A strong orientation in the direction of prop-
agation of the positon arises for an act of damping, whereas the
background of the positon is improved in a periodical structure
due to the excitation of the system.
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• Here, the crashes of a breather with an elevated soliton or a
depressed soliton are investigated. The ‘‘central valley’’ is seen
to either sustain resonances during the collision phase or be-
come ‘‘frozen’’ based on the direction of the colliding soliton
and the physical features of the breather, such as its frequency.
Such movements are incredibly time-dependent and will certainly
have a significant impact on the physical procedures that this
non-autonomous Gardner equation may simulate. Solitons of the
plateau type and formations resembling bores appear in this
domain. A few of the consequences of the present experiment is
the following claim, which may be shown by the dynamics of the
flow and concentration perturbations in a growing interior marine
tidal. The temporal and spatial variation that has been observed in
coastal internal soliton patterns is most likely caused by breathers
and their contact with solitons.

his research has shown that the bilinear Bäcklund transformation in
ombination with Hirota’s bilinear approach is an effective analytical
ool for solving a more general class of nonlinear evolution equations
n the domains of engineering and various scientific fields. Our findings
ight help to clarify the dynamic behaviour of positons and many other

omplicated non-autonomous solutions. The non-autonomous Gardner
quation is discussed and the findings are presented for the first time
n this paper. Its physical underpinning can be used to describe a
onlinear phenomenon that depends on it.
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