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Abstract 
This study derives exact analytical solutions for three forms of the nonlinear Schrödinger equation (NLSE) with multiplica-
tive noise in the Itô sense, using the double-variable expansion method. The selected models include a focusing-type NLSE 
(NLS+ ), a defocusing-type NLSE (NLS− ), and a complex cubic NLSE with a delta potential. Through an appropriate wave 
transformation, the stochastic partial differential equations are reduced to nonlinear ordinary differential equations, enabling 
systematic application of the expansion method. The framework, constructed via auxiliary functions from a second-order 
linear ordinary differential equation, facilitates closed-form traveling wave solutions. These include solitonic, periodic, hyper-
bolic, and rational/rogue-wave-type structures. The method demonstrates robustness in addressing the effects of dispersion, 
nonlinearity, localized interactions, and stochastic perturbations in a unified analytical framework. Graphical illustrations 
highlight the dynamic behavior of these solutions under various parameter regimes, including wave number, stochastic noise 
intensity, and spectral parameters. The derived expressions serve as valuable benchmarks for validating numerical solvers 
and understanding the modulation and stability of nonlinear wave structures under noise, with potential applications in 
fiber optics, quantum information, and photonic device modeling. The novelty of this work is the extension of deterministic 
expansion techniques to stochastic systems, which provides closed-form solutions that accurately capture noise-modulated 
dynamics. Unlike conventional approaches, such as the inverse scattering transform and Darboux, Bäcklund transformations, 
the proposed framework accommodates a broader class of nonlinear models and captures richer waveforms. These results 
reinforce both the theoretical significance and physical relevance of the method, offering practical benchmarks for advancing 
nonlinear wave research in noisy environments.
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1  Introduction

Partial differential equations (PDEs) are essential tools 
for modeling diverse physical, biological, and engineer-
ing phenomena involving continuous change. From mod-
eling fluid dynamics and heat conduction to predicting 
electromagnetic wave propagation and quantum behavior, 
PDEs form the backbone of theoretical modeling across 
the sciences. Nonlinear PDEs are especially important for 
capturing complex behaviors such as turbulence, soliton 
formation, pattern development, and chaos, which cannot 
be described using linear models (Hossain et al. 2024; 
Zafar et al. 2020; Akbar et al. 2021; Ashraf and Batool 
2024; Hossain et al. 2024).

The nonlinear Schrödinger equation (NLSE) is a foun-
dational pillar in the modeling of nonlinear wave propaga-
tion, arising in various fields, such as quantum mechanics, 

nonlinear optics, plasma physics, and Bose–Einstein con-
densation. It governs how wave packets evolve under the 
simultaneous influence of dispersion and nonlinearity, 
enabling the description of critical physical phenomena, 
such as solitons, modulational instability, and wave packet 
collapse. The significance of this equation goes far beyond 
pure mathematics, finding vital roles in the design and 
optimization of laser systems, fiber optics, and waveguides 
(Mirzazadeh et al. 2023; Alraddadi et al. 2024). With the 
increasing complexity of real-world systems, there is a 
growing need to account for environmental randomness 
and fluctuations. This has led to the emergence of the sto-
chastic nonlinear Schrödinger equation (SNLSE), which 
incorporates random perturbations typically modeled as 
multiplicative white noise within the Itô calculus frame-
work. The inclusion of stochastic effects is especially rel-
evant in optical fibers, quantum communication channels, 

Graphic abstract

Stochastic NLSE models
NLS+, NLS−, and

NLSE with δ-potential:
(iVt + Vxx ± 2γ|V|2V + σVβt = 0),

iVt + 1
2Vxx − αδV −

ρ|V|2V + αVβt = 0.

Wave transformation:
V(x, t) = ei(kx+ct+σβ(t))F (z),

z = x + vt.

Reduced determinis-
tic ODE of the form:
F ′′ + aF 3 + bF = 0.

Apply Double-
Variable Expansion:
F = a0 + a1Φ + b1Ψ,

Φ =
Q′

Q
, Ψ =

1
Q
.

Solutions and Applications:
Closed-form analytical solutions
obtained — trigonometric, hyper-
bolic, and rational (rogue) waves.
Applicable to optical solitons,
and photonic device modeling.

(a) Trigonometric solution for NLS+

(b) Hyperbolic solution for NLS−

(c) Rational solution for NLSE with
δ-potential.

Analytical optical soliton solutions for stochastic
NLSE models obtained via the double-variable
expansion method, illustrating trigonometric,

hyperbolic, and rational wave structures.
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and nanoscale devices, where noise influences both the 
shape and stability of waveforms (Alkhidhr 2023; Rehman 
et al. 2023; Shakeel et al. 2025). Exact solutions to these 
stochastic PDEs are valuable for both theoretical advances 
and practical applications. Such solutions can help explain 
the propagation of pulses in noisy environments, validate 
numerical simulations, and provide benchmark results for 
future theoretical models. However, solving nonlinear and 
stochastic PDEs analytically poses a significant challenge 
due to the coupling between nonlinearity and randomness. 
To address the analytical complexity of such nonlinear 
stochastic systems, a wide range of solution techniques 
have been developed, inverse scattering transform (Newell 
1980), Darboux transformation (Li et al. 2021), Bäcklund 
transformation (Mimura 1978), GERF and NEDA tech-
niques (Younas et al. 2022), and Painlevé analysis (Rizvi 
et al. 2021). In addition, several expansion-based tech-
niques have gained popularity for their algorithmic struc-
ture and broad applicability. These include the tanh-coth 
method (Wang et al. 2024), the Sardar subequation method 
(Hossain et al. 2024), the sine-cosine method (Paux et al. 
2025), the new generalized (G�

∕G) expansion method 
(Hossain et al. 2025), the improved Sardar subequation 
method (Hossain et  al. 2024; Younas et  al. 2023), the 
auxiliary equation method (Păuna 2024), Hirota Bilinear 
Method(Younas et al. 2022; Ismael et al. 2023; Az-Zo’bi 
et al. 2024; Ali et al. 2023), the modified generalized Ric-
cati equation mapping method (Hamad and Ali 2024), 
Jacobi elliptic expansion function method (Ahmed and 
Ali 2024), the generalized G�

∕G expansion method (Atas 
et al. 2023), and extended sinh-Gordon equation expansion 
method (Sulaiman et al. 2021; Younas et al. 2021), each 
relying on trial functions and nonlinear transformations to 
simplify the original PDE. The auxiliary equation method, 
in particular, reduces the problem to solving simpler ODEs 
(such as Bernoulli, Riccati, or elliptic equations), provid-
ing a structured path toward exact traveling wave or soliton 
solutions. These methods have been successfully applied 
to various deterministic and stochastic models, includ-
ing Korteweg–de Vries (KdV), sine-Gordon, Burgers, 
and Schrödinger-type equations (Al-Essa and ur Rahman 
2024; Ahmad and Aldwoah 2024; Al-Askar 2023; Butt 
et al. 2024). Despite their successes, the application of 
these methods to stochastic settings—especially those with 
multiplicative noise in the Itô sense—remains less devel-
oped, prompting the need for generalized frameworks like 
the double-variable expansion method.

Despite these advances, the application of existing deter-
ministic methods to stochastic NLSEs, particularly those 
driven by multiplicative noise in the Itô sense, remains 
limited. Most classical expansion-based approaches gener-
ate only restricted families of solutions and are not able to 

capture the full interplay between dispersion, nonlinearity, 
localized defects, and random perturbations. The motivation 
for the present work is therefore fourfold. First, stochastic 
NLSEs play a central role in describing pulse propagation 
in noisy optical fibers, quantum communication channels, 
and nonlinear photonic systems, but their analytical treat-
ment is still underdeveloped (Alkhidhr 2023; Shakeel et al. 
2025). Second, traditional methods, such as the inverse scat-
tering transform, Darboux and Bäcklund transformations, or 
expansion-based techniques (Newell 1980; Li et al. 2021; 
Wang et al. 2024; Păuna 2024), have been successful for 
deterministic cases but cannot systematically address noise-
modulated dynamics. Third, there is a strong need for a uni-
fied framework capable of producing diverse solution fami-
lies, including solitons, periodic waves, and rogue waves, 
which can also serve as benchmarks to validate numerical 
solvers (Hossain et al. 2024, 2025). Finally, the novelty 
of the double-variable function expansion method lies in 
introducing two auxiliary functions instead of one, thus sig-
nificantly broadening the class of obtainable solutions and 
extending deterministic expansion methods to stochastic 
contexts (Rasid et al. 2023; Al-Askar 2025).

The double-variable expansion method introduces two 
independent variables into the solution ansatz, usually rep-
resenting combinations of the traveling wave variable and an 
auxiliary function. This approach allows for the construction 
of broader solution families–including periodic, solitary, and 
kink-type waves—by effectively capturing the interaction 
of dispersion and nonlinearity in a noise-dominated envi-
ronment. Unlike single-variable techniques, the double-
variable expansion method accommodates more complex 
structures, making it ideal for studying wave behavior in 
higher-dimensional and stochastic settings (Rizvi et al. 2024; 
Hossain et al. 2024; Al-Askar 2025). In recent studies, the 
double-variable expansion method has proven effective in 
generating exact solutions for various stochastic systems, 
including generalized Schrödinger–Hirota, Sasa–Satsuma, 
and Ginzburg–Landau equations (Raza et al. 2024; Hossain 
et al. 2024; Al-Askar 2023; Butt et al. 2024). These applica-
tions highlight its utility in capturing the evolution of bright, 
dark, breather, and dromion solutions even under the influ-
ence of multiplicative white noise. Moreover, the method 
provides a systematic framework that can be adapted to both 
deterministic and stochastic nonlinear equations, bridging a 
critical gap in current analytical methodologies.

In this paper, we apply the double-variable expansion 
method to obtain novel closed-form solutions for a class of 
stochastic Schrödinger equations driven by multiplicative 
noise. Our aim is to explore how noise intensity, dispersion 
parameters, and nonlinear coefficients affect the resulting 
wave profiles. The solutions we obtained are expected to 
contribute to a better understanding of pulse dynamics in 
noisy optical media and potentially inform the design of 
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resilient optical systems and quantum information networks. 
The solutions derived herein also possess theoretical value 
in mathematical physics, where they can be used to test the 
accuracy of numerical solvers, explore stability regimes, and 
benchmark various noise-influenced dynamics. Furthermore, 
these analytical expressions offer visual and intuitive insight 
into how solitons and other nonlinear structures are modu-
lated by stochastic perturbations in real time.

The paper is structured to systematically develop and 
apply the double-variable expansion method to a class 
of stochastic nonlinear Schrödinger equations. Section 2 
introduces the specific form of the stochastic Schrödinger 
equation considered in this work, incorporating multiplica-
tive noise in the Itô sense and formulating it in a way suit-
able for analytical solution techniques. Section 3 provides 
a comprehensive overview of the double-variable expan-
sion method, detailing the necessary transformations, 
assumptions, and the structure of the trial function. In 
Sect. 4, we apply the expansion framework to derive exact 
solutions of the equation, supported by graphical illustra-
tions that showcase the waveforms for various parameter 
regimes. Section 5 discusses the physical significance of 
the obtained solutions, with an emphasis on their behav-
ior under stochastic perturbations, stability considera-
tions, and implications for applications in nonlinear opti-
cal systems. Finally, Sect. 6 summarizes the key findings, 
highlights the strengths and limitations of the employed 
method, and suggests avenues for future research in related 
stochastic nonlinear systems.

2 � Model equation

For the sake of simplicity, let us consider the three models 
of the nonlinear Schrödinger equations driven by multipli-
cative noise in the Itô sense as NLSEI. Initially, our focus 
is on the NLSEI presented in  Bhrawy et al. (2014), which 
is denoted as NLS+ . The NLS+ is given in  Bhrawy et al. 
(2014) is as follows:

Next, we have considered the NLSE labeled as NLS− which 
can be written as follows:

Here, � ∈ ℝ − {0} represents the nonlinear coefficient V(x, t) 
is a complex-valued function. The parameter � character-
izes the intensity of the stochastic perturbation. The term 
Vxx accounts for dissipative effects, while the nonlinear 
interaction is captured by ‖V‖2V . The noise component 

(2.1)iVt + Vxx + 2� |V |2V + �V�t = 0.

(2.2)iVt + Vxx − 2� |V |2V + �V�t = 0.

�t corresponds to the temporal derivative of the Brownian 
motion �(t).

We finally considered the NLSE forced by multiplica-
tive noise in the Ito sense labeled as the Complex Cubic 
NLSE with �-potential and given by Baskonus et al. (2018)

In this formulation, the parameters � , � , and � belong to the 
set ℝ − {0} , where � denotes the Dirac delta function cen-
tered at the origin. The delta interaction is termed attractive 
when 𝛼 < 0 , and repulsive when 𝛼 > 0 [44]. The stability 
of solutions to Eq. (1.3) was examined in Goodman et al. 
(2004), while the dynamics of the associated flow were 
explored in Holmer and Zworski (2007). A solution to the 
same model using the variational approach was provided 
in Fukuizumi et al. (2008). Notably, these studies considered 
the system without the influence of stochastic perturbations.

3 � The double‑variable function (8,Ψ) 
expansion process

Let us consider the double-variable function (Φ,Ψ) for the 
following second-order linear ordinary differential equation 
(Hossain et al. 2024; Rasid et al. 2023):

where

Then, we can obtain

where Φ� and Ψ� represent the first derivative Φ and Ψ respect 
to z. The solutions of Eq. 3.1 can be divided into three non-
intersecting cases for three different possible real values of 
r as follows:

Instance 1: If the value of � is positive, then all possible 
exact analytical solutions (EAS) of Eq. 3.1 are given by

with the condition

and �1 = A1
2
+A2

2.

Instance 2: On the contrary, if 𝜆 < 0 , then EASs of 
Eq. 3.1 are

(2.3)iVt +
1

2
Vxx − ��V − �|V|2V + �V�t = 0.

(3.1)Q
��

(z) + �Q(z) = �,

(3.2)Φ∶=
Q�

(z)

Q(z)
,Ψ∶=

1

Q(z)
.

(3.3)Φ
�

= −Φ
2
+ �Ψ − � and Ψ

�

= −ΦΨ,

(3.4)Q(z) = A1 sin

�
z
√
�

�
+A2 cos

�
z
√
�

�
+

�

�
,

(3.5)Ψ
2
=

�
(
Φ

2
− 2�Ψ + �

)
�2�1 − �2
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where

and �2 = A1
2
−A2

2.

Instance 3: Finally, for the zero value of � , Eq. 3.1 pro-
vides the following EASs:

with

4 � NLPDE to PDE

Let us consider the NLPDE as

where R is a polynomial in V and its partial derivatives. 
Consider the following wave transformation:

where � is the wave velocity. Now, using Eq. 4.2 in Eq. 4.1, 
we have the following ordinary differential equation:

Finally, let us consider that solution of Eq. 4.3 by double-
variable function expansion methods is given by

In this context, Φ and Ψ are defined as in Eq. 3.2, and the 
parameters a0, ai, bi for i = 1, 2, 3,… ,K  are treated as 
arbitrary constants. The value of the balance number K is 
determined through the application of the homogeneous bal-
ance method, leading to the explicit form of the solution 
presented in Eq. 4.4.

Substituting Eq. 4.4 into Eq. 4.3, and analyzing each of 
the three distinct cases previously outlined, the left-hand 
side of Eq. 4.3 transforms into a polynomial in Φ and Ψ , 
with coefficients expressed in terms of the arbitrary con-
stants. Importantly, the degree of Φ in this polynomial 
remains less than or equal to one.

(3.6)Q(z) = A1 sinh

�
z
√
−�

�
+A2 cosh

�
z
√
−�

�
+

�

�
,

(3.7)Ψ
2
=

−�
(
Φ

2
− 2�Ψ + �

)
�2�2 + �2

(3.8)Q(z) =
�

2
z2 +A1z +A2,

(3.9)Ψ
2
=

(
Φ

2
− 2�Ψ

)

A1
2
− 2�A2

.

(4.1)R(V,Vx,Vt,Vxx,Vtt,Vtx, ...) = 0,

(4.2)V(x, t) = V(z), z = x + vt,

(4.3)H(V,V
�

, vV
�

,V
��

, v2V
��

, vV
��

, ...) = 0.

(4.4)V(z) = a0 +

K∑
i=1

aiΦ
i
(z) +

K∑
i=1

biΦ
i−1

(z)Ψi
(z).

By setting the coefficients of all distinct monomial terms 
to zero, a system of algebraic equations involving the con-
stants a0, a1, b1, � , and b1 is obtained. This nonlinear sys-
tem is solved using symbolic computation (Mathematica), 
yielding specific parameter values. Substituting these values 
back into Eqs. 3.2, 4.2, and 4.4 yields the exact analytical 
solutions corresponding to each of the three considered 
scenarios.

5 � Analytical framework for constructing 
exact solutions of the Schrödinger 
equation

To derive closed-form solutions for the three stochastic non-
linear Schrödinger equations (NLSEs) considered in this 
study, we employ a systematic reduction procedure based on 
the double-variable function expansion method. This frame-
work allows for the analytical handling of nonlinearities and 
stochastic influences present in the equations.

5.1 � Reduction via wave transformation

We begin by applying a wave transformation to convert 
each nonlinear partial differential equation (PDE) into a 
corresponding ordinary differential equation (ODE). The 
transformation is given by

where p, r, and v are constants associated with wave number, 
frequency, and velocity, respectively, and �(t) denotes stand-
ard Brownian motion, modeling the stochastic perturbations 
in the Itô sense.

Substituting this transformation into each governing 
equation of NLS+ and NLS− yields the following reduced 
forms:

For the NLS+ model:

For the NLS− model:

For the NLSE with delta potential, the transformation is used

where � , � , � , and � are additional parameters arising from 
delta-type interactions and noise strength.

(5.1)V(x, t) = ei(kx+ct+��(t))F(z), z = x + vt,

(5.2)F��
(z) + 2�F3

(z) − (k2 + c)F(z) = 0, v = −2k.

(5.3)F��
(z) − 2�F3

(z) − (k2 + c)F(z) = 0, v = −2k.

(5.4)V(x, t) = ei(kx+ct+k+��(t))F(z), z = �(x − vt),

(5.5)
�2F��

(z) − 2�F3
(z) − (k2 + 2(c + ��))F(z) = 0, v = k,
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5.2 � Construction of the trial solution

Next, we determine the structure of the solution using the 
homogeneous balance principle. Balancing the highest-
order nonlinear and derivative terms reveals a balance 
number K = 1 . Hence, we propose the solution in the form

where Φ(z) and Ψ(z) are auxiliary functions defined as

and Q(z) satisfies the linear second-order ODE

5.3 � Solution strategy

Substituting the proposed solution into the reduced ODE 
yields a polynomial in Φ and Ψ , where each term is a 
function of the unknown constants. To determine these 
constants ( a0 , a1 , b1 , � , � , etc.), we set the coefficients of 
each distinct monomial to zero, resulting in a nonlinear 
system of algebraic equations (Hossain et al. 2024; Cinar 
et al. 2022).

This system is solved using symbolic computation soft-
ware such as Mathematica, allowing us to find consistent 
parameter sets under three distinct scenarios based on the 
sign of �:

Case I ( 𝜆 > 0 ): leads to trigonometric solutions,
Case II ( 𝜆 < 0 ): produces hyperbolic function-based 

solutions,
Case II ( � = 0 ): yields rational function solutions.
These analytical expressions provide a wide variety of 

wave profiles, including periodic, solitary, and rational 
structures. The derived solutions are presented in detail 
in the following subsections and interpreted in terms of 
their physical significance for optical systems under sto-
chastic effects.

6 � Analytical solutions for the three NLSE 
models

6.1 � Solutions to the NLS+ model

Having developed the necessary analytical framework 
using the double-variable expansion method, we now initi-
ate its application to the first model under consideration—
the nonlinear Schrödinger equation with a focusing-type 

(5.6)F(z) = a0 + a1Φ(z) + b1Ψ(z),

(5.7)Φ =
Q�

Q
, Ψ =

1

Q
,

(5.8)Q��
(z) + �Q(z) = �.

nonlinearity, denoted as NLS+ . This equation serves as 
a fundamental benchmark for investigating the interplay 
between dispersion and positive cubic nonlinearity under 
stochastic influences. Through the previously introduced 
wave transformation, the stochastic partial differential 
equation is reduced to a nonlinear ordinary differential 
equation. We proceed to analyze this equation by con-
structing closed-form solutions categorized according to 
three distinct cases of the spectral parameter � : positive, 
negative, and zero. Each case reveals unique structural 
features in the wave profile, enabling us to characterize 
diverse solution behaviors, including oscillatory, localized, 
and rational-type waveforms.

Case I (𝜆 > 0): The values of the variables are 
a0 = 0, a1 = ±

i

2
√
�
 , b1 = ±

√
�2−�2�1

2
√
�
√
�
,  and c = 1

2
(� − 2k2).

Therefore

and

Case II (𝜆 < 0):
The values of the variables are

Therefore

and

F(z) = ±
i

2
√
�

A1

√
� cos(z

√
�) −A2

√
� sin(z

√
�)

A1 sin(z
√
�) +A2 cos(z

√
�) +

�

�

±

√
�2 − �2�1

2
√
�
√
�

⋅

1

A1 sin(z
√
�) +A2 cos(z

√
�) +

�

�

(6.1)

(x, t) = ei(kx+ct+��(t))

⎛⎜⎜⎝
±

i

2
√
�

1

√
� cos(z

√
�) −2

√
� sin(z

√
�)

1 sin(z
√
�) +2 cos(z

√
�) +

�

�

= ei(kx+ct+�b1(t)) ±

√
�2 − �2�1

2
√
�
√
�

⋅

1

1 sin(z
√
�) +2 cos(z

√
�) +

�

�

⎞⎟⎟⎠
, z = x + vt.

a0 = 0, a1 = ±
i

2
√
�
, b1 = ±

√
�2�

2 + �2

2
√
�
√
�

, c =
1

2
(� − 2k2).

 (z) = ±
i

2
√
�
⋅

1

√
−� cosh(z

√
−�) +2

√
−� sinh(z

√
−�)

1 sinh(z
√
−�) +2 cosh(z

√
−�) +

�

�

±

√
�2�

2 + �2

2
√
�
√
�

⋅

1

1 sinh(z
√
−�) +2 cosh(z

√
−�) +

�

�
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Case III (� = 0): The values of the variables are

Therefore

and

6.2 � Solutions to the NLS− model

Having established the closed-form solutions for the NLS+ 
model under three distinct cases of the spectral param-
eter � , we now extend our analysis to its complementary 
form—the NLS− model. Although structurally similar, the 
NLS− equation introduces a crucial sign change in the non-
linear term, which leads to distinct solution behavior and 
physical interpretations.

Case I (𝜆 > 0):
The values of the variables are

Therefore

(6.2)

(x, t) = ei(kx+ct+��(t))

⎛⎜⎜⎝
±

i

2
√
�
⋅

1

√
−� cosh(z

√
−�) +2

√
−� sinh(z

√
−�)

1 sinh(z
√
−�) +2 cosh(z

√
−�) +

�

�

= ei(kx+ct+��(t)) ±

√
�2�
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6.3 � Solutions to the NLSE with delta potential

Following the solution procedure for the NLS− equation, 
we turn our attention to a more complex configuration: 
the stochastic nonlinear Schrödinger equation with a delta 
potential. This model introduces a localized interaction at 
the origin via the Dirac delta function and poses new analyti-
cal challenges. Nonetheless, the double-variable expansion 
framework remains effective for generating exact solutions 
in this setting.
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7 � Graphical interpretations of some 
solutions

In this section of the paper, we have plotted several ana-
lytical solutions of the stochastic nonlinear Schrödinger 
equation models using the double-variable function 
expansion method for selected parameter values. In the 
graphical representations, we have plotted the modulus 
|V(x, t)| of the solutions rather than the squared modulus 
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Fig. 1   Graph of the solution |V(x, t)| corresponding to Eq.  6.1 for the following values of the constants, 
k = � = � = 1, � = 0, � = 5, A1 = −0.5, A2 = 0.75, �(t) = sin(t) and t = 0 to 5

Fig. 2   Graph of the solution |V(x, t)| corresponding to Eq.  6.2 for the following values of the constants, 
k = � = � = 1, � = 0, � = −0.5, A1 = −0.5, A2 = −0.75, �(t) = sin(t) and t = 0 to 5

Fig. 3   Graph of the solution |V(x, t)| corresponding to Eq.  6.3 for the following values of the constants, 
k = � = � = 1, � = 0, A1 = 1, A2 = −1, �(t) = sin(t) and t = 0 to 5
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|V(x, t)|2 . The choice of |V(x, t)| was motivated by its ability 
to clearly illustrate the amplitude, localization, and oscil-
latory features of the solutions. However, in many physi-
cal settings, particularly in optics, the observable intensity 

corresponds to |V(x, t)|2 . We acknowledge this distinction 
and emphasize that |V(x, t)| was used here for clarity of 
visualization, while |V(x, t)|2 may be considered in prac-
tical contexts to represent measurable field intensity. In 

Fig. 4   Graph of the real part of the solution V(x, t) corresponding to Eq.  6.4 for the following values of the constants, 
k = � = � = 1, � = 0, � = 0.5 A1 = 1, A2 = 1, �(t) = sin(t) and t = 0 to 5

Fig. 5   Graph of the real part of the solution V(x, t) corresponding to Eq.  6.5 for the following values of the constants, 
k = 0.5, � = � = 1, � = 0, � = −5, A1 = 0.5, A2 = −1, �(t) = sin(t) and t = 0 to 5

Fig. 6   Graph of the real part of the solution V(x, t) corresponding to Eq.  6.6 for the following values of the constants, 
k = � = � = 1, � = 0, A1 = 1, A2 = −1, �(t) = sin(t) and t = 0 to 5
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some figures, we have shown the real part ℜ(V(x, t)) of the 
solutions to highlight oscillatory waveforms more trans-
parently, complementing the modulus-based plots. For the 

sake of simplicity and clarity, we have chosen nine repre-
sentative solutions among the full set of obtained results 
to present graphically. To provide a clearer and more 

Fig. 7   Graph of the solution |V(x, t)| corresponding to Eq.  6.7 for the following values of the constants, 
k = � = � = 1 = � = �, � = 0, � = 0.05 A1 = 0.5, A2 = 0.5, �(t) = sin(t) and t = 0 to 5

Fig. 8   Graph of the solution |V(x, t)| corresponding to Eq.  6.8 for the following values of the constants, 
k = � = � = 1 = � = �, � = 0, � = −0.5 A1 = −1, A2 = −1.5, �(t) = sin(t) and t = 0 to 5

Fig. 9   Graph of the solution |V(x, t)| corresponding to Eq.  6.9 for the following values of the constants, 
k = � = � = 1 = � = �, � = 0, 5 A1 = 0.5, A2 = 0.5, �(t) = sin(t) and t = 0 to 5
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comprehensive explanation, each solution is illustrated in 
three visual formats: 2D line plot, 3D surface plot, and 
contour plot. These graphical illustrations correspond to 
the solutions presented in Eqs. 6.1 to 6.9.

The corresponding graphs are shown in Figs. 1, 2, 3, 4, 5, 6, 
7, 8 through 9, respectively. For each solution, subfigures (a), 
(b), and (c) represent the 2D, 3D, and contour plots, respec-
tively. To maintain uniformity and reduce complexity, we have 
used the same domain x ∈ [−10, 10] and time range t ∈ [0, 5] 
for all plots. The values of the constants specific to each solu-
tion are provided in the respective figure captions. Although �
(t) is theoretically linked to the temporal derivative of Brown-
ian motion, we adopted simple deterministic functions (e.g., 
trigonometric) for illustrative purposes. This choice enables 
clear visualization of the solution structures, particularly their 
amplitude and oscillatory features. The analytical framework, 
however, remains valid for the general stochastic case. The 
values of the constants specific to each solution are provided in 
the respective figure captions. From Figs. 1 and 2, correspond-
ing to Eqs. 6.1 and 6.2, it is evident that the solution profiles 
exhibit singular-periodic soliton behavior, characterized by 
repeating oscillatory patterns with localized intensity. Figure 3, 
based on Eq. 6.3, presents a kink-shaped wave, indicating a 
sharp traveling front. In contrast, the plot in Fig. 4 associated 
with Eq. 6.4 reveals a symmetric bell-shaped soliton. Figure 5, 
which visualizes Eq. 6.5, shows a highly localized singular 
soliton with a prominent peak. Figure 6, based on Eq. 6.6, 
demonstrates a rational rogue-wave-type solution that exhibits 
sharp localization in space-time. Figure 7, from Eq. 6.7, fea-
tures a hybrid solution profile involving mixed trigonometric-
hyperbolic characteristics. Meanwhile, Fig. 8, corresponding 
to Eq. 6.8, presents a dark soliton or anti-kink profile shaped 
by defocusing nonlinearity. Finally, Fig. 9, illustrating Eq. 6.9, 
shows a rational decaying solution, highlighting algebraic fall-
off with singularity features.

These graphical interpretations provide both verifica-
tion of the analytical results and qualitative insights into 
the diverse range of wave structures—solitonic, periodic, 
kink-type, rational, and rogue-wave-like—captured by the 
stochastic NLSEs under varying parameter regimes.

8 � Conclusion

In this study, we have developed and applied the double-
variable function expansion method to derive exact ana-
lytical solutions for three important forms of the stochastic 
nonlinear Schrödinger equation (NLSE): the focusing-type 
NLS+ , the defocusing-type NLS− , and the NLSE with 
delta potential. By utilizing appropriate wave transfor-
mations, the stochastic partial differential equations were 
reduced to nonlinear ordinary differential equations, which 
were then solved through a structured expansion approach 

based on auxiliary functions. The solutions obtained span 
several distinct types: solitonic solutions, periodic oscil-
latory solutions, hyperbolic (localized solitary) solutions, 
and rational solutions, including rogue-wave-type profiles. 
These diverse solution structures capture the rich interplay 
between dispersion, nonlinearity, and stochastic effects, 
illustrating how multiplicative noise modulates wave 
amplitude, shape, and stability. Graphical interpretations 
further confirm the validity and richness of the analytical 
expressions, offering visual insights into their spatial–tem-
poral behavior under different parametric conditions. The 
exact solutions serve as valuable references for validat-
ing numerical algorithms and enhancing the understand-
ing of nonlinear wave dynamics in noisy environments. 
From a practical perspective, these findings hold relevance 
for fields, such as fiber optics, quantum communication, 
and nonlinear photonic systems, where wave stability and 
noise modulation are critical. The methodological frame-
work presented here is robust and adaptable, and it may 
be extended in future work to higher-dimensional systems, 
coupled multi-component models, or those incorporating 
more complex stochastic perturbations such as colored 
noise or fractional operators.

Future research may extend the double-variable expan-
sion method to higher-dimensional stochastic PDEs with 
more realistic perturbations such as colored or fractional 
noise, while its integration with numerical simulations and 
machine-learning-assisted solvers could further deepen 
insights into solution stability and accelerate the discovery 
of new wave structures in noisy physical systems.

Overall, this work contributes new analytical results 
on stochastic NLSEs and establishes the double-variable 
expansion method as a powerful tool for studying complex 
nonlinear wave phenomena.
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