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Abstract

This study derives exact analytical solutions for three forms of the nonlinear Schrodinger equation (NLSE) with multiplica-
tive noise in the Itd sense, using the double-variable expansion method. The selected models include a focusing-type NLSE
(NLS"), a defocusing-type NLSE (NLS™), and a complex cubic NLSE with a delta potential. Through an appropriate wave
transformation, the stochastic partial differential equations are reduced to nonlinear ordinary differential equations, enabling
systematic application of the expansion method. The framework, constructed via auxiliary functions from a second-order
linear ordinary differential equation, facilitates closed-form traveling wave solutions. These include solitonic, periodic, hyper-
bolic, and rational/rogue-wave-type structures. The method demonstrates robustness in addressing the effects of dispersion,
nonlinearity, localized interactions, and stochastic perturbations in a unified analytical framework. Graphical illustrations
highlight the dynamic behavior of these solutions under various parameter regimes, including wave number, stochastic noise
intensity, and spectral parameters. The derived expressions serve as valuable benchmarks for validating numerical solvers
and understanding the modulation and stability of nonlinear wave structures under noise, with potential applications in
fiber optics, quantum information, and photonic device modeling. The novelty of this work is the extension of deterministic
expansion techniques to stochastic systems, which provides closed-form solutions that accurately capture noise-modulated
dynamics. Unlike conventional approaches, such as the inverse scattering transform and Darboux, Bicklund transformations,
the proposed framework accommodates a broader class of nonlinear models and captures richer waveforms. These results
reinforce both the theoretical significance and physical relevance of the method, offering practical benchmarks for advancing
nonlinear wave research in noisy environments.
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Analytical optical soliton solutions for stochastic
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1 Introduction

Partial differential equations (PDEs) are essential tools
for modeling diverse physical, biological, and engineer-
ing phenomena involving continuous change. From mod-
eling fluid dynamics and heat conduction to predicting
electromagnetic wave propagation and quantum behavior,
PDEs form the backbone of theoretical modeling across
the sciences. Nonlinear PDEs are especially important for
capturing complex behaviors such as turbulence, soliton
formation, pattern development, and chaos, which cannot
be described using linear models (Hossain et al. 2024;
Zafar et al. 2020; Akbar et al. 2021; Ashraf and Batool
2024; Hossain et al. 2024).

The nonlinear Schrodinger equation (NLSE) is a foun-
dational pillar in the modeling of nonlinear wave propaga-
tion, arising in various fields, such as quantum mechanics,
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nonlinear optics, plasma physics, and Bose—Einstein con-
densation. It governs how wave packets evolve under the
simultaneous influence of dispersion and nonlinearity,
enabling the description of critical physical phenomena,
such as solitons, modulational instability, and wave packet
collapse. The significance of this equation goes far beyond
pure mathematics, finding vital roles in the design and
optimization of laser systems, fiber optics, and waveguides
(Mirzazadeh et al. 2023; Alraddadi et al. 2024). With the
increasing complexity of real-world systems, there is a
growing need to account for environmental randomness
and fluctuations. This has led to the emergence of the sto-
chastic nonlinear Schrodinger equation (SNLSE), which
incorporates random perturbations typically modeled as
multiplicative white noise within the It6 calculus frame-
work. The inclusion of stochastic effects is especially rel-
evant in optical fibers, quantum communication channels,
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and nanoscale devices, where noise influences both the
shape and stability of waveforms (Alkhidhr 2023; Rehman
et al. 2023; Shakeel et al. 2025). Exact solutions to these
stochastic PDEs are valuable for both theoretical advances
and practical applications. Such solutions can help explain
the propagation of pulses in noisy environments, validate
numerical simulations, and provide benchmark results for
future theoretical models. However, solving nonlinear and
stochastic PDEs analytically poses a significant challenge
due to the coupling between nonlinearity and randomness.
To address the analytical complexity of such nonlinear
stochastic systems, a wide range of solution techniques
have been developed, inverse scattering transform (Newell
1980), Darboux transformation (Li et al. 2021), Backlund
transformation (Mimura 1978), GERF and NEDA tech-
niques (Younas et al. 2022), and Painlevé analysis (Rizvi
et al. 2021). In addition, several expansion-based tech-
niques have gained popularity for their algorithmic struc-
ture and broad applicability. These include the tanh-coth
method (Wang et al. 2024), the Sardar subequation method
(Hossain et al. 2024), the sine-cosine method (Paux et al.
2025), the new generalized (G’ /G) expansion method
(Hossain et al. 2025), the improved Sardar subequation
method (Hossain et al. 2024; Younas et al. 2023), the
auxiliary equation method (Pdauna 2024), Hirota Bilinear
Method(Younas et al. 2022; Ismael et al. 2023; Az-Zo’bi
et al. 2024; Ali et al. 2023), the modified generalized Ric-
cati equation mapping method (Hamad and Ali 2024),
Jacobi elliptic expansion function method (Ahmed and
Ali 2024), the generalized G’ /G expansion method (Atas
et al. 2023), and extended sinh-Gordon equation expansion
method (Sulaiman et al. 2021; Younas et al. 2021), each
relying on trial functions and nonlinear transformations to
simplify the original PDE. The auxiliary equation method,
in particular, reduces the problem to solving simpler ODEs
(such as Bernoulli, Riccati, or elliptic equations), provid-
ing a structured path toward exact traveling wave or soliton
solutions. These methods have been successfully applied
to various deterministic and stochastic models, includ-
ing Korteweg—de Vries (KdV), sine-Gordon, Burgers,
and Schrodinger-type equations (Al-Essa and ur Rahman
2024; Ahmad and Aldwoah 2024; Al-Askar 2023; Butt
et al. 2024). Despite their successes, the application of
these methods to stochastic settings—especially those with
multiplicative noise in the Itd sense—remains less devel-
oped, prompting the need for generalized frameworks like
the double-variable expansion method.

Despite these advances, the application of existing deter-
ministic methods to stochastic NLSEs, particularly those
driven by multiplicative noise in the Itd sense, remains
limited. Most classical expansion-based approaches gener-
ate only restricted families of solutions and are not able to

capture the full interplay between dispersion, nonlinearity,
localized defects, and random perturbations. The motivation
for the present work is therefore fourfold. First, stochastic
NLSEs play a central role in describing pulse propagation
in noisy optical fibers, quantum communication channels,
and nonlinear photonic systems, but their analytical treat-
ment is still underdeveloped (Alkhidhr 2023; Shakeel et al.
2025). Second, traditional methods, such as the inverse scat-
tering transform, Darboux and Bécklund transformations, or
expansion-based techniques (Newell 1980; Li et al. 2021;
Wang et al. 2024; Pauna 2024), have been successful for
deterministic cases but cannot systematically address noise-
modulated dynamics. Third, there is a strong need for a uni-
fied framework capable of producing diverse solution fami-
lies, including solitons, periodic waves, and rogue waves,
which can also serve as benchmarks to validate numerical
solvers (Hossain et al. 2024, 2025). Finally, the novelty
of the double-variable function expansion method lies in
introducing two auxiliary functions instead of one, thus sig-
nificantly broadening the class of obtainable solutions and
extending deterministic expansion methods to stochastic
contexts (Rasid et al. 2023; Al-Askar 2025).

The double-variable expansion method introduces two
independent variables into the solution ansatz, usually rep-
resenting combinations of the traveling wave variable and an
auxiliary function. This approach allows for the construction
of broader solution families—including periodic, solitary, and
kink-type waves—by effectively capturing the interaction
of dispersion and nonlinearity in a noise-dominated envi-
ronment. Unlike single-variable techniques, the double-
variable expansion method accommodates more complex
structures, making it ideal for studying wave behavior in
higher-dimensional and stochastic settings (Rizvi et al. 2024;
Hossain et al. 2024; Al-Askar 2025). In recent studies, the
double-variable expansion method has proven effective in
generating exact solutions for various stochastic systems,
including generalized Schrodinger—Hirota, Sasa—Satsuma,
and Ginzburg—Landau equations (Raza et al. 2024; Hossain
et al. 2024; Al-Askar 2023; Butt et al. 2024). These applica-
tions highlight its utility in capturing the evolution of bright,
dark, breather, and dromion solutions even under the influ-
ence of multiplicative white noise. Moreover, the method
provides a systematic framework that can be adapted to both
deterministic and stochastic nonlinear equations, bridging a
critical gap in current analytical methodologies.

In this paper, we apply the double-variable expansion
method to obtain novel closed-form solutions for a class of
stochastic Schrodinger equations driven by multiplicative
noise. Our aim is to explore how noise intensity, dispersion
parameters, and nonlinear coefficients affect the resulting
wave profiles. The solutions we obtained are expected to
contribute to a better understanding of pulse dynamics in
noisy optical media and potentially inform the design of
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resilient optical systems and quantum information networks.
The solutions derived herein also possess theoretical value
in mathematical physics, where they can be used to test the
accuracy of numerical solvers, explore stability regimes, and
benchmark various noise-influenced dynamics. Furthermore,
these analytical expressions offer visual and intuitive insight
into how solitons and other nonlinear structures are modu-
lated by stochastic perturbations in real time.

The paper is structured to systematically develop and
apply the double-variable expansion method to a class
of stochastic nonlinear Schrodinger equations. Section 2
introduces the specific form of the stochastic Schrodinger
equation considered in this work, incorporating multiplica-
tive noise in the Itd sense and formulating it in a way suit-
able for analytical solution techniques. Section 3 provides
a comprehensive overview of the double-variable expan-
sion method, detailing the necessary transformations,
assumptions, and the structure of the trial function. In
Sect. 4, we apply the expansion framework to derive exact
solutions of the equation, supported by graphical illustra-
tions that showcase the waveforms for various parameter
regimes. Section 5 discusses the physical significance of
the obtained solutions, with an emphasis on their behav-
ior under stochastic perturbations, stability considera-
tions, and implications for applications in nonlinear opti-
cal systems. Finally, Sect. 6 summarizes the key findings,
highlights the strengths and limitations of the employed
method, and suggests avenues for future research in related
stochastic nonlinear systems.

2 Model equation

For the sake of simplicity, let us consider the three models
of the nonlinear Schrédinger equations driven by multipli-
cative noise in the It6 sense as NLSEI. Initially, our focus
is on the NLSEI presented in Bhrawy et al. (2014), which
is denoted as NLS*. The NLS* is given in Bhrawy et al.
(2014) is as follows:

V,+ V. +2y [VI*V+0oVp, =0. @2.1)

Next, we have considered the NLSE labeled as NLS~ which
can be written as follows:

iV, + V., =2y |VI*V+0oVp, =0. (2.2)

Here, y € R — {0} represents the nonlinear coefficient V(x, f)
is a complex-valued function. The parameter ¢ character-
izes the intensity of the stochastic perturbation. The term
V., accounts for dissipative effects, while the nonlinear
interaction is captured by ||V||?V. The noise component
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p, corresponds to the temporal derivative of the Brownian
motion f(1).

We finally considered the NLSE forced by multiplica-
tive noise in the Ito sense labeled as the Complex Cubic
NLSE with é-potential and given by Baskonus et al. (2018)
iV, + %VH — a8V = VIV + aVB, = 0. 2.3)
In this formulation, the parameters f, 6, and p belong to the
set R — {0}, where § denotes the Dirac delta function cen-
tered at the origin. The delta interaction is termed attractive
when a < 0, and repulsive when a > 0 [44]. The stability
of solutions to Eq. (1.3) was examined in Goodman et al.
(2004), while the dynamics of the associated flow were
explored in Holmer and Zworski (2007). A solution to the
same model using the variational approach was provided
in Fukuizumi et al. (2008). Notably, these studies considered
the system without the influence of stochastic perturbations.

3 The double-variable function (P, ¥)
expansion process

Let us consider the double-variable function (®, W) for the
following second-order linear ordinary differential equation
(Hossain et al. 2024; Rasid et al. 2023):

Q')+ 1Q) = 4, 3.1)
where
Q@ 1
b= JVi=—. .
GRS ©2)
Then, we can obtain
O =-@*+u¥-1and ¥ = —DY, (3.3)

where @' and ¥ represent the first derivative ® and ¥ respect
to z. The solutions of Eq. 3.1 can be divided into three non-
intersecting cases for three different possible real values of
r as follows:

Instance 1: If the value of A is positive, then all possible
exact analytical solutions (EAS) of Eq. 3.1 are given by

0(z) = A, sin <zﬂ) + A, cos (zﬁ) + % (3.4)
with the condition
AMDP? - 2uP + A

A?8) — u?

and §, = A2 + A%
Instance 2: On the contrary, if 4 <0, then EASs of
Eq. 3.1 are
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0(z) = A, sinh (z\/—_/l) + A, cosh (z\/:1> + % (3.6)
where

—A(D* = 2u¥ + 4)

y2 =
A28, + p?

3.7

and 52 = A12 - A22.
Instance 3: Finally, for the zero value of 4, Eq. 3.1 pro-
vides the following EASs:

0@z) = gzz +Aiz+ A, (3.8)
with
D2 - 2%
w2 = (2—) (3.9)
A" =2uA,
4 NLPDE to PDE
Let us consider the NLPDE as
RV Vi Vi Vi, Vis o) = 0, 4.1

where R is a polynomial in V and its partial derivatives.
Consider the following wave transformation:

Vix,t) = WV(z2), z=x+t, 4.2)

where p is the wave velocity. Now, using Eq. 4.2 in Eq. 4.1,
we have the following ordinary differential equation:

HOVV WV DAV W) =0. (4.3)

Finally, let us consider that solution of Eq. 4.3 by double-
variable function expansion methods is given by

K K
Vi) =ay+ ) a @@+ Y b QW) (4.4)
i=1 i=1

In this context, ® and ¥ are defined as in Eq. 3.2, and the
parameters a,, a;, b; for i =1,2,3,...,K are treated as
arbitrary constants. The value of the balance number K is
determined through the application of the homogeneous bal-
ance method, leading to the explicit form of the solution
presented in Eq. 4.4.

Substituting Eq. 4.4 into Eq. 4.3, and analyzing each of
the three distinct cases previously outlined, the left-hand
side of Eq. 4.3 transforms into a polynomial in ® and ¥,
with coefficients expressed in terms of the arbitrary con-
stants. Importantly, the degree of ® in this polynomial
remains less than or equal to one.

By setting the coefficients of all distinct monomial terms
to zero, a system of algebraic equations involving the con-
stants ay, a;, b;, p, and b, is obtained. This nonlinear sys-
tem is solved using symbolic computation (Mathematica),
yielding specific parameter values. Substituting these values
back into Eqs. 3.2, 4.2, and 4.4 yields the exact analytical
solutions corresponding to each of the three considered
scenarios.

5 Analytical framework for constructing
exact solutions of the Schrodinger
equation

To derive closed-form solutions for the three stochastic non-
linear Schrodinger equations (NLSEs) considered in this
study, we employ a systematic reduction procedure based on
the double-variable function expansion method. This frame-
work allows for the analytical handling of nonlinearities and
stochastic influences present in the equations.

5.1 Reduction via wave transformation

We begin by applying a wave transformation to convert
each nonlinear partial differential equation (PDE) into a
corresponding ordinary differential equation (ODE). The
transformation is given by

V(x, 1) = ®PFHoPDpG) - 7= x 41, (5.1)

where p, r, and v are constants associated with wave number,
frequency, and velocity, respectively, and f(¢) denotes stand-
ard Brownian motion, modeling the stochastic perturbations
in the It6 sense.

Substituting this transformation into each governing
equation of NLS* and NLS™ yields the following reduced
forms:

For the NLS* model:

F'@Q)+2yF3 @) — (K> + c)F(z) =0, v= -2k (5.2)
For the NLS™ model:
F'(2) = 2yF*(x) = (K> + ¢)F(z) =0, v =—2k. (5.3)

For the NLSE with delta potential, the transformation is used

V(x, t) = ebretktoabOpey 7 = p(x — v, 54

v =k,

5.5
where 7, p, a, and 6 are additional parameters arising from
delta-type interactions and noise strength.

P F"(2) = 2pF3(2) — (K> + 2(c + ad))F(z) = 0,
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5.2 Construction of the trial solution

Next, we determine the structure of the solution using the
homogeneous balance principle. Balancing the highest-
order nonlinear and derivative terms reveals a balance
number K = 1. Hence, we propose the solution in the form

F(z) = ay +a;®(2) + b ¥(2), 5.6)
where ©(z) and ¥(z) are auxiliary functions defined as
o' 1
==, ¥=— 5.7
0 0 (5.7)
and Q(z) satisfies the linear second-order ODE
0"(2) + 20(2) = (5.8)

5.3 Solution strategy

Substituting the proposed solution into the reduced ODE
yields a polynomial in @ and ¥, where each term is a
function of the unknown constants. To determine these
constants (ag, a,, by, 4, y, etc.), we set the coefficients of
each distinct monomial to zero, resulting in a nonlinear
system of algebraic equations (Hossain et al. 2024; Cinar
et al. 2022).

This system is solved using symbolic computation soft-
ware such as Mathematica, allowing us to find consistent
parameter sets under three distinct scenarios based on the
sign of A:

Case I (4 > 0): leads to trigonometric solutions,

Case II (4 < 0): produces hyperbolic function-based
solutions,

Case II (4 = 0): yields rational function solutions.

These analytical expressions provide a wide variety of
wave profiles, including periodic, solitary, and rational
structures. The derived solutions are presented in detail
in the following subsections and interpreted in terms of
their physical significance for optical systems under sto-
chastic effects.

6 Analytical solutions for the three NLSE
models

6.1 Solutions to the NLS™ model

Having developed the necessary analytical framework
using the double-variable expansion method, we now initi-
ate its application to the first model under consideration—
the nonlinear Schrédinger equation with a focusing-type
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nonlinearity, denoted as NLS*. This equation serves as
a fundamental benchmark for investigating the interplay
between dispersion and positive cubic nonlinearity under
stochastic influences. Through the previously introduced
wave transformation, the stochastic partial differential
equation is reduced to a nonlinear ordinary differential
equation. We proceed to analyze this equation by con-
structing closed-form solutions categorized according to
three distinct cases of the spectral parameter A: positive,
negative, and zero. Each case reveals unique structural
features in the wave profile, enabling us to characterize
diverse solution behaviors, including oscillatory, localized,
and rational-type waveforms.

Case I (A>0): The values of the variables are

Vi “l . and ¢ = (4 - 26%).

ap =0, a _iﬁ b ==
Therefore
i AVAcoszVa) — A, Asinz VA
2\/— A, 51n(2\/_)+A2cos(z\/_)+”
V2 =225,
* 2\/_\/_ A, s1n(z\/_)+Azcos(z\/_)+”

and

Fl) =+

v(x t) — ei(kx+cl+o’ﬂ(t))

i AVAcos@VD) — AV AsinGyA)
2V AysinGVD) + Ay eos(zV D) + 5
= itkvertoby @) 4 V W — 225,

2\rV4

6.1)

1
A, sinzV2) + A, cos(zV/A) + %

, Z=Xx+Vt.

Case Il (A <0):
The values of the variables are

V6,22 + 412
N

i
+— b ==+

_2\/;, +

a,=0, a; = = %(A—Zkz).

Therefore
i A,V —Acosh(zy/—4) + A,V —Asinh(z\/—4)
2y A, sinh(z\/=2) + A, cosh(z\/= 1) + %

R T |
C2iVi o4 sinh(z\/—_/l)+A2cosh(z\/—_ﬂ)+%

Fi) ==+

and
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V(x,t) = pitketet+o (o) ]:( ) 1 .A \/ZCOS(Z\/—) .Az\/ZSln(Z\/—)
Z =
i A V=Acosh(z\/=2) + A /= sinh(z/= 1) 2\/— A, sin(zV/2) + A, cos(z\/4) + ’
2vr A, sinh(z\/=2) + A, cosh(z\/=2) + % W
- Vo, 2+ 12 62 T
= eitketerrop) V27 TP 2 \/_ A sm(z\/_ AN+ A cos(z\/— AN+ E ”
27 NG \/_ 1 2
1 Therefore
. | Z=x+t.
Ay sinh(z\/—_/i) + A, cosh(z\/—_i) + 7 V(x, 1) = itbrer+op)
Case III (A = 0): The values of the variables are LA VicoszVh) = 4,12 Sm(Z\/_ A)
2\/— Ay sm(z\/_) + A, cos(z\/_) + =
1/ A% +2uA
a, = b= i—l ’ , c=—k* z=x+wut = eilkerarap®) 4 VA8 — 6.4)
2\/' 24y 27V
Therefore ) 1 PR
r( - ; uz + A] Ay sin(z\/z) + A, cos(z\/Z) + %
D=+ :
2\/? %ZZ+A1Z+.A2 Case Il (A < 0):
The values of the variables are
1/ —A% +2uA, 1
) 2\r ' BevAz+A 4 —+_ by = iM’ = l(/1—2k2)-
2 e 24/ 27V 2
and Therefore
_i(ketet+a () Hz+ -Al 1 ./4.1 V -1 COSh(Z V —ﬂ) + A2 V —A sinh(z V —ﬁ)
V(x,t)=¢e +— Fi)=+——-
2\/— —22 + A2+ Ay = ellrertohi ) 2\r A, sinh(zv/=4) + A, cosh(z/=2) + %
(6.3)

V- A+ 2uA, |
+ .

2\/; §12+A12+A2

Z=x+vt.

6.2 Solutions to the NLS” model

Having established the closed-form solutions for the NLS*
model under three distinct cases of the spectral param-
eter 4, we now extend our analysis to its complementary
form—the NLS™ model. Although structurally similar, the
NLS™ equation introduces a crucial sign change in the non-
linear term, which leads to distinct solution behavior and
physical interpretations.

Case I (A>0):

The values of the variables are

1 VA2, — 2 1 2
ay=0,a,=t—— b =t——"7—, = 5 (A =2k,
2\/? 2\/?\/; 2
Therefore

L

1
A, sinh(zv/=2) + A, cosh(zV/= 1) + %

and

V(X f) = ei(kx+cr+o'ﬁ(t))

+L ) AV-4 cosh(z\/—_ll) + A, \/—_Asinh(z\/—_/l)
2/r A, sinh(zy/=4) + A, cosh(zv/= 1) + % = eilkvrar+op)
A /_52/12 —u2 1 .
+ . > Z=XT VI
27VA A, sinh(zy/=2) + A, cosh(zV/=2) + %
(6.5)
Case Il (A =0):
a1—+_ b1=i 5 c=_k’
24/ 247
Fe) = 1 uz+ A, N \ AL =240 1
. .
2\/7 S22+ Aiz+ A 247 L2+ Azt A,
and
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Vix, 1) = eftesrerropon 4 1 pt A
2\ 52+ Az+ A

\/A%—ZAQy. 1

N E2+Aiz+ Ay |

+

=X+t

(6.6)

6.3 Solutions to the NLSE with delta potential

Following the solution procedure for the NLS™ equation,
we turn our attention to a more complex configuration:
the stochastic nonlinear Schrodinger equation with a delta
potential. This model introduces a localized interaction at
the origin via the Dirac delta function and poses new analyti-
cal challenges. Nonetheless, the double-variable expansion
framework remains effective for generating exact solutions
in this setting.
Casel (A >0):

A/8,1n2A2 — n2y2
ap = 0’ a, = +L’ bl = _.__M’
Zﬂ\/ﬁ

N

c=~(—4as +n*1—2k%).

Bl

Therefore

n AV acos@Vd) = A,V asiny2)

F@=t——" 7
2\/1_’ Ay sin(zﬁ) + A, cos(zﬁ) + 7

L Van i —niu 1
B Zﬁ\/ﬁ Ay sin(z\/Z) + A, cos(z\/Z) + %

and

V(x, 1) = eilrtertirapo)] o n_ . AJ\/;COS(Z\/Z) ~ AzﬁSin(Z\ﬁ)
2\/—17 A, sin(zﬂ) + A4, cos(zﬁ) + %

ithctertab, ) 4 V oA -t 1
Zﬂﬁ A, sin(z\ﬁ) + A, cos(z\ﬁ) + %

z=nx—vt), v=k.

=e

6.7)
Case Il (A < 0):

in\/G 22 + 122
NN

ay=0,a, = iL,
24/p

(=2k* — 4as + 1 2).

b ==
1
c= -
4

Therefore

@ Springer

n_ AV =4 cosh(z\/—_i) + AZ\/—_Asinh(Z\/—_ﬂ)

F@)=+——=

2y/p A, sinh(zV/=2) + A, cosh(zv/—2) + %

. in\/o, 2 + 2
i

1
A, sinh(zy/—4) + A, cosh(z\/— 1) + %

and

V(x, 1) = eflkrrertkrapn)

on A, \/—_ﬂcosh(z\/—_i) + A, \/—_Asinh(z\/—_ﬂ)

+
2\/; A, sinh(z\/—_/l) + A, cosh(z\/—_/l) + %
- ei(kr+cr+ah,(r)) + W—W (68)
2V
' L ,z=n(x—vt), v=k.
A, sinh(zv/=2) + A, cosh(zV/= 1) + %
Case IIl (A =0):
" \PAT = 2P A,
a0=0, ay =+—, bl ==+,
2+/p 2\/—,0
1
c= E(—k2 - 2as).
Therefore
uz+ A
F@==——" 1
2\/; 522 + .AIZ + Az
242 _ 92
\ 1AL =217 A, 1
i .
24/p gz2 +Ajz+ A,
and
V(x, 1) = glkrtertiropo) L Hz+ A
2\/p gzz + Azt A,
2 A2 — 212 .
= pilkerertab@) V1 Ai =2 A, ) 1 (6.9)

24/ §22+A11+A2

z=nx—-vt), v==k.

7 Graphical interpretations of some
solutions

In this section of the paper, we have plotted several ana-
lytical solutions of the stochastic nonlinear Schrodinger
equation models using the double-variable function
expansion method for selected parameter values. In the
graphical representations, we have plotted the modulus
[V(x, t)| of the solutions rather than the squared modulus
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Fig.1 Graph of the solution |[W(x,#)] corresponding to Eq. 6.1 for the following values of the constants,
k=y=p=1,06=0, 4=5 A =-05, A, =0.75, p@t) =sin(r)andt=0to 5

Vel

(b) 3D (¢) Contour

Fig.2 Graph of the solution |V(x,f)] corresponding to Eq. 6.2 for the following values of the constants,
k=y=p=1,06=0, 41=-05, A =-0.5, A, =-0.75, f(©) =sin(t)andt=0t0 5
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Fig.3 Graph of the solution |[W(x,#)] corresponding to Eq. 63 for the following values of the constants,
k=y=pup=10=0 A =1, A =-1, p@r) =sin(r)andt=0to 5

@ Springer



1244

Rendiconti Lincei. Scienze Fisiche e Naturali (2025) 36:1235-1248
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Fig.4 Graph of the real part of the solution W(x,f) corresponding to Eq. 6.4 for the following values of the constants,
k=y=p=1,06=0,1=054, =1 A, =1, p@t) =sin(t)andt =0to 5

Re[V(x,)]

1

¥
Re[V(x,t)] l"r‘t

—t20 —ts! —t=22 —t=3 —t=4 — =5

(a) 2D

(b) 3D (¢) Contour

Fig.5 Graph of the real part of the solution W(x,f) corresponding to Eq. 6.5 for the following values of the -constants,
k=05y=u=1,06=0,1=-5 A4, =05, A, =-1, p(r)=sin(r)andt =0to 5

Re[V(x,1)]

!
e

s

—1=0 —t=1 —1=2 —t=3 —1=4 — =5

(a) 2D

/g =D s

(b) 3D

(¢) Contour

Fig.6 Graph of the real part of the solution W(x,r) corresponding to Eq. 6.6 for the following values of the constants,

k=y=p=1,06=0, A =1, Ay,=-1, p()=sin(r)andt =0to 5

[V(x, 1)]?. The choice of |V(x, )| was motivated by its ability
to clearly illustrate the amplitude, localization, and oscil-
latory features of the solutions. However, in many physi-
cal settings, particularly in optics, the observable intensity
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corresponds to |V(x, £)|>. We acknowledge this distinction
and emphasize that |V(x, 7)| was used here for clarity of
visualization, while |V(x, 1)]> may be considered in prac-
tical contexts to represent measurable field intensity. In



Rendiconti Lincei. Scienze Fisiche e Naturali (2025) 36:1235-1248 1245

(
014!
VN o2\
0410
0.108 |
-10

10 x

(a) 2D (b) 3D (c) Contour

Fig.7 Graph of the solution |V(x,f)] corresponding to Eq. 6.7 for the following values of the constants,
k=y=u=1l=p=n06=0, 1=0054,=05, 4,=05, p(r) =sin(H)andr=0to5
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Fig.8 Graph of the solution |V(x,f)|] corresponding to Eq. 6.8 for the following values of the constants,
k:}/:”:l:p:r], ()'=0, A:—OSAI =—1, A2=—1.5, ﬁ([)=Sil’l(l)aIldl=0t05

10}
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Fig.9 Graph of the solution |V(x,f)] corresponding to Eq. 6.9 for the following values of the constants,
k=y=u=1=p=n0=0,5A4,=05, 4,=05, () =sin(Handr=0to 5

some figures, we have shown the real part R(V(x, t)) of the  sake of simplicity and clarity, we have chosen nine repre-
solutions to highlight oscillatory waveforms more trans-  sentative solutions among the full set of obtained results
parently, complementing the modulus-based plots. For the  to present graphically. To provide a clearer and more
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comprehensive explanation, each solution is illustrated in
three visual formats: 2D line plot, 3D surface plot, and
contour plot. These graphical illustrations correspond to
the solutions presented in Eqgs. 6.1 to 6.9.

The corresponding graphs are shown in Figs. 1,2, 3, 4, 5, 6,
7, 8 through 9, respectively. For each solution, subfigures (a),
(b), and (c) represent the 2D, 3D, and contour plots, respec-
tively. To maintain uniformity and reduce complexity, we have
used the same domain x € [—10, 10]and time range ¢ € [0, 5]
for all plots. The values of the constants specific to each solu-
tion are provided in the respective figure captions. Although f
(t) is theoretically linked to the temporal derivative of Brown-
ian motion, we adopted simple deterministic functions (e.g.,
trigonometric) for illustrative purposes. This choice enables
clear visualization of the solution structures, particularly their
amplitude and oscillatory features. The analytical framework,
however, remains valid for the general stochastic case. The
values of the constants specific to each solution are provided in
the respective figure captions. From Figs. 1 and 2, correspond-
ing to Egs. 6.1 and 6.2, it is evident that the solution profiles
exhibit singular-periodic soliton behavior, characterized by
repeating oscillatory patterns with localized intensity. Figure 3,
based on Eq. 6.3, presents a kink-shaped wave, indicating a
sharp traveling front. In contrast, the plot in Fig. 4 associated
with Eq. 6.4 reveals a symmetric bell-shaped soliton. Figure 5,
which visualizes Eq. 6.5, shows a highly localized singular
soliton with a prominent peak. Figure 6, based on Eq. 6.6,
demonstrates a rational rogue-wave-type solution that exhibits
sharp localization in space-time. Figure 7, from Eq. 6.7, fea-
tures a hybrid solution profile involving mixed trigonometric-
hyperbolic characteristics. Meanwhile, Fig. 8, corresponding
to Eq. 6.8, presents a dark soliton or anti-kink profile shaped
by defocusing nonlinearity. Finally, Fig. 9, illustrating Eq. 6.9,
shows a rational decaying solution, highlighting algebraic fall-
off with singularity features.

These graphical interpretations provide both verifica-
tion of the analytical results and qualitative insights into
the diverse range of wave structures—solitonic, periodic,
kink-type, rational, and rogue-wave-like—captured by the
stochastic NLSEs under varying parameter regimes.

8 Conclusion

In this study, we have developed and applied the double-
variable function expansion method to derive exact ana-
lytical solutions for three important forms of the stochastic
nonlinear Schrodinger equation (NLSE): the focusing-type
NLS*, the defocusing-type NLS™, and the NLSE with
delta potential. By utilizing appropriate wave transfor-
mations, the stochastic partial differential equations were
reduced to nonlinear ordinary differential equations, which
were then solved through a structured expansion approach

@ Springer

based on auxiliary functions. The solutions obtained span
several distinct types: solitonic solutions, periodic oscil-
latory solutions, hyperbolic (localized solitary) solutions,
and rational solutions, including rogue-wave-type profiles.
These diverse solution structures capture the rich interplay
between dispersion, nonlinearity, and stochastic effects,
illustrating how multiplicative noise modulates wave
amplitude, shape, and stability. Graphical interpretations
further confirm the validity and richness of the analytical
expressions, offering visual insights into their spatial-tem-
poral behavior under different parametric conditions. The
exact solutions serve as valuable references for validat-
ing numerical algorithms and enhancing the understand-
ing of nonlinear wave dynamics in noisy environments.
From a practical perspective, these findings hold relevance
for fields, such as fiber optics, quantum communication,
and nonlinear photonic systems, where wave stability and
noise modulation are critical. The methodological frame-
work presented here is robust and adaptable, and it may
be extended in future work to higher-dimensional systems,
coupled multi-component models, or those incorporating
more complex stochastic perturbations such as colored
noise or fractional operators.

Future research may extend the double-variable expan-
sion method to higher-dimensional stochastic PDEs with
more realistic perturbations such as colored or fractional
noise, while its integration with numerical simulations and
machine-learning-assisted solvers could further deepen
insights into solution stability and accelerate the discovery
of new wave structures in noisy physical systems.

Overall, this work contributes new analytical results
on stochastic NLSEs and establishes the double-variable
expansion method as a powerful tool for studying complex
nonlinear wave phenomena.
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