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1 Introduction

It is well known that the study on exact solutions of nonlinear evolution equations
(NLEEs) is always one of the central themes in fluids, fiber optics and other fields [1].
Recently, there has been paying more attention to some generalized NLEEs because of
their wide range of applications in various physical fields. It is of importance and practi-
cal significance to systematically investigate integrable properties and various exact an-
alytic solutions to those NLEEs, both constant-coefficient and variable-coefficient. In the
past decades, different solution methods have been developed in a variety of directions.
Various kinds of exact solutions such as solitons, cuspon, positons complexitons and
quasi-periodic solutions have been presented for NLEEs. Available solution methods
include the inverse scattering transformation [1], the Hirota direct method [2], Lie group
method [3], Darboux transformation and Bäcklund transformation [4,5] and the algebro-
geometrical approach [6]. The Hirota direct method is one of the most powerful analytic
tools for solving soliton problems of NLEEs. If a bilinear representation is known for
a given NLEE, one can find its soliton solutions, bilinear BT and some other integrable
properties [7–9] directly.

Based on the Bell polynomials, the Hirota bilinear method has also been developed to
obtain explicit periodic wave solutions based on the Riemann theta functions. In 1980s,
Nakamura proposed a direct method to construct a kind of quasi-periodic wave solu-
tions for nonlinear equations in his essay [10], where the periodic wave solutions of the
KdV equation and the Boussinesq equation were obtained by means of the Hirota direct
method. The presented method only depends on the existence of Hirota bilinear forms,
rather than relies on the Lax pairs and their induced Riemann surfaces for the consid-
ered equations. Recently, this method has been extended to investigate the discrete Toda
lattice, (2+1)-dimensional Bogoyavlenskiss’s breaking soliton equation and the asym-
metrical Nizhnik-Novikov-Veselov equation by Fan and Hon [11–14]. One of the authors
(Ma) constructed one- and two- periodic wave solutions for a class of (2+1)-dimensional
Hirota bilinear equations and a class of trilinear differential operators used to create
trilinear differential equations [15–19]. Zhang et al. [20] constructed periodic wave so-
lutions of the Boussinesq equation. Chen et al. [21, 22] obtained a Maple package to
construct bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation
laws for Korteweg-de Vries-type equations. One of our authors (Tian) and his collabora-
tors [23–27] presented soliton solutions, Riemann theta function periodic wave solutions
and integrabilities of some nonlinear differential equations, discrete soliton equations
and supersymmetric equations, etc.

In this paper, we focus on a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-
Schiff (gCBS) equation

ut−h1(uuy+uxv)−h2uuz−h3uxxy−h4uxxz+h5ux+h6vy+h7wz−h8uxw=0, (1.1a)

uy=vx, (1.1b)

uz=wx, (1.1c)
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where u=u(x,y,z;t) and hi (i=1,2,··· ,8) are all arbitrary constants. Under h1 =0, h3 =0,
h5 =h6 =h7=0 and v=y=0, Eq. (1.1) can be reduced to the classical (2+1)-dimensional
CBS equation

ut−h2uuz−h4uxxz−h8uxw=0, (1.2a)

uz=wx, (1.2b)

which can be written in the potential form,

ut−h2uuz−h4uxxz−h8ux∂−1
x uz=0. (1.3)

Eq. (1.3) admits singular solutions, exact analytical soliton-like solutions, quasi-periodic
wave solutions, periodic-like solutions and a Lax representation by taking different val-
ues of the coefficients h2, h4 and h8. It is also integrable by the one-dimensional inverse
scattering transform and Painléve test [28–31]. Recently, more and more people are in-
terested in studying some generalized nonlinear evolution equations [32–38], resulting
from their more widely applications in many physical fields [39–54]. To our knowledge,
Riemann theta function periodic wave solutions for Eq. (1.1) have not been studied via
binary Bell polynomials.

The main purpose of this paper is to systematically construct a bilinear formalism,
soliton solution and some Riemann theta function periodic wave solutions of Eq. (1.1)
by means of the Bell polynomials method. Moreover, we present asymptotic behaviors
of the periodic wave solutions by establishing two interesting theorems and derive a
relationship between the periodic wave solutions and the soliton solutions, which shows
that the former solutions tend to the latter solutions under certain conditions.

The rest of the paper is organized as follows. In Section 2, some basic characters of
the Hirota bilinear operator and binary Bell polynomials are briefly introduced. Then by
virtue of the properties of binary Bell polynomials, we construct a bilinear representa-
tion of Eq. (1.1). In Sections 3 and Section 4, the soliton solutions and the Riemann theta
function periodic wave solutions of Eq. (1.1) are will investigated, respectively. In Sec-
tion 5, we further analyze asymptotic behaviors of one-periodic and two-periodic wave
solutions to the gCBS equation, by making a limiting procedure, which is used to strictly
show that under a small amplitude limit, the periodic wave solutions tend to the known
soliton solutions. Finally in Section 6, a few conclusions and remarks are presented.

2 A bilinear representation and its binary Bell polynomials

In this section, a bilinear form of Eq. (1.1) will be constructed. It will be easy to obtain
multisoliton solutions when we get a bilinear form of a nonlinear equation. To make our
presentation to be easily understood, we give the definition of bilinear operators Dx, Dy,
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Dz and Dt as follows:

Dm
x Dn

y Ds
zD

p
t f (x,y,z,t)·g(x,y,z,t)

=(∂x−∂x′)
m(∂y−∂y′)

n(∂z−∂z′)
s(∂t−∂t′)

p f (x,y,z,t)·g(x′ ,y′,z′,t′)
∣∣∣

x=x′,y=y′,z=z′,t=t′
. (2.1)

In particular, when the Hirota operators act on exponential functions, we can get a concise
formula

Dm
x Dn

y Ds
zD

p
t eξ1 ·eξ2 =(k1−k2)

m(ρ1−ρ2)
n(l1−l2)

s(ω1−ω2)
peξ1+ξ2 , (2.2)

in which ξi = kix+ρiy+liz+ωit+ε i, i=1,2 with ki, ρi, li ωi and ε i being constants. More-
over, we have a general formula

G(Dx,Dy,Dz,Dt)e
ξ1 ·eξ2 =G(k1−k2,ρ1−ρ2,l1−l2,ω1−ω2)e

ξ1+ξ2 , (2.3)

in which G(Dx,Dy,Dz,Dt) is a polynomial of Dx, Dy, Dz and Dt. This formula is very
important in constructing one-, two- and N- periodic wave solutions to a given nonlin-
ear differential equation. In what follows, we simply recall some necessary notations
on multi-dimensional binary Bell polynomials, for details please refer, for instance, to
Lembert and Gilson’s work [55–57].

Let f = f (x1,x2,··· ,xr) be a C∞ function in multiple variables. Multi-dimensional Bell
polynomials are defined by

Yn1x1,···,nrxr( f )≡Yn1,···,nr( fl1x1
,··· , flrxr

)= e− f ∂n1
x1
···∂nr

xr
e f , (2.4)

in which fl1x1,···,lrxr
=∂l1

x1
···∂lr

xr
(0≤ li≤ni, i=1,2,··· ,r). Taking r=1, Bell polynomials read

Ynx( f )≡Yn( f1,··· , fn)=∑
n!

s1!···sn!(1!)s1 ···(n!)sn
f s1
1 ··· f sn

n , n=
n

∑
k=1

ksk , (2.5a)

Yx( f )= fx, Y2x( f )= f2x+ f 2
x , Y3x( f )= f3x+3 fx f2x+ f 3

x ,··· . (2.5b)

To make a link between the Bell polynomials and the Hirota D-operators, we need to
introduce multi-dimensional binary Bell polynomials [56]:

Yn1x1,···,nrxr(υ,ω)=Yn1,···,nr( f )
∣∣∣

fl1x1,···,lrxr

=

{
υl1x1,···,lrxr

, l1+···+lr is odd,
ωl1x1,···,lrxr

, l1+···+lr is even,
(2.6a)

Yx(υ,ω)=υx, Y2x(υ,ω)=υ2
x+ω2x, Yx,t(υ,ω)=υxυt+ωxt, (2.6b)

Y3x(υ,ω)=υ3x+3υxω2x+υ3
x,··· , (2.6c)

which inherit clear recognizable partial derivative structures of the Bell polynomials.
The link between Y -polynomials and the Hirota bilinear derivatives Dn1

x1
···Dnr

x1
F ·G

that we need can be given through the identity [56]:

Yn1x1,···,nrxr (υ= lnF/G, ω= lnFG)=(FG)−1Dn1
x1
···Dnr

xr
F ·G, (2.7)
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where F and G are both the functions of x and t. Taking F=G, the identity (2.7) becomes

F−2Dn1
x1
···Dnr

xr
F ·F=Y (0,q=2lnF)=

{
0, n1+···+nr is odd,
Pn1x1,···,nrxr(q), n1+···+nr is even,

(2.8)

where the P-polynomials can be characterized by an equally recognizable even-part par-
titional structure

P2x(q)=q2x, Px,t(q)=qxt, P4x(q)=q4x+3q2
2x, (2.9a)

P3x,y(q)=q3x,y+3q2xqxy, P6x(q)=q6x+15q2xq4x+15q3
2x,··· . (2.9b)

The binary Bell polynomials Yn1x1,···,nrxr(υ,ω) can be separated into P-polynomials and
Y-polynomials

(FG)−1Dn1
x1
···Dnr

xr
F ·G=Yn1x1,···,nrxr(υ,ω)|υ=lnF/G,ω=lnFG

=Yn1x1,···,nrxr(υ,υ+q)|υ=ln F/G,ω=lnFG

= ∑
n1+···+nr=even

n1

∑
l1=0

···
nr

∑
lr=0

r

∏
i=0

(
ni

li

)
Pl1x1,···,lrxr

(q)Y(n1−l1)x1,···,(nr−lr)xr
(υ). (2.10)

The key property of the multi-dimensional Bell polynomials

Yn1x1 ,···,nrxr(υ)|υ=lnψ=ψn1x1,···,nrxr/ψ, (2.11)

implies that the binary Bell polynomials Yn1x1,···,nrxr(υ,ω) can still be linearized by means
of the Hopf-Cole transformation υ= lnψ, that is, ψ=F/G. The formulae (2.10) and (2.11)
will then provide the shortest way to the associated Lax system of nonlinear equations.

In the following, we construct a bilinear form of Eq. (1.1) by using an extra auxil-
iary variable instead of the exchange formulas and then, get multi-soliton solutions to
Eq. (1.1).

Theorem 2.1. Under the following transformation,

u=2(ln f )xx, v=2(ln f )xy, ω=2(ln f )xz, (2.12)

Eq. (1.1) is bilinearized into the following bilinear equation

D(Dt,Dx,Dy,Dz)≡ (DxDt−h3D3
xDy−h4D3

xDz+h5D2
x+h6D2

y+h7D2
z) f · f =0, (2.13)

if and only if h1=3h3, h2=h8 =3h4.

Proof. In order to detect the existence of a linearizable form of Eq. (1.1), we need to choose
an appropriate transformation. Let

u= c(t)qxx, v= c(t)qxy, w= c(t)qxz, (2.14)
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where c=c(t) is a function to be determined, which makes a connection between Eq. (1.1)
and P-polynomials. Combining the transformation (2.14) and Eq. (1.1), we can obtain a
new form

ct(t)q2x+c(t)q2x,t−h1[c
2(t)q2xq2x,y+c2(t)q3xqx,y]−h2c2(t)q2xq2x,z

−h3c(t)q4x,y−h4c(t)q4x,z+h5c(t)q3x+h6c(t)qx,2y+h7c(t)qx,2z−h8c2(t)q3xqx,z=0. (2.15)

By setting c(t)=1, h2=h8 and integrating (2.15) with respect to x, we have

E(q)=qx,t−h1q2xqx,y−h2q2xqx,z−h3q3x,y−h4q3x,z+h5qxx+h6qyy+h7qzz =ϑ, (2.16)

where ϑ=ϑ(y,z,t) is an integration constant. Then according to the formula (2.9) and set-
ting h1=3h3, h2=3h4, (2.16) can be transformed into a combination form of P-polynomials

E(q)≡Pxt(q)−h3P3x,y(q)−h4P3x,z(q)+h5P2x(q)+h6P2y(q)+h7P2z(q)=ϑ. (2.17)

Particularly, when ϑ=0, Eq. (2.17) will be simplified as follows

E(q)≡Pxt(q)−h3P3x,y(q)−h4P3x,z(q)+h5P2x(q)+h6P2y(q)+h7P2z(q)=0. (2.18)

Referring to the property (2.11) and making use of the change as follows:

q=2(ln f )⇐⇒u= c(t)qxx =2(ln f )xx, (2.19a)

q=2(ln f )⇐⇒v= c(t)qxy =2(ln f )xy, (2.19b)

q=2(ln f )⇐⇒w= c(t)qxz =2(ln f )xz. (2.19c)

Eq. (1.1) can be cast into the bilinear representation as shown in D (2.13).

3 Soliton solutions

3.1 Soliton solutions of gCBS equation

In this section, we will consider soliton solutions to Eq. (1.1) through the use of the Hirota
bilinear method.

According to the Hirota bilinear theory, Eq. (1.1) has the following one-soliton solu-
tion

u1=2[ln(1+eη)]xx, v1=2[ln(1+eη)]xy, w1=2[ln(1+eη)]xz, (3.1a)

η=µx+νy+σz−
1

µ
(−h3µ3ν−h4µ3σ+h5µ2+h6ν2+h7σ2)t+δ, (3.1b)

where µ, ν, σ, δ are all arbitrary real constants.
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Figure 1: (Color online) Propagation of the one solitary wave for the gCBS (1.1) via expression (3.1) with suitable
parameters: µ=1, ν=1, σ=1, δ=1, h3=−1, h4=2, h5=1, h6=2, h7=1 with z= t=0. (a) Perspective view of
the wave. (b) The overhead view of the wave. (c) The corresponding contour plot. (d) The wave propagation
pattern of the wave along the x-axis. (e) The wave propagation pattern of the wave along the y-axis. (f) The
wave propagation pattern of the wave along the t-axis.

Furthermore, in a similar way, the two-soliton solution is given by

u2=2(ln f )xx, v2=2(ln f )xy, w2=2(ln f )xz, (3.2a)

f =1+eη1 +eη2 +eη1+η2+A12 , (3.2b)

ηi =µix+νiy+σiz−
1

µi
(−h3µ3

i νi−h4µ3
i σi+h5µ2

i +h6ν2
i +h7σ2

i )t+δi, (3.2c)

where µi, νi, σi, δi are all real constants and

exp(A12)=−
Anumerator

12

Adenominator
12

, (3.3)

where Anumerator
12 =(µ1−µ2)(ω1−ω2)−h3(µ1−µ2)3(ν1−ν2)−h4(µ1−µ2)3(σ1−σ2)+h5(µ1−

µ2)2+h6(ν1−ν2)2+h7(σ1−σ2)2, Adenominator
12 = (µ1+µ2)(ω1+ω2)−h3(µ1+µ2)3(ν1+ν2)−

h4(µ1+µ2)3(σ1+σ2)+h5(µ1+µ2)2+h6(ν1+ν2)2+h7(σ1+σ2)2. The relationships of the co-
efficients are ωi = h3µ2

i νi+h4µ2
i σi−h5µi−h6µ−1

i ν2
i −h7µ−1

i σ2
i , µi, νi, σi and δi (i= 1,2) are

free constants.
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Figure 2: (Color online) Propagation of the two solitary wave for the gCBS (1.1) via expression (3.2) with
suitable parameters: µ1=1, µ2=−1.5, ν1 =2, ν2 =−1, σ1 =1, σ2 =2, δ1 =0, δ2 =0, h3 =0.5, h4 =−1, h5 =1,
h6 =−1, h7 =−1.5 with z= t= 1. (a) Perspective view of the wave. (b) The overhead view of the wave. (c)
The corresponding contour plot. (d) The wave propagation pattern of the wave along the x-axis. (e) The wave
propagation pattern of the wave along the y-axis. (f) The wave propagation pattern of the wave along the
t-axis.

From the soliton solutions (3.1) and (3.2), we present Figs. 1 and 2 to show the propa-
gation situations of solitary waves.

Fig. 1(a) shows a three-dimensional space graph of one-soliton solution with small ex-
cited state. It implies that the amplitude of the excited state is limited. Fig. 1(b) represents
a three-dimensional density graph of one soliton solution. It shows that the one-soliton is
a line-soliton solution. The Figs. 1(d), (e) and (f) show the wave propagation of the wave
along x-axis, y-axis and t-axis, respectively. These figures represent the one-soliton wave
propagation with the same amplitude.

Fig. 2(a) shows a three-dimensional space graph of two-soliton solution with small
excited state. It implies that the amplitude of the excited state is limited. Fig. 2(b) repre-
sents a three-dimensional density graph of two soliton solution with M-type. Its surface
pattern is two-dimensional, i.e., there are two phase variables η1 and η2, which shows
that the two-soliton wave admits two-independent spatial one-soliton wave in two in-
dependent horizontal directions. The Fig. 2(f) shows the wave propagation of the wave
along t-axis. The figure shows the two-soliton wave propagation along t-axis with three
wave crests.



956 C. Y. Qin, S. F. Tian, L. Zou and W. X. Ma / Adv. Appl. Math. Mech., 10 (2018), pp. 948-977

3.2 The reduction of soliton solutions of gCBS equation

Next, we construct the soliton solutions of the (2+1)-dimensional CBS equation (1.3) by
considering the reduction of the soliton solutions of the gCBS equation (1.1).

In the following analysis, we mainly study the relationship between (1.1) and (1.3).
Under h1 =0, h3 =0, h5 =h6 =h7 =0, v=y=0 and the condition h2 =h8 =3h4 provided in
Theorem 2.1, we have the following results:

For the one-soliton solution, we have η = µx+σz+h4µ2σt+δ from the solution (3.1)
of Eq. (1.1). Then the one-soliton solution of Eq. (1.3) is given by

u1=2(ln f )xx, f =1+exp(η)=1+exp(µx+σz+h4µ2σt+δ). (3.4)

For the two-soliton solution, we obtain ηi =µix+σiz+h4µ2
i σit+δi, and

exp(A12)=
(µ1−µ2)(ω1−ω2)−(µ1−µ2)3(σ1−σ2)

(µ1+µ2)(ω1+ω2)−(µ1+µ2)3(σ1+σ2)
with ωi=µ2

i σi, i=1,2. (3.5)

From the solution (3.2) of Eq. (1.1), we obtain the two-soliton solution of Eq. (1.3) as
follows

u2=2(ln f )xx, f =1+eη1 +eη2 +eη1+η2+A12 . (3.6)

For the three-soliton solution, similarly we obtain ηi =µix+σiz+h4µ2
i σit+δi, and

exp(Aij)=
(µi−µj)(ωi−ωj)−(µi−µj)

3(σi−σj)

(µi+µj)(ωi+ωj)−(µi+µj)3(σi+σj)
with ωi=µ2

i σi, i, j=1,2,3. (3.7)

Then, the soliton solutions of the (2+1)-dimensional CBS equation (1.3) are the special
cases of the soliton solutions for the gCBS equation (1.1).

4 Periodic wave solutions

In order to construct multi-periodic wave solutions to Eq. (1.1), firstly, we introduce the
following multi-dimensional Riemann theta function of genus n

ϑ(ξ)=ϑ(ξ,τ)= ∑
n∈ZN

eπi〈nτ,n〉+2πi〈ξ,n〉, (4.1)

where n=(n1,··· ,nN)
T∈ZN denotes the integer value vector and complex phase variable

ξ=(ξ1,··· ,ξN)
T∈CN . Moreover, for the two vectors f =( f1,··· , fN)

T and g=(g1,··· ,gN)
T,

their inner product is defined by

〈 f ,g〉= f1g1+ f2g2+···+ fN gN . (4.2)

The −iτ =(−iτij) is a positive definite and real-valued symmetric N×N matrix, which
can be called the period matrix of the theta function. The entries τij of τ can be seen as
free parameters of the theta function (4.1). Under these conditions, the Fourier series (4.1)
converges to a real-valued function with an arbitrary vector ξ∈CN .
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Remark 4.1. Constructing periodic wave solutions can use an algebra geometric method,
the matrix τ is usually constructed by a compact Riemann surface Γ of genus N∈N. In
this paper, taking the matrix τ to be pure imaginary matrix, i.e., the matrix −iτ real
valued, yields the Riemann theta function periodic wave solutions of Eq. (1.1).

4.1 One-periodic wave solutions

To construct the multiperiodic wave solutions of Eq. (1.1), we should consider a more
generalized form of the bilinear equation (2.13) by introducing one more widely avail-
able. Suppose that Eq. (1.1) satisfies the nonzero asymptotic condition u→u0 as |ξ|→0,
we can find the solution of Eq. (1.1) of the form as follows

u=u0+2∂2
x lnϑ(ξ), (4.3)

where u0 is a constant solution of Eq. (1.1) and phase variable ξ is of the form ξ =
(ξ1,··· ,ξN)

T, ξi = kix+ρiy+liz+ωit+ε i, i= 1,2,··· ,N. Combining Eq. (1.1) and (4.3), we
can obtain the bilinear equation by integrating with respect to x as follows

L (Dx,Dy,Dz,Dt)ϑ(ξ)·ϑ(ξ)

=
(

DxDt−h3D3
xDy−h3u0D3

xDy−h4D3
xDz−h4u0D3

xDz

+h5D2
x+h6D2

y+h7D2
z+c

)
ϑ(ξ)·ϑ(ξ)=0, (4.4)

where c= c(y,z,t) is an arbitrary integration constant. For the bilinear equation (4.4), we
are interested in its multi-periodic solutions in terms of the Riemann theta function ϑ(ξ).

Remark 4.2. The constant c=c(y,z,t) may be taken to be zero in the construction of soliton
solutions. But in our present periodic case, the nonzero constant c plays an important role
and must not be dropped since elliptic functions generally do not satisfy equations with
zero integration constants such as (2.13).

In [23], the authors proposed two key theorems to construct Riemann theta function
periodic wave solutions for nonlinear equations by virtue of a multi-dimensional Rie-
mann theta function. Now using the results of [23], we can directly obtain some periodic
wave solutions for Eq. (1.1).

Theorem 4.1. Suppose that ϑ(ξ,τ) is a Riemann theta function for N=1 with ξ=kx+ρy+lz+
ωt+ε. Eq. (1.1) admits a one-periodic wave solution

u=u0+2∂2
x lnϑ(ξ,τ), (4.5)

with

ω=
b1a22−b2a12

a11a22−a12a21
, c=

b1a21−b2a11

a12a21−a11a22
, (4.6)
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where

a11=−
+∞

∑
n=−∞

16n2π2k℘2n2
, a12 =

+∞

∑
n=−∞

℘
2n2

, (4.7a)

a21=−
+∞

∑
n=−∞

4π2(2n−1)2k℘2n2−2n+1, a22 =
+∞

∑
n=−∞

℘
2n2−2n+1, (4.7b)

b1=
+∞

∑
n=−∞

(
(256h3π4n4k3ρ+256h4π4n4k3l)(1+u0)+16h5n2π2k2

+16h6n2π2ρ2+16h7n2π2l2
)
℘

2n2
, (4.7c)

b2=
+∞

∑
n=−∞

(
(16h3π4(2n−1)4k3ρ+16h4π4(2n−1)4k3l)(1+u0)+4h5π2(2n−1)2k2

+4h6π2(2n−1)2ρ2+4h7π2(2n−1)2l2
)
℘

2n2−2n+1, ℘= eπiτ, (4.7d)

and the other parameters k, ρ, l, τ, ε and u0 are free.

Proof. We consider the following one-Riemann theta function ϑ(ξ) with N=1 for con-
structing the one-periodic wave solution of Eq. (1.1),

ϑ(ξ)=ϑ(ξ,τ)=
+∞

∑
n=−∞

eπin2τ+2πinξ , (4.8)

where the phase variable ξ= kx+ρy+lz+ωt+ε and the parameter satisfies Im(τ)>0.

The Riemann theta function (4.8) satisfying the bilinear equation (4.4) yields a suffi-
cient conditions for obtaining periodic wave solutions. By substituting function (4.8) into
the left of Eq. (4.4) and using the property (2.3), one can get

L (Dx ,Dy,Dz,Dt)ϑ(ξ)·ϑ(ξ)=
∞

∑
m=−∞

∞

∑
n=−∞

L (Dx ,Dy,Dz,Dt)e
πim2τ+2πimξ ·eπin2τ+2πi(m+n)ξ

=
∞

∑
m=−∞

∞

∑
n=−∞

L (2πi(n−m)k,2πi(n−m)ρ,2πi(n−m)l,2πi(n−m)ω)eπi(m2+n2)τ+2πi(m+n)ξ

=
∞

∑
m′=−∞

{
∞

∑
n=−∞

L
(
2πi(2n−m′)k,2πi(2n−m′)ρ,2πi(2n−m′)l,2πi(2n−m′)ω

)
eπ[n2+(n−m′)2]τ

}
e2πim′ξ

,
∞

∑
m′=−∞

L̃ (m′)e2πim′ξ , m′=m+n. (4.9)

In the following, we compute each series L̃ (m′) for m′∈Z. By shifting summation index
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by n′=n−1, one has the fact that

L̃ (m′)=
∞

∑
n=−∞

L
(
2πi(2n−m′)k,2πi(2n−m′)ρ,2πi(2n−m′)l,2πi(2n−m′)ω

)
eπi[n2+(n−m′)2]τ

=
∞

∑
n=−∞

L
(
2πi[2n′−(m′−2)]k,2πi[2n′−(m′−2)]ρ,2πi[2n′−(m′−2)]l,2πi(2n′−(m′−2))ω

)

×eπi{n′2+[n′−(m′−2)]2}τ ·e2πi(m′−1)τ

=L̃ (m′−2)e2πi(m′−1)τ = ···=

{
L̃ (0)eπim′τ, m′ is even,

L̃ (1)eπi(m′+1)τ, m′ is odd,
m′,n′∈Z. (4.10)

This implies that L̃ (m′),m∈Z are completely dominated by L̃ (0) and L̃ (1). If L̃ (0)=

L̃ (1) = 0, then it follows that L̃ (m′) = 0,m′ ∈ Z and thus the theta function (4.8) is an
exact solution to Eq. (4.4), i.e., L (Dx,Dy,Dz,Dt)ϑ(ξ)·ϑ(ξ)=0. Noticing the specific form
of (4.4), a one-periodic wave solution can be obtained, if we require

+∞

∑
n=−∞

L (4nπik,4nπiρ,4nπil,4nπiω)e2n2πiτ =0, (4.11a)

+∞

∑
n=−∞

L (2πi(2n−1)k,2πi(2n−1)ρ,2πi(2n−1)l,2πi(2n−1)ω)e(2n2−2n+1)πiτ =0. (4.11b)

Combining (4.4) and (4.11a), (4.11b), we obtain

L̃ (0)=
∞

∑
n=−∞

(
−16π2n2kω−256h3π4n4k3ρ−256h3u0π4n4k3ρ−256h4π4n4k3l

−256h4u0π4n4k3l−16h5π2n2k2−16h6π2n2ρ2−16h7π2n2l2+c
)

e2πin2τ =0, (4.12a)

L̃ (1)=
∞

∑
n=−∞

(
−4π2(2n−1)2kω−16h3π4(2n−1)4k3ρ−16h3u0π4(2n−1)4k3ρ

−16h4π4(2n−1)4k3l−16h4u0π4(2n−1)4k3l−4h5π2(2n−1)2k2−4h6π2(2n−1)2ρ2

−4h7π2(2n−1)2l2+c
)

eπi(2n2−2n+1)τ=0. (4.12b)

With the same constants in the system (4.7), Eqs. (4.12a) and (4.12b) can be reduced into
a linear system about the frequency ω and the integration constant c as follows

(
a11 a12

a21 a22

)(
ω
c

)
=

(
b1

b2

)
. (4.13)

Now solving this system, we obtain a one-periodic wave solution to Eq. (1.1)

u=u0+2∂2
x lnϑ(ξ,τ), (4.14)

from which we can get the vector (ω,c)T, and the theta function ϑ(ξ) can be obtained
from (4.8). The other parameters k, ρ, l, τ, ε and u0 are free.
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4.2 Two-periodic wave solutions

Theorem 4.2. Suppose that ϑ(ξ,τ) is a Riemann theta function for N=2 with ξi = kix+ρiy+
liz+ωit+ε i (i=1,2). Eq. (1.1) admits a two-periodic wave solution as follows

u=u0+2∂2
x lnϑ(ξ1,ξ2,τ), (4.15)

where ω1, ω2, u0, c satisfy the system as follows

H(ω1,ω2,u0,c)T =b, (4.16)

in which

H=(hij)4×4, b=(b1,b2,b3,b4)
T, (4.17a)

hi1 =−4π2 ∑
(n1,n2)∈Z2

〈2n−θi,k〉(2n1−θ1
i )ℑi(n), (4.17b)

hi2 =−4π2 ∑
(n1,n2)∈Z2

〈2n−θi,k〉(2n2−θ2
i )ℑi(n), (4.17c)

hi3 = ∑
(n1,n2)∈Z2

(−16h3π4〈2n−θi,k〉
3〈2n−θi,ρ〉

−16h4π4〈2n−θi,k〉
3〈2n−θi,l〉)ℑi(n), (4.17d)

bi= ∑
(n1,n2)∈Z2

(
16h3π4〈2n−θi,k〉

3〈2n−θi,ρ〉+16h4π4〈2n−θi,k〉
3〈2n−θi,l〉

+4h5π2〈2n−θi,k〉
2+4h6π2〈2n−θi,ρ〉

2+4h7π2〈2n−θi,l〉
2
)
ℑi(n), (4.17e)

hi4 = ∑
(n1,n2)∈Z2

ℑi(n), ℑi(n)=℘
n2

1+(n1−θ1
i )

2

1 ℘
n2

2+(n2−θ2
i )

2

2 ℘
n1n2+(n1−θ1

i )(n2−θ2
i )

3 , (4.17f)

℘1= eπiτ11 , ℘2= eπiτ22 , ℘3= e2πiτ12 , i=1,2,3,4, (4.17g)

and θi=(θ1
i ,θ2

i )
T, θ1=(0,0)T, θ2=(1,0)T, θ3=(0,1)T, θ4=(1,1)T, i=1,··· ,4 and ki, ρi, li, τij,

ε i (i, j=1, 2) are free parameters.

Proof. By taking N=2, the two-Riemann theta function ϑ(ξ1,ξ2,τ) is of the form

ϑ(ξ,τ)=ϑ(ξ1,ξ2,τ)= ∑
n∈Z2

eπi〈τn,n〉+2πi〈ξ,n〉, (4.18)

where the variables n=(n1,n2)T ∈Z2, ξ=(ξ1,ξ2)∈C2, ξi = kix+ρiy+liz+ωit+ε i, i=1,2,
and −iτ is a real-valued and positive definite symmetric 2×2 matrix, which can be taken
of the form

τ=

(
τ11 τ12

τ12 τ22

)
, Im(τ11)>0, Im(τ22)>0, τ11τ22−τ2

12<0. (4.19)
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In order to get some sufficient conditions for the theta function (4.18) to satisfy the bilinear
equation (4.4), we substitute the function (4.18) into the left of Eq. (4.4) and obtain

L (Dx,Dy,Dz,Dt)ϑ(ξ1,ξ2,τ)·ϑ(ξ1,ξ2,τ)

= ∑
m,n∈Z2

L (2πi〈n−m,k〉,2πi〈n−m,ρ〉,2πi〈n−m,l〉,2πi〈n−m,ω〉)

×e2πi〈ξ,m+n〉+πi(〈τm,m〉+〈τn,n〉)

= ∑
m′∈Z2

{

∑
n∈Z2

L
(
2πi〈2n−m′,k〉,2πi〈2n−m′,ρ〉,2πi〈2n−m′,l〉,2πi〈2n−m′,ω〉

)

eπi[〈τ(n−m′),n−m′〉+〈τn,n〉]
}

e2πi〈ξ,m′〉

, ∑
m′∈Z2

L̃ (m′
1,m′

2)e
2πi〈ξ,m′〉= ∑

m′∈Z2

L̃ (m′)e2πi〈ξ,m′〉, m′=m+n. (4.20)

Shifting index n as n′=n−δij, j=1,2, we can compute that

L̃ (m′)=L̃ (m′
1,m′

2)

= ∑
n∈Z2

L
(
2πi〈2n−m′,k〉,2πi〈2n−m′,ρ〉,2πi〈2n−m′,l〉,2πi〈2n−m′,ω〉

)

×eπi[〈τ(n−m′),n−m′〉+〈τn,n〉]

= ∑
n∈Z2

L

(
2πi

2

∑
i=1

[2n′
i−(m′

i−2δij)]ki,2πi
2

∑
i=1

[2n′
i−(m′

i−2δij)]ρi,2πi
2

∑
i=1

[2n′
i−(m′

i−2δij)]li,

2πi
2

∑
i=1

[2n′
i−(m′

i−2δij)]ωi

)
eπi∑

2
i,k=1[(n

′
i+δij)(n

′
k+δkj)+(m′

i−n′
i−δij)(m

′
k−n′

k−δkj)]τik

=

{
L̃ (m′

1−2,m′
2)e

2πi(m′
1−1)τ11+2πim′

2τ12 , j=1,

L̃ (m′
1,m′

2−2)e2πi(m′
2−1)τ22+2πim′

1τ12 , j=2,
m′,n′∈Z

2, (4.21)

with δij representing Kronecker’s delta. It implies that L̃ (m′), m′ ∈ Z2 are completely

dominated by four functions L̃ (0,0), L̃ (1,0), L̃ (0,1) and L̃ (1,1). We can show that if

L̃ (0,0)= L̃ (1,0)= L̃ (0,1)= L̃ (1,1)=0, then L̃ (m′
1,m′

2)=0 for all m′
1,m′

2∈Z2 and thus
the theta function (4.18) is an exact solution to Eq. (4.4). Noticing the specific form of
Eq. (4.4), two-periodic wave solutions can be obtained if the following system holds

∑
n∈Z2

L (2πi〈2n−θ1,k〉,2πi〈2n−θ1,ρ〉,2πi〈2n−θ1,l〉,2πi〈2n−θ1,ω〉)

×eπi[〈τ(n−θ1),n−θ1〉+〈τn,n〉]=0, (4.22a)

∑
n∈Z2

L (2πi〈2n−θ2,k〉,2πi〈2n−θ2,ρ〉,2πi〈2n−θ2,l〉,2πi〈2n−θ2,ω〉)

×eπi[〈τ(n−θ2),n−θ2〉+〈τn,n〉]=0, (4.22b)
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∑
n∈Z2

L (2πi〈2n−θ3,k〉,2πi〈2n−θ3,ρ〉,2πi〈2n−θ3,l〉,2πi〈2n−θ3,ω〉)

×eπi[〈τ(n−θ3),n−θ3〉+〈τn,n〉]=0, (4.22c)

∑
n∈Z2

L (2πi〈2n−θ4,k〉,2πi〈2n−θ4,ρ〉,2πi〈2n−θ4,l〉,2πi〈2n−θ4,ω〉)

×eπi[〈τ(n−θ4),n−θ4〉+〈τn,n〉]=0, (4.22d)

where θi =(θ1
i ,θ2

i )
T, θ1=(0,0)T , θ2=(1,0)T , θ3=(0,1)T , θ4 =(1,1)T, i=1,2,3,4.

Combining Eqs. (4.4) and (4.22a), (4.22b), (4.22c), (4.22d), we obtain

∑
n∈Z2

[−4π2〈2n−θi,k〉〈2n−θi,ω〉−16h3π4〈2n−θi,k〉
3〈2n−θi,ρ〉

−16h3u0π4〈2n−θi,k〉
3〈2n−θi,ρ〉−16h4π4〈2n−θi,k〉

3〈2n−θi,l〉

−16h4u0π4〈2n−θi,k〉
3〈2n−θi,l〉−4h5π2〈2n−θi,k〉

2−4h6π2〈2n−θi,ρ〉
2

−4h7π2〈2n−θi,l〉
2+c]eπi[〈τ(n−θi),n−θi〉+〈τn,n〉]=0, i=1,2,3,4. (4.23)

These equations can be written as a new form, under the above notation (4.17), given by




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44







ω1

ω2

u0

c


=




b1

b2

b3

b4


. (4.24)

Now solving the above system, we can obtain a two-periodic wave solution of Eq. (1.1),

u=u0+2∂2
x lnϑ(ξ1,ξ2,τ), (4.25)

where ϑ(ξ1,ξ2,τ) and parameters ω1,ω2,u0,c are determined by Eqs. (4.18) and (4.25),
respectively. The other parameters ki, ρi, li, ε i, τij are free.

The figures of the one-periodic wave solution (4.5) and the two-periodic wave solu-
tion (4.15) are presented in Figs. 3-6. By taking the appropriate parameters, we can plot
different figures, which can help us analyze the properties and propagation of the peri-
odic wave solutions well. The Figs. 3(a), (b) and (c) represent a three-dimensional space
graph of the one-periodic wave solution with different labels. The Figs. 3(d), (e) and (f)
show the wave propagation of the wave along x-axis, y-axis and t-axis with the same
amplitude, respectively. It shows from (d), (e) and (f) that the one-periodic wave solution
admits different fundamental periods in x-axis, y-axis and t-axis, respectively.

The propagation of the symmetric and asymmetric two-periodic wave solution (4.15)
is presented in Figs. 4-6. The Fig. 4(a) shows a three-dimensional space graph of the two-
periodic wave solution and it also shows that the symmetric two-periodic wave solution
is periodic in two directions. Furthermore, it implies that the two-periodic wave solution
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Figure 3: (Color online) A one-periodic wave of the gCBS (1.1) via expression (4.5) with suitable parameters:
k=2, ρ=1, l=1, τ=i, h3=2, h4=1, h5=2, h6=3, h7=4 and ε=0. This figure shows that the one-periodic wave
solution is one-dimensional. Perspective view of the real part of the periodic wave Re(u) with: (a) t= z= 0.
(b) t= y= 0. (c) y= z= 0. Wave propagation pattern of the wave along with: (d) the x-axis. (e) the y-axis.
(f) the t-axis.

is actually one dimensional and it degenerates to a one-periodic wave solution. The
Figs. 5 and 6 show that the asymmetric two-periodic wave solution is spatially periodic
in two directions, but it need not be periodic in either the x or t directions.

Remark 4.3. Under the condition h1=0, h3=0, h5=h6=h7=0, v=y=0 and h2=h8=3h4,
one can obtain the quasi-periodic wave solutions of (1.3) from ones of (1.1). Since the
expressions of the solutions are relatively large, we omit them here.

5 Asymptotic properties of the periodic waves

In the following, we analyze relations between the one- and two-periodic wave solutions
(4.5), (4.15) and the one- and two-soliton solutions (3.1), (3.2) to Eq. (1.1).

5.1 Feature and asymptotic properties of one-periodic waves

The one-periodic wave solution (4.5) has the following properties.
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Figure 4: (Color online) A symmetric two-periodic wave of the gCBS (1.1) via expression (4.15) with suitable

parameters: k1
k2
=

ρ1

ρ2
= l1

l2
and u0 = 0, k1 = ρ1 = l1 = 0.1, k2 = ρ2 = l2 = 0.3, τ11 = i, τ12 = 0.5i, τ22 = 2i, h3 =−1,

h4 = 2, h5 = 4, h6 = 6, h7 = 8, ε1 = 0, ε2 = 0 with z= 1. This figure shows that two-periodic wave solution is
almost one-dimensional. (a) Perspective view of the real part of the periodic wave Re(u). (b) The overhead
view of the wave. (c) The corresponding contour plot. (d) The wave propagation pattern of the wave along
the x-axis. (e) The wave propagation pattern of the wave along the y-axis. (f) The wave propagation pattern
of the wave along the t-axis.

(i) It has two fundamental periods 1 and τ in the phase variable ξ.

(ii) There is a single phase variable ξ. Its speed parameter is given by

ω=
b1a22−b2a12

a11a22−a12a21
. (5.1)

(iii) The one-periodic wave has only one wave pattern and it can be viewed as a parallel
superposition of overlapping one-solitary waves, placed one period apart (see Fig. 3).

Now we further study asymptotic properties of the one-periodic wave solution (4.14),
we have to use the solutions of the system (4.13). Because both the coefficient matrix and
the right-side vector of the system (4.13) are power series about ℘, its solution (ω,c)T

should also be a series about ℘. We can solve the system (4.13) via a small parameter
expansion method and a general procedure described as follows.
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Figure 5: (Color online) A asymmetric two-periodic wave of the gCBS (1.1) via expression (4.15) with suitable

parameters: k1
k2
6=

ρ1

ρ2
= l1

l2
and u0=0, k1 =1, k2=0.5, ρ1=1, ρ2=0.4, l1=1, l2=0.4, τ11= i, τ12=0.5i, τ22=2i,

h3 =−1, h4 = 2, h5 = 4, h6 = 6, h7 = 8, ε1 = 0, ε2 = 0 with z= 1. (a) Perspective view of the real part of the
periodic wave Re(u). (b) The overhead view of the wave. (c) The corresponding contour plot. (d) The wave
propagation pattern of the wave along the x-axis. (e) The wave propagation pattern of the wave along the
y-axis. (f) The wave propagation pattern of the wave along the t-axis.

The system (4.13) can be rewritten as the following power series
(

a11 a12

a21 a22

)
=A0+A1℘+A2℘

2+··· , (5.2a)

(
ω
c

)
=X0+X1℘+X2℘

2+··· , (5.2b)

(
b1

b2

)
=B0+B1℘+B2℘

2+··· . (5.2c)

Substituting Eqs. (5.2a)-(5.2c) into Eq. (4.13), we have the following recursion relations

A0X0=B0, A0Xn+A1Xn−1+···+AnX0=Bn, n≥1, n∈N. (5.3)

Assuming that the matrix A0 is reversible, one can obtain

X0=A−1
0 B0, Xn =A−1

0

(
Bn−

n

∑
i=1

AiBn−1

)
, n≥1, n∈N. (5.4)
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If two matrices A0 and A1 are not invertible, and read

A0=

(
0 1
0 0

)
, A1=

(
0 0

−8π2 2

)
, (5.5)

the required result can be obtained as follows

X0=

(
2B

(1)
0 −B

(2)
1

8π2k
,B

(1)
0

)T

, X1=

(
2B

(1)
1 −(B2−A2X0)(2)

8π2k
,B

(1)
1

)T

,··· , (5.6a)

Xn =
(

2(Bn+1−∑
n
i=2 AiXn−i)

(1)−(Bn+1−∑
n+1
i=2 AiXn+1−i)

(2)

8π2k
, (Bn+1−∑

n
i=2 AiXn−i)

(1)
)T

,

n≥2, n∈N, (5.6b)

in which α(1) and α(2) denote the first and second component of a two-dimensional vec-
tor α, respectively. In the following, we will present the relationship between the one-
periodic wave solution (4.5) and the one-soliton solution (3.1).

Theorem 5.1. If the vector (ω,c)T is a solution of the system (4.13) and for the one-periodic wave
solution (4.5), we set

u0=0, k=
µ

2πi
, ρ=

ν

2πi
, l=

σ

2πi
, ε=

δ+πτ

2πi
, (5.7)

where µ, ν, σ and δ are determined by Eq. (4.5), then we have the asymptotic properties as follows

c→0, ξ→
η+πτ

2πi
, ϑ(ξ,τ)→1+eη , when ℘→0, (5.8)

which implies that the one-periodic wave solution (4.5) tends to the one-soliton solution (3.1) via
a small amplitude limit, that is (u,℘)→ (u1,0).

Proof. Based on the system (4.7), the functions aij, bi, i, j=1,2 can be rewritten as the series
about ℘

a11=−32π2k(℘2+4℘8+···+n2
℘

2n2
+···), (5.9a)

a12=1+2(℘2+℘
8+···+℘

2n2
+···), (5.9b)

a21=−8π2k(℘+9℘5+···+(2n−1)2
℘

2n2−2n+1+···), (5.9c)

a22=2(℘+℘
5+···+℘

2n2−2n+1+···), (5.9d)
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Figure 6: (Color online) A asymmetric two-periodic wave of the gCBS (1.1) via expression (4.15) with suitable

parameters: k1
k2
6=

ρ1

ρ2
6= l1

l2
and u0=0, k1=2, k2=3, ρ1=2, ρ2=4, l1=2, l2=5, τ11= i, τ12=0.5i, τ22=2i, h3=−1,

h4=2, h5=4, h6=6, h7=8, ε1=0, ε2=0 with z=1. (a) Perspective view of the real part of the periodic wave
Re(u). (b) The overhead view of the wave. (c) The corresponding contour plot. (d) The wave propagation
pattern of the wave along the x-axis. (e) The wave propagation pattern of the wave along the y-axis. (f) The
wave propagation pattern of the wave along the t-axis.

b1=32π2
{
[(16h3π2k3ρ+16h4π2k3l)(1+u0)+h5k2+h6ρ2+h7l2]℘2

+[(256h3π2k3ρ+256h4π2k3l)(1+u0)+4h5k2+4h6ρ2+4h7l2]℘8+···

+[(16h3π2n4k3ρ+16h4π2n4k3l)(1+u0)+h5n2k2+h6n2ρ2+h7n2l2]℘2n2
+···

}
, (5.9e)

b2=8π2
{
[(4h3π2k3ρ+4h4π2k3l)(1+u0)+h5k2+h6ρ2+h7l2]℘

+[(324h3π2k3ρ+324h4π2k3l)(1+u0)+9h5k2+9h6ρ2+9h7l2]℘5 +···

+[(4h3(2n−1)4π2k3ρ+4h4(2n−1)4π2k3l)(1+u0)+h5(2n−1)2k2

+h6(2n−1)2ρ2+h7(2n−1)2l2]℘2n2−2n+1+···
}

. (5.9f)

According to Eqs. (5.2a) and (5.2c), one can get

A0=

(
0 1
0 0

)
, A1=

(
0 0

−8π2k 2

)
, (5.10a)
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A2=

(
−32π2k 2

0 0

)
, A5=

(
0 0

−72π2k 2

)
, (5.10b)

B1=

(
0

(32h3π4k3ρ+32h4π4k3l)(1+u0)+8h5π2k2+8h6π2ρ2+8h7π2l2

)
, (5.10c)

B2=

(
(512h3π4k3ρ+512h4π4k3l)(1+u0)+32h5π2k2+32h6π2ρ2+32h7π2l2

0

)
, (5.10d)

B5=

(
0

(2592h3π4k3ρ+2592h4π4k3l)(1+u0)+72h5π2k2+72h6π2ρ2+72h7π2l2

)
, (5.10e)

A3=A4 =0,··· , B0=B3=B4=0,··· . (5.10f)

Combining Eq. (5.10) and the formulas (5.6), we obtain

X0=

(
(−4h3π2k3ρ−4h4π2k3l)(1+u0)−h5k2−h6ρ2−h7l2

k
0

)
, (5.11a)

X2=

(
8kX

(1)
0

32π2kX
(1)
0

)
, (5.11b)

X4=

(
(−324h3π2k3ρ−324h4π2k3 l)(1+u0)+(64k2−25k)X

(1)
0 −9h5k2−9h6ρ2−9h7l2

k

256π2k2X
(1)
0 −64π2kX

(1)
0

)
, (5.11c)

X1=X3=0,··· . (5.11d)

With the aid of the formula (5.2b), we have

ω=
(−4h3π2k3ρ−4h4π2k3l)(1+u0)−h5k2−h6ρ2−h7l2

k
+8kX

(1)
0 ℘

2

+

(
(−324h3π2k3ρ−324h4π2k3l)(1+u0)+(64k2−25k)X

(1)
0 −9h5k2−9h6ρ2−9h7l2

k

)
℘

4

+o(℘4), (5.12a)

c=32π2kX
(1)
0 ℘

2+(256π2k2X
(1)
0 −64π2kX

(1)
0 )℘4+o(℘4). (5.12b)

With the relation (5.7), we can get

c→0, 2πiω→h3µ2ν+h4µ2σ−h5µ−h6µ−1ν2−h7µ−1σ2, when ℘→0. (5.13)

In order to show that the one-periodic wave solution (4.5) degenerates to the one-soliton
solution (3.1) under the limit ℘→0, we first write the periodic function ϑ(ξ) in the form

ϑ(ξ,τ)=1+
(

e2πiξ+e−2πiξ
)
℘+

(
e4πiξ+e−4πiξ

)
℘

4+··· . (5.14)

With the transformation (5.7), we can obtain

ϑ(ξ,τ)=1+eξ̃ +
(

e−ξ̃+e2ξ̃
)
℘

2+
(

e−2ξ̃+e3ξ̃
)
℘

6+···→1+eξ̃ , when ℘→0, (5.15a)

ξ̃ =2πiξ−πτ=µx+νy+σz+2πiωt+δ. (5.15b)
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From Eqs. (5.13) and (5.15), we can deduce that

ξ̃→µx+νy+σz+(h3µ2ν+h4µ2σ−h5µ−h6µ−1ν2−h7µ−1σ2)t+δ=η, when ℘→0, (5.16a)

ξ→
η+πτ

2πi
, when ℘→0. (5.16b)

Combining Eqs. (5.15) and (5.16), we further have

ϑ(ξ)→1+eη , when ℘→0. (5.17)

From above analysis, we conclude that when the amplitude ℘→0, the one-periodic wave
solution (4.5) just tends to the one-soliton solution (3.1).

5.2 Feature and asymptotic properties of two-periodic waves

The two-periodic wave solution (4.15) has a similar simple characterization.

(i) Its surface pattern is two-dimensional, i.e., there are two phase variables ξ1 and ξ2,
which implies that the two-periodic wave admits two independent spatial periods in
two independent horizontal directions.

(ii) It has 2N fundamental periods {ζi,i=1,2,··· ,N} and {τi,i=1,2,··· ,N} in (ξ1,ξ2) with
ζ1=(1,0,··· ,0)T,···ζN =(0,0,··· ,1)T.

(iii) Assuming that ki, ρi, li satisfy the following relationship

k2

k1
=

ρ2

ρ1
=

l2
l1
=m (m is a constant), (5.18)

we can get

ω2∼mω1, ξ2∼mξ1, ϑ(ξ1,ξ2)∼ϑ(ξ1,mξ1). (5.19)

The two-periodic wave is actually one dimensional and it degenerates to the one-periodic
wave (see Fig. 4).

(iv) If the parameters do not satisfy the relationship, i.e.,

k2

k1
6=

ρ2

ρ1
, (5.20)

then for any time t, the phase variables ξ1=m1 and ξ2=m2 (m1,m2 are constants) intersect
at a unique point. This point moves in the (x,y,z,t) plane with a constant speed as the
time t changes. In Figs. 5 and 6, every two-periodic wave is spatially periodic in three
directions, but it need not be periodic in either the x, y, z or t directions.

Finally, we study the asymptotic properties of the two-periodic wave solution (4.15).
Similarly to Theorem 5.1, the relationship between the two-periodic wave solution (4.15)
and the two-soliton solution (3.2) can be established as follows.
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Theorem 5.2. If (ω1,ω2,u0,c)T is a solution of the system (4.24) and for the two-periodic wave
solution (4.15), we take

ki =
µi

2πi
, ρi =

νi

2πi
, li=

σi

2πi
, ε i =

δi−πiτii

2πi
, τ12=

A12

2πi
, i=1,2, (5.21)

where µi, νi, σi, δi, i = 1,2 and A12 can be obtained from Eq. (3.3), then we have the following
asymptotic relations

u0→0, c→0, ξi →
ηi−πiτii

2πi
, i=1,2, (5.22a)

ϑ(ξ1,ξ2,τ)→1+eη1 +eη2+eη1+η1+A12 , when ℘1,℘2→0. (5.22b)

It means that the two-periodic wave solution (4.15) tends to the two-soliton solution (3.2) under
a small amplitude limit (u,℘1,℘2)→ (u1,0,0).

Proof. The periodic wave function ϑ(ξ1,ξ2,τ) is expanded in the form as follows

ϑ(ξ1,ξ2,τ)=1+
(

e2πiξ1 +e−2πiξ1

)
eπτ11+

(
e2πiξ2 +e−2πiξ2

)
eπτ22+

(
e2πi(ξ1+ξ2)+e−2πi(ξ1+ξ2)

)

×eπ(τ11+2τ12+τ22)+··· . (5.23)

From Eq. (5.21), we have

ϑ(ξ1,ξ2,τ)=1+eξ̃1 +eξ̃2 +eξ̃1+ξ̃2−2πτ12+℘
2
1e−ξ̃1 +℘

2
2e−ξ̃2 +℘

2
1℘

2
2e−ξ̃2

1−ξ̃2−2πτ12+···

→1+eξ̃1 +eξ̃2 +eξ̃1+ξ̃2+A12 as ℘1,℘2→0, (5.24)

where ξ̃i =µix+νiy+σiz+ω̃it+δi, ω̃i=2πiωi, i=1,2. It remains to prove that

c→0, ω̃i→h3µ2
i νi+h4µ2

i σi−h5µi−h6µ−1
i ν2

i −h7µ−1
i σ2

i , ξ̃i→ηi, i=1,2, as ℘1,℘2→0. (5.25)

According to the way used for the one periodic wave, we can expand each function in
{hij,bi,i=1,2,3,4} into a series with ℘1, ℘2. The expansions for the matrix H, the vector b
and the solution of the system (4.24) are given by

H=




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


+




0 0 0 0
−8π2k1 0 −32h3π4k3

1ρ1−32h4π4k3
1l1 2

0 0 0 0
0 0 0 0


℘1
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+




0 0 0 0
0 0 0 0
0 −8π2k2 −32h3π4k3

2ρ2−32h4π4k3
2l2 2

0 0 0 0


℘2

+




−32π2k1 0 −512π4k3
1(h3ρ1+h4l1) 2

0 0 0 0
0 0 0 0
0 0 0 0


℘

2
1

+




0 −32π2k2 −512π4k3
2(h3ρ2+h4l2) 2

0 0 0 0
0 0 0 0
0 0 0 0


℘

2
2

+




0 0 0 0
0 0 0 0
0 0 0 0

∆1 −∆1 ∆2 2


℘1℘2

+




0 0 0 0
0 0 0 0
0 0 0 0

∆3 ∆3 ∆4 2


℘1℘2℘3+o(℘i

1℘
j
2℘

k
3), i+ j+k≥3, (5.26a)

b=




0
Υ1

0
0


℘1+




0
0

Υ2

0


℘2+




Υ3

0
0
0


℘

2
1+




Υ4

0
0
0


℘

2
2+




0
0
0

Υ5


℘1℘2

+




0
0
0

Υ6


℘1℘2℘3+o(℘i

1℘
j
2℘

k
3), i+ j+k≥3, (5.26b)




ω1

ω2

u0

c


=




ω
(00)
1

ω
(00)
2

u
(00)
0

c(00)


+




ω
(11)
1

ω
(11)
2

u
(11)
0

c(11)


℘1+




ω
(21)
1

ω
(21)
2

u
(21)
0

c(21)


℘2+




ω
(12)
1

ω
(12)
2

u
(12)
0

c(12)


℘

2
1+




ω
(22)
1

ω
(22)
2

u
(22)
0

c(22)


℘

2
2

+




ω
(2)
1

ω
(2)
2

u
(2)
0

c(2)


℘1℘2+




ω
(3)
1

ω
(3)
2

u
(3)
0

c(3)


℘1℘2℘3+o(℘i

1℘
j
2℘

k
3), i+ j+k≥3, (5.26c)
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where ∆i and Υj are, respectively, given by

∆1=−8π2(k1−k2), ∆2=−32h3π4(k1−k2)
3(ρ1−ρ2)−32h4π4(k1−k2)

3(l1−l2), (5.27a)

∆3=−8π2(k1+k2), ∆4=−32h3π4(k1+k2)
3(ρ1+ρ2)−32h4π4(k1+k2)

3(l1+l2), (5.27b)

Υ1=32h3π4k3
1ρ1+32h4π4k3

1l1+8h5π2k2
1+8h6π2ρ2

1+8h7π2l2
1 , (5.27c)

Υ2=32h3π4k3
2ρ2+32h4π4k3

2l2+8h5π2k2
2+8h6π2ρ2

2+8h7π2l2
2 , (5.27d)

Υ3=512h3π4k3
1ρ1+512h4π4k3

1l1+32h5π2k2
1+32h6π2ρ2

1+32h7π2l2
1, (5.27e)

Υ4=512h3π4k3
2ρ2+512h4π4k3

2l2+32h5π2k2
2+32h6π2ρ2

2+32h7π2l2
2, (5.27f)

Υ5=32h3π4(k1−k2)
3(ρ1−ρ2)+32h4π4(k1−k2)

3(l1−l2)+8h5π2(k1−k2)
2

+8h6π2(ρ1−ρ2)
2+8h7π2(l1−l2)

2, (5.27g)

Υ6=32h3π4(k1+k2)
3(ρ1+ρ2)+32h4π4(k1+k2)

3(l1+l2)+8h5π2(k1+k2)
2

+8h6π2(ρ1+ρ2)
2+8h7π2(l1+l2)

2. (5.27h)

Substituting systems (5.26a)-(5.26c) into system (4.24) and comparing the same order of
℘1, ℘2 and ℘3, we have some relationships as follows:

c(00)= c(11)= c(21)= c(2)= c(3)=0, (5.28a)

c(12)−32π2k1ω
(00)
1 +(−512h3π4k3

1ρ1−512h4π4k3
1l1)u

(00)
0 =Υ3, (5.28b)

−8π2k1ω
(11)
1 +(−32h3π4k3

1ρ1−32h4π4k3
1l1)u

(11)
0 =0, (5.28c)

−8π2k2ω
(00)
2 +(−32h3π4k3

2ρ2−32h4π4k3
2l2)u

(00)
0 =Υ2, (5.28d)

8π2k2ω
(21)
2 +(−32h3π4k3

2ρ2−32h4π4k3
2l2)u

(21)
0 =0, (5.28e)

−8π2k1ω
(00)
1 +(−32h3π4k3

1ρ1−32h4π4k3
1l1)u

(00)
0 =Υ1, (5.28f)

c(22)−32π2k2ω
(00)
2 +(−512h3π4k3

2ρ2−512h4π4k3
2l2)u

(00)
0 =Υ4, (5.28g)

−8π2k1ω
(21)
1 +(−32h3π4k3

1ρ1−32h4π4k3
1l1)u

(21)
0 =0, (5.28h)

−8π2k2ω
(11)
2 +(−32h3π4k3

2ρ2−32h4π4k3
2l2)u

(11)
0 =0, (5.28i)

∆1ω
(00)
1 −∆1ω

(00)
2 +∆2u

(00)
0 =Υ5, ∆3ω

(00)
1 +∆3ω

(00)
2 +∆4u

(00)
0 =Υ6. (5.28j)

Taking u
(00)
0 =0, we can show that

u0= o(℘1,℘2)→0, (5.29a)

c=
[
16π2k1(Υ5∆−1

1 +Υ6∆3)
−1)+Υ3

]
℘

2
1

+
[
16π2k2(Υ6∆3)

−1−Υ5∆−1
1 )+Υ4

]
℘

2
2+o(℘1℘2)→0, (5.29b)
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2πiω1=−
i

k1

(
8h3π3k2

1ρ1+8h4π3k2
1l1+2h5πk2

1+2h6πρ2
1+2h7πl2

1

)
+o(℘1℘2)

→h3µ2
1ν1+h4µ2

1σ1−h5µ1−h6µ−1
1 ν2

1−h7µ−1
1 σ2

1 , (5.29c)

2πiω2=−
i

k2

(
8h3π3k2

2ρ2+8h4π3k2
2l2+2h5πk2

2+2h6πρ2
2+2h7πl2

2

)
+o(℘1℘2)

→h3µ2
2ν2+h4µ2

2σ2−h5µ2−h6µ−1
2 ν2

2−h7µ−1
2 σ2

2 , as (℘1,℘2)→ (0,0). (5.29d)

From the above argument, we can draw the conclusion that the two-periodic wave solu-
tion (4.15) tends to the two-soliton solution (3.2) as (℘1,℘2)→ (0,0).

6 Conclusions and remarks

In this paper, by virtue of binary Bell polynomials, Eq. (1.1) has been systematically inves-
tigated, which could be used to describe many nonlinear phenomena in plasma physics.
We have obtained a Hirota bilinear form, soliton solutions and qusi-periodic wave solu-
tions. Moreover, the relationships between the presented qusi-periodic wave solutions
and soliton solutions were strictly established in detail. We have discussed the asymp-
totic properties of the one- and two- qusi-periodic wave solutions and verified that one-
and two- qusi-periodic wave solutions tend to the one- and two-soliton solutions respec-
tively as the amplitude ℘→0.

Based on the above results, we conclude that:

(i) With the help of binary Bell polynomials, a bilinear form (2.13) has been obtained
for Eq. (1.1).

(ii) In virtue of the Hirota bilinear method and the multidimensional Riemann theta
function, we have got the one- and two-soliton solutions and one- and two-periodic
wave solutions [see Solutions (3.1), (3.2), (4.5) and (4.15)] of Eq. (1.1) and given the
graphical analysis. The figures of soliton solutions were presented in Fig. 1 and
Fig. 2. The analogues of periodic wave solutions were presented in Figs. 3-6. Fur-
thermore, the asymptotic behaviors of one- and two- qusi-periodic wave solutions
were investigated, respectively. It is of interest that we have provided the relation-
ships between the qusi-periodic wave solutions and the soliton solutions by two
theorems with the strict proofs in details.

(iii) The presented analysis is very helpful for us to do further studies on nonlinear
problems in the fields of mathematical physics and engineering.
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vation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation,
Nonlinear Anal. Real World Appl., 31 (2016), pp. 388–408.

[41] J. M. TU, S. F. TIAN, M. J. XU AND T. T. ZHANG, On Lie symmetries, optimal systems and
explicit solutions to the Kudryashov-Sinelshchikov equation, Appl. Math. Comput., 275 (2016),
pp. 345–352.

[42] X. B. WANG, S. F. TIAN, H. YAN AND T. T. ZHANG, On the solitary waves, breather waves and
rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Comput. Math.
Appl., 74 (2017), pp. 556–563.

[43] S. F. TIAN, Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on
the half-line via the Fokas method, J. Phys. A Math. Theory, 50 (2017), 395204.

[44] C. Y. QIN, S. F. TIAN, X. B. WANG, T. T. ZHANG AND J. LI, Rogue waves, bright-dark solitons
and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation,
Comput. Math. Appl., 75(12) (2018), pp. 4221–4231.

[45] M. J. DONG, S. F. TIAN, X. W. YAN AND L. ZOU, Solitary waves, homoclinic breather waves
and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. Math. Appl., 75(3)
(2018), pp. 957–964.

[46] X. W. YAN, S. F. TIAN, M. J. DONG, L. ZHOU AND T. T. ZHANG, Characteristics of soli-
tary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized
breaking soliton equation, Comput. Math. Appl., 76(1) (2018), pp. 179–186.

[47] L. L. FENG, S. F. TIAN, X. B. WANG AND T. T. ZHANG, Rogue waves, homoclinic breather
waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Appl.
Math. Lett., 65 (2017), pp. 90–97.

[48] S. F. TIAN, Y. F. ZHANG, B. L. FENG AND H. Q. ZHANG, On the Lie algebras, generalized
symmetries and Darboux transformations of the fifth-order evolution equations in shallow water,
Chin. Ann. Math. B, 36 (2015), pp. 543–560.

[49] J. M. TU, S. F. TIAN, M. J. XU, P. L. MA AND T. T. ZHANG, On periodic wave solutions with
asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation
in fluid dynamics, Comput. Math. Appl., 72 (2016), pp. 2486–2504.

[50] X. B. WANG, S. F. TIAN, C. Y. QIN AND T. T. ZHANG, Dynamics of the breathers, rogue waves
and solitary waves in the (2+1)-dimensional Ito equation, Appl. Math. Lett., 68 (2017), pp. 40–47.

[51] X. B. WANG, S. F. TIAN, M. J. XU AND T. T. ZHANG, On integrability and quasi-periodic wave
solutions to a (3+1)-dimensional generalized KdV-like model equation, Appl. Math. Comput., 283
(2016), pp. 216–233.

[52] J. M. TU, S. F. TIAN, M. J. XU AND T. T. ZHANG, Quasi-periodic waves and solitary waves
to a generalized KdV-Caudrey-Dodd-Gibbon equation from fluid dynamics, Taiwanese J. Math., 20
(2016), pp. 823–848.

[53] X. B. WANG, S. F. TIAN, C. Y. QIN AND T. T. ZHANG, Characteristics of the solitary waves
and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-
Petviashvili equation, Appl. Math. Lett., 72 (2017), pp. 58–64.

[54] S. F. TIAN, Initial-boundary value problems for the general coupled nonlinear Schrödinger equations
on the interval via the Fokas method, J. Differ. Equations, 262 (2017), pp. 506–558.



C. Y. Qin, S. F. Tian, L. Zou and W. X. Ma / Adv. Appl. Math. Mech., 10 (2018), pp. 948-977 977

[55] E. T. BELL, Exponential polynomials, Ann. Math., 35 (1834), pp. 258–277.
[56] C. GILSON, F. LAMBERT, J. J. C. NIMMO AND R. WILLOX, On the combinatorics of the Hirota

D-operators, Proc. R. Soc. Lond. A, 452 (1996), pp. 223–234.
[57] F. LAMBERT, I. LORIS AND J. SPRINGAEL, Classical Darboux transformations and the KP hierar-

chy, Inverse Probl., 17 (2001), pp. 1067–1074.


