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Abstract We perform the Painlevé test for a coupled Higgs system to determine its Painlevé
integrability. Moreover, a class of exact complexiton-like solutions, including breather solu-
tions and dark and bright solitary solutions, is explicitly constructed for the coupled Higgs
model by using a generalized Hirota’s bilinear form.

Keywords Coupled Higgs system · Painlevé analysis · Hirota’s bilinear form · Solitary
wave solution · Complexiton solution

1 Introduction

Since the soliton concept was introduced by Zabusky and Kruskal in 1965 [1], a great num-
ber of integrable systems have been discovered in the natural and applied sciences [2–19].
Integrable systems exhibit richness and variety of exact solutions such as soliton solutions,
periodic solutions, rational solutions and complexiton solutions (see, e.g., [20, 21]). Hirota
bilinear equations can even possess linear subspaces of their solution spaces [19]. This also
shows that the multiple exp-function can explore diverse exact solutions to nonlinear equa-
tions [18]. Moreover, recently Kummer functions and methods are introduced to explore
diverse exact solutions for nonlinear models by Prof. Dai et al. [22–25].
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In this letter, we study a coupled Higgs model which describes a system of conserved
scalar nucleons interacting with neutral scalar mesons:

utt − uxx − αu + βu|u|2 − 2uv = 0,

vtt + vxx − β(|u|2)xx = 0,
(1)

where u = u(x, t), v = v(x, t). This model reduces to the so-called coupled nonlinear Klein-
Gordonmodelin the case of α < 0 and β < 0, and the so-called coupled Higgs field system
in the case of α > 0 and β > 0. For the coupled Higgs system (1), Tajiri obtained an N-
soliton solution [26] and subsequently Hu got a homoclinic orbit solution using Hirota’s
bilinear method [27]. Here we concentrate on the Painlevé integrability and exact solutions
of breather type and dark and bright solitary wave type to the coupled Higgs model (1).

The primary purpose of the letter is to explore integrability of the coupled Higgs model
(1) by the Painlevé test and to construct its solitary wave solutions under the help of a
generalized Hirota’s bilinear form. In Sect. 2, we carry out the Painlevé analysis to deter-
mine when the coupled Higgs model (1) is integrable. In Sect. 3, we construct a class of
complexiton-like solutions by Hirota’s direct method and plot some of the presented solu-
tions for the coupled Higgs model (1). The resulting solutions contain breathers and dark
and bright solitary solutions. A few remarks are given in the final section.

2 Painlevé Integrability

In this section, we explore the Painlevé integrability of the coupled Higgs model (1). In
order to make a Painlevé analysis, we define p = ū, where the bar represents the complex
conjugate, and rewrite the above coupled Higgs model as

utt − uxx − αu + βu2p − 2uv = 0,

ptt − pxx − αp + βup2 − 2pv = 0, (2)

vtt + vxx − β(up)xx = 0,

We begin with the following Laurent series for u,v,p:

u =
∞∑

j=0

ujφ
(j+αu), p =

∞∑

j=0

pjφ
(j+αp), v =

∞∑

j=0

vjφ
(j+αv) (3)

with a sufficient number of arbitrary functions among uj ,pj , vj in addition to φ. Moreover,
the leading orders of αu,αp,αv should be negative integers.

If we replace

u = u0φ
αu, p = p0φ

αp , v = v0φ
αv (4)

in (3), a balance of the dominant terms determines that

αu = αp = −1, αv = −2.

Substituting

u = u0φ
−1, p = p0φ

−1, v = v0φ
−2
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into (3), and collecting the coefficients of (φ−3, φ−3, φ−4), we get

u0(2φ2
t − 2φ2

x + βu0p0 − 2v0) = 0,

p0(2φ2
t − 2φ2

x + βu0p0 − 2q0) = 0, (5)

6v0φ
2
t + v0φ

2
x − βv0u0φ

2
x = 0,

which yields

v0 = −2φ2
x ,

u0 = −2(φ2
t + φ2

x)

βp0
.

Afterwards, inserting

u = u0

φ
+ ujφ

j−1, p = p0

φ
+ pjφ

j−1, v = w0

φ2
+ vjφ

j−2

into (3), we find that the resonances appear at j = 0,2,3,3,4.
Let us check the resonance conditions at non-negative resonant points j = 0,2,3,3,4.

The series (3) are truncated at j = 4. In order to make computation simpler, we adopt
Kruskal’s ansatz φ(x, t) = t + ψ(x).

At the level j = 1, the values of u1,p1,w1 can be obtained explicitly by collecting the
coefficients of (φ−2, φ−2, φ−3)

u1 = 1

3βp2
0(1 − φ2

x)
(−2βp2

0u0t − 2βp2
0u0xψx − βp2

0u0ψxx − 2p0t − 2p0tψ
2
x

+ 2ψxp0x + 2p0xψ
3
x + p0ψxx + p0ψxxψ

2
x + 4p0v0t − 4βp0u0ψxp0x + 4p0w0tψx

+ 2p0v0ψxx),

p1 = 1

12(1 − ψ4
x )

(−2βp2
0u0t + 10βp2

0u0xψx + 5βp2
0u0ψxx − 8p0t − 8p0tψ

2
x s

+ 8ψxp0x + 8p0xψ
3
x + 4p0ψxx + 4p0ψxxψ

2
x − 8p0v0t + 8βp0u0φxp0x

− 8p0v0xψx − 4p0v0ψxx),

w1 = − 1

6p0(1 − ψ4
x )

(4ψ3
x p0x + 2p0ψxxψ

2
x + βp2

0u0ψ
2
x ψxx + 4ψ5

x p0x − 4ψ2
x p0t

− 4ψ4
x p0t − 12p0v0t − 4p0ψ

3
x v0x + 2βp2

0ψ
3
x u0x − 12p0v0xψx − 6p0v0ψxx

− 4p0ψ
2
x v0t − 2p0v0ψ

2
x ψxx + 2p2

0βψ2
x u0t + 12βp2

0u0xψx + 6βp2
0u0ψxx

+ 12βp0p0xu0ψx + 4βu0p0p0xψ
3
x + 2p0ψ

4
x ψxx).

(6)
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Similarly, at the level j = 2, the values of u2,p2 can be obtained explicitly by collecting
the coefficients of (φ−1, φ−1, φ−2)

u2 = 1

4v2
0 − 8v0βu0p0 + 3β2p2

0u
2
0

(β2p2
1u

3
0 − 2β2u1p1p0u

2
0 − 2β2u2

1p
2
0u0 + 2βu2

0p0v2

+ βu2
0αp0 + βu2

0p0t t − βu2
0p0xx − 2βu2

0p1v1 + 2βu0p0u0xx + 4βu0p0u1v1

− 2βu0p0u0t t + 4βu0u1p1v0 + 2βu2
1v0p0 − 4u0v2v0 − 2u0αv0 − 2u0xxv0

+ 2u0t t v0 − 4u1v1v0),

p2 = − 1

4v2
0 − 8v0βu0p0 + 3β2p2

0u
2
0

(2αp0v0 − βp2
0u0t t + 4p1v1v0 + βp2

0u0xx

+ 2p0xxv0 − 2p0xxβu0p0 + 2p0t t βu0p0 − αp2
0βu0 − 2p2

0v2βu0 − 2p0t t v0

− β2p3
0u

2
1 + 4p0v2v0 − 4p1v1βu0p0 + 2βp2

0u1v1 − 2βu0p
2
1v0 + 2β2u2

0p
2
1p0

+ 2β2p2
0u0u1p1 − 4βu1p0p1v0),

(7)

with v2 being arbitrary. This corresponds to the resonance at j = 2.
The resonance condition at j = 3 equivalently requires that

u3 = − 1
2(−v0−ψ2

x +1+βu0p0)
(−2u2xψx + 2βu0u1p2 − 2u2v1 − αu1 + 2u2t + u1t t

+ 2βu0u2p1 + βu2
1p1 + βu2

0p3 − u1xx + 2βu1u2p0 − 2u0v3 − 2u1v2

− u2ψxx),

(8)

but p3 and v3 are two arbitrary functions. This corresponds to the resonance at j = 3,3.
Under the conditions (6)–(8), the Painlevé test passes at the resonant point j = 4. There-

fore, this case does not present new resonance condition.
Now, to sum up, under the conditions (6)–(8), the coupled Higgs model (1) is integrable

in Painlevé sense.

3 Complexiton-Like Solutions

In this section, we devote our efforts to constructing new complexiton-like solutions to the
coupled Higgs model (1). To do this, we will introduce a suitable ansätz [15] by the aid of a
generalized bilinear form.

Through the Painlevé series truncation, we obtain the dependent variable transformation

u = G

F
, v = 2(lnF)xx, F real. (9)

In this case, the coupled Higgs model (1) is transformed into the bilinear form

(D2
t − D2

x + A − α)G · F = 0, (10)

(D2
t + D2

x + A)F · F − βGG∗ = 0. (11)
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where G∗ is the conjugate function of G(x, t), A is an integration constant and the D-
operator is defined by

Dm
x Dn

t f (x, t) · g(x, t) =
(

∂

∂x
− ∂

∂x ′

)m(
∂

∂t
− ∂

∂t ′

)n

[f (x, t)g(x ′, t ′)]|x′=x,t ′=t .

When A = 0, the above bilinear form can be reduced to Tajiri’s form [26]. A class of
complexiton-like solutions of (1) is sought as follows

G(x, t) = e−i(bx+at)(e−k1(x−ω t) + b1 cos[k(ω x + t)] + b2ek1(x−ωt)), (12)

F(x, t) = e−k1(x−ω t) + b3 cos[k(ω x + t)] + b4e
k1(x−ωt), (13)

where a, b, k, k1,ω, c2, b3, b4 are real and b1, b2 are complex.
Substituting (12)–(13) into (10)–(11) yields algebraic equations of

ejk1(x−ω t), ejk1(x−ω t) cos[k(ω x + t)], ejk1(x−ω t) sin[k(ω x + t)]

for j = −2,−1,0,1,2. Collecting and equating all coefficients in front of these basic func-
tions to zero, we obtain the following relations among the parameters:

A = β, a2 = β − α + b2,

b1P
∗ = b3P, b2P

∗2 = b4P
2, (14)

�1 = k2
1�2, �3 = �4k

2, �5 = b4�6,

where

P = a − bω + 2ik1ω, �1 = (ωb − a)�, �2 = 4ω2(bω + a)(ω2 + 1)2,

�3 = �
(
bω3 + 3aω2 + 3bω + a

)
, �4 = 4ω2(a + bω)(1 − ω2)

(
ω2 + 1

)2
,

�5 = b3
2[(ωb − a)2 + 4k1

2ω2] (bω3 + 3aω2 + 3bω + a
)
,

�6 = 4[(−b2 + 4k1
2)ω4 − 2ω3ab + (−3b2 + 3a2 − 4k1

2)ω2 + 2abω

+ a2](a − bω),

� = [−ω6b2 + (
a2 − 4β − 2b2

)
ω4 + (

2a2 + 4β − b2
)
ω2 + a2].

As a result, inserting (13)–(14) into (10) and employing the above relations (15) among
the parameters, explicit exact solutions of the coupled Higgs model (1) are obtained from
(10)–(14). More precisely, the resulting solutions can be classified into the following three
cases according to the sign of b4.

Case I—b4 > 0: The complexiton-like solution is given by

u = e−i(bx+at)(e−k1(x−ω t) + b1 cos[k(ω x + t)] + b2ek1(x−ωt))

e−k1(x−ω t) + b3 cos[k(ω x + t)] + b4ek1(x−ωt)
,

v = 2 δ1
√

b4 cos[k(ω x + t] cosh(ξ) + 4k1b3kω
√

b4 sin[k(ω x + t)] sinh(ξ) + δ2
(
2
√

b4 cosh(ξ) + b3 cos[k(ω x + t)])2 ,

(15)
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where

ξ = −k1x + k1ω t − ln (b4)

2
, δ1 = −k1

2b3 + b3k
2ω2, δ2 = −4k1

2b4 + b3
2k2ω2.

Case II—b4 < 0: The complexiton-like solution appears

u = e−i(bx+at)(e−k1(x−ω t) + b1 cos[k(ω x + t)] + b2ek1(xωt))

e−k1(x−ω t)
+ b3 cos[k(ω x + t)]

+ b4ek1(x−ωt),

v = 2 δ1
√−b4 cos[k(ω x + t)] sinh(ξ) + 4k1b3kω

√−b4 sin[k(ω x + t)] cosh(ξ) + δ2
(
2
√−b4 sinh(ξ) + b3 cos[k(ω x + t)])2 ,

(16)

where

ξ = −k1x + k1ω t + ln (−b4)

2
, δ1 = −k1

2b3 + b3k
2ω2, δ2 = −4k1

2b4 + b3
2k2ω2.

Case III—b4 = 0: In this case, we have b2 = 0, and hence the derived complexiton-like
solution is

u = e−i(bx+at)(e−k1(x−ω t) + b1 cos[k(ω x + t)])
e−k1(x−ω t) + b3 cos[k(ω x + t)] ,

v = b3[δe−k1(x−ωt)(cos[k (ωx + t)] + 2k1kω sin[k (ωx + t)]) + b3k
2ω2]

(
e−k1(x−ωt) + b3 cos[k (ωx + t)])2 ,

(17)

where δ = −k1
2 + k2ω2. In what follows, the newly derived complexiton-like solutions are

illustrated in figures. Figure 1 depicts that solitary waves produce breather behavior, Fig. 2
shows that complexiton-like solutions contain rich soliton structure, for example, dark soli-
tons and bright solitons.

Fig. 1 The structure of breather solitary wave given by (16) with the parameters ω = 10, β = 1, a = 1,
α = 0.0001, b = 0.01, b3 = 1. (a) For v (b) For |u|2
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Fig. 2 (c)–(e) show the different interesting profiles in t -direction corresponding to Fig. 1(b), (c) x = 0
(d) x = 1.2 (e) x = 2

4 Discussions

Based on the presented figures, the derived complexiton-like solutions is likely to possess
good stability. The stability problem of the coupled Higgs model will be analyzed in a forth-
coming publication.

Complexiton-like solutions contain exponential functions and periodic functions, and
they bring solitons, positions and breathers. However, it is still unclear if the newly derived
complexiton-like solutions possess the elastic interaction property in the time dependence
as solitons.

Also, some asymptotic behaviors of the obtained solutions can be found. Without loss of
generality, we assume that b4 > 0 and k1ω < 0, and obtain from (16)

(u, v) → (e−i(bx+at),0), t → ∞.

Noting that P 2 = P ∗2eiθ , we obtain

(u, v) → (e−i(bx+at−θ),0), t → −∞.
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