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Abstract We perform the Painlevé test for a coupled Higgs system to determine its Painlevé
integrability. Moreover, a class of exact complexiton-like solutions, including breather solu-
tions and dark and bright solitary solutions, is explicitly constructed for the coupled Higgs
model by using a generalized Hirota’s bilinear form.
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1 Introduction

Since the soliton concept was introduced by Zabusky and Kruskal in 1965 [1], a great num-
ber of integrable systems have been discovered in the natural and applied sciences [2—19].
Integrable systems exhibit richness and variety of exact solutions such as soliton solutions,
periodic solutions, rational solutions and complexiton solutions (see, e.g., [20, 21]). Hirota
bilinear equations can even possess linear subspaces of their solution spaces [19]. This also
shows that the multiple exp-function can explore diverse exact solutions to nonlinear equa-
tions [18]. Moreover, recently Kummer functions and methods are introduced to explore
diverse exact solutions for nonlinear models by Prof. Dai et al. [22-25].
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In this letter, we study a coupled Higgs model which describes a system of conserved
scalar nucleons interacting with neutral scalar mesons:

Uy — Uyy — ot + Bulul? —2uv =0,
(D
Uy + Uy — /3(|M|2)xx = 07

where u = u(x, t), v =v(x, t). This model reduces to the so-called coupled nonlinear Klein-
Gordonmodelin the case of @ < 0 and B < 0, and the so-called coupled Higgs field system
in the case of « > 0 and B > 0. For the coupled Higgs system (1), Tajiri obtained an N-
soliton solution [26] and subsequently Hu got a homoclinic orbit solution using Hirota’s
bilinear method [27]. Here we concentrate on the Painlevé integrability and exact solutions
of breather type and dark and bright solitary wave type to the coupled Higgs model (1).

The primary purpose of the letter is to explore integrability of the coupled Higgs model
(1) by the Painlevé test and to construct its solitary wave solutions under the help of a
generalized Hirota’s bilinear form. In Sect. 2, we carry out the Painlevé analysis to deter-
mine when the coupled Higgs model (1) is integrable. In Sect. 3, we construct a class of
complexiton-like solutions by Hirota’s direct method and plot some of the presented solu-
tions for the coupled Higgs model (1). The resulting solutions contain breathers and dark
and bright solitary solutions. A few remarks are given in the final section.

2 Painlevé Integrability

In this section, we explore the Painlevé integrability of the coupled Higgs model (1). In
order to make a Painlevé analysis, we define p = u, where the bar represents the complex
conjugate, and rewrite the above coupled Higgs model as

Uy — Uy — att + Bu’p — 2uv =0,
Put — Pxx —ap + up® —2pv =0, )
Uit + Urx — BUp)xx =0,
We begin with the following Laurent series for u, v, p:
00 0 00
"= Z ujputen, p= ij¢(j+ap)’ V= Z vjpU+e) 3)
j=0 j=0 =0

with a sufficient number of arbitrary functions among u ;, p;, v; in addition to ¢. Moreover,
the leading orders of o, a,, &, should be negative integers.
If we replace

u= u0¢¢¥u 5 pP= p0¢aps v= v0¢01v (4)

in (3), a balance of the dominant terms determines that
a,=a,=—1, a,=-2.
Substituting

u=uop ", p=pod", v ="

@ Springer



Int J Theor Phys (2012) 51:999-1006 1001

into (3), and collecting the coefficients of (¢—3, 03, ¢p~*), we get

o297 — 2¢7 + Buopo — 2v9) =0,
P02} — 27 + Buopo — 2q0) =0, 5)

6V} + vod? — Buoued: =0,

which yields
vo = —2¢7,
vy o 20260
Bpo
Afterwards, inserting
Uuo i1 Po i1 Wo 2
u=—-4u;¢p’", p=—+pi¢p’, v=—~4v;¢’
¢ J ¢ J ¢2 J

into (3), we find that the resonances appear at j =0, 2, 3, 3, 4.

Let us check the resonance conditions at non-negative resonant points j = 0, 2, 3, 3, 4.
The series (3) are truncated at j = 4. In order to make computation simpler, we adopt
Kruskal’s ansatz ¢ (x,t) =t + ¥ (x).

At the level j = 1, the values of u;, p;, w; can be obtained explicitly by collecting the
coefficients of (¢p=2, ¢p2, ¢)

u = m<—2ﬁpéum — 2BpRuot — BpRues — 2p0r — 2p0r?
+ 291, pox + 2Pox ¥ + Potiex + PoVax ¥l + 4pover — 4BPpottors Pox + 4Ppowos Vs
+ 2povotx),

pr= m(—%péum + 10Bpuo, s + SBpRuoves — 8por — 8portsZs
+ 8, Pox + 8pox ¥} +4poVar + 4o ¥y — 8povor ++ 8BPottods Pox ©
— 8povox¥x — 4PovoVxx),

wy = — (45 pox + 2P0V ¥y + BpguoV i War + 495 pox — 495 por

6po(1 — )
— 49 por — 12povor — 4povsvox + 2BP5 ¥ uor — 12povos Yix — 6povoiae
— 4povrivor — 2povoVry Yax + 2P BYsttor + 12Bpguox Vi + 68D U0V

+ 128po poxttoVx + 4BuopoporVr; + 2povs Vax)-
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Similarly, at the level j = 2, the values of u,, p» can be obtained explicitly by collecting
the coefficients of (¢!, ¢!, p72)

1
= (B p*ui — 2B%u u? = 28%u? p2ug + 2Bu’ pov
4v§—8Uoﬂuopo+3ﬂ2péu% :3 P 0 IB 1P1Po 0 :B 1P0 0 IB oPO 2

us
+ Bugepo + Bugpou — Bugpoxx — 2Bugpivi + 2Buo pottory + 4Buopout vy
— 2Bug pottor + 4Buouy p1vo + 2Buivo po — 4ugvavy — 2ugavy — 2oy Vo

+ 2ug; vg — 4u v vp),

1
- QRapovy — Bpiuc +4p1vive + Bpiuoes
4v(2)—8v0,3u0p0+3,32p5u(2) Povo PolUort P1V1v Polto

+ 2P0xx Vo — 2Poxx Bito Po + 2pou Buo po — apg Bto — 2pgva Pty — 2 port o

(N

P2 =

— B paui + 4povavy — 4pivi Buopo + 2Bpguivi — 2Bug pive + 2B7ug pi po
+ 282 piuou1 pr — 4Bu1 popivo),

with v, being arbitrary. This corresponds to the resonance at j = 2.
The resonance condition at j = 3 equivalently requires that

1
2(—vg—yF+1+Buo po)

+ 2Buouz py + ﬂ”%]’l + ﬂu%pz — Uy +2Buiuz po — 2upvs — 2u v, ®)
- MZWXX),

usz =

(=2u Yy +2Buou pa — 2uzvy — ouy + 2uy +uyy

but p3 and v; are two arbitrary functions. This corresponds to the resonance at j = 3, 3.
Under the conditions (6)—(8), the Painlevé test passes at the resonant point j = 4. There-
fore, this case does not present new resonance condition.
Now, to sum up, under the conditions (6)—(8), the coupled Higgs model (1) is integrable
in Painlevé sense.

3 Complexiton-Like Solutions

In this section, we devote our efforts to constructing new complexiton-like solutions to the
coupled Higgs model (1). To do this, we will introduce a suitable ansdtz [15] by the aid of a
generalized bilinear form.

Through the Painlevé series truncation, we obtain the dependent variable transformation

Uu=—, v=2(InF)y,, F real. )
In this case, the coupled Higgs model (1) is transformed into the bilinear form

(D] - D+ A—-a)G-F=0, (10)
(D} + DI+ A)F - F — BGG* =0. (11)
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where G* is the conjugate function of G(x,?), A is an integration constant and the D-
operator is defined by

el d

3 " 3\"
DD f(x,1)-g(x,1) = (E - g) (E - 5) [f(x, 8", )] vyt -

When A = 0, the above bilinear form can be reduced to Tajiri’s form [26]. A class of
complexiton-like solutions of (1) is sought as follows

G(x, 1) = e 'O (M0 1y cos[k(wx +1)] + bye!1 "), (12)
F(x,1)=e 1070 4 bycos[k(wx +1)] + bse"1 ", (13)

where a, b, k, ki, w, c3, b3, by are real and by, b, are complex.
Substituting (12)—(13) into (10)—(11) yields algebraic equations of

eM D oI C=0D coglk(wx 4 1)], /17 sin[k(wx +1)]

for j =—-2,—1,0, 1, 2. Collecting and equating all coefficients in front of these basic func-
tions to zero, we obtain the following relations among the parameters:

A=B, d=B—a+b’
biP*=byP, byP*?>=b,P?, (14)
A1 =kAy  As=Ak%  As=byAs,

where

P=a-bow+2ikw, A =(@@b-a)A, A =40*(bo+a)(w*+1)?,
As = A (bo® +3a0” +3bw+a), Ay=40*(a+bo)(1 —o?) (o +1)°,
As = b’[(wb — a)* + 4k *0*] (bo® 4+ 3a0® + 3bw + a)
Ag = 4[(—b* +4kP)o* —2w’ab + (=3 +3a* — 4k P’ + 2abw
+a’)(a —bw),
A=[-0b"+ (a> — 4B —2b") o' + (2a° +4 B — b*) 0* + a’].
As a result, inserting (13)—(14) into (10) and employing the above relations (15) among
the parameters, explicit exact solutions of the coupled Higgs model (1) are obtained from

(10)—(14). More precisely, the resulting solutions can be classified into the following three
cases according to the sign of by.

Case I—b,4 > 0: The complexiton-like solution is given by
e—i(bx+ar)(e—k1(x—wt) + bl cos[k(a)x + t)] + bzekl(x—wt))
e ki—on + pycos[k(w x + 1)] + byek1x—on
281+/bycoslk(wx + t]cosh(&) + 4 kibskw /by sin[k(w x + t)]sinh(§) + 8,
V=
(2 v/Ba cosh(&) + bs cos[k(wx +1)])

’

(15)

’
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where

In (by)

%‘ =—kix+kowt— , 01 = —k12b3 + b3k2a)2, Sy = —4k12b4 + b32k2a)2.

Case II—b4 < 0: The complexiton-like solution appears

—i(bx+at) (n—ki (x—wt) b k t b ki (xwt)
u=" e b costi@x + DI+ b ™) | sk +1)]

e—kl(x—wt)
+ b4ek1(x7wt),
. 281/ —bycos[k(wx + t)]sinh(§) + 4 k1bskw /—by sin[k(w x + t)] cosh(§) + 5,
(2 v/=ba sinh(€) + by cos[k(w x + 1))’

(16)

’

where

In (—b.
E =—kix+kowt+ Il(2 +) , 6 = —k|2b3 + b3k2a)2, & = —4k12b4 + b32k2w2.

Case III—b, = 0: In this case, we have b, = 0, and hence the derived complexiton-like
solution is

e—i(bx+at) (e—kl (x—wt) + bl COS[k(a)X + l)])
e k-0 4 bycos[k(wx +1)]

’

. . 2 (17)
bs[8e 1= (cos[k (wx + 1)] + 2 kikw sin[k (wx + 1)]) + b3k*w?]
v= ,
(e—kl (=t 4 b3 cos[k (wx + t)])2
where 8 = —k; % + k®w?. In what follows, the newly derived complexiton-like solutions are

illustrated in figures. Figure 1 depicts that solitary waves produce breather behavior, Fig. 2
shows that complexiton-like solutions contain rich soliton structure, for example, dark soli-
tons and bright solitons.

Fig. 1 The structure of breather solitary wave given by (16) with the parameters w = 10, B =1,a =1,
« =0.0001, b =0.01, b3 = 1. (a) For v (b) For [u|?
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Fig. 2 (c)—(e) show the different interesting profiles in ¢-direction corresponding to Fig. 1(b), (¢) x =0
dx=12() x=2

4 Discussions

Based on the presented figures, the derived complexiton-like solutions is likely to possess
good stability. The stability problem of the coupled Higgs model will be analyzed in a forth-
coming publication.

Complexiton-like solutions contain exponential functions and periodic functions, and
they bring solitons, positions and breathers. However, it is still unclear if the newly derived
complexiton-like solutions possess the elastic interaction property in the time dependence
as solitons.

Also, some asymptotic behaviors of the obtained solutions can be found. Without loss of
generality, we assume that b4 > 0 and k@ < 0, and obtain from (16)

(w,v) = (7", 0), 1 — o0.
Noting that P? = P*?¢’, we obtain

7i(hx+at70)’ 0)’ t — —00.

(u,v) — (e
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