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��

MR (2000) <*�% 35Q51, 37K05, 37K10, 37K40;+��% O175.29,0�:& A,9Æ� 1000-8314(2012)02-0229-08

1 7 � 5�H)��kJ%5 Schrödinger H�JQQbG`{�i+H�	RT0;BJ%5$*r�a���a
?K}i�1r [1−7], ��6�J%5 Schrödinger H�	\4a#ra�J%5$�4x
D1 [8−15].a^�H�&z54A���e,<e�XJ�uE4	T�P�.TH�4&z5&KW2Y+^���CS&�{e�&z5�n4^��'p	T}\<4��PainlevéL�sJ9H�&z54HWRX0[����AZB��J%5H�FsJ�X,4 [16−30]. P%�yZ Painlevé L�>W^�H�sJ�XMN4�*�V��TÆ����kJ%5 Schrödinger H� [11]
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iuz + a(z)utt + bu(α|u|2 + β|v|2) + (b1(z, t) + ic1)u+ ib2(z, t)ut

+ib3(z)uttt + (b4 + ic2)u(|u|2 + |v|2)t + ib5(u(|u|2 + |v|2))t = 0,

ivz + a(z)vtt + bv(β|u|2 + γ|v|2) + (b1(z, t) + ic1)v + ib2(z, t)vt

+ib3(z)vttt + (b4 + ic2)v(|u|2 + |v|2)t + ib5(v(|u|2 + |v|2))t = 0

(1.1)&KBwa#r4�=?!4$��Or
i2 = −1, u = u(z, t), v = v(z, t),�� b, c1, b4, c2, b5 } α, β, γ �m��� a(z), b3(z), b1(z, t), b2 �m4��f�� b4 i c2e� [31] r�qJ%5d
(�. u = v l��kH��s�� [30] r�<4���TÆJ%5 Schrödinger H���� 2011 I 9 
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�xEA�*�V��TÆ����kJ%5 Schrödinger H�4 Painlevé &z5�
dÆ} Painlevé �B�eH9��a} �2042W/4���s Painlevé &z4�
2 Painlevé � .i�LxEs��*�V��TÆ����kJ%5 Schrödinger H� (1.1) 4&z5��%�z"Qb

v = u, p = v, q = v,Orer% “ ¯ ” ,�℄��H� (1.1) &	.�
iuz + a(z)utt + bu(αuv + βab) + (b1(z, t) + ic1)u + ib2ut

+ ib3(z)uttt + (b4 + ic2)u(uv + ab)t + ib5(u(uv + ab))t = 0, (2.1)

− ivz + a(z)vtt + bv(αuv + βab) + (b1(z, t) − ic1)v − ib2vt

− ib3(z)vttt + (b4 − ic2)v(uv + ab)t − ib5(v(uv + ab))t = 0, (2.2)

− ipz + a(z)ptt + bp(βuv + γpq) + (b1(z, t) + ic1)p+ ib2pt

+ ib3(z)pttt + (b4 + ic2)p(uv + pq)t + ib5(p(uv + pq))t = 0, (2.3)

− iqz + a(z)qtt + bq(βuv + γpq) + (b1(z, t) − ic1)q − ib2qt

− ib3(z)qttt + (b4 − ic2)q(uv + pq)t − ib5(q(uv + pq))t = 0, (2.4)Or
u = u(z, t), v = v(z, t), p = p(z, t), q = q(z, t).z"Qb A4=*g!�
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




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u =

∞
∑

j=0

ujφ
j+αu , v =

∞
∑

j=0

vjφ
j+αv ,

p =
∞
∑

j=0

pjφ
j+αp , q =

∞
∑

j=0

qjφ
j+αq .

(2.5)�4Y97�(��
u = u0φ

αu , v = v0φ
αv , p = p0φ

αp , q = q0φ
αq,bH�� (2.1)–(2.4), MmxE(�&2

αu = αv = αp = αq = −1}�	










b4 = 0,

p0q0 + u0v0 = − 6b3(z)φ
2
t

2c2 + 3b5
.

(2.6)Co��
u =

u0

φ
+ ujφ

j−1, v =
v0

φ
+ vjφ

j−1, p =
p0

φ
+ pjφ

j−1, q =
q0

φ
+ qjφ

j−1
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−1, 0, 0, 0, 3, 4, 3± 2

√

− c2

2c2 + 3b5
, 3 ± 2

√

− c2

2c2 + 3b5
, 3 ± 2

√

− c2

2c2 + 3b5
,Or�VZ�#:R4℄k7��KEW

3 ± 2

√

− c2

2c2 + 3b5
> 0.P�℄k7EWsm���KL2K ��a}�	�

√

− c2

2c2 + 3b5
=

3

2
,
1

2
, 1, 0.�CX A 4 tV3�

(a) 27b5 + 22c2 = 0, &2
j = −1, 0, 0, 0, 0, 0, 0, 3, 4, 6, 6, 6;

(b) 2c2 + b5 = 0, &2
j = −1, 0, 0, 0, 2, 2, 2, 3, 4, 4, 4, 4;

(c) c2 + b5 = 0, &2
j = −1, 0, 0, 0, 1, 1, 1, 3, 4, 5, 5, 5;

(d) c2 = 0, b5 6= 0, &2
j = −1, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 4.V (2.6) &o�e j = 0 l�X 3 W℄Mf���K (a) �Ok�	�e j = 3 l�&GX 7 W℄Mf���K (d) �Ok�	�P%q9E#: (b), (c) i2tV(��4eBn'`�	l�s����9

φ(z, t) = t+ ψ(z).'3 1 2c2 + b5 = 0, ℄k7e
j = −1, 0, 0, 0, 2, 2, 2, 3, 4, 4, 4, 4.%l#: (2.5) 4=*g!0 j = 4, Zo�i�?��,bH�� (2.1)–(2.4), �X

φ−4 ���6�&2
u0 =

3b3(z)

2v0c2
− p0q0

v0
,Or v0, p0, q0 s'RZ℄k7 j = 0, 0, 0 4J6℄Mf��. u0 i v0 X�

u0 = v0 =
√
−3δ,%l�'e℄Mf��i'.Z r = 0 (\� [30] �k).e j = 1 l�X φ−3 4���&2 u1, v1, p1, q1 4p�

u1 =
i

6c2b3(z)
(2αBc2u0p0q0 + 6ic2b3(z)u0t + 4c2a(z)u0

+ 3αBu0b3(z) − 2αBu0c2q0p0),

p1 =
i

6c2b3(z)
(6ic2b3(z)a0t + 4c2a(z)p0 + 2γBc2p

2
0q0

+ 3βBp0b3(z) − 2βBc2p
2
0q0),



232 � = I " 33 � A |Or v1 i q1 L�s u1 i p1 4P℄��e j = 2 ℄k�	�/l�P� u2, v2, p2, q2 rX 3 W℄Mf��i�EW
(3αbb3(z) − 2αbc2q0p0 + 3βbb3(z) + 4a(z)c2 + 2γbc2p0q0)

× (−2αc2q0p0 + 3αb3(z) + 4βc2p0q0 − 3βb3(z) − 2γc2p0q0) = 0,

(3αbb3(z) − 2αbc2q0p0 + 3bβb3(z) + 4a(z)c2 + 2γbc2p0q0)

× (−2αc2q0p0 + 3αb3(z) + 4βc2p0q0 − 3βb3(z) − 2γc2p0q0) = 0,�CXa}
α = β = γ, (2.7) �^�%� α.e j = 3 l�P� u3, v3, p3, q3 rX 1 W℄Mf��℄k�	EW

c2 =
−3αbb3(z)

2a(z)
,

iu0(−2b2t(z, t)b3(z) + b′3(z) + 2c1b3(z))

2φb3(z)
= 0,&r20

a(z) =
−3αbb3(z)

2c2
, (2.8)

b2(z, t) =
( b′3(z)

2b3(z)
+ c1b3(z)

)

t+ θ1(z), (2.9)Or θ1(z) s℄Mf��CS ′ = d
dz
.e (2.7)–(2.9) 4a}�	 �uPeA4 Painlevé �w�&o℄k�	e j = 0, 2, 3# ���ZC�^o u4, v4, p4, q4 �℄Mf���EW

ic2b2tt(z, t) + 2b1t(z, t)c2 + αbb2t(z, t) = 0.Vm�i:��2
b2(z, t)tt = 0,

2b1t(z, t)c2 + αbb2t(z, t) = 0,~
b1(z, t) = −αbb

′

3(z) + 2αbc1b
2
3(z)

4c2b3(z)
t+ θ2(z), (2.10)Or θ2(z) s℄Mf��ea}�	 (2.7)–(2.10)  �&nCH�� (2.1)–(2.4) s Painlevé&z4��o�&
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


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



iuz +
−3αbb3(z)

2c2
utt + bu(α|u|2 + β|v|2) +

(

− αbb′3(z) + 2αbc1b
2
3(z)

4c2b3(z)
t+ θ2(z)

+ic1

)

u+ i
( b′3(z)

2b3(z)
+ c1b3(z)

)

t+ θ1(z)ut + ib3(z)uttt + ic2u(|u|2 + |v|2)t

−2ic2(u(|u|2 + |v|2))t = 0,

ivz +
−3αbb3(z)

2c2
vtt + bv(β|u|2 + γ|v|2) +

(

− αbb′3(z) + 2αbc1b
2
3(z)

4c2b3(z)
t

+θ2(z) + ic1

)

v + i
( b′3(z)

2b3(z)
+ c1b3(z)

)

t+ θ1(z)vt + ib3(z)vttt

+ic2v(|u|2 + |v|2)t − 2ic2(v(|u|2 + |v|2))t = 0,

(2.11)

Or θj (j = 1, 2) s z 4℄Mf��'3 2 c2 + b5 = 0, ℄k7e j = −1, 0, 0, 0, 1, 1, 1, 3, 4, 5, 5, 5.� (2.5) 4=*g!0 j = 5, ��%�?��,bH�� (2.1)–(2.4), 9 φ−4 4���6�&2
u0 =

6b3(z)

v0c2
− p0q0

v0
,Or v0, p0, q0 sARZ j = 0, 0, 0 4 3 WJ64℄Mf��e j = 1 l�9 φ−3 �6�&2

u1 =
iu0(2a(z)c2 + ic22p0q1 + 6αbb3(z) − αbc2q0p0 + βbp0q0c2 + ic22u0v1 + ic22p1q0)

c2(6b3(z) − c2q0p0)
,Or v1, p1, q1 s 3 W℄Mf���lX

2(6b3(z) − c2q0p0)(6αbb3(z) + βbp0q0c2 − αbc2q0p0 + 2a(z)c2)

u0c
2
2

= 0,

− (6αb3(z) − αc2q0p0 + 2βp0q0c2 − 6βb3(z) − γp0q0c2)bp0

c2
= 0,

(4a(z)c2 + 6βbb3(z) + γbq0p0c2 + 6αbb3(z) − αbc2q0p0)q0
c2

= 0,~
α = β = γ, (2.12)

a(z) = −3αbb3(z)

c2
. (2.13)Ko^�	 α.�,�& φ−2 4��&K20 u2, v2, p2, q2 4p�VZi-�(pdZF����jLN%#&;�e℄k7 j = 3 #4℄k�	EW

iu0(2b3(z)c1 − 2b3(z)b2t(z, t) + b′3(z))

2φb3(z)
= 0,&r20

b2(z, t) =
( b′3(z)

2b3(z)
+ c1b3(z)

)

t+ θ1(z), (2.14)
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, o2 u3, v3, p3, q3 rX 1 W℄Mf��ei-a} �uP� Painlevé �w�&n j = 0, 1, 3, 4 4℄k�	�/��,�e
j = 5 l℄k�	e

b1(z, t) = θ2(z)t+ θ3(z) (2.15)4a}�	 �/�Or θ2 i θ3 s z 4℄Mf��e��a}�	 (2.12)–(2.15)  �
d��6 Painlevé L��&n�kH�� (1.1)s Painlevé &z4��o�&2H� (1.1) 48HW Painlevé &z��
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iuz −
3αbb3(z)

c2
utt + ib3(z)uttt + bu(α|u|2 + β|v|2)

+(θ2(z)t+ θ3(z) + ic1)u+ i
( b′3(z)

2b3(z)
+ c1b3(z)

)

t

+θ1(z)ut + ic2u(|u|2 + |v|2)t − ic2(u(|u|2 + |v|2))t = 0,

ivz − 3αbb3(z)

c2
vtt + ib3(z)vttt +Bv(β|u|2 + γ|v|2)

+(θ2(z)t+ θ3(z) + ic1)v + i
( b′3(z)

2b3(z)
+ c1b3(z)

)

t

+θ1(z)vt + ic2v(|u|2 + |v|2)t − ic2(v(|u|2 + |v|2))t = 0,

(2.16)

Or θj (j = 1, 2, 3) s z 4℄Mf���e�|�
��<4H+�k4���TÆJ%5 Schrödinger H� (1.1) r2W/4 Painlevé&z�kD1�~ (2.11) i (2.16), 
d Painlevé �wBn4�4&z5}O'R4a}�	�
d Painlevé�?g!�t&KW"O Bäcklund �ui�Y��
ditHDF&KBn�� t4ZTÆ/�(4�k���4J%5 SchrödingerH�4
Painlevé &z5�i-�eKo4[	r
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[20] Conte R. The Painlevé property — one century later [M]. New York: Springer-Verlag,

1999.
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Abstract By means of the singularity analysis, the Painlevé integrability of the system of
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