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We present lump-type solutions and interaction solutions to an extended (3 + 1)-
dimensional Jimbo-Miwa-like equation. Three classes of lump-type solutions are ob-
tained by the Hirota bilinear method. Interaction solutions are among lump-type solu-
tions, two kink waves and periodic waves, and between two kink waves and a periodic
wave are computed. Dynamical characters of the obtained solutions are graphically ex-
hibited. These wave solutions enrich the dynamical theory of higher-dimensional non-
linear dispersive wave equations.
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1. Introduction

Nonlinear evolution equations model varieties of physical phenomena.' * Recently,

Wazwaz presented two extended (3 + 1)-dimensional Jimbo-Miwa equations!® 28
Ugazy + SUgUzy + SUylUszy + 2Uyr — 3(Ugs + Uys +Uzz) =0, (1)
and
Uzzay T SUgUzy + 3UylUzy — By + 2(Ugt + Uy + Uzg) =0, (2)

which describe certain (3 + 1)-dimensional waves in plasmas and optics.!®> Here,
u(z,y, z,t) is a function of the spatial variables z,y, z and the temporal variable
t, and the subscripts denote the corresponding partial derivatives.'® Exact solitary

29 16,30 meromorphic exact solutions,3!

wave solutions,*” multiple soliton solutions,
resonant multi-soliton solutions,3? periodic solitary wave solutions,>? lump solutions
and the lump-kink solutions®* of Egs. (1) and (2) have been obtained by various
methods.3?

Under the transformation v = 2(In F'),,, a Hirota bilinear form for Eq. (1) reads
(D:D, +2D:D, — 3D, D, — 3D,D, —3D*)F-F =0. (3)

Recently, a generalization of the bilinear differential operators has been pre-
sented as36

p,T1 " TP T M 9) = axl aaxl

)

i=1
/ /
X f(w1, . )@, T ol =, = (4)
in which ny,...,ny are nonnegative integers, with an integer m, o™ = (—1)"("™),

if m =r(m) with 0 < r(m) < p. Taking p = 3, we have
az=-1, ai=a3=1, aj=-1, aj=a5=1,
and we can generalize the bilinear Eq. (3) into
(D3 D3y + 2D3, D3, — 3D3 ;D3 . — 3D3,, D3 . —3D3 )F - F
=23 FpoFyy + 2F F — 2F F, — 3F,,F + 3F,F,
—~3F,,F +3F,F, —3F,,F +3F%) =0, (5)

which is equivalently linked with an extended (3 + 1)-dimensional Jimbo-Miwa-like
equation

3, 9 3, 3 3

9 3 3
— 3 (Upz + Uys + Usz) + gvuzugg + 1““3 + zvuum =0, (6)

where uy; = v,.
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In this paper, we will consider Eq. (6). This paper will be structured as follows.
In Sec. 2, we will present three classes of lump-type solutions of Eq. (6) through
a generalized Hirota bilinear method. In Sec. 3, we will construct and analyze
some interaction solutions. In Sec. 4, dynamical properties of the above presented
solutions will be graphically discussed. Conclusions will be provided in Sec. 5.

2. Lump-Type Solutions

To search for lump-type solutions of Eq. (6) (see, for example, Refs. 37-45 for other
examples), we begin by assuming

{F:G2+H2+a11, G = a1z + asy + azz + a4t + a5, )

H = agx + a7y + agz + agt + aip,

where a;(1 < ¢ < 11) are real parameters to be determined. Substituting such
a function F in Eqgs. (7) into the bilinear Eq. (5), we can, with Maple symbolic
computation, get

Case 1.
3(a3a§ + a%ag - agag + ajaszas — agagas + a3a$
_ tagasar + arazas + 2azazas)
"o 2(a3 + a?) ’
3(a8a§ + azagas + ajagas + 2azagas + a7a§ — a§a7 ®)
_ —aagar + a?ag + agarag)
. 2(a3 + a2) |
P (a? + a?)(araz + agar)(a3 + a?) ’
(azar — azas)[(a1 + az)ar — az(as + as)]

where the involved constants should satisfy (a3 + a?)(asay — azag)[(a1 + az)ay —
ag(aﬁ + ag)] 7& 0.

Case 2.
asay 3(asay + aras + asag)
g = ) a4 = )
as 2@7 (9)
ajas 3ag(ag + a7 + ag)
ag = — , a9 = y
ag 2ar

where agarzag # 0.

2050130-3



F.-H. Qi et al.

Case 3.
a§a7 - a7a§
ag = — (=
2(13@8
B 3az(2a3 + 2aga? + ara? + 2a3ag + 2a1azas + a3az)
= 2 2 b
2az(a3 + ag)
2 2 2 (10)
3as(2apa3; + ara3 — 2a1asa3 + arag)
ag =
2a7(a3 + ag) ’
2, 2 2, 2 2 2
— (a1 + ag)az(as + ag)(a1a3 + 2asagas — a1ag)
11 =
2aza? (a3 + aga? + a3as + 2ajazas — atag)

where azarag(ag + aga3 + alas + 2a1azas — a2ag) # 0.

All the above cases of parameter selections result in three classes of solutions to
Eq. (7); and then through the transformation u = 2(In F'),, we get three classes of
lump-type solutions of Eq. (6), which can be presented as

_Aar(agt + a1 + agy + a3z + as) + 4ag(agl + agx + ary + agz + aio)
(ast + a1x + agy + azz + as)? + (agt + agx + ary + agz + a1)? + ayg’

(11)

in which it is sufficient for u to be analytic if a;; > 0. For example, choosing exact
values of parameters for the three cases above, we can get three kinds of lump-type
solutions separately.

(1) Taking a; = 1l,a9 = 2,a3 = 1,a5 = 1,a6 = l,a7 = 1,a3 = 1 and ayp = 1 for
Case 1, we can get

2(4x + 6y + 4z + 5t 4 4) _
(+y+z+32 +1)2+ (r+2y+2+ 2L +1)2+15°

(12)

(2) Taking a1 = 1l,a3 = 1l,a5 = 1,a6 = 1,a7 = 1,a19 = 1 and a1; = 1 for Case 2,
we can get

8r — 12t + 8

- - ; 13
(z+y—2—-L+12+(x—y+2-3+1)2+15 (13)

u =
(3) Taking a1 = 1,a3 =1,a5 = 1,a6 = 1,a7 = 1,ag = 1 and a;9 = 1 for Case 3, we
can get

A2z + 1y + 22 + Ot + 2)
u = .
(+y+z+3+12+(+24+ 5 +1)2+1

(14)

3. Interaction Solutions

First, in order to construct interaction solutions (see, for example, Refs. 41, 46,
47 and Refs. 48-52 for other examples of nonlinear PDEs and linear PDEs,
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respectively), we assume that

F:G2+H2+L+b11, G:b1$+b2y+b32+b4t+b57

H=b6$+b7y+bgz+b9t+b10,

15
L — v16k11+k52y+k32+k4t+k5 + v267k117k2y7k327k24t7k5 ( )

+v3 COS(k6$ + k7y + kgz + kot + ]{?10) ,

where b;(1 < i <11), k;(1 < j < 10), v1, v2 and vs are all real parameters to be
determined. Substituting such a function F' by Eqgs. (15) into the bilinear Eq. (5),
we can, through Maple, obtain

Case 1.
3b3(b1 + by + b3> b1bs bgb% + by (b% + b%)
b4 = ’ bG = "7 bS = )
2bs by baby
b1 + b3)k
klzov k3:(1+3)27
b2
b — 3(03 + 07)b3 + 3(b3 + bsbs + b7bs + 2b3b7)b1 + 3b3(bs + bs)b7 (16)
o= 202b; ’
. (bl + bg)k7 . 3(b1 + bg)(bl + by + bg)kg
ks = ————, k= 3 ;
bo 2b3
3(by + b3)(by + ba + b3)k
ke =0, ko= (b1 +b3)( 1;r 2 + b3) 7,
2b3
which needs to satisfy byb7y # 0, to make F' to be analytic.
Case 2.
3
bo =0, by3=—-b1, bys= §k1(/€<2; —1), br=0, bg=—bg,
3b
by =22 ke =0, (7
3 3k
ks =—ki, ka= ki —1), kr=0, ks=—ke, byo=-"7".

With u = 2(In F'),, a kind of interaction solutions of Eq. (6) can be presented
as

w = [4b1(b1x + bay + bsz + bat + bs) + 4bg (bsx + bry + bgz + bat + b1o)
+20; kyeFr@theythszthatths _ op o e~k —koy—ksz—kat—ks
— kguz sin(kex + kry + kgz + kot + k10)] X [(b1x + bay + b3z + byt + bs)?
+ (bot + bgx + by + bgz + byo)? + by 4 vyefr@Fheythazthatths
+v26—k1x—k2y—k3z—k4t—k5 + vg cos(k7y + kgz + kot + /ﬁo)]_l ) (].8)
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Taking Case 2 as an example, by selecting the parameters of Eq. (18) specially as:
b3 = 1,b5 = l,bﬁ = 1,b10 = 1,b11 = l,k'l = 1,k5 = 1,k6 =1 and klO = 1, we can
obtain the interaction solutions among the lump, kink wave and periodic wave
2[—vssin(z — 2z — 3 4+ 1) — 3t + v1e” T —vpe T2 Ay — 4z + 4]
vgeos(x —z— 3L+ 1)+ (x— 2 — 3L +1)2 + vy =t
+vge Tl 4 (- 24+ 1)2 + 1

)

(19)
and if further assuming

(1) v1 =1,v2 =1 and v3 = 0, we can obtain the interaction solution between the
lump and two kink waves of Eq. (6)

2(er#Hl —emotEml L4y — 4r — 3t + 4) '

(z—2—L+12+(x—2z+1)2+er 2t eats-1 417

u =

(20)
(2) v1 = 1,v3 = 0 and vz = 0, we can obtain the mixed lump-kink wave solution
of Eq. (6)

2(e** L 4 4x — 42 — 3t + 4) ’
(z—2z—2L 4124+ (x—2z+1)2+er =1 417

u = (21)
(3) v1 = 0,u3 = 0 and vz = 1, we can obtain the interaction solution between a
lump and a periodic wave of Eq. (6)
2[—sin(z —z — 3L + 1) + 4o — 42 — 3t + 4]

= . 22
" (z—2z—2L+1)2+cos(z—2z—L+1)+(z—2+1)2+1 (22)

Second, for the purpose of constructing periodic wave solutions,!?:23:53:54 e
assume
F — mlel1$+l2y+l3z+l4t+l5 + mze—lla?—lgy—lgz—l4t—l5
+mg cos(lgx + l7y + lsz + lot + l10) , (23)

in which lj(l < j <10), mq, mo and mg are all real parameters to be determined.
Substituting such a function F by Eq. (23) into the bilinear Eq. (5), we can, through
Maple, obtain

lb=0, lIz=-l;, =0, lg=-I, (24)

and then through the transformation v = 2(In F'),, we get periodic wave solutions
of Eq. (6)

2[11m16l1$7hz+l4t+l5 — llmzeillirllzil‘ltilE’ — lgmg Sin(lc,.’b —lgz + lgt + llO)]
m1€l12§'—l12+l4t+15 _|_ m2e—l1$+l12—l4t—l5 + ms COS(ZGJ; — ZGZ + lgt + llO)

(25)
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4. Dynamical Features

In the following, Figs. 1-4 depict dynamic features and energy distributions of
the lump-type solutions, interaction solutions and periodic wave solutions. Fig-
ure 1 illustrates three-dimensional plots of three types of lump-type waves with
Egs. (12)—(14) separately. Figures 2 and 3 show the different interaction waves with
different parameters. Characters of the interaction process among lump, kink wave
and periodic wave are dependent on the rational quadratic function, exponential
function (including hyperbolic function) and triangle function.! Figure 2 depicts
interactions among the lump, kink wave and periodic wave. If we take v = 1 (see
Fig. 2(a)), the wave has one peak and one valley, when we increase the value of vs

Fig. 1. (Color online) Lump-type solutions of (a) Eq. (12), (b) Eq. (13) and (c) Eq. (14).
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Fig. 2. (Color online) Interaction solutions of Eq. (19) with v1 =v2 =1: (a) v3 =1, (b) v3 =5
and (c) vs = 10.

Fig. 3. (Color online) Interaction solutions between: (a) a lump and two kink waves of Eq. (20),
(b) a mixed lump—kink wave of Eq. (21) and (c) a lump and a periodic wave of Eq. (22).
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(b)

Fig. 4. (Color online) Periodic wave solutions (25) with 1 = 1,l4 = 1,l5 = 1,lg = 1,m1 =
1,mo = 1,m3 = 1: (a) lg = 0; (b) is the corresponding contour plot of (a); (c) lg = 2; (d) is the
corresponding contour plot of (c).

(by taking v3 = 5 and vs = 10), it splits into two peaks and two valleys gradually
with the increase of the amplitudes of the peaks and valleys (see Figs. 2(b) and
2(c)). Figure 3(a) is an interaction between a lump and two kink wave of Eq. (20).
Figure 3(b) is a lump-kink wave based on Eq. (21). Figure 3(c) is an interaction
wave between a lump and a periodic wave of Eq. (22). Figure 4 shows periodic
waves (25) with Iy = 1,1y = 1,15 = 1,lg = 1,m; = 1,my = 1,m3 = 1 along with
different value of lg, Fig. 4(a) is with lg = 0 and Fig. 4(c) with lg = 2, Figs. 4(b)
and 4(d) are corresponding contour plots of Figs. 4(a) and 4(c), respectively.

5. Conclusions

In this paper, we have considered the construction of lump-type and interaction
solutions to an extended (3 + 1)-dimensional Jimbo-Miwa-like equation, which has
potential applications in engineering and physical sciences. All the computations
are based on a generalized Hirota bilinear form. Three classes of lump-type solutions
have been obtained. Interaction solutions are among lump-type solutions, two kink
waves and periodic waves, and between two kink waves and periodic waves. Dynam-
ical features and energy distributions of the presented solutions have been depicted
through various plots. Such wave solutions are expected to have applications in
modeling nonlinear wave phenomena in nature.
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