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By using the Hirota bilinear method, we construct new lump-type solutions to an
extended (3 + 1)-dimensional Jimbo-Miwa equation, which describes certain (3 + 1)-
dimensional wave phenomena in physics. The presented solutions contain 10 arbitrary
parameters and only need to satisfy four restrictive conditions to be analytic, thereby
enriching the existing lump-type solutions. Moreover, we compute their interaction so-
lutions with double exponential function waves, which include rogue wave solutions.
Dynamical features of the obtained solutions are graphically exhibited.

I Corresponding authors.

2050043-1


http://dx.doi.org/10.1142/S0217979220500435
mailto:qifenghua434@163.com
mailto:mawx@cas.usf.edu

F.-H. Qi et al.

Keywords: Jimbo-Miwa equation; lump-type solution; double exponential function.

PACS numbers: 02.30.Jr, 05.45.Yv

1. Introduction

As is known, nonlinear evolution equations describe various nonlinear phenomena

in nature.X"17 The (3 4 1)-dimensional Jimbo-Miwa equation,'®

Upzzy + SUgUzy + SUylgy + 2Uys — Uy, =0, (1)

is the second member in the KP hierarchy and first introduced by Jimbo and Miwa,
which models some fascinating (3 + 1)-dimensional waves in plasmas and optics.'®
Here, u(z,y, z,t) is a function of the spatial variables z, y, z and the temporal vari-
able t, and the subscripts denote the corresponding partial derivatives.!® In recent
years, Eq. (1) has received much attention, and different methods have been used to
deal with it, which include the Hirota bilinear method, the tanh-coth method, the
exp-function method and the extended homoclinic test approach.??-31 Equation (1)
possesses a variety of exact solutions exhibiting different structures, for example,
lump-type solutions, kinky breather-soliton solutions, kinky periodic-soliton solu-
tions, Wronskian determinant solutions and multi-soliton solutions.2031

In 2017, Wazwaz'® proposed two extended (3 + 1)-dimensional Jimbo-Miwa
equations:

Upgzy + SUgUpy + 3UyUszy + 2y — 3(Ugs + Uyz + Uzz) =0 (2)
and
Ugzry + 3'U/a:uwy + Suyuzw - 3uyt + 2<uwt + Uyt + uzt) =0. (3)

Exact solitary wave solutions have been obtained by employing the Kudryashov
method in Ref. 32, and multiple soliton solutions have been derived by the simpli-
fied Hirota’s method.'®32 Some meromorphic exact solutions have been achieved.3
The resonant multi-soliton solutions have been established.2® Periodic solitary wave
solutions have been retrieved.2® The lump solutions and the lump-kink solutions
have been obtained3” and the localized waves, solitons, breathers, lumps and rogue
waves of Eq. (2) have been constructed in Ref. 38. Compared with Eq. (1), Eq. (2)
and Eq. (3) have received much less attention.

In this paper, we will consider the extended (3 + 1)-dimensional Jimbo-Miwa
equation (2). This paper will be structured as follows. In Sec. 2, we will present
a new kind of lump-type solutions of Eq. (2) through the Hirota bilinear method.
In Sec. 3, we will generate and analyze interaction solutions between the obtained
lump-type solutions and double exponential function waves, and discuss dynamical
properties of all the presented solutions, along with some graphical illustrations. In
Sec. 4, we will provide our conclusions.
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2. Lump-Type Solutions
Under the transformation v = 2(In F'),;, a Hirota bilinear form for Eq. (2) reads
(D:D, +2DD, —3D,D, —3D,D, —3D?)F - F =0, (4)
which equivalently gives rise to
Frvayl — FyFppe — 3FpFppy + 3 FpuFoy + 2F ) F — 2F Fy — 3F, . F + 3F, F,
—3F,.F +3F,F, — 3F,,F + 3F? = 0. (5)
To search for lump-type solutions of Eq. (2) (see, for example, Refs. 39-45), we
begin by assuming
F=G?>+H?*+ L? + a, G = a1z + asy + aszz + ast + as,
H = agx + azy + agz + agt + a10, L = a11x + aioy + a132 + arat + ass,
where a;(1 < i < 16) are real parameters to be determined. Substituting such a

function F' in Egs. (6) into the bilinear equation (5), we can, with Maple symbolic
computation, get

2 2 2 2 2
asa12a7 + (—ai1a3 + a11a3y + asaraiz + azai3 + afyai3)as

—as(agar + ar1a12)(a11 + a13)
as = P} P} 5
1105 — a1a1202 + a7011 — AA7A12

s — P2+ 381 — ar(arars — agarz)Bs]ar + 3az(an + ar3)(Bs + fr)
* 2(a11a3 — ajaisas + a2ayn — agarain)? ’

—a7a12a% + [aua% —ar1a}y — (a3 + a}y)aislag + arariaia(an + aiz)

+aiasfaz(arr + a13) — agai2]

ag = D) )
—a11a3 + a1a12a2 + ar(agaiz — araq1)
3{Bo + f12 + ar(arair — a6a12)2[asa7 + (@11 + a13)(a12 + a13)] (7)
a + Bi3 — a§a7(a11 +ai2)(a11 + a13)}
9 = )
—2(a1103 — ara12as + a?ay — asarain)?
3{Bis + a1[a3 a3 + Bis — 2asarai2(2a3; + 3aizai
u +aizais + a%g)]a2 + P17 + Pis}
14 — — )
2(a11a3 — araisas + a2ain — agarais)?
a1laz(2a6 P13 + a2aiyag + Bar + Pas) + a3y (ag + aiy)ad
+ Bar + Bar + B3s] + Bso + Pas
a1 = 2 2 2 2 )
(a11 + a13)(a1303 + ar1a12a2 + a11as + agaraiz + a5a13 + afya13) P19
where

B1 = [a}; — (a12 — 2a13)a11 + ar3(arz + ai3)la? — asaiz(ar; — 2a12 + ai3)ar,
By = a3ai,al + az[B1 + aly(arn + ais)(ai2 + ai3) — 2a3a11a12)as,
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B3 = aiz(ai1 + als)aé — ar[aly + 3(ar2 + a13)a1 + arz(a12 + 2a13)]as,

Ba = afya; + [Bs + ar1a3(a11 — a13) — 2a11a12(a11 + ass)(arz + a13)]as,

Bs = —alza% + a1z(a12 — ar3)anr + (a? + a%g)alfa —agar(a11 — a1z + ai3),
Bs = [a13a3 + arariag + a3y (ar2 + ar3)]as3,

B7r = (arai1 — a6a12){—a7a§ + [a? — a12(a11 + a13)]ag + arari(aiz + a13)},

Bs = cw[a%l — (@12 — 2a13)a11 + a13(a1z + a13)}a§ +ai1[(a11 — a13)a$

+ (a11 — a12)ai2(a11 + ai3)]as,
Bo = —agai1a13a; + [Bs + azad; (a11 + a13)(a12 + a13)]a3 + afazaiz(arr + a13)az,
Bro = {arayi(a1 + a13) + aglady + (a13 — ar2)air + arza13)}aj
—aZazaia(ar; — 2a12 + aiz),
B11 = Pio — azar1 (a1 + ai3)[aiz(ain + a1z + 2a13) — a?],
Bi2 = arasP1 — arazasf{|a’; + 3(a12 + aiz)ai + aiz(arz + 2a13)]a?
+ (a11 — a12)ai,y(a11 + as)},
Bis = aiar(ai1 + ar3)lariay + agarars + (a$ + afy)ars]
— a?a%aﬁalg(an — a1z + a3),
Bua = arari(ad; + arzain + 2a12a13)a6 + ai; [ar2al; + 2a12a13a11
+ ai3(a12a13 — 2a$)]a
Bi1s = —a? a13a3 + [a12a13(a1; + a13)a§ + Bralas + afaly(a11 + a13)az,
Bis = air(a1zar; + 2a12a13)as + aayi(a?, + arzann + 2a12a;3)
+afy(ar1 + a13)[ag — 2a11(a11 + ars)],
P17 = (arai; — a6a12)2[a12a%1 + 2a12a13011 + asaz(arr + a1z) + a13(a12a13 — a%)]v
Bis = a%am(an + 013)[(111&%2 + agarais + (a? + a%z)allﬂ
—a2a1203(2a%, 4 2a13a11 + a12a13),
Big = (a$ + afz)af — 2as(agay + a11a12)ar + (azar; — a6a12)2 + a%(ag + a%l)v
B20 = aéanama? + (alza% — a§a13a11
—azafz)a; + aglafai; — a3arz(an + aiz)lar — ajats(an +as)?,
Bo1 = 2asas(arary — agarz)(arr + ars)[arial, + asarars

+ (a3 + afy)as](a0a11 — agass),
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2 4 2 2 2 2\ 2792, 42
Ba2 = ajiay + [2aza1; — dasaraizanr + (ag — aip)ais]a; + azai;

3 2 3
—4dagazaiiaiz — afyais(ann + ais),
2 2 2 2 2 2
Bos = a12(3a12a5 — a11ais — a13a7; — 2a7,a12)a7 + 2a75]asa11a12
+aro(a11 + a13)aislar + Boo,
3 2 2 24 2 3
B4 = (a12a7; — ajpaizair — ajpais)ai; + aglarai; + 2aipais(ai; + aiz)aislai,
2 3 2, 2 2, 2\272, 2 2 2
Bos = aiy{[—2a12a1; + (a5 + ajp)arzan + (a5 + ajp)aislar + afpaiy(an + aws)™},
33 2 3 2 2 9
P26 = 2a3a7; — araiz[aioarr (a1 + ai13) — 2(—ai2ay; + asaisann + azais)],
2 32 5, 2 2 2
Bar = (ara11 — agai2)?Bao + asai,al + azaia(—2ai1a3 + ajrai,
2 4
— 2a7a11 + 3a6a7a12)a1,
2 2 2
Bag = Pas — asai1[2a10a13(a11 + ai3)aisaz + 2a10ais(ar1 + aiz)*ais + Bas),
_ 9 2 2 2_ 9 2
Bag = ag(ai1 + aiz){azaizaly + ais[aizaisa; — 2ai0a11a1207 + ajs(ann + a13)arsl},
2 2 4, 2 2 4 332
Bso = a11(2a12a5 — araiiae + ajja12)a; + ajpar ary — agazai,
4.3 2 9 2 9
—azajja12 + agazaiiaiz(2a; — ajy),
2 2 4 2 4 2 3 29 2 2
Bs1 = ajgaizary + 2030011013015 — 207010071 01507y + A7GT00 307,
2 9 2
+ a7a10a11a13a12,
Byy = —2 2 3_o 3 _ o4 a3 42
320 = —2a10a1207301507 — 2a1001101201301507 — 201007907301507
—4 3
a1001107501301507,
2 92 4 2 4, 2 2 2 2, 2 2 2 2 2 2 2
Bs3 = ajzaisaz + anaizaysar + a1,a7901507 + a1501301507 + 201107501307 507
+ B30 + P31 + B3z,
2 4 2 2 2.2
Ba1 = agar[—ai a7 + a12(2a12a1; + ajsai + aizais)az
2 2 3
—2a10a7y(a11 + a13)a1sar + ajgais(ain + ais)l,
2 3 2 N2, 3 3 2 2 5 2 2
Bss = 2araiyag + anra1z(aty — 4az)ag + ayyaty + ajpats(2ai; + arsann —ajs),
2 3 2 2 2 2
B3¢ = ag[2a1 a7 + a12(aizal; + 2aisa11 + 2a13a75)ar — 2ai0ais(a11 + aiz)ars],
=9 _ 2
P37 = 2as5(arai1 — agai2) (a1 + aiz)anais + agazars
2, 2
+ (a7 + aiy)as](arars — aroa12),
2
B3s = 2a3as(aza11 — agaiz)(ai1 + aiz)aioaiz(ain — a13) + (ara13 — asaiz2)ars),
23 3 2/ 2 2
Bso = an1{—2azay;, + a12[2a12a3; + ajp(ay; — arsan — 2ays)]

+2araipais(air + aiz)ais}t,
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Bao = a3 a7 — arz[azar;(a1y + a13) — 2(—ai0ai, + ajyaizain + aigais)]ad
+2ajgats (a1 + ar3)?,

Ba1 = aé [afla% + a12(a12a%1 + 2a%5a11 + 2a13a§5)a$ - 20&10@%2(@11 + a13)a1sa7
—azaiy(arn + ar3)],

Ba2 = (—2a12ai’1 + a13af5a11 + afgai;)a? — aoa12(a11 + a13)2a15a$
- a10a§2(a11 + a13)2a15,

Bz = a7[a12a:{’1 + af5a%1 + 2a13a%5a11 + ag(an + ay3)an
+afy(air + aiz)arr + aisaislal, + Bas,

Bas = 2a7a11a12a3 + [a12(2a12a3, + aisa11 + a13a’s) — 2a2a? a2 + Bso,

Bas = ai1[—2ar0a13(a1n + ai3)aisay — 2ai0aiy(arn + aiz)*arsar + Bao)
+ 2a7ay1a10(a?y — a%)ag,

Ba = a3[(a12a}; — arzaizan — afzais)ag + Pas] — a3lazara(2a12af; + afsan
+ayzais)ag + Bog + Bool,

Bar = —a3{2a6[ar0a12(als — afy)ais + ar(2a12a3; — ar3aisa11 — aizals)] + B},

Bag = asaiPos + 2a3as(azars — agaia)ars(arr + aiz)(aioarn — asais)

+ B21 + Bar + Bus,

Bag = *202&5%2(&6&12 - a7a11)(a11 + a13)(aloa12 - (17&15) + B33 + Baa,
Bs0 = —aiBag + ajas[—aFaizals — afanaisais + 2a7ai0a12(ai; — a3y)ass
+ 35 + P36

All that remains is to study the analyticity of the solutions determined by u =
2(In F),. It is direct to see that it is sufficient for u to be analytic if the involved
constants satisfy

2 2
11043 — 101202 + arai11 — Aea7a12 7& O,

2 2 2 2
a13a5 + a1ai2a2 + a11a7y + agaraiz + azais + ajsa1s # 0,
a1 +ai3 #0, Big#0, ap>0.

Based on the transformation v = 2(In F'),, a kind of lump-type solutions of Eq. (2)
can be presented as

u = [4ay1(aqt + a12 + axy + azz + as) + 4ag(agt + agz + azy + agz + aio)
+4a11 (a1at + a11@ + ar2y + ar3z + a15)][(ast + a1z + agy + azz + as)?
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+ (agt + ag + azy + agz + aip)?

+ (@14t + a1 + aroy + a132 + ais)* + ag] (8)

The 10 involved parameters, a1, as, as, ag, a7, a1g, 611, @12, 13, @15, are all arbitrary,
and thus, with such diverse parametric choices, we can expect to use those solutions
to model more complicated wave phenomena in reality. As an example, we specially
take the parameters to be

ai :17 az :]-7 a5:25 (16:]., a7:1) a10:1)
ayl = 2, a12 = ]., ais = 1 and a5 = ].,

and then obtain the following lump-type solution:
24x + 16y — 122 — 126t + 20
(I—-6t+z+y— 22 +Q2—-6t+z+y— )2 +(1 - 42 +y+2)02+ 5
(9)

3. Interaction Solutions with Double Exponential Function Waves

In this section, we will construct and analyze interaction solutions between the
presented lump-type solutions and double exponential function waves (see, for ex-
ample, Refs. 43, 46, 47 and Refs. 48-50 for other examples of nonlinear PDEs and

linear PDEs, respectively). To the end, we begin by assuming that
F=G?>+H?+L+by, G = b1z + bay + bgz + byt + bs,

H = bgx + b7y + bgz + bgt + bio, L= U16k1$+k2y+k3z+k4t+k5 (10)
kix—koy—ksz—kat—ks
)

—+ voe™

where b;(1 <4 < 11), k;(1 < j < 5), v1 and vy are all the real parameters to be
determined. Substituting such a function F by Egs. (10) into the bilinear form (5),

Fig. 1. (Color online) Lump-type solution (9) with ¢ = 0 and z = y+1: (a) 3d plot and (b) density
plot.
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we can, through Maple, obtain

by — — 2b3b3 by — bs (b3 — b%)kzg. by — 3bs(ka + ks3) o bs(b3 — b3)
b3 + b3’ (b2 4+ b2)ks 2ky b3 403
by = 2b2bgks by = 3bs (ks + ks3) b= 0. = 3k2 + 3koks
(b3 + b2)ks’ 2ky ’ 2ky
(11)

Fig. 2. (Color online) Interaction solution (12) with b3 =1, bs =1, bg = 2, big = 1, b1 = 1,
kg:1,k3:1,k5:1:(a)m:1,v2:1;(b)m:0,v2=1;(c)v1=1,v2=0; (d)vlz )
va =1 and (e) vi =1, v2 =8.
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which need to satisfy
(b5 + b3)kska # 0,

to make F' to be analytic.
With u = 2(In F'),, a kind of interaction solutions of Eq. (2) can be presented
as

u = [4b1 (bat + b1w + bay + b3z + bs) + 4bs(bot + bex + bry + bgz + byg)]

X [(bat 4 by + boy + bsz + bs)? + (bot + bez + by + bgz + b1o)? + b
+ Ulek4t+k2y+k3z+k5 + vze—k4t—k2y—k3z—k}5]—1 . (12)

In the following, Figs. 1 and 2 depict dynamic features and energy distributions
of the lump-type solutions Eq. (9) and the interaction solution Eq. (12) with b3 =
1,[)5 = 17b8 = 2,[)10 = 1,[)11 = 1,]{32 = 1,]{,‘3 =1 and k5 =1.

Particularly, Fig. 2 sheds light on geometrical features of the interaction solu-
tion (12) under b3 = 1,b5 = 1,bg = 2,b19p = 1,b11 = 1, ks = 1,ks = 1 and k5 = 1,
but with the different values of vy and vq as (a) v1 = 1,v9 = 1; or (b) v1 = 0,vy = 1;
or (¢) v1 = 1,ug =0; or (d) v1 =8,v3 = 15 0r (e) v1 = 1,09 = 8.

4. Conclusions

In this paper, we have considered an extended (3 4+ 1)-dimensional Jimbo-Miwa
equation, which has potential applications in physics. A kind of lump-type solutions
and their interaction solutions with double exponential function waves were pre-
sented. Dynamical features and energy distributions of the presented solutions were
graphically depicted. It is expected that our results could be helpful in exploring
mathematical characteristics and practical applications of the discussed extended
(3 + 1)-dimensional Jimbo-Miwa equation.
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