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By using the Hirota bilinear method, we construct new lump-type solutions to an
extended (3 + 1)-dimensional Jimbo–Miwa equation, which describes certain (3 + 1)-
dimensional wave phenomena in physics. The presented solutions contain 10 arbitrary
parameters and only need to satisfy four restrictive conditions to be analytic, thereby

enriching the existing lump-type solutions. Moreover, we compute their interaction so-
lutions with double exponential function waves, which include rogue wave solutions.

Dynamical features of the obtained solutions are graphically exhibited.
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1. Introduction

As is known, nonlinear evolution equations describe various nonlinear phenomena

in nature.1–17 The (3 + 1)-dimensional Jimbo–Miwa equation,18

uxxxy + 3uxuxy + 3uyuxx + 2uyt − 3uxz = 0, (1)

is the second member in the KP hierarchy and first introduced by Jimbo and Miwa,

which models some fascinating (3 + 1)-dimensional waves in plasmas and optics.18

Here, u(x, y, z, t) is a function of the spatial variables x, y, z and the temporal vari-

able t, and the subscripts denote the corresponding partial derivatives.19 In recent

years, Eq. (1) has received much attention, and different methods have been used to

deal with it, which include the Hirota bilinear method, the tanh-coth method, the

exp-function method and the extended homoclinic test approach.20–31 Equation (1)

possesses a variety of exact solutions exhibiting different structures, for example,

lump-type solutions, kinky breather-soliton solutions, kinky periodic-soliton solu-

tions, Wronskian determinant solutions and multi-soliton solutions.20–31

In 2017, Wazwaz19 proposed two extended (3 + 1)-dimensional Jimbo–Miwa

equations:

uxxxy + 3uxuxy + 3uyuxx + 2uyt − 3(uxz + uyz + uzz) = 0 (2)

and

uxxxy + 3uxuxy + 3uyuxx − 3uyt + 2(uxt + uyt + uzt) = 0. (3)

Exact solitary wave solutions have been obtained by employing the Kudryashov

method in Ref. 32, and multiple soliton solutions have been derived by the simpli-

fied Hirota’s method.19,33 Some meromorphic exact solutions have been achieved.34

The resonant multi-soliton solutions have been established.35 Periodic solitary wave

solutions have been retrieved.36 The lump solutions and the lump-kink solutions

have been obtained37 and the localized waves, solitons, breathers, lumps and rogue

waves of Eq. (2) have been constructed in Ref. 38. Compared with Eq. (1), Eq. (2)

and Eq. (3) have received much less attention.

In this paper, we will consider the extended (3 + 1)-dimensional Jimbo–Miwa

equation (2). This paper will be structured as follows. In Sec. 2, we will present

a new kind of lump-type solutions of Eq. (2) through the Hirota bilinear method.

In Sec. 3, we will generate and analyze interaction solutions between the obtained

lump-type solutions and double exponential function waves, and discuss dynamical

properties of all the presented solutions, along with some graphical illustrations. In

Sec. 4, we will provide our conclusions.
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2. Lump-Type Solutions

Under the transformation u = 2(lnF )x, a Hirota bilinear form for Eq. (2) reads

(D3
xDy + 2DtDy − 3DxDz − 3DyDz − 3D2

z)F · F = 0, (4)

which equivalently gives rise to

FxxxyF − FyFxxx − 3FxFxxy + 3FxxFxy + 2FytF − 2FyFt − 3FxzF + 3FxFz

− 3FyzF + 3FyFz − 3FzzF + 3F 2
z = 0. (5)

To search for lump-type solutions of Eq. (2) (see, for example, Refs. 39–45), we

begin by assuming

F = G2 +H2 + L2 + a16, G = a1x+ a2y + a3z + a4t+ a5,

H = a6x+ a7y + a8z + a9t+ a10, L = a11x+ a12y + a13z + a14t+ a15,
(6)

where ai(1 ≤ i ≤ 16) are real parameters to be determined. Substituting such a

function F in Eqs. (6) into the bilinear equation (5), we can, with Maple symbolic

computation, get

a3 =

a2a12a
2
1 + (−a11a22 + a11a

2
12 + a6a7a12 + a27a13 + a212a13)a1

− a2(a6a7 + a11a12)(a11 + a13)

a11a22 − a1a12a2 + a27a11 − a6a7a12
,

a4 = −3β2 + 3[β4 − a7(a7a11 − a6a12)β5]a1 + 3a2(a11 + a13)(β6 + β7)

2(a11a22 − a1a12a2 + a27a11 − a6a7a12)2
,

a8 =

−a7a12a26 + [a11a
2
7 − a11a212 − (a22 + a212)a13]a6 + a7a11a12(a11 + a13)

+ a1a2[a7(a11 + a13)− a6a12]

−a11a22 + a1a12a2 + a7(a6a12 − a7a11)
,

a9 =

3{β9 + β12 + a7(a7a11 − a6a12)2[a6a7 + (a11 + a13)(a12 + a13)]

+β13 − a22a7(a11 + a12)(a11 + a13)}
−2(a11a22 − a1a12a2 + a27a11 − a6a7a12)2

,

a14 = −

3{β15 + a1[a311a
2
2 + β16 − 2a6a7a12(2a211 + 3a13a11

+ a13a12 + a213)]a2 + β17 + β18}
2(a11a22 − a1a12a2 + a27a11 − a6a7a12)2

,

a16 =

a1[a2(2a6β43 + a27a
2
12a

4
6 + β41 + β45) + a211(a26 + a211)a52

+β47 + β37 + β38] + β50 + β48

(a11 + a13)(a13a22 + a1a12a2 + a11a212 + a6a7a12 + a27a13 + a212a13)β19
,

(7)

where

β1 = [a211 − (a12 − 2a13)a11 + a13(a12 + a13)]a27 − a6a12(a11 − 2a12 + a13)a7,

β2 = a22a
2
12a

3
1 + a2[β1 + a212(a11 + a13)(a12 + a13)− 2a22a11a12]a21,
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β3 = a12(a11 + a13)a26 − a7[a211 + 3(a12 + a13)a11 + a13(a12 + 2a13)]a6,

β4 = a211a
4
2 + [β3 + a11a

2
7(a11 − a13)− 2a11a12(a11 + a13)(a12 + a13)]a22,

β5 = −a12a211 + a12(a12 − a13)a11 + (a27 + a212)a13 − a6a7(a11 − a12 + a13),

β6 = [a13a
2
6 + a7a11a6 + a211(a12 + a13)]a22,

β7 = (a7a11 − a6a12){−a7a26 + [a27 − a12(a11 + a13)]a6 + a7a11(a12 + a13)},

β8 = a7[a211 − (a12 − 2a13)a11 + a13(a12 + a13)]a26 + a11[(a11 − a13)a27

+ (a11 − a12)a12(a11 + a13)]a6,

β9 = −a6a11a13a42 + [β8 + a7a
2
11(a11 + a13)(a12 + a13)]a22 + a31a7a12(a11 + a13)a2,

β10 = {a7a11(a11 + a13) + a6[a211 + (a13 − a12)a11 + a12a13]}a22

− a26a7a12(a11 − 2a12 + a13),

β11 = β10 − a7a11(a11 + a13)[a12(a11 + a12 + 2a13)− a27],

β12 = a1a2β11 − a1a2a6{[a211 + 3(a12 + a13)a11 + a13(a12 + 2a13)]a27

+ (a11 − a12)a212(a11 + a13)},

β13 = a21a7(a11 + a13)[a11a
2
12 + a6a7a12 + (a27 + a212)a13]

− a21a22a6a12(a11 − a12 + a13),

β14 = a7a11(a211 + a13a11 + 2a12a13)a6 + a211[a12a
2
11 + 2a12a13a11

+ a13(a12a13 − 2a27)],

β15 = −a211a13a42 + [a12a13(a11 + a13)a26 + β14]a22 + a31a
2
12(a11 + a13)a2,

β16 = a11(a13a11 + 2a12a13)a22 + a27a11(a211 + a13a11 + 2a12a13)

+ a212(a11 + a13)[a26 − 2a11(a11 + a13)],

β17 = (a7a11 − a6a12)2[a12a
2
11 + 2a12a13a11 + a6a7(a11 + a13) + a13(a12a13 − a27)],

β18 = a21a12(a11 + a13)[a11a
2
12 + a6a7a12 + (a27 + a212)a13]

− a21a12a22(2a211 + 2a13a11 + a12a13),

β19 = (a27 + a212)a21 − 2a2(a6a7 + a11a12)a1 + (a7a11 − a6a12)2 + a22(a26 + a211),

β20 = a26a11a12a
2
7 + (a12a

3
11 − a25a13a11

− a25a213)a27 + a6[a27a
2
11 − a25a12(a11 + a13)]a7 − a25a212(a11 + a13)2,

β21 = 2a2a5(a7a11 − a6a12)(a11 + a13)[a11a
2
12 + a6a7a12

+ (a27 + a212)a13](a10a11 − a6a15),
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β22 = a211a
4
2 + [2a27a

2
11 − 4a6a7a12a11 + (a26 − a211)a212]a22 + a47a

2
11

− 4a6a
3
7a11a12 − a210a312(a11 + a13),

β23 = a12(3a12a
2
6 − a11a215 − a13a215 − 2a211a12)a27 + 2a212[a6a11a12

+ a10(a11 + a13)a15]a7 + β22,

β24 = (a12a
3
11 − a210a13a11 − a210a213)a211 + a6[a7a

3
11 + 2a10a13(a11 + a13)a15]a11,

β25 = a211{[−2a12a
3
11 + (a25 + a210)a13a11 + (a25 + a210)a213]a27 + a210a

2
12(a11 + a13)2},

β26 = 2a37a
3
11 − a7a12[a210a11(a11 + a13)− 2(−a12a311 + a25a13a11 + a25a

2
13)],

β27 = (a7a11 − a6a12)2β20 + a32a
2
12a

5
1 + a22a12(−2a11a

2
2 + a11a

2
12

− 2a27a11 + 3a6a7a12)a41,

β28 = β25 − a6a11[2a10a13(a11 + a13)a15a
2
7 + 2a10a

2
12(a11 + a13)2a15 + β26],

β29 = a26(a11 + a13){a25a13a212 + a15[a13a15a
2
7 − 2a10a11a12a7 + a212(a11 + a13)a15]},

β30 = a11(2a12a
2
6 − a7a11a6 + a211a12)a42 + a210a

2
11a

4
12 − a36a37a212

− a47a311a12 + a26a
2
7a11a12(2a27 − a212),

β31 = a210a
2
13a

4
12 + 2a210a11a13a

4
12 − 2a7a10a

2
11a15a

3
12 + a27a

2
10a

2
13a

2
12

+ a27a
2
10a11a13a

2
12,

β32 = −2a10a12a
2
13a15a

3
7 − 2a10a11a12a13a15a

3
7 − 2a10a

3
12a

2
13a15a7

− 4a10a11a
3
12a13a15a7,

β33 = a213a
2
15a

4
7 + a11a13a

2
15a

4
7 + a211a

2
12a

2
15a

2
7 + a212a

2
13a

2
15a

2
7 + 2a11a

2
12a13a

2
15a

2
7

+β30 + β31 + β32,

β34 = a6a7[−a211a47 + a12(2a12a
2
11 + a215a11 + a13a

2
15)a27

− 2a10a
2
12(a11 + a13)a15a7 + a210a

3
12(a11 + a13)],

β35 = 2a7a
2
12a

3
6 + a11a12(a212 − 4a27)a26 + a311a

3
12 + a210a

2
12(2a211 + a13a11 − a213),

β36 = a6[2a211a
3
7 + a12(a12a

2
11 + 2a215a11 + 2a13a

2
15)a7 − 2a10a

2
12(a11 + a13)a15],

β37 = 2a5(a7a11 − a6a12)(a11 + a13)[a11a
2
12 + a6a7a12

+ (a27 + a212)a13](a7a15 − a10a12),

β38 = 2a22a5(a7a11 − a6a12)(a11 + a13)[a10a12(a11 − a13) + (a7a13 − a6a12)a15],

β39 = a11{−2a27a
3
11 + a12[2a12a

3
11 + a210(a211 − a13a11 − 2a213)]

+ 2a7a10a13(a11 + a13)a15},
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β40 = a311a
4
7 − a12[a25a11(a11 + a13)− 2(−a12a311 + a210a13a11 + a210a

2
13)]a27

+ 2a210a
3
12(a11 + a13)2,

β41 = a26[a211a
4
7 + a12(a12a

2
11 + 2a215a11 + 2a13a

2
15)a27 − 2a10a

2
12(a11 + a13)a15a7

− a25a312(a11 + a13)],

β42 = (−2a12a
3
11 + a13a

2
15a11 + a213a

2
15)a37 − a10a12(a11 + a13)2a15a

2
7

− a10a312(a11 + a13)2a15,

β43 = a7[a12a
3
11 + a215a

2
11 + 2a13a

2
15a11 + a25(a11 + a13)a11

+ a210(a11 + a13)a11 + a213a
2
15]a212 + β42,

β44 = 2a7a11a12a
3
6 + [a12(2a12a

2
11 + a215a11 + a13a

2
15)− 2a27a

2
11]a26 + β39,

β45 = a11[−2a10a13(a11 + a13)a15a
3
7 − 2a10a

2
12(a11 + a13)2a15a7 + β40]

+ 2a7a11a12(a212 − a27)a36,

β46 = a42[(a12a
3
11 − a13a215a11 − a213a215)a26 + β24]− a22[a7a12(2a12a

2
11 + a215a11

+ a13a
2
15)a36 + β28 + β29],

β47 = −a32{2a6[a10a12(a213 − a211)a15 + a7(2a12a
3
11 − a13a215a11 − a213a215)] + β44},

β48 = a2a
3
1β23 + 2a32a5(a7a11 − a6a12)a13(a11 + a13)(a10a11 − a6a15)

+β21 + β27 + β46,

β49 = −2a2a5a12(a6a12 − a7a11)(a11 + a13)(a10a12 − a7a15) + β33 + β34,

β50 = −a21β49 + a21a
2
2[−a27a213a215 − a27a11a13a215 + 2a7a10a12(a213 − a211)a15

+β35 + β36].

All that remains is to study the analyticity of the solutions determined by u =

2(lnF )x. It is direct to see that it is sufficient for u to be analytic if the involved

constants satisfy
a11a

2
2 − a1a12a2 + a27a11 − a6a7a12 6= 0,

a13a
2
2 + a1a12a2 + a11a

2
12 + a6a7a12 + a27a13 + a212a13 6= 0,

a11 + a13 6= 0, β19 6= 0, a16 > 0.

Based on the transformation u = 2(lnF )x, a kind of lump-type solutions of Eq. (2)

can be presented as

u = [4a1(a4t+ a1x+ a2y + a3z + a5) + 4a6(a9t+ a6x+ a7y + a8z + a10)

+ 4a11(a14t+ a11x+ a12y + a13z + a15)][(a4t+ a1x+ a2y + a3z + a5)2
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+ (a9t+ a6x+ a7y + a8z + a10)2

+ (a14t+ a11x+ a12y + a13z + a15)2 + a16]−1. (8)

The 10 involved parameters, a1, a2, a5, a6, a7, a10, a11, a12, a13, a15, are all arbitrary,

and thus, with such diverse parametric choices, we can expect to use those solutions

to model more complicated wave phenomena in reality. As an example, we specially

take the parameters to be

a1 = 1, a2 = 1, a5 = 2, a6 = 1, a7 = 1, a10 = 1,

a11 = 2, a12 = 1, a13 = 1 and a15 = 1,

and then obtain the following lump-type solution:

u =
24x+ 16y − 12z − 126t+ 20

(1− 6t+x+ y− 5z
2 )2 + (2− 6t+x+ y− 5z

2 )2 + (1− 39t
4 + 2x+ y + z)2 + 71

42

.

(9)

3. Interaction Solutions with Double Exponential Function Waves

In this section, we will construct and analyze interaction solutions between the

presented lump-type solutions and double exponential function waves (see, for ex-

ample, Refs. 43, 46, 47 and Refs. 48–50 for other examples of nonlinear PDEs and

linear PDEs, respectively). To the end, we begin by assuming that

F = G2 +H2 + L+ b11, G = b1x+ b2y + b3z + b4t+ b5,

H = b6x+ b7y + b8z + b9t+ b10, L = v1e
k1x+k2y+k3z+k4t+k5

+ v2e
−k1x−k2y−k3z−k4t−k5 ,

(10)

where bi(1 ≤ i ≤ 11), kj(1 ≤ j ≤ 5), v1 and v2 are all the real parameters to be

determined. Substituting such a function F by Eqs. (10) into the bilinear form (5),

(a) (b)

Fig. 1. (Color online) Lump-type solution (9) with t = 0 and z = y+1: (a) 3d plot and (b) density

plot.
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we can, through Maple, obtain
b1 = − 2b3b

2
8

b23 + b28
, b2 =

b3(b23 − b28)k2
(b23 + b28)k3

, b4 =
3b3(k2 + k3)

2k2
, b6 =

b8(b23 − b28)

b23 + b28
,

b7 =
2b23b8k2

(b23 + b28)k3
, b9 =

3b8(k2 + k3)

2k2
, k1 = 0, k4 =

3k23 + 3k2k3
2k2

,

(11)

(a) (b)

(c) (d)

(e)

Fig. 2. (Color online) Interaction solution (12) with b3 = 1, b5 = 1, b8 = 2, b10 = 1, b11 = 1,
k2 = 1, k3 = 1, k5 = 1: (a) v1 = 1, v2 = 1; (b) v1 = 0, v2 = 1; (c) v1 = 1, v2 = 0; (d) v1 = 8,

v2 = 1 and (e) v1 = 1, v2 = 8.
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which need to satisfy

(b23 + b28)k3k2 6= 0,

to make F to be analytic.

With u = 2(lnF )x, a kind of interaction solutions of Eq. (2) can be presented

as

u = [4b1(b4t+ b1x+ b2y + b3z + b5) + 4b6(b9t+ b6x+ b7y + b8z + b10)]

× [(b4t+ b1x+ b2y + b3z + b5)2 + (b9t+ b6x+ b7y + b8z + b10)2 + b11

+ v1e
k4t+k2y+k3z+k5 + v2e

−k4t−k2y−k3z−k5 ]−1. (12)

In the following, Figs. 1 and 2 depict dynamic features and energy distributions

of the lump-type solutions Eq. (9) and the interaction solution Eq. (12) with b3 =

1, b5 = 1, b8 = 2, b10 = 1, b11 = 1, k2 = 1, k3 = 1 and k5 = 1.

Particularly, Fig. 2 sheds light on geometrical features of the interaction solu-

tion (12) under b3 = 1, b5 = 1, b8 = 2, b10 = 1, b11 = 1, k2 = 1, k3 = 1 and k5 = 1,

but with the different values of v1 and v2 as (a) v1 = 1, v2 = 1; or (b) v1 = 0, v2 = 1;

or (c) v1 = 1, v2 = 0; or (d) v1 = 8, v2 = 1; or (e) v1 = 1, v2 = 8.

4. Conclusions

In this paper, we have considered an extended (3 + 1)-dimensional Jimbo–Miwa

equation, which has potential applications in physics. A kind of lump-type solutions

and their interaction solutions with double exponential function waves were pre-

sented. Dynamical features and energy distributions of the presented solutions were

graphically depicted. It is expected that our results could be helpful in exploring

mathematical characteristics and practical applications of the discussed extended

(3 + 1)-dimensional Jimbo–Miwa equation.
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