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a b s t r a c t 

In this research article, the perturbed nonlinear Schrödinger equation (P-NLSE) is examined by utilizing 

two analytical methods, namely the extended modified auxiliary equation mapping and the generalized 

Riccati equation mapping methods. Consequently, we establish several sorts of new families of complex 

soliton wave solutions such as hyperbolic functions, trigonometric functions, dark and bright solitons, 

periodic solitons, singular solitons, and kink-type solitons wave solutions of the P-NLSE. Using the men- 

tioned methods, the results are displayed in 3D and 2D contours for specific values of the open parame- 

ters. The obtained findings demonstrate that the implemented techniques are capable of identifying the 

exact solutions of the other complex nonlinear evolution equations (C-NLEEs) that arise in a range of 

applied disciplines. 
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. Introduction 

In the field of engineering, optics and mathematical physics, the nonlinear evolution equation has attracted more attention of several

esearchers for its wide-range of characteristics [1–6,6–16] . The nonlinear Schrödinger equation is a subpart of the nonlinear evolution

quation and it is applied in many fields such as plasma physics, chemical kinematics, fluid mechanics, elastic media, solid-state, quantum

echanics, bio-genetics, nonlinear optics, and hydrodynamics [17–34] . A solitary wave or soliton is produced by eliminating the dispersive

nd nonlinear effects in the medium propagating at constant velocity without changing its shape [35–42] . Most recently, optical solitons

ave demonstrated significant effects in the telecommunications industry. The P-NLSE evaluates the propagation of optical solitons in non-

inear optical fibers and other telecommunication systems. For the past few years, to find the solitons of P-NLSE and exact solutions in the

orm of solitary waves, several mathematicians and scientists have been studied broadly and they established the effective and powerful

pproaches such as modified Kudryashov method [43] , Hirota’s method [44–53] and direct algebraic method [54,55] which discuss the

nteraction between lumps waves and also the mixed soliton solutions [56–59] , residual power series method [60–62] , sine-cosine method

63,64] , Fan sub-equation method [65,66] , inverse scattering method [67–69] , homotopy Perturbation scheme [70,71] , Bäcklund transform

ethod [72–76] , the unified method [77,78] , sine-Gordon approach [79,80] and simple equation method [81] . 
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In this paper, the extended modified auxiliary equation mapping (AEM) method and the generalized Riccati equation mapping (REM)

ethod [82,83] are employed to study the P-NLSE [84] which reads 

μt + αμxx + β| μ| 2 μ − i (γμx − δ(| μ| 2 μ) x − σ (| μ| 2 ) x μ) = 0 , (1) 

here α, β , γ , δ, σ are constants. Here, μ = μ(x, t) refers to the wave profile while the coefficient of group velocity dispersion term,

he coefficient of nonlinearity, the coefficient of inter-modal dispersion, the self-steepening term for short pulses and the coefficient of

onlinear dispersion term are stated by the parameters α, β, γ , δ and σ , respectively. In optics, Eq. (1) is commonly used as a useful

odel for optical pulse propagation in nonlinear fibers. Furthermore, it is the simplest model for the propagation of the a laser beam in a

edium with a Kerr nonlinearity. 

The structure of this paper is designed as follows: The mathematical analysis to the Eq. (1) is developed in Section 2 . The geometrical

ehavior of the solutions is demonstrated in Section 3 . Finally, the conclusions are extracted in Section 4 . 

. Mathematical analysis 

Consider 

(x, t) = �(ζ ) e iθ ζ = x − λt, θ = −ω 1 x + ω 0 t, (2) 

here λ, ω 0 and ω 1 are real constants. 

Plugging the transformation given by Eq. (9) into Eq. (1) and from the real and imaginary parts, respectively, we get, 

�′′ − (ω 0 + αω 

2 
1 + ω 1 γ )� + (β − δω 1 )�

3 = 0 , (3) 

nd 

= −(2 αω 1 + γ ) , δ = −2 

3 

σ. (4) 

.1. The AEM method 

By applying the AEM method on Eq. (3) and by balancing �′′ with �3 , we obtain n = 1. Therefore, the general solution will take the

orm Cheemaa et al. [82] 

(ζ ) = a 0 + a 1 φ(ζ ) + 

b 1 
φ(ζ ) 

+ d 1 
φ′ (ζ ) 

φ(ζ ) 
, (5) 

here φ(ζ ) satisfying the following auxiliary ordinary differential equation with its derivatives: 

′ (ζ ) 2 = � 3 φ(ζ ) 4 + � 2 φ(ζ ) 3 + � 1 φ(ζ ) 2 , (6) 

′′ (ζ ) = 2 � 3 φ(ζ ) 3 + 

3 

2 

� 2 φ(ζ ) 2 + � 1 φ(ζ ) , (7) 

′′′ (ζ ) = (6 � 3 φ(ζ ) 2 + 3 � 2 φ(ζ ) + � 1 ) φ
′ (ζ ) , (8)

here a 0 , a 1 , b 1 , d 1 , � 1 , � 2 and � 3 are constants to be determined later. 

Inserting Eq. (5) into Eq. (3) with the aid of Eq. (6) and collecting the coefficients of φ′ k φ j , (k = 0 , 1 , j = 0 , 1 , 2 , 3 , . . . , n ) yields an

lgebraic system of equations in the assumed parameters and the coefficients exists in Eq. (3) . Solving this system of algebraic equations

ields different sets of values represented by the following families. 

Family 1: 

 0 = ±
√ 

−αω 

2 
1 

− γω 1 − ω 0 √ 

δω 1 − β
, 

 1 = 

α� 2 

2 

√ 

δω 1 − β
√ 

−αω 

2 
1 

− γω 1 − ω 0 

, b 1 = 0 , 

 1 = 0 , � 1 =−2(αω 

2 
1 + γω 1 + ω 1 ) 

α
, � 3 =− α� 

2 
2 

8(αω 

2 
1 

+ γω 1 + ω 0 ) 
. 

(9) 

utting all these values into Eq. (3) with the help of Eq. (6) , the solutions of Eq. (1) are obtained in the following forms 

1 , 1 (ζ ) = 

[−2(ω 0 + ω 1 (γ + αω 1 )) − α� 1 (1 + ε tanh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 

2 

√ 

δω 1 − β
√ 

−ω 1 (γ + αω 1 ) − ω 0 

]
e iθ , (10) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , ε = ±1 and � 2 = 2 
√ 

� 1 � 3 . 

1 , 2 (ζ ) = 

[−4(ω 0 + ω 1 (γ + αω 1 )) + (1 + 

ε sinh [ 
√ 

� 1 (ζ+ ξ0 )] 

κ+ cosh [ 
√ 

� 1 (ζ+ ξ0 )] 
α� 2 

√ 

� 1 

� 3 
) 

4 

√ 

δω 1 − β
√ 

−ω 1 (γ + αω 1 ) − ω 0 

]
e iθ , (11) 
432 
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here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , � 3 > 0 , � 2 = −2 
√ 

� 1 � 3 and ε and κ are any combi-

ation of ±1 . 

1 , 3 (ζ ) = 

[−2(ω 0 + ω 1 (γ + αω 1 )) − α(1 + 

ε
√ 

1+ p 2 κ+ cosh [ 
√ 

� 1 (ζ+ ξ0 )] 

p+ sinh [ 
√ 

� 1 (ζ+ ξ0 )] 
) � 1 

2 

√ 

δω 1 − β
√ 

−ω 1 (γ + αω 1 ) − ω 0 

]
e iθ , (12) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , p is an arbitrary constant, � 1 > 0 and ε and κ are any combi-

ation of ±1 . 

Family 2: 

 1 = 

i 
√ 

α√ 

2 β − 2 δω 1 

, a 0 = 0 , b 1 = 0 , a 1 = − i 
√ 

α
√ 

� 3 √ 

2 β − 2 δω 1 

, � 1 = −2(αω 

2 
1 + γω 1 + ω 0 ) 

α
. (13) 

utting the values of Family 2 into Eq. (3) with the help of Eq. (6) , the solutions of Eq. (1) are obtained in the following forms 

1 , 4 (ζ ) = 

[
i 
√ 

α(ε sec [ 1 
2 

√ 

� 1 (ζ + ξ0 )] 2 
√ 

� 1 � 2 + 2 � 1 

√ 

� 3 (1 + ε tanh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 2 ) 

2 

√ 

2 

√ 

−δω 1 + β� 2 (1 + ε tanh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 

]
e iθ , (14) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , ε = ±1 , � 2 = 2 
√ 

� 1 � 3 . 

1 , 5 (ζ ) = 

[
i 
√ 

α(2 ε(1 + κ cosh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) π + ((κ + cosh [ 1 
2 

√ 

� 1 (ζ + ξ0 )] + ε sinh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 2 π) 

2 

√ 

2 

√ 

−δω 1 + β(κ + ε cosh [ 1 
2 

√ 

� 1 (ζ + ξ0 )])((κ + cosh [ 1 
2 

√ 

� 1 (ζ + ξ0 )] + ε sinh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 

]
×e iθ , (15) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , ε = ±1 , � 2 = −2 
√ 

� 1 � 3 , and ε and κ are any combi-

ation of ±1 . 

1 , 6 (ζ ) = 

[(
i 
√ 

α
√ 

� 1 

2 β − 2 

√ 

δω 1 

)
×

(
ε(−1 −

√ 

1 + p 2 κ cosh [ 
√ 

� 1 (ζ + ξ0 )] + p sinh [ 
√ 

� 1 (ζ + ξ0 )]) 

(p + sinh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 2 

+ 

(1 + 

ε
√ 

1+ p 2 κ+ cosh [ 
√ 

� 1 (ζ+ ξ0 )] 

p+ sinh [ 
√ 

� 1 (ζ+ ξ0 )] 
) 2 

√ 

� 3 

√ 

� 1 

� 2 

)]
e iθ , (16) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , p is an arbitrary constant, � 1 > 0 and ε and κ are any combi-

ation of ±1 . 

Family 3: 

d 1 = 

√ 

−ω 0 − ω 1 (ω 1 α + γ ) 

2 

√ 

(−β + δω 1 ) 
, a 1 = 0 , b 1 = 0 , 

 2 = 0 , � 3 = 0 , a 0 = −
√ 

−ω 0 − ω 1 (αω 1 + γ ) 

2 

√ 

� 1 

√ 

(−β + δω 1 ) 
, (17) 

sing the obtained values in (17) in Eq. (3) with the help of Eq. (6) , we get the solutions of Eq. (1) in the following forms 

1 , 7 (ζ ) = 

⎡ 

⎢ ⎢ ⎣ 

(
− 2 − ε sec [ 1 

2 

√ 

� 1 (ζ + ξ0 )] 2 (−1 + sinh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 

)√ 

−ω 0 − ω 1 (αω 1 + γ ) 

4 

√ 

−β + δω 1 (1 + ε tanh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) 

⎤ 

⎥ ⎥ ⎦ 

e iθ , 

(18) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , ε = ±1 and � 2 = 2 
√ 

� 1 � 3 . 

1 , 8 (ζ ) = 

⎡ 

⎢ ⎢ ⎣ 

−
(

1 − ε(1+ κ cosh [ 
√ 

� 1 (ζ+ ξ0 )]) 
(κ+ cosh [ 

√ 

� 1 (ζ+ ξ0 )])(�2 ) 

)√ 

−ω 0 − ω 1 (αω 1 + γ ) 

2 

√ 

−β + δω 1 

⎤ 

⎥ ⎥ ⎦ 

e iθ , (19) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , � 2 = −2 
√ 

� 1 � 3 and ε and κ are any combination of

1 . 

1 , 9 (ζ ) = 

⎡ 

⎢ ⎢ ⎣ 

−π

(
1 + 

ε(1+ 
√ 

1+ p 2 κ cosh [ 
√ 

� 1 (ζ+ ξ0 )] −p sinh [ 
√ 

� 1 (ζ+ ξ0 )]) 

(p+ sinh [ 
√ 

� 1 (ζ+ ξ0 )])(p 
√ 

1+ p 2 κε+ ε cosh [ 
√ 

� 1 (ζ+ ξ0 )]+ sinh [ 
√ 

� 1 (ζ+ ξ0 )]) 

)
2 

√ 

−β + δω 1 

⎤ 

⎥ ⎥ ⎦ 

e iθ , (20) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , ξ0 , p are arbitrary constants and ε and κ are any

ombination of ±1 . 
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Fig. 1. μ1 , 1 (x, t) : α = 2 , β = 0 . 25 , γ = 2 , ω 1 = 1 . 75 , � 2 = −1 , σ = 0 . 75 , ω 0 = 0 . 5 , ξ0 = 1 . 3 , ε = 1 . 5 . In (g)-(i), t = 1 . 
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t

μ

w
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Family 4: 

 1 = ±
√ 

2 

√ 

α
√ 

� 3 √ 

δω 1 − β
, b 1 = 0 , d 1 = 0 , 

 0 = 0 , � 2 = 0 , � 1 = 

αω 

2 
1 + γω 1 + ω 0 

α
. (21) 

imilarly, by using the obtained values in Eq. (21) and inserting them in Eq. (3) with the help of Eq. (6) , we get the solutions of Eq. (1) in

he following forms 

1 , 10 (ζ ) = 

[ 

−
√ 

2 

√ 

α(1 + ε tanh [ 1 
2 

√ 

� 1 (ζ + ξ0 )]) � 1 

√ 

� 3 √ 

δω 1 − β� 2 

] 

e iθ , (22) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , ε = ±1 and � 2 = 2 
√ 

� 1 � 3 . 

1 , 11 (ζ ) = 

⎡ 

⎣ 

√ 

2 (1 + 

ε sinh [ 
√ 

� 1 (ζ+ ξ0 )] 

κ+ cosh [ 
√ 

� 1 (ζ+ ξ0 )] 
) 

√ 

� 1 

� 3 

√ 

� 3 √ 

δω 1 − β

⎤ 

⎦ × e iθ , (23) 
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Fig. 2. μ1 , 3 (x, t) : α = 1 . 5 , β = −1 . 25 , γ = −0 . 25 , ω 1 = 0 . 75 , � 2 = −1 , σ = 2 , ω 0 = 0 . 5 , ξ0 = −1 . 3 , ε = 1 . 3 , κ = 1 , p = 0 . 92 . In (g)-(i), t = 1 . 

w  

n

μ

w  

o

2

μ

w

φ

w

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , � 1 > 0 , � 3 > 0 , � 2 = −2 
√ 

� 1 � 3 and ε and κ are any combi-

ation of ±1 . 

1 , 12 (ζ ) = 

⎡ 

⎣ −
√ 

2 

√ 

α(1 + 

ε
√ 

1+ p 2 κ+ cosh [ 
√ 

� 1 (ζ+ ξ0 )] 

p+ sinh [ 
√ 

� 1 (ζ+ ξ0 )] 
) 
√ 

� 3 � 1 √ 

δω 1 − β� 2 

⎤ 

⎦ e iθ , (24) 

here ζ = x + (2 αω 1 + γ ) t , ξ0 is an integration constant, θ = −ω 1 x + ω 0 t , p, ξ0 are arbitrary constants and ε and κ are any combination

f ±1 . 

.2. The REM method 

According to the REM method, Eq. (3) has the formal solution [83] 

(x, t) = g 1 φ(ζ ) + g 0 + 

g −1 

φ(ζ ) 
. (25) 

here g 0 , g 1 , g −1 are constants and φ(ζ ) satisfies the following ODE 

′ (ζ ) = η1 + η2 φ(ζ ) + η3 φ
2 (ζ ) , (26) 

here η , η and η are arbitrary constants. 
1 2 3 
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Fig. 3. μ1 , 6 (x, t) : α = 0 . 65 , β = 1 . 35 , γ = −1 . 15 , ω 1 = 0 . 75 , � 2 = −1 . 25 , σ = 2 . 5 , ω 0 = 0 . 49 , ξ0 = 1 . 3 , ε = −1 , κ = 0 . 73 , p = 1 . In (g)-(i), t = 1 . 
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Substituting Eq. (25) into Eq. (3) with the aid of Eq. (26) and collecting the coefficients of φi , (i = 0 , 1 , 2 , · · · , n ) to zero, yields a system

f algebraic equations in the assumed parameters and the coefficients of Eq. (3) . Solving this system via Mathematica Software, the values

f the constants g 0 , g 1 , g −1 and ω 0 are obtained as mentioned below, ζ = x + (2 αω 1 + γ ) t and θ = −ω 1 x + ω 0 t . 

Case I 

g 0 = 

√ 

αη2 √ 

2 

√ 

δω 1 − β
, g 1 = 

√ 

2 

√ 

αη3 √ 

δω 1 − β
, g −1 = 0 

 0 = 

1 

2 

(−αη2 
2 + 4 αη1 η3 − 2 γω 1 − 2 αω 

2 
1 ) . (27) 

ase II 

 0 = − η2 

√ 

α√ 

2 

√ 

δω 1 − β
, g −1 = −

√ 

2 

√ 

αη1 √ 

δω 1 − β
, g 1 = 0 , (28) 

 0 = 

1 

2 

(−αη2 
2 + 4 αη1 η3 − 2 γω 1 − 2 αω 

2 
1 ) . (29) 

rom Case I, the solutions of Eq. (1) are obtained in the following sorts: 

Family 1: when η2 
2 − 4 η1 η3 > 0 and η2 η3 � = 0 (η1 η3 � = 0) . 

2 , 1 (ζ ) = 

[ 

g 0 − g 1 
2 η3 

(√ 

η2 
2 

− 4 η1 η3 tanh 

[ √ 

η2 
2 

− 4 η1 η3 

2 

ζ

] 

+ η2 

)] 

e iθ . (30) 
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Fig. 4. μ1 , 8 (x, t) : α = 2 , β = 0 . 65 , γ = 1 . 95 , ω 1 = 1 . 15 , � 1 = 1 , σ = 0 . 45 , ω 0 = 0 . 75 , ξ0 = 2 . 25 , ε = 1 , κ = 1 . In (g)-(i), t = 1 . 

μ

μ

μ

μ

2 , 2 (ζ ) = 

[ 

g 0 − g 1 
2 η3 

(√ 

η2 
2 

− 4 η1 η3 coth 

[ √ 

η2 
2 

− 4 η1 η3 

2 

ζ

] 

) + η2 

)] 

e iθ . (31) 

2 , 3 (ζ ) = 

[
g 0 − g 1 

2 η3 

(
η2 + 

√ 

η2 
2 

− 4 η1 η3 sech 

[ √ 

η2 
2 

− 4 η1 η3 ζ
] 

×( sinh [ 
√ 

η2 
2 

− 4 η1 η3 ζ ] ± i ) 

)]
e iθ . (32) 

2 , 4 (ζ ) = 

[ 
g 0 − g 1 

2 η3 

(
η2 + 

√ 

η2 
2 

− 4 η1 η3 csch [ 
√ 

η2 
2 

− 4 η1 η3 ζ ](±1 + cosh [ 
√ 

η2 
2 

− 4 η1 η3 ζ ]) 
)] 

e iθ

. (33) 

2 , 5 (ζ ) = 

[ 

g 0 − g 1 
4 η3 

(√ 

η2 
2 

− 4 η1 η3 

(
tanh 

[ √ 

η2 
2 

− 4 η1 η3 

4 

ζ

] 

± coth 

[ √ 

η2 
2 

− 4 η1 η3 

4 

ζ

] )
+ 2 η2 

)] 

e iθ . (34) 
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Fig. 5. μ2 , 6 (x, t) : α= 0.35, β= 0.5, γ = -1, σ= 1, η1 = 0.2, η2 = 1.5, η3 = -1, ω 1 = 0.75, A = 1, B = 2 . In (g)-(i), t = 0 . 5 . 

μ

μ

w

μ

μ

2 , 6 (ζ ) = 

⎡ 

⎢ ⎢ ⎣ 

g 1 

(√ 

(A 2 + B 2 )(η2 
2 
−4 η1 η3 ) −A ( 

√ 

η2 
2 
−4 η1 η3 ( cosh [ 

√ 

η2 
2 
−4 η1 η3 ζ ])) 

A sinh ( 
√ 

η2 
2 
−4 η1 η3 ζ )+ B − η2 

)
2 η3 

+ g 0 

⎤ 

⎥ ⎥ ⎦ 

e iθ , (35) 

2 , 7 (ζ ) = 

⎡ 

⎣ 

g 1 

(
−

√ 

(B 2 −A 2 )(η2 
2 
−4 η1 η3 ) + A ( 

√ 

η2 
2 
−4 η1 η3 ( cosh [ 

√ 

η2 
2 
−4 η1 η3 ζ ])) 

A sinh ( 
√ 

η2 
2 
−4 η1 η3 ζ )+ B − η2 

)
2 η3 

+ g 0 

⎤ 

⎦ e iθ , (36) 

here A and B are arbitrary constants such that B 2 − A 

2 > 0 . 

2 , 8 (ζ ) = 

[ 

g 0 + 

2 g 1 η1 ( cosh [ 
√ 

η2 
2 

− 4 η1 η3 ζ ]) √ 

η2 
2 

− 4 η1 η3 sinh ( 
√ 

η2 
2 
−4 η1 η3 

2 
ζ ) − η2 ( cosh [ 

√ 

η2 
2 

− 4 η1 η3 ζ ]) 

] 

e iθ . (37) 

2 , 9 (ζ ) = 

[ 

g 0 + 

2 g 1 η1 sinh ( 
√ 

η2 
2 
−4 η1 η3 

2 
ζ ) √ 

η2 
2 

− 4 η1 η3 ( cosh [ 
√ 

η2 
2 

− 4 η1 η3 ζ ]) − η2 sinh ( 
√ 

η2 
2 
−4 η1 η3 

2 
ζ ) 

] 

e iθ . (38) 
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Fig. 6. μ2 , 9 (x, t) : α= 1, β= 0.25, γ = 2, σ= 1, η1 = 1, η2 = 2, η3 = -2, ω 1 = 1.75 . In (g)-(i), t = 1 . 

μ

μ

μ

μ

2 , 10 (ζ ) = 

[ 

g 0 + 

2 g 1 η1 ( cosh [ 
√ 

η2 
2 

− 4 η1 η3 ζ ]) √ 

η2 
2 

− 4 η1 η3 sinh ( 
√ 

η2 
2 

− 4 η1 η3 ζ ) − η2 ( cosh [ 
√ 

η2 
2 

− 4 η1 η3 ζ ]) ± i 
√ 

η2 
2 

− 4 η1 η3 

] 

e iθ . (39) 

2 , 11 (ζ ) = 

[ 

g 0 + 

2 g 1 η1 sinh [ 

√ 

η2 
2 
−4 η1 η3 

2 
ζ ] √ 

η2 
2 

− 4 η1 η3 ( cosh [ 
√ 

η2 
2 

− 4 η1 η3 ζ ]) − η2 sinh ( 
√ 

η2 
2 

− 4 η1 η3 ζ ±
√ 

η2 
2 

− 4 η1 η3 

] 

e iθ . 

2 , 12 (ζ ) = 

[ 

4 g 1 η1 sinh [ 

√ 

η2 
2 
−4 η1 η3 

4 
ζ ]�) 

−2 η1 sinh ( 
√ 

η2 
2 
−4 η1 η3 

4 
ζ )(�) + 2 

√ 

η2 
2 

− 4 η1 η3 (�2 ) −
√ 

η2 
2 

− 4 η1 η3 

+ g 0 

] 

e iθ . 

Family 2: when η2 
2 

− 4 η1 η3 < 0 and η2 η3 � = 0(η1 η3 � = 0) . 

2 , 13 (ζ ) = 

[ 

g 0 − g 1 
2 η3 

(
−

√ 

−η2 
2 

+ 4 η1 η3 tan [ 

√ 

−η2 
2 

+ 4 η1 η3 

2 

ζ ] + η2 

)] 

e iθ . (40) 
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Fig. 7. μ2 , 11 (x, t) : α= 1.50, β= 0.25, γ = 1, σ= -1, η1 = 1, η2 = -2, η3 = -2, ω 1 = 1.75 . In (g)-(i), t = 0 . 

μ

μ

μ

μ

μ

2 , 14 (ζ ) = 

[ 

g 0 − g 1 
2 η3 

(√ 

−η2 
2 

+ 4 η1 η3 cot [ 

√ 

−η2 
2 

+ 4 η1 η3 

2 

ζ ] + η2 

)] 

e iθ . (41) 

2 , 15 (ζ ) = 

[
g 0 + 

g 1 
2 η3 

(
− η2 + 

√ 

−η2 
2 

+ 4 η1 η3 sec [ 
√ 

−η2 
2 

+ 4 η1 η3 ζ ] × (±1 + sin [ 
√ 

−η2 
2 

+ 4 η1 η3 ζ ]) 

)]
e iθ . (42) 

2 , 16 (ζ ) = 

[ 
g 0 − g 1 

2 η3 

(
η2 + 

√ 

−η2 
2 

+ 4 η1 η3 csc [ 
√ 

−η2 
2 

+ 4 η1 η3 ζ ](±1 + cos ( 
√ 

−η2 
2 

+ 4 η1 η3 ζ )) 
)] 

e iθ . 

2 , 17 (ζ ) = 

[ 

g 0 − g 1 
4 η3 

(√ 

−η2 
2 

+ 4 η1 η3 

(
tanh 

[ √ 

−η2 
2 

+ 4 η1 η3 

4 

ζ

] 

− coth 

[ √ 

−η2 
2 

+ 4 η1 η3 

4 

ζ

] )
− 2 η2 

)] 

e iθ . (43) 

2 , 18 (ζ ) = 

⎡ 

⎢ ⎢ ⎣ 

g 1 

(
±
√ 

(B 2 −A 2 )(−η2 
2 
+4 η1 η3 ) −A ( 

√ 

−η2 
2 
+4 η1 η3 ( cos ( 

√ 

−η2 
2 
+4 η1 η3 ζ ))) 

A sinh ( 
√ 

−η2 
2 
+4 η1 η3 ζ )+ B − η2 

)
2 η3 

+ g 0 

⎤ 

⎥ ⎥ ⎦ 

e iθ , 
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Fig. 8. μ2 , 13 (x, t) : α= 1, β= 2.5, γ = 1, σ= -2, η1 = 0.5, η2 = -2, η3 = 1, ω 1 = 1.75 . In (g)-(i), t = 1 . 

μ

w

μ

μ

μ

2 , 19 (ζ ) = 

⎡ 

⎢ ⎢ ⎣ 

g 1 

(
− ±

√ 

(B 2 −A 2 )(−η2 
2 
+4 η1 η3 ) + A ( 

√ 

−η2 
2 
+4 η1 η3 ( cos ( 

√ 

−η2 
2 
+4 η1 η3 ζ ))) 

A sinh ( 
√ 

−η2 
2 
+4 η1 η3 ζ )+ B − η2 

)
2 η3 

+ g 0 

⎤ 

⎥ ⎥ ⎦ 

e iθ , 

here A and B are arbitrary constants such that B 2 − A 

2 > 0 . 

2 , 20 (ζ ) = 

⎡ 

⎣ g 0 −
2 g 1 η1 ( cos ( 

√ 

−η2 
2 

+ 4 η1 η3 ζ )) √ 

−η2 
2 

+ 4 η1 η3 sin 

[ √ 

−η2 
2 
+4 η1 η3 

2 
ζ
] 

+ η2 ( cos ( 
√ 

−η2 
2 

+ 4 η1 η3 ζ )) 

⎤ 

⎦ e iθ . (44) 

2 , 21(ζ ) = 

⎡ 

⎣ g 0 + 

2 g 1 η1 sin 

[ √ 

−η2 
2 
+4 η1 η3 

2 
ζ
] 

√ 

−η2 
2 

+ 4 η1 η3 

(
cos 

(√ 

−η2 
2 

+ 4 η1 η3 ζ
))

− η1 sin 

[ √ 

−η2 
2 
+4 η1 η3 

2 
ζ
] 
⎤ 

⎦ e iθ . (45) 

2 , 22 (ζ ) = 

[ 

g 0 −
2 g 1 η1 ( cos ( 

√ 

−η2 
2 

+ 4 η1 η3 ζ )) √ 

−η2 
2 

+ 4 η1 η3 (±1 + sin [ 
√ 

−η2 
2 

+ 4 η1 η3 ζ ]) + η2 ( cos ( 
√ 

−η2 
2 

+ 4 η1 η3 ζ )) 

] 

e iθ . (46) 
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μ

μ

μ

μ

w

μ

.

 

s

3

 

w  

t  

s

4

 

w  

t  

w  

n  

b  

o

D

R

[

[

2 , 23 (ζ ) = 

⎡ 

⎣ g 0 + 

2 g 1 η1 sin 

[ √ 

−η2 
2 
+4 η1 η3 

2 
ζ
] 

√ 

−η2 
2 

+ 4 η1 η3 ( cos ( 
√ 

−η2 
2 

+ 4 η1 η3 ζ )) − η1 sin [ 
√ 

−η2 
2 

+ 4 η1 η3 ζ ] ±
√ 

−η2 
2 

+ 4 η1 η3 

⎤ 

⎦ e iθ . 

2 , 24 (ζ ) = 

[ 

4 g 1 η1 sin [ 

√ 

−η2 
2 
+4 η1 η3 

4 
ζ ]( cos ( 

√ 

−η2 
2 

+ 4 η1 η3 ζ )) 

−2 η1 sin [ 

√ 

−η2 
2 
+4 η1 η3 

4 
ζ ]( cos ( 

√ 

−η2 
2 

+ 4 η1 η3 ζ )) + 2 

√ 

−η2 
2 

+ 4 η1 η3 (�2 ) −
√ 

−η2 
2 

+ 4 η1 η3 

+ g 0 

] 

×e iθ . (47) 

Family 3: when η1 = 0 and η2 η3 � = 0 . 

2 , 25 (ζ ) = 

[ 
g 0 − g 1 c 1 η2 

η3 (c 1 − sinh (η2 ζ ) + cos [ η2 ζ ]) 

] 
e iθ , (48) 

2 , 26 (ζ ) = 

[
g 0 − g 1 η2 ( sinh (η2 ζ ) + cos (η2 ζ )) 

η3 (c 1 + sinh (η2 ζ ) + cos (η2 ζ )) 

]
e iθ , (49) 

here c 1 is an arbitrary constant. 

Family 4: when η3 � = 0 and η2 = η1 = 0 

2 , 27 (ζ ) = 

[ 
g 0 − g 1 

c 2 + η3 ζ

] 
e iθ , (50) 

 where c 2 is an arbitrary constant. 

We mention that the general solutions of Eq. (1) can be obtained by the same techniques that was used in Case II but it will not be

tated here. 

. Discussion and results 

To demonstrate a set of new traveling wave solutions for Eq. (1) , Mathematica 11.0 is employed to visualize the behavior of solitons

ith the aid of the 3D, 2D and contour plots for the various sets of parameters. We mention that in all Figs. 1–8 : (a) and (d) represent

he real part of the solution, (b) and (e) represent the imaginary part of the solution, and (c) and (f) represent the absolute value of the

olution. 

. Conclusions 

In this article, we have been employed the AEM and the REM methods to acquire exact and solitary wave solutions for the P-NLSE

hich is crucial for analyzing pulse propagation in optical fiber-based communications systems. A collection of different structures for

hese solutions were retrieved in the form of bright, dark, singular soliton, hyperbolic functions and trigonometric functions solutions that

ere investigated in Figs. 1–8 . Our results demonstrated that the proposed methods are concise, effective and can be employed on other

onlinear evolution equation. Moreover, we visualize the physical behavior for some of the obtained results in 3D, 2D and counter plots

y choosing appropriate values of the free parameters existed in these solutions. This research could be useful for future research in terms

f solution technique and precision, especially in solving the C-NLEEs, which have a high level of efficacy in the nonlinear arena. 
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