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Laurent biorthogonal
polynomials (LBP)

Let £ be a linear functional.

Moments

Cn =£{z”}, n — U, ::1,::2...

T he functional L is defined on the space of Laurent
polynomials P(z) = Eﬁi—fﬁ no

No
L{P(2)} = ) ancn.
n=—N1



The monic LBP P,(z) are defined by the determinant
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Orthogonality property
L{Pn(2)z*} = hngn, 0<k <,
where the normalization constants hn are

ho =co, hn=A~An11/On.




In what follows we will assume that

Apn#=0, n=12,...

and
A 0 n=12,...
where
AV =1,
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This orthogonality property can be rewritten as the
biorthogonal relation

L{Pn(2)Qm(1/2)} = hnbnm,

where the polynomials @Qn(z) are defined by the
formula

co €1 .. =g
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Polynomials Qn(2z) are again LBP with moments
C;[LQ} =c_y.



Pn(z) satisfy the recurrence relation

Pn—|—1(3) + (dn — 2) Pu(2) = 2bn. P, _1(2),
Recurrence coefficients
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with T, = AL,



[LBP and Relativistic Toda

There is a connection between the LBP and the re-
stricted relativistic Toda chain. Assume that LBP
P,(z;t) depend on an additional "time" parameter
t. Assume

: b

Pn(z) = —d—:Pn_l(z)-

This Ansatz leads to equations

b1 bn,

?

dp41  dn—1

. 11
b, = bp | — — .
=t ()

For the corresponding moments cn(t) we have very
simple relation

Cpn=C¢Cp-1, n=0,x1,+2,...




The (restricted) "discrete-time” relativistic Toda
chain corresponds to the following Ansatz for the
moments

enkt Eh)Y=c,ti(t); "n =0, 42 7.

For Laurent biorthogonal polynomials

Pon(z;t4+ h) = Pp(z;t) + bn(t)P,_1(2; 1)

and

(dn —bn) Pp(z;t — h) = 2P,(2;t) — P41(2; 1)

For recurrence coefficients
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Frobenius determinant

Assume that v;,u;, i = 0,1,... be two arbitrary se-
quences of complex numbers. Let

Hp = det||gijlli,j=0..n—1,

where
- _o(uy+v;+ B) | |
gij — T ﬂj)ﬂ'(ﬁ) exp(y1u; + "}"21’3)
Then
B o(U+V +B8)Ili>jo(u; —uj)o(v; — v;) g

o(8)I1; ; o0(u; + v;)

exp(y1U + v2V)

where U = Y71 v, V = Y773 w;.



To biorthogonal functions

Let ¢p(z), Yr(x),k = 0,1,... (initial conditions ¢g =
Yg = 1) be two sets of functions. Assume that
there exists a linear functional £ (we call it the
"Frobenius functional”) such that

(L, b (z)vi(x)) = g;s

Functional L is defined for bilinear combinations
f(@) = ) cypdi(z)vp(c)
i,k=0
with arbitrary coefficients c¢;;..



Introduce the following functions
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1 g10 gi11  --- 9in
Eolr )= e = 0 :
"l 9n-10 Gn—-1,1 --- Gn—1n
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where

i.57=0.n—1

Explicitly
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where the coefficients p,, ;. are calculated as ratio of
two determinants:

Hy (k)
Pnk — A
where
Hpn(k) = det||g;;(k)||;, j=0..n—1
where
ooy oy +v(k) + B) | |
gij(k) s ﬁj(k))ﬂ'(ﬁ) exp(y1u; + Y2Y; (k))

Thus the determinant H,(k) is obtained from the
determinant Hn by replacing sequence v; with the
sequence v;(k). (By definition H,(n) = H, and
v;(n) = v;). Hence we can calculate all the deter-
minant Hp(k) explicitly:



o712 (vn—vg) alU+V tun—u +0) S

Pnk —
4 o(U+V +p)
n—1
[n] 1 o(u; + vi)
kl o o(u; + vn)
where
m _ 175 o(vn — v)
k H::;(:Jl o(vg — v;) H?=R:+1 o(v; — vg)
are ‘“generalized binomial coefficients”. In case

when the sequence wv; Is linear with respect t j:
v; = wj + £ we obtain the conventional “elliptic
binomial coefficients”

P = Pl = (1R,
k [k]![n — ]! [1]%

where [z] = o(wz)/o(w) is so-called “elliptic num-
ber" and [z], = [z][lz + 1]...[z + k — 1] is elliptic
Pochhammer symbol.




Introduce also functions

900 g10 o 9n0
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vo(z) Y1(z) ... Yn(z)

Then functions P,(z) and P;(x) are biorthogonal
with respect to Frobenius functional

(CRER( BV (1)) = Ottty



[LBP from Frobenius

Y1 =Y2 =7, U = —w + o, v; = jw,

where w is an arbitrary real parameter which is in-
compatible with the real period 2ws:

wiNy # wi1No
Then
gi; = Y=o ”(w(:ff — ?‘) +6+a)
o(w(j — 1) + a)o(B)
This matrix has the Toeplitz form. Monic " Frobe-
nius"” Laurent biorthogonal polynomials
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We slightly modify definition of elliptic numbers
and elliptic Pochhammer symbol

z] = o(z),

the elliptic Pochhammer symbol

[z]n = [z][z + w]. .. [z + w(n — 1)]

The elliptic hypergeometric function

r+1Gr (

where
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Proposition 1 The " Frobenius" Laurent biorthog-
onal polynomials are expressed in terms of the el-
liptic hypergeometric function:

Pﬂ(ﬁ) = Bn 3G> (_

where a1 = a+ w and

[—aln  [an + 8+ wn]
[ﬂf - 'w]n [ﬂ.n - ﬁ]

Bﬂ, — E"}"[Uﬂ

Determinant .a.,,&” is obtained from &%D) by the
shift of the parameter a — a+w because ¢, 1(a) =
cn(a+ w). Thus in general

AP (a) = An(a+ jw)



From these formulas we find recurrence coefficients

i o le—wn]l8+ ai(n+ DB + an]

B . = atubtDEtomiBraas g
and
(1)
e .
s _hn—l B

_w [wnl?[B+a1(n+ DIB + a(n — 1)]
[8 + a1n][B + an][a + wn][a + w(n + 1)]

We thus obtained a new explicit example of the
Laurent biorthogonal polynomials which have both
explicit expression in terms of the elliptic hyper-
geometric function 3G»(z) and explicit recurrence
coefficients.



nere are 5 free paranmeters: o, 5,7, w and clliplic
modulus k (equivalently ratio «'/w). The parame-
ter v is not essential - it describes the scaling trans-
formation of the argument: P,(z) — sk"P,(z/k).
Nevertheless, the parameter ~ is important in find-
iIng of explicit orthogonality measure.

As a by-product, we have also obtained a new ex-
plicit solution of the discrete-time relativistic Toda
chain or, equivalently, a new explicit solution of the
two-point QD-algorithm.

How to find explicit (bi)orthogonality relation for
these polynomials? We need the Fourier expansion
of the pseudoelliptic functions!



Explicit biorthogonal relation

We have
cn = f(wn),
where f(z) is the pseudoelliptic function

oc(z+ a+ B) V2
o(B)o(z + a)

Assume first that the parameter ~ is chosen to pro-
vide the periodicity of the function f(z) with period

2wi1g, 7=1,2,.... Then from Fourier expansion
O s o0
— Z Agexp (E'JT.S'EUTL) — Z Agzy,
S=—0 Jwi 8——00
where

z,gzexp(w_rsw), s=0.t1.32. .-



33=Exp(ifrsw) Caes el 6 ol e o ST
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IS an infinite set of points belonging to the unit
circle |zg| = 1. These points are distinct z3 7% 2 if

t # s and hence they are dense on the unit circle.

Thus the moments ¢, are expressible in terms of
the Lebesqgue integral

1 = i6n
on = 5 /0 e’ "du(0)

over the unit circle |z| = 1, where the measure
1(0) is a (complex) function of a bounded variation
on the interval [0, 2] consisting only from discrete
jumps Ag localized in the points &s.



T hus we found explicit realization of the moments
cn, and hence obtain biorthogonality relation for our
Laurent biorthogonal polynomials

i As Pn(2s)Qm(1/zs) = hndnm,

8=—0C
where Qn(z) are biorthogonal partners with respect
to polynomials Pn(z). The Fourier coefficients As

play the role of discrete weights in this biorthogo-
nality relation. Hence we obtained

Proposition 2 In the periodic case f(z + 2w1j) =
f(z) the elliptic Frobenius polynomials P,(z) are
biorthogonal on the unit circle |z| = 1 with respect
to a dense point measure with weights Ag.



Positivity of measure

Proposition 3 The Fourier coefficients of the pseu-
doelliptic 2jw1- periodic function are positive (up
to inessential common factor) if and only if the
real parts of parameters «, 3 satisfy conditions (1)
and (2). In this case the expression for the Fourier
coefficients can be presented in the form

h—?uk
i § -|— th—?k !

An = Kg n=mtijk k=0, £l 2 "%

m<3(5)
and A, =0 ifn#m mod(j) where k1 =e “1 s

a positive parameter.



For positivity of A, one should have 2miRg = ko,
where kg IS a positive parameter, and for the real
part of a we have the conditions

O = Z:lpipeiln = ) s =0 (1

and

Re(B) = (2J1 + Vw1, J1=0,+£1,£2,... (2)

When the measure is a positive nondecreasing func-
tion on the unit circle then biorthogonal polynomi-
als become the orthogonal polynomials on the unit
circle (Szegd, Geronimus, Ahiezer, Krein, B.Simon...)

i il
0 Pﬂ(ﬂz )Pﬂ(e ¢ )dﬂz(ﬂ) p_— hn&nm, hﬂ > 0



* Laurent biorthogonal polynomials
from the Frobenius determinant

—nw,aq,—an— B+ w. = w)

Pn(z) = By 3Go (  Z€
a1 — nw,—ain— B

* Explicit biorthogonality relation

*  Positivity of the measure and
polynomials orthogonal on the unit

circle

Thank you!
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