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The KP Equation
E

he KP equation:

8 au 83 ou 82u
KdV

The solution u(x,y,t) in terms of the 7-function:

82
U(Qf,y,t) — 2@7 IHT(Qj yvt)

The r-function given by the Wronskian determinant:

™~ = Wr(f1,..., fn).
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The KP Equation
E

he linearly independent set { f;(x,y,t) :i=1,..., N}:

ofi _ 9fi ofi  fi
Oy B 0z’ ot  Ox3’
Heat ;c;uation

Finite dimensional solutions:

M

fi(x,y,t):ZaijEj(w,y,t), i=1,...,N <M,
j=1

Ej(:z:,y,t):exp(ij%—ka-y—k?t), j=1,..., M.

with the ordering k1 < ko < --- < k.

o |
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The KP Equation
fN

® Spang{E;:j=1,..., M} =~RM,
® Spang{fi;:i=1,...,N} forms an N-dimensional
subspace in R,

(fl,...,fN) = (El,...,EM)AT7

where A-matrix is defined by

.

ote that we have a Grassmannian picture, i.e. Gr(N, M)

all o o o o o o alM
A= EMNXM(R).

aNl o o o o o aNM

LEach solution can be parametrized by the A-matrix. J
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The KP Equation
-

f.p For VH € GLx(R), (91,...,95) = (f1,-.., f~)H gives the
same solution, i.e. 7(g) = |H|7(f). This implies that the
r-function is identified as a point on the Grassmannian
Gr(N,M), i.e.

GI(N, M) = GLN(R)\MNXM(R),

with dim Gr(N, M) = NM — N? = N(M — N).

® H € GLy(R) gives a row reduction of the A-matrix. For
example, a generic A can be written in the form (RREF),

L 01** J
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The KP Equation
-

® Gr(N, M) has a Schubert decomposition,

Gr(N7M): LI W(j17"'7jN)7

1<ji<--<jn<M

where (j1,...,7n) IS @ Schubert symbol representing
the pivot indices.

# The set of the Schubert symbols forms a partially
ordered set (POSET) with a weak Bruhat order, I.e.

(.jla"'ajN) < Hlo & SM/PN,

where S), Is the permutation group of order M, and Py
IS a parabolic subgroup generated by the simple
L reflections (transposition) s;, = (k, k + 1) without s;,_ v J
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The KP Equation
fExampIe: T

® Gr(1,2)=W(1)uW(2)where W(1) ={(1,%)} and
W(2)=14(0,1)}. In terms of the permutation S,, we have

—1
S1

(12) 2 (21).

® Gr(1,3)=W(Q)uWw(2)uWw(3), and in terms of the
permutation Ss/P; with P, = (s3),

® Gr(2,4)=W(1,2)uW(,3)u---1uW(3,4), and

-1 —1

- (1234) =5 (1324) -+ (2413) 2> (3412). |
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The KP Equation

Example: For N = 1, the function w = % In 7 satisfies

ow ow  O*w
= 20—

Em - + 52 (The Burgers equation).

A shock solution is given by 7 = f1 = E1 + aF», (A = (1,a)),
1 1 1
w = 5(/~c1 + ko) + 5(kz — k1) tanh 5(92 — 61+ 1na),

where 0; = k;x + k7y — k3t. Notice that for k; < ks,

k1 T — —0OQ
w ——
ko T — 00

o |
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The KP Equation
-

Example 1. One line-soliton solution with 7 = E{ + aFs.

-

20

40 - 40

3D figure of u = 23—1;, and the contour plot. The numbers (i)

represent the exponential term in the 7-function.
LWe denote this |1, 2|-soliton. J
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The KP Equation
-

One-solton solution is given by a balance between two
exponential terms, and in general it is expressed with the
parameters {k;, k; },

-

2
U = A[ hﬂsech 6[ e

where the amplitude Ali, j| and the phase 6|, 5] are

Aj (k—k) O (9 —0,).

Jl — Jl =

The slope of the soliton in the xy-plane is given by

Y
tan\I/[,] [’]]—k —|—]€

L ” K[x,J] J
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The KP Equation

- N

xample 2: Y-type solution with 71 = f1 = E1 + aFs + bEs3,

(((((

In each region, one of the exponential terms is dominant.
Each line-soliton is given by the balance between two
Lexponential terms, £; and E;, denoted as (i) and (7). J
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The KP Equation
- -

Chord diagrams: One can express each soliton solution in a
chord diagram (= ). For example, Y-type soliton
with the parameters {k1, ko, k3} IS given by

# The upper part represents |1, 3]-soliton in y > 0.

# The lower part represents [1, 2]- and |2, 3]-solitons In
y < 0.

o |
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Classification Theorem
fThe r-function is given by T
T(x,y,t) = det (KD(:E,y,t)AT) ,

where D = diag(Ey, ..., Exr) With Ej = exp(kjz + k3y + k2t),
and K is the N x M matrix given by

[ 1 1 1
o ]{.1 /€.2 kM
\klN_l ké\f—l /{]\J\;—lj

Recall that A = HA with H € GLx(R) gives the same
Lsolution, i.e. A can be written in RREF. J
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Classification Theorem

- -

Lemma: (Binet-Cauchy) The 7-function can be expanded as

N = Z E(i1, .- in)E (i1, ... iN),

1<ip<--<in<M

where &(iq, ..., iy) IS the of the A-matrix, and
E(i1,...,in) IS given by

E(il,...,iN): H (kij_kil) Ei1°-°E7;N>O,
1<j<I<N

Note that if all the N x N minors of the A-matrix are
non-negative (i.e. A is totally non-negative), then the
Lf-function IS positive definite. Namely, « is non-singular. J
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Classification Theorem

-

We say that the A-matrix is irreducible, if T

® |n each column, there Is at least one nonzero element,

® In each raw, there Is at least one more nonzero element
In addition to the pivot.

Example: For N = 2 and M = 4, there are only two types of
irreducible A-matrices in RREF:

1 0 * =« 1 % 0 =«
0 1 % %/ 0 0 1 */

Note that other cases can be expressed by a matrix
of N’ x M’ with either N' < N or M’ < M.

o |
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Classification Theorem

. N

Example: For N = 2, M = 4, there are types of the
A-matrices in RREF which are both irreducible and totally
non-negative:

1 0 —c —d 1 0 —b —c 1 0 0 —c
01 a b 01 a O 01 a b
1 0 0 —b 1 a 0 —c 1 a 0 O
01 a O 0 0 1 b 0O 0 1 b
Here a, b, c and d are positive numbers, and for the first one,

either ad — ¢b > 0 or = 0. The total number of nonzero
minors IS at least four, and the maximal number Is six.

o |
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Classification Theorem

-

Theorem 1: Let {ey,...,en} be the Indices, and let
{g1,...,90_n} be the Indices for an irreducible
and totally non-negative A-matrix. Then the soliton solution
associated with the A-matrix has

-

(a) N line-solitons of |¢,,, j,|-typeforn=1,..., N as y — oo,
(b) M — N line-solitons of [i,,, ¢,,]-typeform =1,... M — N
as y — —oQ.

|
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Classification Theorem
- -

Theorem 2: The set of those solitons |e,, j,| and |i,,, g.,] are
expressed by a unigue chord diagram which corresponds a
derangement of the permutation group Sy, i.e.

€1+ eN g1 ‘* gM-N
J1 o JN 11 ot IM-N

Theorem 3: Conversely, for each chord diagram associated
with the derangement, one can construct an A-matrix, and
the corresponding 7-function gives the solution of the KP
equation having line-solitons expressed by the chord
diagram. The entries of the A-matrix give the

l.e. the locations of those line-solitons and their

Llnteractlon propertles J

Chords and Solitons:C & G of the KP Eaquation — p. 3/9



Classification Theorem

-

Example: N =2, M = 4. We have seven different types of
(2, 2)-soliton solution, which are parametrized by the
permutation group Sy

- PP D
i e = =

(2413) (3142) (2143)
The 4-tuples of the diagrams represent the permutation,

-

1 2 3 4
| o (77(1) m(2) 7(3) w(4)> = (m(1),....m(4)). N
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Exact Solutions
e

xample 1. O-type soliton solution.

O - Type Soliton Solution ki ka ks Ka

Tt =(2143)
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e

Exact Solutions

P - Type Soliton Solution
T =(4321)

Vt:-m

o

xample 2: P-type soliton solution.

ki

Ka

W\ t=0 / |
(1,4

Am]

/.

(\/ A[1,4] Y/ A[2,3])2 < Ucenter < A[1,4] — A[273].
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Exact Solutions

fExample 3: (3142)-type soliton solution.

\\\\\\\\\\\\\\\\\\\\

(3142)-type

Note that

o

[1,3] and [3,4]-solitons

1, 4] gives the maximum amplitude A =

Chords an

[1,2] and [2,4]-solitons

(kg — k)

CRO
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Exact Solutions

-

Example 4: T-type soliton solution (i.e. (3412)-type).

[1,3] and [2,4]-solitons

T - type soliton [1,3] and [2,4]-solitons

Notice that the front half is the same as (3142)-type.

o |
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Exact Solutions
e

xample: N = 3, M = 6 (7-dimensional solution).

t=-30 t=0 t =30
4
Z W\
y%%
7= (451263)
10-a-b0c
A={01d e O ! °
0000 1g PAN

o |

Chords and Solitons:C & G of the KP Equation — n. 4/9



Numerical Simulations

-

The initial wave profile:

[i,j] - soliton //\

—Wiij

qj[m,n]

[m, n] - soliton J\

A (ki - kj)°

1
il — 2

tan Wi = ki +K;j

|
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Numerical Simulations

-

Physical example: The Mach reflection with a rigid wall:

-

Y

Here ¥, < V.. The right figure shows the equivalent
ystem. J
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Numerical Simulations

-

V-shape initial data of O-type:
T=0




Numerical Simulations

-

(3142)-type:
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Numerical Simulations

-

(3142)-type with a cut:
T=0




Numerical Simulations

1=9.6623
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Summary for V-shape IWs

-

Chord diagrams for V-shape initial waves: A=2

-
="
-

||
R I —>




Summary for V-shape IWs

fExampIe 1 (O-type): Ag =1, Vg~ £72°. T

T=3 T=6

T=0

(—(3+2v2), —(3—2v2), 2, 10).
(=10, —2, 3—2v2, 3+ 2V2). o
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Summary for V-shape IWs

fExample 2 ((3142) and dual): Ag =3, ¥y = +45°.

T=0 T=5 T=10

of Tl 7 el ]

ol ST 1ol ™

-20 0 20 40 60 -20 0 20 40 60 =20 0 20 40 60
T=0 T=5 T=10
' | ool 0 N lo2ob o N\ ]

deb N b

T | | E
. y . I

-60 -40 -20 0 20 -60 -40 -20 0 20 -60 -40 -20 0 20

(@): (ki k2 ks, k) = 5(=(V6+1), =1, V61, 3),
L(b): (k1, ko, ks, kq) = 5(—

DNOI— DN

(=3, —(vV6—1), 1, V6+1).
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Summary for V-shape IWs

fExampIe 2 Exact: Ag =3, Vg = £45°. T

T=0 T=5 T=10

(a): (k17k27k37k4) — (_(\/6+ 1)7 — 1, \/6_ 1, 3)
(o) (ke ko ks k) = 5(=3, — (VB —1), 1, VB+1). |
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Summary for V-shape IWs

 Example 3 ((1,3)- and dual): ¥, = 0°.

T=0 T=5 T=10

20 40 -40 -20 20 40
T=3

@): (k1, ko, k3, ka) = 3(—2, \f V2, 2) = Aj=1.
L(b) (k17k27k37k4> :( \/77 _ 17 17 \/7) =4 AO = 6.

-

|
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Summary for V-shape IWs

fExample 3 Exact ((1,3)- and dual): vy = 0°.

=l T=5
] 20."\J' o el N A
oo NN e ) R
1 of i W 0
B, To ] R IR P
40 20

ool
ool ]
ol
ol
Al A
—4‘0 —2‘0 0 2.0 4.0 —4.0 —2.0 O 2.0 4‘0 —4.0 —éO 0 2‘0 4‘0

(a): (/ﬂ,kg,kg,k4) — %(—2, — \/5, \/5, 2) = Ag=1.
(D) (ki ko ks k) = (—V3, —1, 1, V/3) = Ag —6.
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Summary for X-shape IWs

-

Chord diagrams for X-shpae initial waves:

-

tan W,




Summary for X-shape IWs

fT—type solution: Ag =8, ¥g = 45° (V. ~ 63.4°). T

T=0 T=3

(a). Simulation for sum of two line-solitons with Ay = 2.
L(b): Exact solution with (k1, k2, ks, k4) = 3(—3,—1,1,3). N
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Example of 3 half-waves

f(415362)-type solution (one of (3,3)-type solitons): T

T=0

(a) Initial wave with [1,4], [3,5] for y > 0 and [2, 6] for y < 0.
L(b) Exact solution with (kq, ..., ke) = 3(—4,—3,—1,0,1,4). J
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