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Introduction
Solitons :

• Localized on the line (usually) or in the plane (lumps,
dromions).

• Stability due to infinite number of conservation laws.
• Amenable to exact analytical treatment; completely

integrable.

Topological solitons :

• Localized on the line (kinks), on the plane (vortices) or in
3D-space (Hopfions).

• Stability due to topological properties.
• Often can only solve numerically.

In this talk: Review of work on Hopfions in Faddeev’s model,
done in collaboration with P. Salo and J. Jäykkä.
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Topology in R3: Hopfions

• Carrier field: 3D unit vector field n in R3, locally smooth.

• 3D-unit vectors can be represented by points on the
surface of the sphere S2.

• Asymptotically trivial: n(r) → n∞, when |r| → ∞
⇒ can compactify R3 → S3.

Therefore
n : S3 → S2.

Such functions are characterized by the Hopf charge, i.e.,
by the homotopy class π3(S2) = Z.
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A concrete Hopfion
Example of vortex ring with Hopf charge 1:

n =

(
4(2xz − y(r2 − 1))

(1 + r2)2 ,
4(2yz + x(r2 − 1))

(1 + r2)2 , 1− 8(r2 − z2)

(1 + r2)2

)
.

where r2 = x2 + y2 + z2.

Note that
•n = (0, 0, 1) at infinity (in any direction).
•n = (0, 0,−1) on the ring x2 + y2 = 1, z = 0 (vortex core).

Computing the Hopf charge:
Given n : R3 → S2 define Fij = εabcna∂inb∂jnc .
Given Fij construct Aj so that Fij = ∂iAj − ∂jAi , then

Q =
1

16π2

∫
εijkAiFjk d3x .
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Possible physical realization
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Faddeev’s model
In 1975 Faddeev proposed the Lagrangian (energy)

E =

∫ [
(∂in)2 + g F 2

ij

]
d3x , Fij := n · ∂in × ∂jn.

Under the scaling r → λr the integrated kinetic term scales as
λ and the integrated F 2 term as λ−1.

Therefore nontrivial configurations will attain some fixed size
determined by the dimensional coupling constant g. (Virial
theorem)

Vakulenko and Kapitanskii (1979): a lower limit for the energy,

E ≥ c |Q|
3
4 ,

where c is some constant, and Q the Hopf charge.

Similar upper bound has been derived recently by Lin and Yang.
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Numerical studies of Faddeev’s model

What is the minimum energy state for a given Hopf charge?

Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev
and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

Our work:
Full 3D minimization using dissipative dynamics:
nnew = nold − δ∇n(r)L.
No assumptions on symmetry, on the contrary:
Linked unknots of various charges.

J. Hietarinta and P. Salo: Faddeev-Hopf knots: dynamics of
linked unknots, Phys. Lett. B 451, 60-67 (1999).

J. Hietarinta and P. Salo: Ground state in the Faddeev-Skyrme
model, Phys. Rev. D 62, 081701(R) (2000).
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How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not make
sense.

n is a point on the sphere S2.
There is one fixed direction, n∞ = (0, 0, 1), the north pole.
All other points are defined by latitude and longitude.

Vortex core is where n = −n∞ (the south pole).

Latitude is invariant under global gauge rotations that keep the
north pole fixed, therefore we plot equilatitude surfaces
(e.g., tubes around the core) defined by {x : n(x) · n∞ = c}.

Longitudes are represented by colors on the equilatitude
surface (under a global gauge rotation only colors change):
we paint the surfaces using longitudes.
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Isosurface n3 = 0 (equator) for |Q| = 1, 2

Color order and handedness of twist determine Hopf charge.
Inside the torus is the core, where n3 = −1.
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Evolution of linked unknots

Total charge = sum of individual charges + linking number
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Energy evolution in minimization
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Evolution (1, 5) → 1 + 2 + 2
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Evolution 5 + 4− 2 → trefoil
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Vakulenko bound
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Filled circles give the best result (global minima) we have for
given Hopf charge; open squares are the results of Battye and
Sutcliffe.
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Different and improved final states

Jarmo Hietarinta Faddeev’s model



Faddeev’s model
Knot theory

Vortices

Framed links and ribbon knots
Ribbon deformations

Framed links and ribbon knots

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near the
curve, e.g., twisting around it.

One way to describe framed links is to use directed ribbons,
which are preimages of line segments.
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Computing the charge

For a ribbon define:

• twist = linking number of the ribbon core with a ribbon
boundary, locally.

• writhe = signed crossover number of the ribbon core with
itself.

• linking number = 1
2 (sum of signed crossings)

The Hopf charge can be determined either by
twist + writhe
or
linking number of the two ribbon boundaries,
or
linking number of the preimages of any pair of regular points.
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Ribbon view, Q = −2

Two ways to get charge −2: twice around small vs. large circle.
The first one has twist = −1, writhe = −1,
the second twist = −2, writhe = 0.

Both have boundary linking number = −2.
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Example of ribbon deformation during minimization
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Close-up of the deformation process
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Diagrammatic rule for deformations

Knot deformations correspond to ribbon deformations, e.g.,
crossing and breaking, but the Hopf charge will be conserved.

Note that when considering equivalence of ribbon diagrams

type I Reidemeister move is not valid:
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What is different with vortices

• Vortices do not allow 1-point compactification of R3 → S3.

• Instead we have R2 × T if periodic in z-direction
or T 3 if periodic in all directions.

Topological conserved quantities studied by Pontrjagin in 1941,
They are mainly related to vortex punctures of the periodic box.
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Single twisted vortex

J. Hietarinta, J. Jäykkä and P. Salo: Dynamics of vortices and
knots in Faddeev’s model, JHEP Proc.: PrHEP unesp2002/17
http://pos.sissa.it//archive/conferences/008/017/unesp 2002017.pdf

J. Hietarinta, J. Jäykkä and P. Salo: Relaxation of twisted
vortices in the Faddeev-Skyrme model, Phys. Lett. A 321,
324-329 (2004).

Knotting as usual if tightly wound:
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Vortex bunches and unwinding

If the vortices are close enough there can be bunching
or in the fully periodic case, Hopfion unwinding.

J. Jäykkä and J. Hietarinta: Unwinding in Hopfion vortex
bunches, Phys. Rev. D 79, 125027 (2009).

In the following pictures the lines corresponding to two
preimages have been plotted, one in blue and one in red.

First a 3× 3 section of the fully periodic case.
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4× 4
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.

• The results follow closely the Vakulenko-Kapitanskii bound

• The trefoil knot is obtained at |Q| = 7 from various initial
configurations.

• Tightly would vortices form knots in the middle.

• Closeup vortices form a bunch.

• In the fully periodic case the vortices can unwind
completely.

See also:
http://users.utu.fi/hietarin/knots/index.html
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