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Introduction
Solitons :
e Localized on the line (usually) or in the plane (lumps,
dromions).

¢ Stability due to infinite number of conservation laws.
¢ Amenable to exact analytical treatment; completely
integrable.
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Introduction
Solitons :
e Localized on the line (usually) or in the plane (lumps,
dromions).

¢ Stability due to infinite number of conservation laws.
¢ Amenable to exact analytical treatment; completely
integrable.

Topological solitons
e Localized on the line (kinks), on the plane (vortices) or in
3D-space (Hopfions).
¢ Stability due to topological properties.
e Often can only solve numerically.
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Introduction
Solitons :
e Localized on the line (usually) or in the plane (lumps,
dromions).

¢ Stability due to infinite number of conservation laws.
¢ Amenable to exact analytical treatment; completely
integrable.

Topological solitons

e Localized on the line (kinks), on the plane (vortices) or in
3D-space (Hopfions).

¢ Stability due to topological properties.

e Often can only solve numerically.

In this talk: Review of work on Hopfions in Faddeev’s model,
done in collaboration with P. Salo and J. Jaykka.
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Topology in R3: Hopfions

e Carrier field: 3D unit vector field n in R3, locally smooth.

¢ 3D-unit vectors can be represented by points on the
surface of the sphere S2.

e Asymptotically trivial: n(r) — ns, when |r| — oo
= can compactify R® — S3.
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Topology in R3: Hopfions

e Carrier field: 3D unit vector field n in R3, locally smooth.

¢ 3D-unit vectors can be represented by points on the
surface of the sphere S2.

e Asymptotically trivial: n(r) — ns, when |r| — oo
= can compactify R® — S3.

Therefore
n:Ss®— s2

Such functions are characterized by the Hopf charge, i.e.,
by the homotopy class 73(S?) = Z.
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A concrete Hopfion

Example of vortex ring with Hopf charge 1.:

G (A2xz - y(r* —=1)) 4(2yz +x(r*-1)) . 8(r* -z?)
B (1+r2)2 ’ (1+7r2)2 ’ (1+r2)2 )
where r2 = x2 +y2 + 72,
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A concrete Hopfion

Example of vortex ring with Hopf charge 1.:
G (A2xz - y(r* —=1)) 4(2yz +x(r*-1)) . 8(r*-z?)

B (1+7r2)2 ’ (1+7r2)2 ’ (1+r2)2 )
where r2 = x2 +y2 + 72,
Note that
en = (0,0,1) at infinity (in any direction).
en = (0,0,—1) on the ring x?> +y? = 1, z = 0 (vortex core).

Jarmo Hietarinta _

Faddeev's model



Faddeev's model Topological solitons
Knot theory The model
Vortices Numerical results 1: Knots

A concrete Hopfion

Example of vortex ring with Hopf charge 1.:
G (A2xz - y(r* —=1)) 4(2yz +x(r*-1)) . 8(r*-z?)

B (1+7r2)2 ’ (1+7r2)2 ’ (1+r2)2 )
where r2 = x2 +y2 + 72,
Note that
en = (0,0,1) at infinity (in any direction).
en = (0,0,—1) on the ring x? +y? = 1, z = 0 (vortex core).

Computing the Hopf charge:
Given n : R® — S2 define Fjj = eapcn?9in°o;nc.
Given Fj construct A; so that Fj = g|A; — 9jA;, then

1 )
Q= _1671'2 /e”kAi ij d3X.
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Possible physical realization
| VOLUME 75, NUMBER (8 PHYSICAL REVIEW LETTERS 30 OCTOBER 1995

Phase Diagram of Vortices in Superfiuid YHe-A

0. Parts, ). M. Karimiki, §. H. Koivuniemi, M. Krusius, V. M. H. Ruuty, E. V. Thuncberg. and G. E. Volovik*
Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland
{Received 6 June 1995)
Four alternative bur topologically different structures of vorticity exist in rotating "He-A. As a
function of magnetic field (/£) and rotation velocity (£2), we idemify with NMR the type of vortox
which is nucleated during cooling from the normal to the superfluid phase. The measurcments are
compared to the calcufaied equiliorium phase diagram of vortices in the H-( plane at temperatures
< 7. Slow transitions are found to reproduce the calenlated equilibrium state
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FIG. 1. Four vortex structures of rotating “He-A: mnmﬁ_mw&m vortex sheet (VS), singular vortex ($V), and
locked vortex (LVI1). The arrows denote the orientation of 1 in the plane. The rotation axis 2 is parallel to z. The shaded
area marks the “soft core” of the unlocked vortices (CUV, VS, and SV) where d and i deviate from each other. In the LV, d and i
follow each other everywhere. The i field is continuous with the exception of the SV, where 1 is nor defined in the “hard core.” In
all cases the vorticity has periodicity in the x-y plane, but the complete periodic unit is depicted for the LV 1 only. For the VS onc
full periodic unit in the x direction is shown; by stacking these units one after another, its soft corc becomes a continuous sheel.
The CUYV is equivalent to one period of the VS, when it is bent and closed (o a cylinder. The length scales are 0.01 and 10 mm
for the hard and soft cores, respectively, and 200 zm (at £ = 1 rads/s) for the unit cell
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Faddeev’'s model

In 1975 Faddeev proposed the Lagrangian (energy)

E= / [(aln)z +d9 Fijz] d®x, Fij:=n-ognxgn.
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Faddeev’'s model

In 1975 Faddeev proposed the Lagrangian (energy)
E= / [(an)2 +9 Fijz] d3x, Fj:=n-onxgn.
Under the scaling r — Ar the integrated kinetic term scales as

) and the integrated F? term as A\ 1.

Therefore nontrivial configurations will attain some fixed size
determined by the dimensional coupling constant g. (Virial
theorem)

Faddeev's model
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Faddeev’'s model

In 1975 Faddeev proposed the Lagrangian (energy)
E= / [(ain)2 +9 Fijz] d3x, Fj:=n-onxgn.
Under the scaling r — Ar the integrated kinetic term scales as

) and the integrated F? term as A\ 1.

Therefore nontrivial configurations will attain some fixed size
determined by the dimensional coupling constant g. (Virial
theorem)

Vakulenko and Kapitanskii (1979): a lower limit for the energy;,
E >c|Qs,
where c is some constant, and Q the Hopf charge.

Similar upper bound has been derived recently by Lin and Yang.
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Numerical studies of Faddeev’'s model

What is the minimum energy state for a given Hopf charge?

Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev
and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.
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Numerical studies of Faddeev’'s model

What is the minimum energy state for a given Hopf charge?

Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev
and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

Our work:

Full 3D minimization using dissipative dynamics:
Nnew = Nold — dVp(r)L.

No assumptions on symmetry, on the contrary:
Linked unknots of various charges.
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Numerical studies of Faddeev’'s model

What is the minimum energy state for a given Hopf charge?

Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev
and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

Our work:

Full 3D minimization using dissipative dynamics:
Nnew = Nold — dVp(r)L.

No assumptions on symmetry, on the contrary:
Linked unknots of various charges.

J. Hietarinta and P. Salo: Faddeev-Hopf knots: dynamics of
linked unknots, Phys. Lett. B 451, 60-67 (1999).

J. Hietarinta and P. Salo: Ground state in the Faddeev-Skyrme
model, Phys. Rev. D 62, 081701(R) (2000).
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How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not make
sense.
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How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not make
sense.

n is a point on the sphere S2.
There is one fixed direction, n,, = (0,0, 1), the north pole.
All other points are defined by latitude and longitude.

Vortex core is where n = —n, (the south pole).
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How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not make
sense.

n is a point on the sphere S2.
There is one fixed direction, n,, = (0,0, 1), the north pole.
All other points are defined by latitude and longitude.

Vortex core is where n = —n, (the south pole).

Latitude is invariant under global gauge rotations that keep the
north pole fixed, therefore we plot equilatitude surfaces
(e.g., tubes around the core) defined by {x : n(x) - no = c}.

Jarmo Hietarinta _I

Faddeev's model



Faddeev's model Topological solitons
Knot theory The model
Vortices Numerical results 1: Knots

How to visualize vector fields?

Cannot draw vectors at every point and flow lines do not make
sense.

n is a point on the sphere S2.
There is one fixed direction, n,, = (0,0, 1), the north pole.
All other points are defined by latitude and longitude.

Vortex core is where n = —n, (the south pole).

Latitude is invariant under global gauge rotations that keep the
north pole fixed, therefore we plot equilatitude surfaces
(e.g., tubes around the core) defined by {x : n(x) - no = c}.

Longitudes are represented by colors on the equilatitude
surface (under a global gauge rotation only colors change):
we paint the surfaces using longitudes.

Jarmo Hietarinta _ Faddeev’s model



Faddeev's model Topological solitons
Knot theory The model
Vortices Numerical results 1: Knots

Isosurface nz = 0 (equator) for |Q| = 1,2

Color order and handedness of twist determine Hopf charge.
Inside the torus is the core, where nz = —1.
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Evolution of linked unknots

Total charge = sum of individual charges + linking number
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Energy evolution in minimization

700.0
600.0 ]
24242
500.0 |
- 1+1+2
2 4000 1
=
®
£ 3000 ]
= N TS e
200.0 2-242 1
2-2-2
100.0 |
_\1+l—2
0.0 ‘ ‘ ‘ -
0 20000 40000 60000 8000

Number of iterations

Jarmo Hietarinta _ Faddeev's model




Faddeev's model Topological solitons
Knot theory The model
Vortices Numerical results 1: Knots

Evolution (1,5) - 1+2+ 2
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Evolution 5 4+ 4 — 2 — trefoil
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Vakulenko bound
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Different and improved final states

1+2+42 14342 24242
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Ribbon deformations

Vortices

Framed links and ribbon knots

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near the
curve, e.g., twisting around it.
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Framed links and ribbon knots
Knot theory

Ribbon deformations

Vortices

Framed links and ribbon knots

The proper knot theoretical setting is to use framed links.

Framing attached to a curve adds local information near the
curve, e.g., twisting around it.

One way to describe framed links is to use directed ribbons,
which are preimages of line segments.

Faddeev's model
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Ribbon deformations

Knot theory
Vortices

Computing the charge

For a ribbon define:
e twist = linking number of the ribbon core with a ribbon
boundary, locally.

e writhe = signed crossover number of the ribbon core with
itself.

e linking number = %(sum of signed crossings)
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Computing the charge

For a ribbon define:

e twist = linking number of the ribbon core with a ribbon
boundary, locally.

e writhe = signed crossover number of the ribbon core with
itself.

e linking number = 5(sum of signed crossings)

The Hopf charge can be determined either by
twist + writhe

or

linking number of the two ribbon boundaries,
or

linking number of the preimages of any pair of regular points.
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Framed links and ribbon knots

e Ribbon deformations

Ribbon view, Q = —2

Two ways to get charge —2: twice around small vs. large circle.
The first one has twist = —1, writhe = —1,
the second twist = —2, writhe = 0.

Both have boundary linking number = —2.

Jarmo Hietarinta _

Faddeev's model



Framed links and ribbon knots

e Ribbon deformations

Example of ribbon deformation during minimization
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Knot theory Ribbon deformations

Close-up of the deformation process

o e
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Diagrammatic rule for deformations

Framed links and ribbon knots
Ribbon deformations

Knot deformations correspond to ribbon deformations, e.g.,
crossing and breaking, but the Hopf charge will be conserved.

e P s
A R

Note that when considering equivalence of ribbon diagrams

type | Reidemeister move is not valid: —Qv# —_—

Faddeev's model
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What is different with vortices

« Vortices do not allow 1-point compactification of R® — S8,

« Instead we have R? x T if periodic in z-direction
or T2 if periodic in all directions.

Topological conserved quantities studied by Pontrjagin in 1941,
They are mainly related to vortex punctures of the periodic box.
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Single twisted vortex

J. Hietarinta, J. Jaykka and P. Salo: Dynamics of vortices and
knots in Faddeev’'s model, JHEP Proc.: PrHEP unesp2002/17
http://pos.sissa.it//archive/conferences/008/017/unesp

J. Hietarinta, J. Jaykka and P. Salo: Relaxation of twisted
vortices in the Faddeev-Skyrme model, Phys. Lett. A 321,
324-329 (2004).

Knotting as usual if tightly wound:

(@ (b) © (d) (e)
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Vortex bunches and unwinding

If the vortices are close enough there can be bunching
or in the fully periodic case, Hopfion unwinding.

J. Jaykka and J. Hietarinta: Unwinding in Hopfion vortex
bunches, Phys. Rev. D 79, 125027 (2009).

Faddeev's model
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Vortex bunches and unwinding

If the vortices are close enough there can be bunching
or in the fully periodic case, Hopfion unwinding.

J. Jaykka and J. Hietarinta: Unwinding in Hopfion vortex
bunches, Phys. Rev. D 79, 125027 (2009).

In the following pictures the lines corresponding to two
preimages have been plotted, one in blue and one in red.

Faddeev's model
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Vortex bunches and unwinding

If the vortices are close enough there can be bunching
or in the fully periodic case, Hopfion unwinding.

J. Jaykka and J. Hietarinta: Unwinding in Hopfion vortex
bunches, Phys. Rev. D 79, 125027 (2009).

In the following pictures the lines corresponding to two
preimages have been plotted, one in blue and one in red.

First a 3 x 3 section of the fully periodic case.
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4 x4 o
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.

¢ The results follow closely the Vakulenko-Kapitanskii bound
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.

¢ The results follow closely the Vakulenko-Kapitanskii bound

 The trefoil knot is obtained at |Q| = 7 from various initial
configurations.
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.

¢ The results follow closely the Vakulenko-Kapitanskii bound

 The trefoil knot is obtained at |Q| = 7 from various initial
configurations.

e Tightly would vortices form knots in the middle.
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.

¢ The results follow closely the Vakulenko-Kapitanskii bound

 The trefoil knot is obtained at |Q| = 7 from various initial
configurations.

e Tightly would vortices form knots in the middle.
e Closeup vortices form a bunch.
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.

¢ The results follow closely the Vakulenko-Kapitanskii bound

 The trefoil knot is obtained at |Q| = 7 from various initial
configurations.

e Tightly would vortices form knots in the middle.
e Closeup vortices form a bunch.

¢ |n the fully periodic case the vortices can unwind
completely.
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Conclusion

We have studied the minimum energy states and the
deformation dynamics of Hopfions in Faddeev’s model.

¢ The results follow closely the Vakulenko-Kapitanskii bound

 The trefoil knot is obtained at |Q| = 7 from various initial
configurations.

e Tightly would vortices form knots in the middle.
e Closeup vortices form a bunch.

¢ |n the fully periodic case the vortices can unwind
completely.

See also:
http://users.utu.fi/hietarin/knots/index.html
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