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Abstract

We present an eight component integrable Hamiltonian hierarchy, based on a
reduced seventh order matrix spectral problem, with the aim of aiding the
study and classification of multicomponent integrable models and their un-
derlying mathematical structures. The zero-curvature formulation is the tool
to construct a recursion operator from the spatial matrix problem. The second
and third set of integrable equations present integrable nonlinear Schrodinger
and modified Korteweg-de Vries type equations, respectively. The trace iden-
tity is used to construct Hamiltonian structures, and the first three Hamilto-
nian functionals so generated are computed.
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[ONom

1. Introduction

Multi-component integrable models are one class of nonlinear integrable PDE

models which possess diversity and difficulty, with many physical applications. We

aim to exploit an integrable Hamiltonian hierarchy with eight components, moti-

vated by a recent reduced matrix spectral problem [1], which provide novel in-

tegrable nonlinear Schrodinger models and modified Korteweg-De Vries models.
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Consider a linear and non-linear partial differential equation (PDE):
ut:*f(ulux:"'qux) (1.1)

where u(x,t) is a real or complex valued function. A PDE is called Lax-in-

tegrable if there exists a Lax pair, ie., a pair of two linear ODEs,
v, =Uy, vy, =Vy.

where Uand Vare n X n matrices depending on dependent and independent
variables, such that the compatibility of the mixed derivatives Oy, =0,y
holds. When a PDE possesses a Lax pair, it is quite common that it possesses an
infinite number of conserved quantities and an infinite number of symmetries.

Based on recursion operators associated with Lax pairs, integrable hierarchies
could be presented, which consist of infinitely many Lax-integrable PDEs. In an
integrable hierarchy, every element is characterized by an infinite number of
conserved functionals that mutually commute when subjected to the correspond-
ing Poisson bracket [2] and infinitely many symmetries commuting under the
Lie bracket of vector fields.

In this work, Lax pairs associated with a reduced [1] seventh order spectral
problem, are used to generate an eight component integrable hierarchy. Within
the related matrix loop algebra, a pseudoregular element is selected to construct
a spectral matrix. The characteristics of this pseudoregular element guarantee
the existence of a Laurent series solution W :ZSEOISW[S] to the stationary
zero curvature equation W, = i[U ,W] and will lead to the formation of an in-

tegrable hierarchy via zero curvature equations:

u, -Vl +iluvil]=o, g=0. (1.2)

The zero curvature equations are the compatibility conditions of the spatial

and temporal matrix spectral problems:
—iy, =Uy, —iy, =V, g>0, (1.3)

with y being an eigenfunction.

The paper is structured as follows. Section 2 computes an eight component
integrable hierarchy from a reduced seventh order matrix spectral problem. Sec-
tion 3 presents Hamiltonian structures for the eight component integrable hie-
rarchy. These structures are constructed using the trace identity [3] since the
corresponding Lie algebra is semisimple. In particular, we compute the first
three Hamiltonian functionals. The Hamiltonian structures establish a connec-
tion between symmetries and conserved quantities. The last section is devoted to

a conclusion.

2. An Eight Component Integrable Hierarchy

Consider the following potential vector, with 1 being the spectral parameter:

U=U(X,t):(p1,p2,pa,p4,q1,q2,q3,q4)T_ (2.1)
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We first present the spatial matrix spectral problem as follows:

A PP, P Py P O]
g 0 0 0 0 0 p
g 0 0 0 0 0 p
-y, =Uy=U(u,A),U=|g, 0 0 0O 0 O p;}| (2.2)
g 0 0 0 O O p,
gge 0 0 0 O O p,
_0 & 9 9 aq O, _/1_

We initially address the stationary zero curvature equation

W, =i[U,W] (23)

by seeking a Laurent series solution:

a b b b b b 0
G 0 d1,2 d1,3 d1,4 d1 4 b1
C, d12 0 dz3 d2,4 dz4 bz
W=lc, —d, —-d,, dyy dy, by |=X 27WH (2.4)
Cy d1 4 _d2,4 _d3,4 0 0 b4 =0
¢, d1,4 —d 2,4 _d3,4 0 0 b4
10 ¢ C, C, ¢ ¢ -4

[
1, s
WS\ a0 ol dl W es)
-l ol a0 0 b
) ol -l o o )

Since
uw]=(uwl,) . (2.6)
where
[UW], =-ba, —b,q, —b,q; — 20,0, +C,p, +C, P, +C3 Py +2C,p,,
[UW], =-ap, + b, ~d, ,p, —d,;p, — 2d,,,,
[UW], =-ap,+ b, +d;,p, —d,;p;—2d,,p,,
[UW], =-ap,+ b, +d,;p, +d,,p, —2d,,p,,
[UW], =[UW], —ap,+Ab, +d,,p, +d,,p, +dy,p; [UW], =0,
U,W], =ag, - Ac, —d,,0, —d, 10, — 2d, 0,
[UW],, =0,[UW], =-bg, +b,q,c.p, + P,
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[UW],, =0t +b,0, —¢,p; +6,,

[UW],s =[U W], =-ba, +b,g, —c,p, +c,p,,
[UW],, =-ap, + b ~d,,p, ~d, ;p, ~2d,, ;.
[UW], =aq, - Ac, +d, ,0, —d, 0, —2d, 0,
[UW], =bd, =b,q, +¢,p, —C,p,

[UW], =0.[UW], =-b,g; +b,0, —C,p; +C;,,
[U W], =~[UW], =-b,0, +b,0, ~C, P, +C,P,,
[UW], =-ap,+4b, +d;,p,—d,,p, —2d,,p,,
[U.W], =aq, - Ac, +d, 0, +d, 0, - 2d;,q,,

[UW],, =bd, —byg, +¢,p; —C3p,,

[U.W],, =b,0 —byg, +C,p; &y, [U W], =0,
[UW],=[UW], =-ba, +b,d; —¢;p, +¢,ps,

[U ,W]47 =—ap, +Ab, +d,;p, +d,,p, —2d,,p,,
[UW], =[UW], =aq,-Ac, +d,,q +d,,0, +d;,0s,
[UW], =[U.W], =bd, ~b,g, +c,p, —C,P,
[UW], =[UW], =b,a, ~b,0, +¢,p, ¢, P,

[U w 54 [U W] 3q4 b4q3+C3 Py —C4Ps,
v,
v,

[uw

[U W]e7 - ap4+ﬂ‘b +d14p1+d24p2+d34p31

57

ko
]
s =
[UW], =[uW], =0,
W]
W1, =0,[UW], =aq, ¢, ~d,,0, ~ d; 10, 2, .0,
|, =aq, - Ac, +d, ,q, - d, ;0 - 2d, 0,
[UW], =aq, - Ac; +d, 40, +d, 50, — 2d, .0,
[UW],=[UW], =aq,-Ac, +d,,0q +d,,q, +d;,qs,

[U W ]77 =-ap, + Ab, +d;,p; +d, P, +dy, Ps, 2.7)

The stationary zero curvature equation yields the ensuing recursion relations

and initial conditions:
[O]zo’b[o]z [] =0,1<j<4,
: (2.8)
4)

dyvn =0im,n = {( 2)(1.3)(L4)(2.3)(2.4)(3.4)}
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bl[s+1 Ibls] +a [s] pl + dl 5P, + dl[zl p3 + 2dl[sj p4
b[s+l Ib[s] + a[s] p, - dl[sz] p, + dgsl p; + 2d2 4Py

[s+1] _ _iplsl [s] [s] [s] [s] (2.9)
b —ibg} +a p, —di3p, —d;3p, +2d;, p,
bz[15+1 = _Ibé[‘jl + a[s] P, — d1[,54] P — dﬂ P, — d3,4 P;
Cl[Hl] = icl[,sl + a[s]q dquZ d1,53]q3 2d1 204
CLSH] = icgs,l + a[s q, + dqul _dgqs - 2dz,4q4 (2 10)
ol = icfl +allg, + dg, +dfa, - 2dla,
C£s+1] = icz[ts]x +al’ q, + dl 40+ dz o+ d3 495
dr[ns-:—]ll< _ |:_br[:‘+l]qn i br[]s+l]q C[s+l] p L C[s+1] pm:|
1 1 1 1] 1 1 1] 1 1 (2.11)
> = i[ -bf*q, —bf*q, —b*q, — 20, - cf*p, ~cfp, - p, —2cf U, |,
with s>0.
Subsequently, taking the following initial values,
al =1,d% =0, (2.12)

and setting the constants of integration to be zero,

| -o0.dbl|

7 ¥ 'm,n
u=0

=0,szl,

we determine a unique solution W. Consequently, we can compute the first four
sets of al*}, bES] , CES] and dr[ns,]n as follows:

[1] _ [1 _
by" =p;, ¢ =q;
d =0, a =0

b[z] =—ip;,, C['Z] =iq; ,,
dr[nn ~Pnln + Brli» al’l =—Py0; — P,0; — Pa0s — 2,0,

b =—py o — PP + P30, + P3G, +2P}0, — 2P, P,0, — 2P, Py0; — 4P, P,

bf) =—p,  + PPG, — P20, + P30, +2p20, — 2P, PG, — 2P, Pyl — 4P, P,
bl =—p,., + P2 + P30; — P30, +2P}0, — 2p; Py, — 25 P,0, —4P5 P,

b = —p, ,, + P20, + P20, + P3G, — 230, — 2P PG, — 2P, Pol, — 2P, Pyl

¥ =—q,, — P02 + P02 + PO2 +2p,02 — 20, P,0, — 20, P,G; — 40, P, 0,

el =, o + P,02 — P, + P,02 + 2,07 — 20, P,0, — 2, PG, — 40, P,
ol =~ o + P07 + PoGZ — P,02 + 2507 — 20, .0, — 20, P, 0, — 40, P, 0,
ol =, o + D402 + PGZ + P,OZ — 2,07 — 20, PG, — 20, P,0, — 20, P;0;

df[:]n = I[_ Pnlax T Paxln + Pplmx — pn,xqm]
Al <[ Py, = PO+ P = Pa + Pl — Pyl + 2P le — 2Pyl |

and

DOI: 10.4236/jamp.2024.126128 2106 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2024.126128

S. Muthanna, W.-X. Ma

b =[Py + 3Py Puy O — 3P, PO — 3P Py, 0 — 6D, Py Gy + 3Py, B0,
+3D,, Ps0s + 6Dy, D0l +3Py Py, 0, +3P, Py, + 60,0, |
b = [ Py e —3P1PLLG, + 3P, Py — 3P Ps Ty — 64 Py, 0, +3P,, PiGy
+3P, 4 P30; + 6P, Ps0s + 3P, PG +3P,P3405 +6P, p4,XQ4:|
b£4] = i[pS,xxx _Splpl,qu -3p, P2,x0s +3P, Ps xUs =6, Pyyd; +3Ps, P10,
+3p3xp2q2+6p3xp4Q4+3p3p1qu+3p3p2xq2+6p3p4xq4]
b = [ P o ~ 3Py Py Gy =3P, Py s —3P5 Py, ls + 64 Py s +3D, PG
+3D4 Py, +3Pa Psls +3P4 Py Oy + 3P Py Gy + 3P, s |

ol =i 0 o ~ 300y Py + 30,0, Py + 305 Py + 60,0, Py — 36, P,

— 30, P30; — 60, P40y =300, P, — 30,03 Py — 60,0y p4]
[ a0 +3P20101 x —3P20,05 x +3P2030s5, +6P20,04  — 30, P10
—30,,, P39; —60, , P9, —30,0; « P, —30,05 , P; —60,0, p4]
=i |: Os, 0 + 3P30h 0y x +3 P30, —3P3030sx + 6 P30,y Uay — 303, P10,
— 30, P,0, —60 , P,y — 300, Ps — 30,0, P, —60,0, , P, |
[ [ g ox + 3P40 0« +3P400,x +3Ps0s03x —6P40s04  — 304 P10,
_3q4,x P24, +3q4,x Psd; — 3q4q1,x P - 3q4q2,x P2 _3q4q3,x p3]

[4]

[4

[4

all = —p, G — Poa = Paxlsx = 2Paxlax + Pl X+ 0 Pry + Pyl + Gz Py

3 3 3
+ Pl 0P+ 2Pall e + 20 Pas + 5 (k)" =2 (Ph)” = (Ph)
3 3 3 3
_3( p4ql)2 _E( plqz )2 +§( pzqz )2 _E( psqz )2 _3( p4q2 )2 _E( plq3 )2

3 3
S P,0; )’ +2( P,% )" —3(PyGs ) +6( P,P,00, )+ 6( P, PsTs )
+6(p,Ps0,0; ) +12( p, P,0y0, ) +12, p,0,0, +12( Py P,050, )

Al = Py + Pt = Pilane = Pz — Polh — Pyl +3PL0,0, —3P3040,
+3p,P,0; —3P, P,0; +3Ps0; (PG, — P, )+ 6,0, (P, — Po%)

Al = Pyl + PaOux = Pulls = Prols = Pl — Pally e + 3PLG,0s —3P304 0,
+3p, 305 — 3P, 307 +3P,0; (P.G; — PGy ) + 6P, 0, (PG — Pyt

Af = By + P = P — Procla — PaocOh — Palh e + 397 0,0, — 630,
+6p, 0 —3P; P40 +3P,0, ( Py — PaGh ) +3P50s (P, — a0 )

AL = Py, + Pyl = Poll i — Pols = Py — Pally o +3P3 0505 —3P30,0,
+3p, Pyts —3P, Ps0; +3P,0; (P,%s — P20, ) + 6P, 0, (P05 — Psd; )

Al = Dy s + Paos = Pola s — Pasols = Pals — Pl +3P20,0, —6 P00,
+6,P,0; —3P, P05 +3P,0; (P20, — Pay ) +3Ps0s (P, — PaCly)

A = Pyl + Paylie = Psar — Pasle = Pasnls — Pals o +3P200, — 6 P00,
+6Py P05 —3P; P,05 +3P,0 (P30 — P4als ) + 3P0, (P30 — P4ls)

Next, we present the temporal matrix spectral problem:

9
—ip =V =V (U 2)y, VI (A0W) =Y 2wl gz0, 213)
s=0

+
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which is the complementary part of the Lax pair associated with the matrix spec-
tral problem.
The compatibility conditions between the spatial (2.2) and temporal (2.13)

matrix spectral problems, are represented by the zero curvature equation:

u, -vi+iluvi]=o, g>0 (2.14)

and consequently generate the eight-component integrable hierarchy:

.
U, :K[G]:(ibP*l],ibE*”,ibgg“],ibﬁgﬂ],—ic{g*l],—icgg*l],—icgﬂ,—icg*l) , 920 (215)

or precisely,

p, =il g, =-ic™, g=0 (2.16)

resulting in the nonlinear Schrodinger and Koreteweg-De Vries equations, which
represent the initial two nonlinear examples in the above eight component in-
tegrable hierarchy:

P, =Pyt PLO — P20 — P30 — 2P0, + 2Py P, + 2P P3Gy + 4P P,

Dy, =~ Pou = PrGy + P50, = P3ty, = 2P0, + 2P, Py0y + 2P, P3s + 4P, P, 0,

Py = P30~ PLOy — P30 + P30 — 250 +2P3PyCy +2P; Py, +4P5 P, 0,

iy, =—Paoc = PrOs = P70 = P3G, + 250, + 2P, Pyl + 2P, Pl +2P, Patly

; 2 2 2 2 17)
Iql{z =0y — PO + PO; + P05 +2 P.d, —qu P4 _qu Psd; _4Q1 P44,
0, =0+ P20; = P20 + Pols +2 P50 — 20, Py — 20, P30 — 40, P, 0,
105, = ~Cg.o + P3O + P30z — Pa0a +2P5Us — 20 Py — 20, P, — 405 P, 0,
iQ4tz =0yt p4Q12 + p4q§ + p4C132 -2 p4Q§ -2q, p,0, — 24, p,49, + 20, Py0;
and
p1(3 = _pl,xxx _3p1 pl,qu +3p2 pz,qu +3p3 P3G + 6 P404x G _3p1,x P.4,
_3p1,x p3q3 _epl,x p4q4 _3p1 pz,xqz _3p1 ps,xqs -6 p1 p4,xq4
P2, = =P 3Py Pyx; =3P2 Pa 0z +3PsPs Uy + 6P Paz —3Ps PLlh
_3p2,x p3q3 -6 pZ,x p4q4 _3p2 pl,qu _3p2 pg,xqa -6 pz p4,xq4
p3,3 = _p3,xxx +3p1 pl,xqs +3p2 pz,xqs _3p3 p3,xQ3 +6 p4 p4,xq3 _3p3,x plql
—3P3,P,0; —6P3, Py0s —3P3Py % —3P3 P, 48, —6P3P, s
p413 == p4,xxx +3p1 pl,xq4 +3p2 p2‘xq4 +3p3 p3‘xq4 -6 p4 p4,xq4 _3p4,x p1q1
_3p4,x P.q, _3p4,x PsQ; _3p4 pl,qu _3p4 pz,xqz _3p4 ps,xqs (2.18)

O, = O — 30,0y, Py + 30,0, Py + 30,0, Py + 60,0, , Py =30, P,0,
=30, P30 — 60, P4Gs =30,y P, =303 P5 ~ 60,04« Py

th3 = t 3 P0Gy — 3 P20, « + 3 P>0:0; « + 6 P20,0,,x — 3q2,x PG
- 3q2,x Ps0; — 6q2,x P49, _quql,x P _3q2q3,x Ps — 6q2q4,x Py

Qa, = G0 + 3P;0,0;  + 3P0, « —3P30305« + 6 P3040, —303, P10
_3q3,x P.a, — 6q3,x P44, _3q3q1,x Py _3q3q2,x P, — 6q3q4,x P,

Q4t3 = _q4,xxx +3 p4Q1qx +3 p4q2Q2,x +3 p4q3q3,x -6 p4Q4Q4,x - 3Q4,x p1Q1
=30, x Po0, =30« P30s — 30,0 4 P, — 30,0, « P, — 30,05 4 Ps
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3. Hamiltonian Structures

To formulate Hamiltonian structures for the integrable equations in (2.14), we

apply the trace identity

ijtr(w dex =1 il“tr(w @],
Su o oA ou

where « isa constant. Further, we have
tr(W Z—jj =2a, tr(W ‘Z—Uj =(2c,,2¢,,2¢,,4c,,2b;,2b,,2b,,4b, )
U

and thus, we obtain

O a-sanlsitl gy _ g-a O qa-s (ols] IS] Als] onls] pls] pls] pfs] oplsl)
Eji a* k=77 =2 (e, e, b, 20,6l bl 60, 260) s> 0.3.1)

For s=2,with =0, we obtain:

5 S S S S S S S S S T
EJH[ dx =(c1[ L el el acl bl bl bl ],Zbﬁ]) : (3.2)
with the Hamiltonian functionals determined by:
a[s+1]
HUI =_j dx, s=>1, (3.3)
S
of which the first three functionals are:
HY = [ p,g, + p,0, + pyd +2p, X
i
HEF = =L Puh = P+ P28 — oG+ PO — Pollo + 2Pa s ~2P4, JOX
@l
H _J. 5( pl,qu,x + p2,xq2,x + p3,xq3,x +2 p4,xq4,x - plql,xx - ql pl,xx - pzqz,xx _qz pz,xx
(3.4)

1
= Pyl 0 — O P — 2P0l o — 20 p4,xx)—5(—pfq12 +P;0; + PO + gy
+ P{a; - P3C; + P3O} + Pya; + pYal + piaS — pd; + Pial ) - 2P, 0,0,
-2 P, P30, 05 — A, P, P30,05 — 4 P P,G,0, — 4 P2 P44,4, — 4 Ps p4Q3q4:|dX

Following these equivalences, we can then establish Hamiltonian structures
for the integrable hierarchy (2.14):

41
utg _ K[g] _ (i [g+l],ib£g+1],ib£g+l],ib£g+l],—iCl[g+1],—iC£g+l],—iC£g+1] —iC£g+1] )T ] 5|—;[lj’ ] ,
where /, the Hamiltonian operator:
[0 0 0 0 i 00 O]
0 0 0 0 O01i 0O
0 0 0O 0 OO O
0 0 0 0 O0OO 2
J=| , (3.5)
-i 0 0 0 0O0O0O
0O -i 0 0 00O0O
0 0 -i 0O 00O0O
|0 0 0 -2t 0 0 O O]
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and H[ defined by (3.3), form the Hamiltonian framework, which establishes
a connection between symmetries and conserved quantities.

Innumerably many mutually commuting symmetries:
[Kq K, ] =Ke (W[K, ]-Ki, (W[K, ]=0, r.r, >0, (3.6)
are guaranteed by a Lax operator:

|:|:V[r1],V(r2]:|:| —y/[nr (u)[K[fz]:I_V[fz]’ (u)[K[“]}+[V[r1] ,V[fz]:| =0, r,r,20,(3.7)

This relationship arises as an outcome of the isospectral zero curvature equa-
tion [4].

Based on the skew-symmetric nature of the Hamiltonian operator J and the
recursion relation of the hierarchy, the conserved functionals commute under
the Poisson bracket [3]:

[ﬁ]T (]
{H[n]’H[rz]}J ZI% ‘]5';“ dx=0, r,r,>0. (3.8)

Finally, a bi-Hamiltomian structure [5] can also be constructed by combining

Jwith a recursion relation for K derived from (2.16) [6].

4. Conclusion

An eight component integrable hierarchy has been introduced from a reduced
seventh order matrix spectral problem that is related to a special Lie algebra [7]
of the general linear algebra [8]. Hamiltonian structures have been constructed
for the hierarchy and the first three Hamiltonian functionals have been intro-
duced. The difficulty is a repeat of the fourth pair of potentials and such an ex-
ploration will help one gain a deeper discernment of their mathematical struc-
tures. Exploring the structure of solitons in the resulting integrable systems, with
the inverse scattering transform [9] [10], Hirota’s direct method or backlund trans-
formations [6] would be highly significant.

The exploration of integrable equations constitutes a dynamic and stimulating
realm of research, with the capacity to unveil insights into diverse physical phe-
nomena, such as nonlinear optics, plasma physics, Bose-Einstein Condensates
and shallow water waves. There is still much to learn about these intriguing ma-
thematical systems. The methods employed to investigate their mathematical

structures will remain a vibrant area of research for the foreseeable future.
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