Modern Physics Letters B
W rl ientifi
Vol. 34, No. 4 (2020) 2050051 (14 pages) \\h wwf/v)wgldssgenetl nt Co‘n’]

© World Scientific Publishing Company
DOI: 10.1142/S0217984920500517

Efficient modeling of shallow water equations using method
of lines and artificial viscosity

Mohamed M. Mousa*

Department of Mathematics,

College of Science and Human Studies at Hotat Sudair,
Majmaah University, Majmaah 11952, Saudi Arabia
Department of Basic Science, Faculty of Engineering at Benha,
Benha University, Benha 13512, Eqypt
mm.mousa@mu.edu.sa

Wen-Xiu Ma

Department of Mathematics, Zhejiang Normal University,
Jinhua 321004, Zhejiang, China
Department of Mathematics, King Abdulaziz University,
Jeddah 21589, Saudi Arabia
Department of Mathematics and Statistics, University of South Florida,
Tampa, FL 383620, USA
College of Mathematics and Physics, Shanghai University of Electric Power,
Shanghai 200090, China
College of Mathematics and Systems Science,
Shandong University of Science and Technology, Qingdao 266590, China
Department of Mathematical Sciences, North-West University,
Ma Keng Campus, Mmabatho 2735, South Africa
mawzQcas.usf.edu

Received 10 August 2019
Revised 12 September 2019
Accepted 26 September 2019
Published 19 December 2019

In this work, two numerical schemes were developed to overcome the problem of shock
waves that appear in the solutions of one/two-layer shallow water models. The proposed
numerical schemes were based on the method of lines and artificial viscosity concept. The
robustness and efficiency of the proposed schemes are validated on many applications
such as dam-break problem and the problem of interface propagation of two-layer shallow
water model. The von Neumann stability of proposed schemes is studied and hence, the
sufficient condition for stability is deduced. The results were presented graphically. The
verification of the obtained results is achieved by comparing them with exact solutions
or another numerical solutions founded in literature. The results are satisfactory and in
much have a close agreement with existing results.
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1. Introduction

Simulation of hyperbolic conservation equations is significant and remains a matter
of intense research, especially, by the scientists of Computational Fluid Dynamics
(CFD). It is well known that hyperbolic conservation equations model the physics of
shallow water flows or gas dynamics. The motive is to develop a robust, yet accurate
and stable numerical technique. Since the shallow water equations give rise to shock
waves, contact discontinuities and also produce expansion waves with probable sonic
points, any technique developed for such equations must be able to capture these
features with appropriate accuracy without mislaying robustness. Also, the used
numerical method should compute such discontinuities with the accurate position
and without spurious oscillations and realize high-order of accuracy in the smooth
areas too. In general, the techniques that used for the simulation of such systems
are called shock-capturing methods.

From the literature, the methods of shock-capturing are categorized into two
general groups: classical techniques and modern shock-capturing ones. Modern
shock-capturing methods are commonly upwind based in contrast to central dis-
cretization. The upwind-type differencing schemes try to discretize the differential
equations by differencing biased in the direction determined by the characteristic
speeds sign. While, central or symmetric schemes don’t consider any data about the
propagation of the wave in the discretization. On other hand, the central discretiza-
tion schemes are easier than the upwind ones, they regularly contain tuning param-
eters which are problem dependent. Also the main obstacle in using such classical
central numerical schemes is the risk of generation of unphysical numerical fluctua-
tions. Because of these disadvantages, upwind schemes and modern shock-capturing
methods became more popular from 1970s. These modern shock-capturing schemes
have a non-linear numerical dissipation, with an automatic feedback mechanism
that adjusts the amount of dissipation in any cell of the mesh, in accord to the gra-
dients in the solution. These schemes have proven to be accurate and stable even
when the problem contains strong shock waves. Some of the famous classical tech-
niques include the Godunov method,® Lax-Wendroff method,!® the MacCormack
method?%2! and the method of lines (MOL).%:22:23:27:28 Examples of modern shock-
capturing schemes include higher-order total variation diminishing (TVD) method
which firstly introduced by Harten,!® monotonic upstream-centered schemes for
conservation laws (MUSCL) based on Godunov approach that introduced by Van
Leer,3? flux-corrected transport method presented by Boris and Book,2 piecewise
parabolic method (PPM) offered by Woodward and Colella* and various essentially
non-oscillatory schemes (ENO) suggested by Harten et all’ Of all the modern
shock-capturing schemes, the approximate Riemann solver of Roe?® is the most
popular, as it can capture steady discontinuities exactly, without any numerical
dissipation. Recently, many authors applied various numerical methods to solve
and simulate many shallow water model.32 32
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Shallow water equations are generally used for modeling environmental fluid
dynamics when the field of the flow has one component that is insignificant with
respect to other components, e.g. the vertical velocity is small with respect to the
longitudinal or lateral components. This is the so-called shallow water hypothesis,
and is considered true once the process has a dominant characteristic dimension.
Applications of shallow water equations vary from atmospheric circulation'? to
tsunami wave propagation in oceans?* and large-scale ocean modeling,'? from river
morph dynamics!? to granular flows and dam break.”!4716 Recently, the justifica-
tion of the applicability of shallow-water theory in the simulation of wave flows of
fluid is discussed in Ref. 31. Multi-layer shallow water models are mainly useful in
some limit cases of multi-fluids and variable density flows parted by nearly horizon-
tal interfaces. These models govern the dynamics of incompressible fluids spreading
under gravity effects. The most popular case of the multi-layer shallow water models
is the system of two-layer shallow water equations. Such system is obtained by ver-
tical averaging through each layer depth of compressible isentropic Euler equations.
The water layers are supposed to have unequal constant densities p; < ps, for ex-
ample, difference in salinity of water, or to be immiscible. The considered two-layer
shallow water equations are extensions of the Saint-Venant systems,> which are
commonly used in both dams-keeping engineering and geophysical science. Consid-
ering the one-dimensional two-layer shallow water model, see Fig. 1, that describes
a flow, in a straightforward channel with a bottom topography B(z), which consists
of double layers of heights h; (upper layer) and hy (lower layer) at spatial  in any
time ¢t with corresponding velocities u; and discharges ¢; = h;u;,? = 1, 2. This

n..
>

Total Water Level=B+h+h;

0 ) —

Fig. 1. (Color online) Two-layer shallow water structure.
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model is studied in Refs. 3 and 16 and given by
(h1)e + (q1)2 =0,

(q1)¢ + (hlul + h2) = —gh1By — gh1(h2)s,
(

* 1
(h2)e + (q2)2 = W

q2 t —|— (h2U2 + h2) = _ghQBx — g’f‘ hg(hl)x

xr
where v is the constant of gravity and r» = p;/ps is the density ratio parameter.
Accordingly, the one-dimensional form of single-layer shallow water equations can
be written as

(h)e + (hu)y =

(e + (huz * %’V)I = —ghB.(z). (2)

Here, h and u represent the water depth and the water velocity in x-direction re-
spectively. Stimulating the solutions of system (1) and (2) is a difficult problem
due to many causes: they include non-conservative product terms, their eigenstruc-
ture can’t be obtained in an explicit form also the these systems are conditionally
hyperbolic. Even though the previous factors make it quite difficult to develop a
numerical scheme for such systems, the MOL with the aid of the artificial viscosity
principle can be considered as an interesting approach to deal with these difficulties.

The solutions of the presented systems are obtained by the method of lines. It is
known that the MOL is a classical shock-capturing approach which summarized as
an approximations to the space derivatives in a partial differential equation (PDE)
system and reducing the problem to an initial value ordinary differential equation
(ODE) system and then using a robust time integrator to sol the resulting ODE
system. The accuracy of the method can be enhanced using a highly reliable and
robust ODE solvers. Although the MOL is considered as a classical approach, it
will be stable and suitable even for strong shock waves problems. The numerical
oscillations that may be raised across discontinuities will be avoided if an artificial
viscosity term is added as we will see in the next sections.

This paper is partitioned into four sections. In Sec. 2, two numerical schemes
with different order of accuracy, based on the method of lines and the artificial
viscosity principle, are developed for system (2) to shortcut in writing. And hence,
with the same principle, the numerical schemes for system (1) can be easily deduced.
In Sec. 3 we consider the stability of the considered schemes for one-layer shallow
water equation in the von Neumann sense. Section 4 contains the results of extensive
numerical experiments on a set of five test numerical problems. Comparisons of the
obtained results with analytical solutions and other numerical results in literature
are presented as well. The considered test problems include the one-layer dam-break
problem with and without a source term. Test problems of the two-layer shallow
water equations with a variable depth riverbed are considered in Sec. 3 as well. In
Sec. 4, the comments and conclusions are introduced.
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2. Numerical Schemes Using Method of Lines
and Artificial Viscosity

A detailed explanation of the MOL and their applications for solving various prob-
lems can be found in literature, e.g.?222427%:28 No matter what type of numerical
scheme will be used, a stable calculations, in existence of shock waves, need a certain
amount of numerical dissipation to avoid the formation of the unphysical numerical
oscillations that will be risen across discontinuities. The main idea of the artifi-
cial viscosity principle is adding a diffusion term (derivatives of second-order) to
the central scheme that prevents the amplification of a solution in the proximity
of surges (sharp gradients), i.e. it prevents the appearance of disturbances with
small wavelength. In order to utilize the method of lines with the artificial viscosity
principle for solving system (2), we set the discharge ¢ as ¢ = hu and hence the
second-order MOL scheme (MOL I) can be obtained by replacing the first and sec-
ond derivatives with respect to x at every grid points z;,7 = 1,3,..., N — 1, with
the second-order central difference approximation as follows:

dhi  qip1 —qi-1 | hici —2hi+ hip

at 2Az Te (Ax)? , i=1,2,...,N—1, t>0,
it+1—qi— h; —hi_
dai _ 2hiqi "SRt — @ TR "
dt (Ax)?
fir = hisa ; ¢i-1—2¢i + ¢ir1
— ghi | —————+4 B,(iA .
g ( AL + B, (i x)) +e€ (Ar)?

where 7 represents the cell centroid, NV is the number of the grid points, Az is the
space step and ¢ is a parameter associated to the artificial viscosity term. Eq. (3) is
a second-order central finite difference approximation of Eq. (2) after replacing the
flux hu with the discharge ¢ and adding the artificial viscosity terms eh,, and £qg;.
It is noted that232* the choice of ¢ is somewhat arbitrary, and must be selected
upon the solution shock waves strength. Preferably, € need to be sufficiently small
i.e. ¢ < 1. Throughout the remainder of this paper, € is set to 1072 and  is set to
9.81 except in problem 3. The classical fourth-order Runge-Kutta (RK4) method
has been used as a time integrator to solve the system of ODEs (3) corresponding
to the given initial/boundary conditions using a suitable time step At.

In order develop the fourth-order MOL scheme (MOL II), we replaced the first
and second derivatives approximations in system (3) with the fourth-order central
difference approximations as follows:

fivr — fimr . fico = 8fic1 +8fix1 — firo

2Azx 12Ax ’ (4)
fic1 = 2fi + fixa . —fico +16f;_1 — 30f; + 16 fir1 — fito
(Azx)? 12(Ax)?

where f; represent the dependent variables h; and ¢; in system (3).
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3. Von Neumann Stability Analysis of MOL I Scheme

In this section, we study the von Neumann stability condition when using a central
second-order discretization for spatial approximation together with forward time
discretization. In order to investigate the von Neumann stability, we will linearize
the homogeneous type of the single-layer shallow water equation (2) about a con-
stant state (h,q) = (h, htt) as done in Ref. 25:

0 1
O + Adyv = edypv, A= , ()
¢>—u? 2u
with v = (h,q)7, ¢ = \/P'(h) and P(h) = £h%. By denoting the approximations
v} to the values v(z;,t,) at mesh points z; = jAz,j € N and ¢, = nAt,n € N,
where At denotes the time step. Using a central difference in space and the forward
discretization in time, system (5) will have the following formulation:

n+l _ n a n n n n n
i =) — §(vj+1 — vl ) +b(vi = 20) + vl ), (6)
_ lAjAt _ eAt
where ¢ = *5— and b= %°5. X
Based on the von Neumann analysis, the numerical solutions 'U;H_ are decom-
posed into a Fourier series as,
N .
n __ n 1, (jAz
o= Y kpeltaUaT) (7)
q=—N

where i = /—1 and kg is the amplification factor at gth harmonic and §; =
gn/NAz. The product {,Az is the phase angle § = {,Ax where 6 € [—m, 7] in
steps of 7/N. The time evolution of a single mode k"e"? can be determined by
the same numerical scheme as the complete numerical solution v}'. Therefore, by
inserting a representation of this formula into a numerical scheme we can obtain a
stability condition by imposing an upper bound to the amplification factor k.

It is known that two level linear finite difference method is stable in the l>-norm
if and only if the von Neumann condition is satisfied. And the amplification factor
is said to satisfy the von Neumann condition if the following practical or strict
stability condition is satisfied:

|k(0)] <1 VO e€|[-m, 7). (8)
Substituting v = Y k™(0)e#?, into the scheme (6) yields,
k(0) =1 —iasin(f) + 2b(cos(d) — 1), —nm<6<m. (9)
If we consider the function M (0) = |k(6)|?, then we have
M(6) = [1 + 2b(cos(8) — 1)]* 4+ a1 — cos*(6)] . (10)

The maximum of the function M in terms of cos # can be obtained by differentiating
M (0) with respect to cosf and it can simply founded that a maximum occurs only
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if 86?2 — 2a? < 0, that is, if @ > 2b. Also, the maximum or minimum occurs for
2b(1 — 2b)
COS(G) = m . (11)

Substituting Eq. (11) into Eq. (10), yields
a*(a® 4+ 1 — 4b)

a? — 4b?
So, the condition in Eq. (8) together Eq. (12) implies a? — 4b*> < 0. When a > 2b,
this condition can’t be met; and therefore we must first consider

a<2b. (13)

M(6) = (12)

If Eq. (13) satisfied, no maximum of the function M is occurred, and hence we have
to consider the end values of cos(6). So if cos(f) = 1, then the function M(0) =1
and stability is achieved. But when cos(#) = —1, the following condition can simply
obtained

2% <1. (14)
Therefore the stability condition can be obtained from Eq. (13) and Eq. (14) as,
a<2<1. (15)

4. Test Problems

In order to validate the dependability and efficiency of the considered schemes, we
test them on four numerical examples in one and two dimensions. The examples are
considered as bench-mark test problems for numerical methods. We have validated
the presented numerical results by comparing them with exact solutions or other
numerical ones exists in literature.

4.1. Problem 1

The first test problem is 1-D dam-break problem that was discussed in Ref. 14
and Ref. 29. Consider the initial-value problem of Eq. (2) with no source term.
This occurred because of the river-bed being of fixed depth and hence resulting in
B, (z) =0, Va. We also have the following initial conditions:
{1, for 0 <z <0.5,
u(z,0) =0 and h(z,0)= (16)
0.5, for0.b<xz<1.
Here, the existence of discontinuity at = = 0.5 is similar to a barrier separating
two river heights. For this test problem, step-sizes Az = 0.002 and At = 0.001 will
be used with a final time of ¢ = 0.1. A comparison between the obtained result
and the exact solution'# of the water depth will be displayed at ¢ = 0.02 i, where
i = 0 to 5. Results, of MOL I and MOL II schemes, presented in Fig. 2 show all
the flow features being captured well and closer agreement with the exact solution
is noticed.
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(a) (b)

Fig. 2. (Color online) Plot of the water depth h(z, t) at ¢ = 0.02 i, where ¢ = 0 to 5 using
(a) MOL I results and (b) MOL II results and exact solution (solid lines) for problem 1.

As it can be seen from Fig. 2, the results of the both schemes are well agreed
with the exact solution. Also, we can see small non-physical oscillations behind the
shock fronts in case of using the MOL I scheme and hence the results obtained by
MOL I, has a little accuracy when compared by those obtained by MOL II at the
same parameters. It is worth noticing that since the discretization in the method of
lines is applied only to the spatial variable, increasing the final time doesn’t reduce
the solution accuracy and better results can be obtained by using a more sensitive
integrator for solving the system of ODEs, however in classical finite difference
techniques, there are usually limitations when final time growths.

4.2. Problem 2

The second problem is a 1-D dam-break problem on a variable depth river-bed that
was discussed in Refs. 14 and 15. In this test example we considered the initial-
value problem of Eq. (2) with variable river-bed and so the system of equations
is nonhomogeneous, which means that a source term is present in the system. As
considered in Refs. 14 and 15, the bottom topography of the river-bed is defined
as,

B(z) = (17)

0.125[cos(107(z — 0.5)) + 1], for 0.4 <z < 0.6,
0, otherwise,
and considering the following initial conditions:
1-B(z), for0<z<0.5,
u(z,0) =0 and h(z,0)= (18)
0.5—B(z), for05<z<1.

2050051-8



Efficient modeling of shallow water equations using method of lines and artificial viscosity

(a) (b

Fig. 3. (Color online) Comparison between (a) results obtained in Ref. 15 and (b) numerical
results of MOL I (circles) and MOL II (line) for the water depth (h+ B) at t = 0.1 for problem 2.
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a —— Exact

(2) (b)

Fig. 4. (Color online) Comparison between (a) results obtained in Ref. 15 and (b) numerical
results of MOL I (circles) and MOL II (line) for the water velocity at ¢ = 0.1 for problem 2.

Here, step-sizes will be taken as in problem 1 and the final time is considered to
be t = 0.1. A comparison between the obtained results and the numerical results
obtained in Ref. 15 for both water depth and velocity will be displayed for ¢ = 0.1
in Figs. 3 and 4. Moreover, for more validation, in Fig. 5, the water velocity profile
using the MOL II results are compared with the results mentioned in Ref. 14.

From Figs. 2-5, it can be concluded that the MOL I and MOL II schemes can
capture the flow features of the dam-break flow even with bottom topography in a
good manner and their results are very satisfactory due to the excellent agreement
with the exact/previous results.

4.3. Problem 3

In this problem, we study the interface propagation of 1-D two-layer shallow water
model that can be described from Eq. (1) and Fig. 1. The considered problem is
taken from!® which is a slight variation of the test problem 2 from.? The aim here
is to capture the shock wave propagation of the two-layer interface, initially located
at z = 0.3 by considering the following initial conditions:

(0.50, 1.25, 0.50, 1.25), for x < 0.3,

h 7q 7h >q LL',O = 19
-1,z 62) (- 0) {(0.45, 1.125, 0.55, 1.375), for x >0.3. 1
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Fig. 5. (Color online) Comparison between (a) results obtained in Ref. 14 and (b) numerical
results of MOL II for the water velocity at ¢ = 0.01 4, where ¢ = 0 to 10 for problem 2.
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Fig. 6. Comparison between (a) results obtained in Ref. 16 and (b) numerical results of MOL II
for the upper layer height (h1) at ¢ = 0.1 for problem 3.

In this problem, the bottom topography is considered to be flat (B = —1), the
density ratio parameter is » = 0.98 and the gravitational constant is v = 10.
The step-sizes are taken very small, for high resolution calculations, as Az = 1074,
At = 5x107° and artificial viscosity is considered as ¢ = 10~%. Here, the numerical
solution is computed using the MOL II scheme at time ¢ = 0.1. The numerical
results obtained in Ref. 16 serve as a reference solution for this problem since the
exact solution is unavailable.

The obtained results, using the MOL II scheme, for upper layer height hq, total
water level ¢ and upper layer velocity u; are shown in Figs. 6-8. As one may clearly
see in Fig. 6, that a transitional flat state (hy & 0.475) has occurred. It is coupled
to the left state (h; = 0.5) and right state (h; = 0.45) through two waves that look
to be shock discontinuities. From Figs. 6-8, it can be clearly seen that the initial
sharp interface produces four waves traveling with four various characteristic speeds.
Moreover, it can be shown that there are no numerical oscillations appear when
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Fig. 7. (Color online) Comparison between (a) results obtained in Ref. 16 and (b) numerical

results of MOL II for the total water level (¢ = h1 + ha + B) at t = 0.1 for problem 3.
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Fig. 8.

(Color online) Comparison between (a) results obtained in Ref. 16 and (b) numerical

results of MOL II for the upper layer velocity (u1) at ¢ = 0.1 for Problem 3.

using high resolution parameters and an excellent agreement, between obtained
results and results were reported in Ref. 16, are noticed.

4.4. Problem 4

In this problem, we study a widely used problem for 2-D partial dam-break simula-
tions. In this test case the computational domain is considered as a scaled one from
the widely case considered in Refs. 1, 6, 15 and 19. Here, the computational domain
is 1 m wide and 1 m. A dam with a thickness of 0.02 m divides the domain into
two equal parts at * = 0.5 m. Initially, the upstream water depth was 1 m, while
the downstream water depth was set to 0.5 m. We considered two cases of the dam
breach, (i) the breach in the dam started from y = 0.47 m and ended at y = 0.84 m
and (ii) the breach in the dam is occurred in middle and started from y = 0.31 m

2050051-11
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and ended at y = 0.68 m. The bed is considered to be flat and frictionless. The
water surface was analyzed graphically at 0.13 s after the breach in the dam was
occurred. The 2-D shallow water equations with flat bed can be written as:

(h)e + (hu)y + (hv)y =0,

(hu); + (hu2 + ghQ) + (huv), =0, (20)

x

(hv): + (hv2 + ghQ) + (huv), =0,
Y

where v is the velocity component in y-direction. In this problem, the bottom
topography is considered to be flat and the gravitational constant is v = 9.81. A
grid of 60 x 60 cells is used for this problem and time step-size is taken as At =
5 x 107 while the artificial viscosity is considered as ¢ = 1073. Here, the solution
is calculated using the MOL I scheme at time ¢ = 0.13. There is no analytical
reference solution for this test problem, but in the literature numerical results of
many authors are available (e.g.}%1519), The behavior of the MOL I schemes is
in good agreement with computed results of these authors. The numerical results
displaying 3-D views of the water depth after dam failure and depth contours at time
t = 0.13 s are presented in Fig. 9 for case (i) and Fig. 10 for case (ii). At the moment
the dam-breaks, water is released over the breach, establishing a positive wave that
propagates downstream and a negative wave that moves upstream. The results
shown in Figs. 9 and 10 are in satisfactory agreement with the results obtained by
other numerical techniques in above-mentioned literatures.

At the end, one can notice that the novelty and the significance of the results
are summarized in the following: (i) deducing von Neumann sufficient condition
for stability of the proposed MOL schemes when using an artificial viscosity term
and (ii) demonstrating the efficiency, robustness, and accuracy of the MOL with

=
&

=
4

5 5 =
BB *

0.78

=

s = =
I

BT T T[T o
=L
SE o o

s
&

Fig. 9. (Color online) Water depth and depth contours, for the case (i) of the partial dam-break
problem.
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A

Dt
°
3/

Fig. 10. (Color online) Water depth and depth contours, for the case (ii) of the partial dam-break
problem.

artificial viscosity principle for solving such models even though existence of shock
waves.

5. Conclusion

In this work, two numerical schemes based on method of lines and artificial vis-
cosity concept have been developed in order to simulate one and two dimensional
shallow water flows with and without source terms existing. The main feature of the
proposed schemes is their robustness and simplicity. The addition of the artificial
viscosity term contributed a lot in the removal of unphysical numerical oscillations
and increasing the accuracy of the results. The sufficient condition for stability
of the MOL I scheme is deduced as well. The considered benchmark test problems
have shown that the proposed schemes offer accurate results that in good agreement
with ones mentioned in literatures. The accuracy of the results demonstrate that
the considered schemes are efficient, dependable, and can be of practical attention
and further development when solving problems related to shallow water flows.
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