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Abstract: In this study, an efficient fourth-order conservative explicit numerical scheme using method of lines is
developed to simulate different scenarios of soliton interactions and reflections for a (2 4+ 1)-dimensional coupled non-
linear Schrédinger (CNLS) system. The fourth-order Runge—Kutta technique is applied as a time integrator to the resulting
ordinary differential system. Both integrable and nonintegrable cases of the CNLS system are considered. A condition for
the scheme to be stable is deduced with the aid of von Neumann stability analysis. Several numerical experiments have
been carried out to exhibit the reliability of the scheme in capturing and understanding the interesting phenomenon of
elastic and inelastic soliton collisions/reflections related to many nonlinear evolution equations. The ability of the
scheme to preserve the conserved invariants in long terms confirms its accuracy and stability. New results associated with

interactions and reflections of soliton waves are obtained.
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1. Introduction

Various forms of nonlinear Schrodinger equations are used
in several applications, such as Bose—Einstein condensates
of atoms, plasma physics, systems of fiber communica-
tions, nonlinear optics, quantum mechanics and fluid
dynamics [1-9]. Concerning the field of communication in
fiber systems, such systems have been exposed to describe
spread of waves in nonlinear optical fibers and in the
systems of wavelength-division-multiplexed [2, 10]. Also,
the beam propagation in crystals is modeled using this type
of equations. In [5], the propagation of interaction solitons
is imaged at real time and discovered using the atoms
condensates of Bose—Einstein with awesome collisions by
a quasi-one-dimensional waveguide. Also, the spread of
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rogue waves in open water is described by the nonlinear
Schrodinger equation [11]. Solitary waves produced by the
coupled nonlinear Schrodinger (CNLS) equations are often
termed by vector solitons as they naturally have two
components. In the last recent years, the (1 + 1)-dimen-
sional CNLS system has been numerically examined
intensively [12—14]. It is proven that the vector soliton can
pass through each other after the collision and can be
bounced off or trapped each other depending on the colli-
sion type. But there is a lack of investigations that have
numerically examined the soliton collisions/reflections for
(2 4+ 1)-dimensional CNLS systems [15-17]. From the
previous discussion, the study of the soliton interactions
(collisions/reflections) for (2 + 1)-dimensional CNLS
systems is a significant issue.

In this study, we consider a (2 + 1)-dimensional system
of coupled nonlinear Schrodinger equation in a general
form [16]:
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iU+ 7(Un + Uy) +2(UP+BIVE)U =0,

V49Vt Vo) +a(BOPHVE)V =0, inax o7}, (1)

U(x,y,0) = Uy, V(x,y,0) =V, in Q.

The solution of (1) has the following conservation
invariants,
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where Q; and Q, are called the mass conservation while Q3
is called the energy conservation. These invariants satisfy
the conditions: dQ,/dr =dQ,/dr = dQ;/dr = 0. Here,
Q € R? is a bounded domain, T < oo and i = v/—1, where
the functions U, V are complex functions in x, y and ¢, that
represent the solutions of system (1). In nonlinear optics, it
is commonly termed that |U|* and |V|? represent the optical
power while the parameters «, § and y represent Landau
constant, wave—wave collision coefficient (coupling coef-
ficient) and dispersion coefficient, respectively. These
parameters are considered real and their values differ for
various polarizations in nonlinear optics or for different
types of geophysical fluid flows. When f = 0, the CNLS
system (1) turns into 2 decoupled nonlinear Schrédinger
(NLS) equations, whereas for § = 1, the considered system
is transformed into Manakov system. Both the decoupled
NLS system and Manakov system are integrable and the
interaction of their soliton waves shows the elastic colli-
sion. However, for other values of 5, The CNLS system
becomes nonintegrable where the solitons interaction is
called inelastic collision. In this case, many complex
phenomena such as transmission of solitons, reflection of
solitons, fusion of solitons and creation of a new vector
soliton can occur. It is known that for (1 4+ 1)-dimensional
integrable systems of coupled nonlinear Schrodinger
equations, one can analytically only find exact solutions
describing soliton reflections. However, in the (2 + 1)-di-
mensional case, these systems loss their integrability and
hence we have to utilize numerical methods for discovering
the phenomena of soliton—wall reflection and soliton—
soliton collision. In the literature, there are limited studies
that investigate analytically the soliton interactions and
reflections for (1 4+ 1)-dimensional integrable systems
[18-21]. Various numerical techniques have been utilized
for solving many nonlinear Schrodinger-type equations
[22-25]. Recently, the soliton reflections from different

rigid walls for the (2 4+ 1)-dimensional cubic NLS equa-
tions are numerically simulated using a Crank—Nicolson
finite element technique [26], in which the authors exam-
ined the reflection of a single solitary wave for a nonlinear
Schrodinger equation subjected to three different boundary
conditions. In our study, we extend the study of [26] to
simulate both of reflections and collisions soliton waves for
2D coupled nonlinear Schrodinger system using a forth
order robust numerical scheme based on the well-known
method of lines (MOL) [27-31]. The proposed numerical
scheme is inspected for stability and accurateness. The
developed scheme is conditionally stable in its linearized
form based on von Neumann stability analysis. The sce-
narios of soliton—soliton and soliton—wall interactions need
that the considered system is subjected to pre-defined
boundary conditions. Both zero-Dirichlet and zero-Neu-
mann boundary conditions are considered in the current
work.

This paper is prepared as follows: in the next section, we
briefly clarify the MOL and construct a fourth-order
explicit numerical scheme for the (2 + 1)-dimensional
CNLS system. Section 3 contains the stability condition
based on linearized von Neumann stability. Several
numerical tests with different initial data are considered in
Sect. 4. Simulation of many scenarios that describe elastic
and inelastic soliton waves reflections and collisions for the
(2 + 1)-dimensional CNLS system are also illustrated in
Sect. 4. Conclusions are composed in Sect. 5.

2. Numerical scheme

In order to use the MOL for solving system (1), we must
decompose the dependent variables U, V in their real and
imaginary parts using,

{UP1+iP2

AR (3)
V—P3+1P4

4 . N
where {Pj}j:l are real-valued functions. By substituting

Eq. (3) into system (1), we can obtain the following matrix
form system:

P, + A (P +Py,) + oF(P)P = 0, (4)
where
P, 01 0 0 0 ¢ 0 0
P P, A= -1 0 0 O F(P)= -¢1 0 0 O
P; 0 0 0 1 0O 0 0 g
Py 0 0 -1 0 0 0 —-¢ O
q1 = (P} + P3) + B(P3 + P3) and

g2 = B(P} + P3) + (P53 + P).
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Now, the spatial coordinates x and y in system (4) will
be discretized with a uniformly rectangular mesh of M x N
points, where x;,=a + 1 h, y,,=b+mk, =1, 2,..., M,
m=1, 2,.., N, Q=a, b] X [c, d] and h = (b — a)/M,
k=(d — c)/N are the spatial step sizes of the grid. A
fourth-order central finite difference formula is used to
approximate the spatial second-degree derivatives at each
mesh point. Then, the fourth-order Runge—Kutta method
(RK4) is applied as time integrator for solving the resulting
first-order ordinary differential equations subjected to the
pre-defined initial data using a suitable time step 7 in the
range 0 <t < T. Applying a fourth-order central differ-
ence operator to system (4) gives the following first-order
ordinary differential equations system,

dp,;
a = S(Pu). )
where
1
) n (Pr_gm — 16P_ 1y + 30P — 16P 1 1y + Prio )
saym):IEA X
e (Prm—2 — 16P,_1 + 30P;,, — 16P11 + Ppio)
— aF (Py) Py

(6)

Using the RK4, the solution of system (5) will be
calculated as follows:

1

6 [Ll + 2L, +2L3; + L4}, (7)

+1 _
sz = Pﬁm +
where n is the time index and

1
Li=tS(P, ), Lo = rs(sz +§L1>,
1 (8)
L; = Ts<sz +§Lz>, Ly =tS(P}, + Ls).

The explicit finite difference scheme (7) is of 4th order
in both time and space. It is easy to apply, and it is
predicted to give accurate results as we will discuss later.
The only disadvantage of the scheme is stability restriction
that will be discussed in the succeeding section.

3. Stability restriction

To deduce the stability condition for the finite difference
scheme (7), we use a linearized von Neumann stability
analysis [32]. The linear version of system (4) can be
written as follows:

P, = —yA(Pxx + Pyy) —agAP, 9)

where g = max{qi, ¢»}.

Based on the von Neumann stability method, one can
write the solution of the linearized system (9) in single
Fourier mode as

Pl =gt 1=1,2, ... Mandm
1,2, ...,N, (10)

where & is the amplification vector and the parameters 4, J
are real constants. Substitution (10) in system (9) gives to
the following equation,

§(P;jm) — AP, (11)

where S is the RHS of system (9) after spatial derivatives
discretization and the parameter ¢ is defined as

6= 1_/2 {% (2cos(24h) — 32 cos(Ah) + 30)
(12)

1 X
+ﬁ (2cos(20k) —32cos(dk) +30)| — ag.

Substituting of (11) into (7) gives to the following
matrix form equation:

B:I—I—Z:jl!(v:sA)j, (13)

where I means the identity matrix. The eigenvalues of the
matrix B are notated by X. Based on to the von Neumann
analysis, the required condition needed for the
scheme stability is that mjax|xj| <1,j=1,2,.., 4.

Computing for the matrix B eigenvalues, we get

6 8
(o), (o)
72 576

MZ: 1 — Vi=1,2, .., 4. (14)
From Egs. (12) and (14), we can guarantee that |Xj’ <1
if the following condition is satisfied,
32
< . V2 ; ) (15)
167[(2)+02) ! | = 30

4. Numerical tests

To examine the effectives of the scheme in simulating
soliton interactions for the (2 + 1)-dimensional CNLS
system, we consider several numerical examples related to
system (1). The conservation of the scheme is inspected by
computing the mass and energy conserved quantities at
different times. We use the composite trapezoidal rule to
calculate the integrals associated with the conserved
quantities. Zero-Neumann boundary conditions
(0U/0n = 0V /0on = 0, on 0Q) are applied to all boundaries
of the considered numerical tests. As a generalization to all
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numerical tests, we also solved the first test subjected to
zero-Dirichlet boundary conditions (U = V = 0, on Q) to
illustrate how the solitons interact to the boundary for both
boundary conditions types. For all considered numerical
examples, the solutions are calculated for the following
parameters y = 1/2, « = 1, to study the impact of the wave—
wave collision coefficient f# on the interactions of the
vector soliton. The step sizes of space and time are selected
as h =0.05, k=0.02 and 7 = 104, over the domain Q =
[- 20, 20] x [~ 5, 5] up to time T = 60.

4.1. Elastic interaction of three superposition solitons

Firstly, we consider system (1) subjected to the initial
conditions defined by a superposition of three soliton
waves that propagate with different velocities with dis-
similar initial locations and amplitudes. Here, we use the
following initial conditions considered in [12],

Up=Vy
3 27 .
= Zfm _ i(sm (x—x) )
= E ﬁ_’_lsech(\/frE(x xm)) e )
(16)

where x,,, s,, and 7,, are arbitrary parameters standing for
soliton wave initial locations, velocities and widths/am-
plitudes, respectively. Here, the parameters are selected as
follows: n; =1.0, 1, =0.5, n;3 =0.8, s; = 1.0, s, =0.1,
s3=— 1.0, x;, = — 10, x, = 0, x3 = 10 and f§ = 2/3. Here,
the profiles of the solutions U and V are identical. The
solutions are obtained in the case of Neumann and
Dirichlet boundary conditions to display in what way the
soliton interaction to the boundaries becomes in each case.
The modulus value of the solutions |U| and |V]| are plotted
for selected values of 7. The trajectories of the interactions
and reflections of the three solitons for selected moments
are displayed in Fig. 1.

For more clarification of soliton interactions, contours
and 3D surface illustrations that describe the profiles of |U]
and |V| along the horizontal cross section line (y = 0) are
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Fig. 1 Trajectory of three solitons elastic interactions at selected
moments

displayed in Fig. 2 (when using zero-Neumann boundary
conditions) and Fig. 3 (when using zero-Dirichlet boundary
conditions) up to ¢t = 60. From the interaction scenario of
the three solitons displayed in Figs. 1, 2 and 3, one can see
that two of them propagate in the same direction with
unlike speeds, while the third soliton moves in the opposite
direction before reflecting two of them from the wall. After
the solitons—wall reflection, the reflected waves reverse
their directions. The solitons—wall interaction is perfect
(elastic) for both the Dirichlet and Neumann boundary
conditions, however the soliton shapes at the boundaries
are slightly different. It is worth noting that the solitons
elastically collided each other and departure the collision
region unchanged in speeds or shapes. During the simula-
tion period, there are two soliton—wall reflections of the
fast waves that initially positioned at x = — 10 and x = 10,
near t =~ 28.5. The reflected waves experience a slight
deformation in their shapes after the collision with the
walls and then retain their initial shapes when reversing
their directions. Here, the solitons can experience an
unlimited number of interactions without any decaying in
their energy during the propagation because of the nature
of the elastic interaction.

In Table 1, the mass and energy conserved quantities O,
0> and Qs at selected moments are listed in the case of
using zero-Neumann boundary conditions. The values of
the conserved invariants at ¢t = 0 are estimated by inte-
grating (2) numerically when U = U, and V = V; over the
considered domain Q. From Table 1, it can be observed
that the mass quantities Q; and Q, are exactly conserved at
44.1501696 while the energy quantity Q5 is almost con-
served at 8.683.

4.2. Inelastic interactions of two different solitons

In the next numerical experiments, we consider five
interaction scenarios that describe the inelastic vector
soliton interactions. Some of such scenarios are informed
in [8, 12] for (1 4 1)-dimensional NLS systems. The
inelastic interactions occur when the coupled nonlinear
Schrodinger system isn’t integrable. The value of the
coupling coefficient f§ plays a significant role in shaping the
behavior of vector soliton interaction in a long-term sim-
ulation. Here, system (1) is solved corresponding to zero-
Neumann boundary conditions and the next initial soliton
waves,

Uy =21 sech(\/zn1 (x —x1)> ei(slx),
Vo = \/2—@sech(\/ﬂ;(x —Xz)) ells2x)

Here, the two initial solitons are selected in such a way
that they move in an opposite direction with equal velocity,

(17)
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Fig. 2 (a) 3D surface plot and (b) contour plot of |U| and |V| along the line y = 0 in case of three solitons interactions (when applying zero-
Neumann conditions)

(a) )

Fig. 3 (a) 3D surface plot and (b) contour plot of |U| and |V| along the line y = 0 in case of three solitons interactions (when applying zero-
Dirichlet conditions)

dissimilar initial locations and different amplitudes. For all ~ 4.2.1. Scenario I (Soliton transmission)

considered tests, we fix parameters of wave initial positions

and wave widths/amplitudes as x; = — 10, x, =10, Firstly, we select § = 0.6 and 5; = — s, = 0.8. In this case,

n = 1.1 and 5, = 1.0. the value of f§ is moderate and the velocity of the waves is
relatively high. The scenario of soliton—soliton collisions
and solitons—walls reflections is shown in Figs. 4 and 5. As
shown in these figures, the two waves collided around at
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Table 1 Mass and energy conserved quantities of numerical test 4.1 at selected moments

t 01, 0> 0; t 01, 0o 0

0.0 44.15016965 8.682933350 28.5 44.15016962 8.682813740
3.0 44.15016966 8.682933350 35.0 44.15016962 8.682933865
9.0 44.15016966 8.682933295 44.5 44.15016964 8.682933370
23.0 44.15016965 8.682933980 60.0 44.15016960 8.682934780

t =~ 13. After the soliton collision, the two waves pass
through each other with a slight variation in their profiles
and daughter waves are transmitted with some radiation
shedding (small wavelets). The generated daughter waves
are small waves that split off from the original wave and
spread alongside it but in a reversed direction. The
amplitudes of the daughter pulses and the quantity of the
generated wavelets are dependent on the value of f§ and on
the initial soliton’s velocities. Both original solitons and
daughter waves hit the boundaries and reflected at the same
time, approximately at ¢ = 37. This means that the
velocities of the waves remain equal after the soliton col-
lision. The soliton and daughter waves experience some
changing in their shapes during the reflection moment and
then retrieve their initial shapes but in a reverse direction
with little energy decaying. Up to ¢ = 60, the mass quan-
tities QO and Q, are exactly conserved at 29.664794 and
28.284271, respectively, while the energy quantity Qs is
conserved at — 1.8859 for all moments excluding the
values calculated during the moment of waves—walls
reflections, e.g., 03(37) = — 1.7901. After the reflection,
Qs retrieves its conservative value of — 1.8859 until the
end of the simulation.

4.2.2. Scenario 2 (Soliton reflection)

In this numerical test, we select f=— 0.6 and s, = —
s» = 0.8. Here, we change the sign of the parameter f§ to
investigate soliton interactions when f < 0. This scenario
is displayed in Figs. 6 and 7. In this case, when sign of f§ is
negative, the two originally soliton waves don’t pass
through each other but break up and reflected off each other
after the collision (around at r &~ 13). For each wave, the
large part of the energy is reflected while the remaining
portion is transmitted causing some radiations shedding
and wavelets. The amount of the developed radiations
depends on the value of the relative speed s; — s;. It can be
realized that after the soliton—soliton reflection, each wave
travels in an opposite direction until the collision to the
walls and hence recovers its initial direction. The left wave
is reflected once again from the left wall at ¢ &~ 41.2 while
the right wave is reflected from the right wall at r ~ 38.2.

This difference in the time at which the two waves hit the
boundaries is due to the different velocities after their
collision. The left wave obviously gains some energy from
the right one during the collision. Throughout the period of
the simulation, the conserved invariants Qq, O, and Q5 are
precisely conserved at the same values of scenario 1 except
the invariant Q5 at the moments in which the waves hit and
reflect from the walls. For example, and not as a limitation,
053(38.2) = — 2.4274 and Q5(41.2) = — 1.0643. After the
wave—wall reflection, Q3 recovers its quantity of — 1.8859
until the end of the simulation. If the relative speed is large,
then the two solitons pass through each other as shown in
Fig. 8 which presents the interaction when s; = — s, = 2
(large relative speed) and f = — 0.6.

4.2.3. Scenario 3 (creation of new transmission vector
soliton)

In this scenario, we simulate a formation of new trans-
mission vector soliton when the coupling coefficient f§
takes a large positive value with a small relative speed.
Here, we chose f =3 and s; = — s, = 0.4. The profile of
the interactions of the vector soliton is displayed in Figs. 9
and 10. As illustrated in these figures, the interactions
expose new structures. After collision (around at ¢ ~ 24),
the two soliton waves are meaningfully reshaped, bulky
daughter waves are formed and radiations are shed as well.
The new waves that are generated after the collision travel
at velocities and directions very different from those of the
initial two soliton waves. Commonly, large positive values
of f3, the interactions become quantitatively complex but
qualitatively simple. After collision, the outcome is a few
stable standing waves collected with some small wavelets
and radiations. Up to =60, Q; and Q, are accurately
conserved at 29.664794 and 28.284271, respectively, while

Qs is almost conserved at — 15.7359 for all moments
excluding the values calculated during the moment of
waves—walls interaction, e.g., Q3(41) = — 15.2304 and

05(43.5) = — 16.9449.
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Fig. 4 Trajectory of scenario 1 interactions when 8 = 0.6 and s, = — s, = 0.8, (a) |U| and (b) |V|
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Fig. 5 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V| together along the line y = 0 when 8 = 0.6 and
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Fig. 6 Trajectory of scenario 2 interactions when f = — 0.6 and s, =
4.2.4. Scenario 4 (Creation of new reflection vector
soliton)

In this scenario, we consider s; = —s, = 0.4 and § = — 3.
The behavior of the interaction of this vector soliton is
presented in Figs. 11 and 12. It can be shown that after the
soliton collision (around at t &~ 24), each wave is totally
reflected and traveled in an opposite direction. This occurs
when selecting a small relative speed with a large negative

=130

(b) ‘
—s5 = 0.8, (a) |U| and (b) |V|

value of the coupling coefficient f. Here, the transmitted
wavelets and radiations are almost negligible because the
relative speed is small. During the computational time, the
waves don’t interact with the wall because of considering a
slow wave velocity. The mass and energy invariants Q;, O,
and Q5 are precisely conserved at 29.664794, 28.284271
and — 15.735882, respectively, up to t = 60.
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(a)

(b) (]

Fig. 7 (a) 3D surface plot of |U], (b) 3D surface plot of | V| and (¢) contours plot of |U| and |V| together along the line y = 0 when f# = — 0.6 and

S1=—8§ = 0.8

(a)

20 a5 10 5 0 s

(b) (©)

1 15 20

Fig. 8 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (¢) contours plot of |U| and |V]| together along the line y = 0 when 8 = — 0.6 and

S1=—S2=2
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Fig. 9 Trajectory of scenario 3 interactions when f§ = 3 and s, = —s, = 0.4, (a) |U| and (b) |V|

4.2.5. Scenario 5 (Soliton fusion)

Finally, we consider a small positive value coupling
coefficient and a small relative speed. The parameters are
chosen as ff = 0.2 and s; = —s, = 0.3. The profile of this
scenario is illustrated in Figs. 13 and 14. It can be noticed
that the two soliton waves fusion into one wave after the

collision occurs around at t+ ~ 33. The fusion of two
solitons commonly occurs when selecting small positive
value f and small value of the relative speed. Concerning
the conserved quantities, Q;, O, and Q3 are exactly con-
served at 29.664794, 28.284271 and — 17.7566, respec-
tively, throughout the simulation period.
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(a)

(b) ()

Fig. 10 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V| together along the line y = 0 when 8 = 3 and

s1=-5,=04

abs(U,)

Fig. 11 Trajectory of scenario 4 interactions when ff = — 3 and s; =

15

abs(v)

(@)

abs(V,)

—s, = 0.4, (a) |U| and (b) |V|

(b) (0

Fig. 12 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (c) contours plot of |U| and |V]| together along the line y = 0 when 8 = — 3 and

S =—=5 = 0.4
5. Conclusions

In this work, a robust fourth-order conservative numerical
scheme was developed and analyzed to capture different
types of soliton interactions and reflection scenario for 2D
CNLS system. The stability restriction of the scheme was
deduced. The ability of the scheme to preserve both mass
and energy was illustrated numerically throughout the
long-time simulation. This preservation ability reflects the
reliability and accuracy of the proposed scheme. The

reflections of the soliton waves when colliding the
boundaries have been simulated for two types of boundary
conditions. The type of the boundary condition affects the
wave shape only during the interaction with the wall. In the
case of elastic interactions, the vector soliton can do an
infinite number of interactions without any change in their
shapes except at the boundaries. But for the inelastic sce-
narios, the soliton wave suffers from a deformation in its
shape and some energy decaying, where the daughter
waves, small wavelets and radiations begin to appear. The
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(a)

Fig. 13 Trajectory of scenario 5 interactions when f# = 0.2 and s,
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=5, =03, (a) |U| and (b) |V|

Fig. 14 (a) 3D surface plot of |U|, (b) 3D surface plot of |V| and (¢) contours plot of |U| and |V| together along the line y = 0 when = 0.2 and

S1=—5 = 0.3

value and sign of the parameter f§ play an important role in
shaping the vector soliton; and in the number of transmitted
daughter waves; and in the amount of generated radiations.
The speed of initial solitons has a significant impact as
well. This work offers new results associated with the
interaction and reflection of soliton waves in (2 + 1)-di-
mensional NLS systems. The obtained results are quite
general and can be applied to other nonlinear Schrodinger-
type systems.
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