
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tusc20

Journal of Taibah University for Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tusc20

A combined method for simulating MHD
convection in square cavities through localized
heating by method of line and penalty-artificial
compressibility

Mohamed M. Mousa, Mohamed R. Ali & Wen-Xiu Ma

To cite this article: Mohamed M. Mousa, Mohamed R. Ali & Wen-Xiu Ma (2021) A combined
method for simulating MHD convection in square cavities through localized heating by method
of line and penalty-artificial compressibility, Journal of Taibah University for Science, 15:1,
208-217, DOI: 10.1080/16583655.2021.1951503

To link to this article:  https://doi.org/10.1080/16583655.2021.1951503

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 15 Jul 2021.

Submit your article to this journal Article views: 684

View related articles View Crossmark data

Citing articles: 14 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tusc20
https://www.tandfonline.com/loi/tusc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/16583655.2021.1951503
https://doi.org/10.1080/16583655.2021.1951503
https://www.tandfonline.com/action/authorSubmission?journalCode=tusc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tusc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/16583655.2021.1951503
https://www.tandfonline.com/doi/mlt/10.1080/16583655.2021.1951503
http://crossmark.crossref.org/dialog/?doi=10.1080/16583655.2021.1951503&domain=pdf&date_stamp=2021-07-15
http://crossmark.crossref.org/dialog/?doi=10.1080/16583655.2021.1951503&domain=pdf&date_stamp=2021-07-15
https://www.tandfonline.com/doi/citedby/10.1080/16583655.2021.1951503#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/16583655.2021.1951503#tabModule


JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE
2021, VOL. 15, NO. 1, 208–217
https://doi.org/10.1080/16583655.2021.1951503

A combinedmethod for simulating MHD convection in square cavities through
localized heating by method of line and penalty-artificial compressibility

Mohamed M. Mousa a,b, Mohamed R. Ali a and Wen-Xiu Ma c,d,e,f

aDepartment of Basic Science, Faculty of Engineering at Benha, Benha University, Benha, Egypt; bDepartment of Mathematics, College of
Sciences and Human Studies at Howtat Sudair, Majmaah University, Majmaah, Saudi Arabia; cDepartment of Mathematics, Zhejiang
Normal University, Jinhua, Zhejiang, People’s Republic of China; dDepartment of Mathematics, King Abdulaziz University, Jeddah, Saudi
Arabia; eDepartment of Mathematics and Statistics, University of South Florida, Tampa, FL, USA; fSchool of Mathematical and Statistical
Sciences, North-West University, Mmabatho, South Africa

ABSTRACT
A new combined technique is developed for studying free convection of magnetohydrody-
namic unsteady incompressible flow in a square cavity that partially heated from lower wall
and regular cooling from lateral walls. Convection has been studied for several lengths of heat
source, Hartman and the Rayleigh numbers. The local and average Nusselt numbers are cal-
culated and presented graphically along the heat source portion. The proposed technique is
a combination of the method of lines (MOL) and a developed penalty-artificial compressibil-
ity technique (PACT). Unsteady penalty compressibility governing equations are used instead
of solving steady-state balances. The penalty and artificial compressibility factors are estimated
using a deduced stability restriction. The validation of the MOL-PACT is verified by compar-
ing the current data with other numerical and experimental ones existing in the literature. The
proposed technique provides a new choice through the investigation of MHD mass and heat
transfer.
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1. Introduction

Free convection, induced by internal heat generation,
in square cavities has received significant attention
because of its many applications in geophysics and
energy related to engineering problems. Indeed, natu-
ral convection in closed enclosures with various heated
boundaries is a model of various engineering applica-
tions like the safety and operation of a nuclear reac-
tor and convective heat transfer related to electronic
cooling devices. In some practical applications such as
metal casting, the crystal growth in a fluid, the extrac-
tions of geothermal energy and the fusion reactors, the
free convection has occurred within the magnetic field
effect.

Analysis of the literature reveals comparatively huge
attention in the convective phenomenon study in a
square and rectangular cavity heated from the lower
wall and subjected to dissimilar isothermal conditions.
As example, and not as a limitation, Sharma et al. [1]
investigated the turbulent free convection in a square
cavity containing a localized heater at a lower wall and
identical cooling at vertical sidewalls. Their research
models the situation of the unintended heat generation
resulted from a fire in an isolated body of an electronic
components cabin or a nuclear reactor. In [2], the nat-

ural convection in a rectangle cavity which was partly
heated from the lower wall and equivalently cooled
at the vertical sidewalls has been numerically investi-
gated. Calcagni et al. [3] experimentally andnumerically
investigated natural convection and heat transfer in a
square cavity that happened by a heater positioned
on the bottom wall and cooled from the sidewalls. In
this research, they examined how the transferring of
heat grows in the cavity due to the increase of the
heat source length. A systematic numerical study of
2D steady laminar free convection in a rectangle cav-
ity due to localized heaters of various walls thermal
conditions is considered by Deng et al. [4]. Yigit et al.
[5] numerically studied the steady laminar free con-
vection of power-law fluids in a square cavity contain-
ing a partial heater at the bottom wall and identical
cooling at sidewalls by ANSYS-FLUENT solver. Recently,
many researchers have investigated many problems
related to MHD free convection. In [6], Colak et al. have
examined magnetohydrodynamic mixed convection in
a chamfered lid-driven enclosure containing a fractional
heater. Sajjadi et al. [7] have done a 3Dmesoscopic sim-
ulation of magnetohydrodynamic free convection in a
cubic enclosure using the Lattice-Boltzmann method
and with two multi relaxation time models. In [8],
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Usman et al. have investigated the magnetohydrody-
namic heat andmass transfer flow inside a square enclo-
sure heated from the top wall and equipped with cold
and heated square obstacles. Sivaraj and Sheremet [9]
investigated the free convection in a tending porous
enclosure containing heated compact obstacle located
at the centre in presence of an applied magnetic field
of diverse orientations. Zhang et al. [10] studied the
MHD free convection in square and cube cavities in
presence of the effects of thermal radiation using the
spectral collocation-artificial compressibility method
(ACM). In [11], Shahid and Tunç have obtained exact
expressions of temperature and velocity of an elas-
toviscous magnetohydrodynamic fluid slipping past
an unbounded upright channel with a vacillating
temperature.

Methodof lines [12–16] asmodified (G′/G)-expansion
method [17,18] is one of the efficient and accurate
numerical methods that have been handled success-
fully to solve many partial differential equations (PDEs)
with high accuracy. The idea of the MOL is summa-
rized in reducing the given partial differential equa-
tions to a system of ordinary differential equations
(ODEs) in the time by discretization of space vari-
ables and spatial derivatives using finite difference
schemes. Then the resultant ODEs system can be
solved using a suitable ODE solver like the 4th order
Runge–Kutta method (RK4). As a global approach,
the MOL is used in this work for solving PDEs of
Navier–Stokes that describes the flow of incompress-
ible fluids. In order to utilize this explicit method
in solving such PDEs, the ellipticity in Navier–Stokes
equations must be removed. The leading method
to achieve this is using the penalty method [19],
which was received significant attraction in the last
years, especially in the finite element and free con-
vection community [20–23]. The idea of this tech-
nique is based on eliminating the pressure variable
(p) in the momentum conservation equations with
the aid of a mass conservation equation (continuity
equation) that will be used as a restriction. In the
penalty method, the errors in the divergence of veloc-
ity are transferred to the boundaries [24]. An alter-
native related technique is the artificial compressibil-
ity technique (ACT) [25–29], in which the deviations
from incompressibility determine ∂p/∂t rather than p
itself. Also, the ACT diffuses errors in velocity diver-
gence. The penalty method and ACT converge to the
Navier–Stokes equations in the limit as their parameters
approach to infinity [30].

Therefore, we try to utilize a combination between
MOL, penalty method and ACT for the purpose of spa-
tial discretizing of PDEs of unsteady penalty-artificial
compressibility and present the MOL-PACT for solving
PDEs governing natural convection of MHD laminar
incompressible fluid in a square cavity with a partial
heater at the bottom wall and cooled from sidewalls.

Optimal values of penalty and artificial compressibil-
ity parameters are calculated using a deduced stability
condition. The validation of the developed technique
is tested by comparing the obtained results with other
experimental and numerical results existing in the lit-
erature as well. As we will see in the model validation
section, an excellent agreement between the obtained
results and the results that exciting in the literature [1,2],
when neglecting the magnetic field effect, is achieved
although the simplicity of the method. This can be con-
sidered one of the advantages and benefits of the pro-
posed method.

2. Mathematical and physical model

Suppose themotion of viscous fluid in a square encloser
of length L·as shown in Figure 1. The heat source of

length l is centrally positioned on the lower wall and
varied from 0.2 to 0.8 of L· . The

l
L· is termed as ε (dimen-

sionless heated length piece). The upper wall and the
unheated piece of the lower wall are adiabatic; how-
ever, the vertical sidewalls are maintained at a fixed
temperature Tc and the heated piece of the lower wall
is at a temperature Th. The change in the fluid den-
sitywith temperature is combinedusing the Boussinesq
approximation. The encloser is subjected to a horizontal
uniform magnetic field with a magnitude B0, [31] while
the brought magnetic field is neglected being small as
compared to B0. Enclosure walls are supposed to be
electrically deposed with no Hall impacts. Under these
hypotheses, the transient form of continuity, energy
and momentum equations can be obtained from [21]
by adding the termwhich represents themagnetic field
effect or from [32] by removing the term which repre-
sents the medium permeability effect,

∂u

∂x
+ ∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (2)

∂v

∂t
+ ∂v

∂x
+ u

∂v

∂y
= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)

− σB20
ρ

v + gβ (T − Tc) , (3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
, (4)

wherever u and v are the velocities in x and y directions
sequentially, p is the pressure, ρ is the density, β is the
coefficient of thermic expansion, α is the thermic diffu-
sivity, ν is the viscosity, σ is the conductivity and g is the
gravity acceleration.
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Figure 1. Geometry and physical model.

The boundary conditions (BCs) for our case are:

• vertical sidewalls walls: u̧ = ν = 0, T = Tc,
• lower wall: u̧ = ν = 0, ∂T

∂y = 0, at 0 ≤ x ≤ ( 1−ε
2

)
L.

and
( 1−ε

2

)
L. ≤ x ≤ L. , T = Th, for

( 1−ε
2

)
L. ≤ x ≤( 1+ε

2

)
L. ,

• upper wall: u̧ = ν = 0, ∂T
∂y = 0.

Substituting the nondimensional variables:

ξ = x

L.
, Y = y

L.
, τ = αt

L.
2 , Ù = u̧L.

α
, V = νL.

α
,

P = PL.
2

ρα2
, ϑ = T − Tc

Th − Tc
, Pr = ν

α
,

Ra = gβL.
3(Th − Tc)

αν
, Ha = B0L.

√
σ

ρν
.

into Equations (1)–(4) yields dimensionless
equations

∂Ù

∂χ
+ ∂V
∂Y

= 0, (5)

∂Ù

∂τ
+ Ù

∂Ù

∂χ
+ V ∂Ù

∂Y
= − ∂P

∂χ
+ Pr

(
∂2Ù

∂χ2 + ∂2Ù

∂Y2

)
, (6)

∂V
∂τ

+ Ù
∂Ù

∂χ
+ V ∂V

∂Y
= − ∂P

∂Y

+ Pr

(
∂2V
∂χ2 + ∂2V

∂Y2

)

− PrHa
2V + PrRaϑ , (7)

∂ϑ

∂τ
+ Ù

∂ϑ

∂χ
+ V ∂ϑ

∂Y
= ∂2ϑ

∂χ2 + ∂2ϑ

∂Y2
. (8)

And hence the BCs are reduced to:

• vertical sidewalls walls: Ù = V = ϑ = 0,

• lower wall: Ù = V = 0, ∂ϑ
∂Y = 0, for 0 ≤ χ ≤( 1−ε

2

)
and

( 1+ε
2

) ≤ χ ≤ 1,

ϑ = 1, for
(
1 − ε

2

)
≤ χ ≤

(
1 + ε

2

)
,

• upper wall: Ù = V = ∂ϑ
∂Y = 0.

Here Ù,V , P and ϑ are the nondimensional velocities
components, pressure and temperature, respectively.
The parameters Pr , Ra and Ha represent the Prandtl,
Rayleigh and Hartman numbers, respectively. The rate
of the heat transfer through the heated portion of the
lower wall can be quantified using the averaged Nus-
selt symbolNuaνg and local Nusselt symbol (Nu(χ)) that
given by, respectively,

Nuavg. =
∫ 1+ε

2

1−ε
2

Nu (χ) dχ , (9)

Nu(χ) = − ∂ϑ

∂Y

∣∣∣∣
Y=0

. (10)

The motion of the fluid can be presented by the
stream functionψ that canbeperceived from the veloc-
ities Ù and V as:

Ù = ∂ψ

∂Y
,V = −∂ψ

∂χ
. (11)

Equation (11) leads to the following Poisson’s equation,
for obtaining the stream functionψ .

∂2ψ

∂χ2 + ∂2ψ

∂Y2
= ∂Ù

∂Y
− ∂V
∂χ

. (12)

Because of a nonslip condition, ψ = 0 is considered at
all boundaries of the cavity.

3. Mathematical formulation and numerical
procedure

3.1. Penalty-artificial compressibility technique
(PACT)

Based on the penalty method and the artificial com-
pressibility technique, instead of continuity equation
(5), we present the following penalty-artificial com-
pressibility equation

∂P

∂τ
= −c2

(
∂Ù

∂χ
+ ∂V
∂Y

)

− b
∂

∂τ

(
∂Ù

∂χ
+ ∂V
∂Y

)
, (13)

where the constant c represents the artificial compress-
ibility parameter and b represents the penalty param-
eter. When c = 0, Equation (13) reduces to the time
derivative of the penalty equation, while if b = 0, it
reduces to the artificial compressibility equation. Due to
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the choice of no-slip conditions at all boundaries, P = 0
is at all walls of the cavity. Initial conditions of Ù,V ,ϑ
and P at time τ = 0 are selected to be identical to the
same appreciation of the closest boundary. To estimate
suitable appreciation of b and c that are needed to solve
the system of Equations (6)–(8) and (13), firstly we con-
struct the MOL finite difference scheme and then we
apply a suitable stability technique as the conventional
linearized Fourier stability analysis.

3.2. MOL and stability analysis

As indicated by the MOL, the coordinate χ and Y in
the system of Equations (6)–(8) and (13) is discretized
with N × N regularly 2D spaced grid points where χi =
χi−1 +�χ , Yj = Yj−1 +�Y ,χ0 = Y0 = 0, χN = YN = 1,
i, j = 1, 2, . . . ,N and�χ = �Y = 1/N. Central finite dif-
ference scheme with a second-order accuracy used
to approximate the first and second derivatives cor-
responding to the spatial variables χ and Y at each
grid point (χi, Yj) for i, j = 2, 3, . . . ,N − 1.Then the 4th
Runge–Kutta technique is utilized as a time integrator
to solve the ODEs system upon the pre-described initial
conditions with an appropriate step time �τ . The cen-
tral first- and second-ordered finite difference operators
regarding χ and Y are defined as:

D1x[Fi,j] = (Fi+1,j − Fi−1,j)

2Δχ
,

D1y[Fi,j] = (Fi,j+1 − Fi,j−1)

2ΔY
,

D2x[Fi,j] = (Fi+1,j − 2Fi,j + Fi−1,j)

Δχ2 and

D2y[Fi,j] = (Fi,j+1 − 2Fi,j + Fi,j−1)

ΔY2
.

In order to drive a stability condition needed to esti-
mate the constantsband c, wewrite the finitedifference
scheme of Equations (6)–(8) and (13) in a forward Euler
explicit representation with respect to time τ , as

Ùk+1
i,j = Ùk

i,j +�τ(−Ùk
i,jD1x[Ùk

i,j] − Vk
i,jD1y[Ùk

i,j]

−D1x[Pki,j] + Pr(D2x[Ùk
i,j] + D2y[Ùk

i,j])), (14)

Vk+1
i,j = Vk

i,j +�τ(−Ùk
i,jD1x[Vk

i,j]

− Vk
i,jD1y[Vk

i,j] − D1y[Pki,j]

− PrHa
2[Vk

i,j] + PrRaϑ
k
i,j

+ Pr(D2x[Vk
i,j] + D2y[Vk

i,j]), (15)

ϑk+1
i,j = ϑk

i,j +�τ(−Ùk
i,jD1x[ϑk

i,j] − Vk
i,jD1y[ϑk

i,j]

+D2x[ϑk
i,j] + D2y[ϑk

i,j]), (16)

Pk+1
i,j = Pki,j − c2�τ(D1x[Ùk

i,j] + D1y[Vk
i,j])

− b(D1x[Ùk
i,j] − D1x[Ù

k−1
i,j ] + D1y[Vk

i,j]

− D1y[Vk−1
i,j ]), (17)

where k is the time level.

Ignoring the convection terms in the present finite
difference scheme and applying a linearized von Neu-
mann stability analysis [33] yield the following stability
condition [34,35]:

�τ

(
1

�χ2 + 1
�Y2

)
(c2�τ + 2(b + Pr)) < 1. (18)

Setting �2 =
(

1
�χ2 + 1

�Y2

)−1
, and defining a mixture

ratio M = c2�τ
2(b+Pr)

, the stability restriction (18) can be
written as

2�τ
�2 (b + Pr)(M + 1) < 1. (19)

The values M = 0 and M = ∞ correspond to the pure
penalty technique and ACT, respectively, while values
near M = 1 correspond to a roughly equal mixture of
the two techniques. In order to estimate a value of the
parameter b form inequality (19), we introduce a safety
factor f where 0 < f < 1. Thus, we can obtain b and c2

that are safely consistent with stability condition as

b = f�2

2�τ(M + 1)
− Pr, (20)

c2 = fM�2

�τ 2(M + 1)
. (21)

From the relations (20) and (21), that satisfying the sta-
bility condition, one can estimate the values of b and
c2 for a given grid by setting arbitrary values of Prandtl
number Pr , mixture ratioM, safety factor f and selecting
a small value of�τ .

All results that will be discussed in Section 5 are com-
puted using a grid of size 40 × 40 points for Pr =0.71
(air),M = 1, f = 0.8 and�τ = 10−5. These arbitrary val-
ues give that b = 5.54 and c2 = 1.25 × 106. The optimal
value of the mixture ratio M is selected upon analysing
maximum absolute deviations (relative error) in the
continuity equation for several values ofM ranging from
M = 10−4 to M = 104. This analysis is not shown here.
A detailed analysis of choosing the optimal value of the
mixture ratio M and the safety factor f can be found in
[34,35].

The grid of size 40 × 40 is decided upon the next
grid independence study. RK4 technique is used as an
integrator of the resultingODEs system, instead of Euler
technique, for the purpose of obtaining more accurate
results. The stream function ψ is obtained by applying
the successive over-relaxation technique, with suitable
accuracy, to the system of linear algebraic equations
resulted from the following equation

D2x[ψk
i,j] + D2y[ψk

i,j] = D1y[Ùk
i,j] − D1x[Vk

i,j]. (22)

The steady-state solution is checked by employing the
following condition∑

i,j

|�k+1
i,j −�k

i,j| < 10−5, (23)

where� stands for Ù,V ,ϑ , P or ψ .
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Table 1. Grid independence study when Ra = 106,Ha =
0, ε = 0.2 and ε = 0.8.

ε = 0.2 ε = 0.8

Grid N × N Nuavg. % Change Nuavg. % Change

G1 20× 20 3.517 – 10.912 –
G2 40× 40 3.648 3.59 11.278 3.25
G3 80× 80 3.675 0.73 11.322 0.39

4. Study of grid independency andmodel
validation

4.1. Study of grid independency

Calculations have been gotten on three meshes to test
the grid independency of the numerical scheme: G1 :
20 × 20, G2 : 40 × 40 andG3 : 80 × 80. Thegrid inde-
pendence study is done for the averageNusselt number
along with the heated piece of the lower wall when
Ra = 106,Ha = 0, ε = 0.2 and ε = 0.8. The results of the
grid study for the three grids are presented in Table 1.

As shown in Table 1, the variance in Nuavg. between
the grids G1 and G2 is 3.59% for ε = 0.2 and 3.25%
for ε = 0.8, while between G2 and G3 is only 0.73% for
ε = 0.2 and 0.39% for ε = 0.8. So, a grid pattern of G2 is
considered in all study computations.

4.2. Validation of themodel

Through the objective of consequences validation,
the results got from the present work are discussed
with the experimental and numerical ones of Sharma

Table 2. Comparison of Nuavg. of the present work with exper-
imental and numerical values of [1–3] when Ha = 0, ε = 0.8 for
various values of Ra.

The average Nusselt number (Nuavg.)

Ra
Present
work

Sharma
et al. [1]

Aydin and
Yang [2]

Calcagni
et al. [3]

104 3.750 3.76 3.9 4.0
105 6.142 6.15 6.2 6.3
106 11.278 12.84 11.3 12.0

et al. [1], Aydin and Yang [2] and Calcagni et al. [3]
with identical boundary conditions and Ra values in
absence of the magnetic field effect, i.e. Ha = 0. The
average Nusselt number at the heated portion of the
lower wall of dimensionless length ε = 0.8 are dis-
cussed in Table 2, with the obtained results. It can
be noted that the agreement is good. For further
results validation, some of the obtained results are
validated against ones obtained in [2,3] when Ha =
0 as shown in Figure 2. The upper row of Figure 2
contains plots of temperature contours when consid-
ering ε = 0.8 at Ra = 105, while the lower row con-
tains plots of the Nusselt number variations along the
heated piece of the lower wall with the Rayleigh sym-
bol for all values of ε. From Figure 2, one can state that,
a good agreement is detected between present con-
sequences and numerical experimental results exist-
ing in [2,3]. This agreement is enough to ensure the
validation and accuracy of the present computational
scheme.

Figure 2. A comparison between present results and numerical/experimental results in [2,3] (a) isotherms when Ra = 105, ε = 0.8
and (b) Nuavg. versus Ra for various values of ε when Ha = 0.



JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 213

Figure 3. Isotherms at ε = 0.2 and different values of Ha, (a) when Ra = 105 and (b) when Ra = 106.

Figure 4. Streamlines at ε = 0.2 and different values of Ha, (a) when Ra = 105 and (b) when Ra = 106.

5. Results and discussions

Here, we discuss the results of theMOL-PACT numerical
solution for simulating2Dsteady laminar flowunder the
effects of MHD inside a square enclosurewith a partially

heating from the lower wall and symmetrical cooling
from vertical sidewalls with an isolated upper side. The
results are investigated by obtaining isotherms, stream-
lines, local and average Nusselt numbers for several
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Figure 5. Isotherms at ε = 0.8 and different values of Ha, (a) when Ra = 105 and (b) when Ra = 106.

Figure 6. Streamlines at ε = 0.8 and different values of Ha, (a) when Ra = 105 and (b) when Ra = 106.

values of Ra(103 to 106), Ha(0 to 100) and ε(0.2 to 0.8)
while Pr is remained fixed at 0.71. The simulation is
done to study the impact of Hartman number, Rayleigh
number, and dimensionless heated length part on fluid
stream function, temperature distribution (isotherms)
and rate of heat transfer.

Figures 3–6 depict the isotherms and streamlines in
the cavity for various values of Ra, Ha and ε. From Fig-
ures 3 and 5; it can be illustrated that as the Rayleigh
number increases, the thermal layers will be thinner
causing increased heat transfer and the gradients of
temperature becomehighnear theheatedbottomside.
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Figure 7. Variations ofNusselt number along theheatedpart of the lowerwall for variousHartmannumbers atRa = 106, (a) ε = 0.2,
(b) ε = 0.4, (c) ε = 0.6 and (d) ε = 0.8.

Moreover, temperature distribution will be stratified
and the stratification degree grows with the growing of
Ra. The larger Ra means further fluid circulation, and so,
further heat is added to the fluid to upsurge the con-
vection of the fluid. The Hartmann number presents a
measure of the magnetic field effect on thermal free
convection. The amount of the heat transfer dramati-
cally reduces with the growth of Ha due to the fact, that
themagnetic field tends to resist the fluidmotion inside
the cavity as shown in Figures 3 and 5.

From Figures 4 and 6 when Ha = 0, one can detect
that the growing of the Rayleigh number will grow the
strength of the circulation inside the cavity and make
the cores of the vortex’s cells move upward as con-
cluded in [2]. On other hand as Ha increases, the main
recirculation cellmoves downwardbecause of themag-
netic field strength effect. For a fixed Ha, the stream-
lines remain almost similar but the boundary layer
near the midpoint of the bottom wall becomes slightly
compressed.

To show the impacts of Ra, Ha and ε on the heat
transfer rate inside the cavity, it is important to visu-
alize the local and average Nusselt number. Figure 7
represents Nu along heated part of the lower wall for
various values of Ha and ε at Ra = 106. For a fixed ε,
increasing Ha resists the fluid convection. Moreover,
growing ε for a fixed value ofHa produces a raise in heat
transfer. These outcomes can be obviously illustrated
under the temperature distribution demonstrated in
Figures 3 and 5. Figure 8 illustrates the variations of
Nuavg.along heated part of the lower wall versus Ra for
all values of ε, Ha =0 and Ha =100. This figure sum-
marizes the effects of Ra, Ha and ε on the heat trans-
fer rate inside the fluid. It can be shown that the rate
of heat transfer enhances by increasing Rayleigh num-
ber and dimensionless heated length, while it reduces
by decreasing the magnetic field parameter Ha. When
Ha =0, the shown results in Figure 8, are consistent
with the results obtained in [2,3]. On other hand, when
Ha =100, the values of Nuavg. remain approximately



216 M. M. MOUSA ET AL.

Figure 8. Average Nusselt number variation over the heated
part of the lower wall versus the Rayleigh number for all values
of ε, at Ha = 0 (solid line) and Ha = 100 (dash line).

constant till Ra = 105 then begin to increase when
Ra = 106.

6. Conclusion

In this work, the mixed technique MOL-PACT is devel-
oped for modelling MHD laminar flows and heat
transfer problems. Although the developed technique
is proposed to generate accurate transient solutions,
it is also applicable to calculate steady-state solu-
tions. The developed technique is combining hyper-
bolic and parabolic nature to get improved conver-
gence behaviour than either one alone may offer. The
penalty and artificial compressibility parameters that
consistent with the deduced stability restriction are
estimated.

As an example, to verify the efficiency of the MOL-
PACT, the technique is used to model the MHD free
convection in a square cavity with a localized heat-
ing. The simulation is done to investigate the influ-
ence ofmagnetic field parameter, Rayleigh number and
heated source length on the flow, isotherms and rate
of the heat transfer. The main conclusions of the sim-
ulation are as follows. The flow and temperature distri-
bution are symmetrical aroundmid-length of the cavity
because of the symmetry nature of considered con-
ditions. By increasing the Rayleigh number, the flow
recirculation growths, and the cores of the vortex’s
cells move upward. The heat transfer rate enhances by
increasing Rayleigh number and heated source length,
while it reduces by decreasing themagnetic field effect.
Some of the obtained results are consistent and in a
good agreement with ones found in the literature.

Finally, the novelty of the paper can be summarized
in that the proposed method provides a new efficient
choice for the investigating of MHD laminar flow and
heat transfer related problem. The generalizations of
MOL-PACT to be applicable for handling compressible
flows of low Mach number and nanofluids are of possi-
ble attention and are being pursued.
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