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a b s t r a c t

We enlarge the spectral problem of a generalized D-Kaup–Newell (D-KN) spectral
problem. Solving the enlarged zero-curvature equations, we produce integrable
couplings. A reduction of the spectral matrix leads to a second integrable coupling
system. Next, bilinear forms that are symmetric, ad-invariant, and non-degenerate
on the given non-semisimple matrix Lie algebra are computed to employ the
variational identity. The variational identity is then applied to the original enlarged
spectral problem of a generalized D-KN hierarchy and the reduced problem.
Hamiltonian structures are presented, as well as a bi-Hamiltonian formulation of
the reduced problem. Both hierarchies have infinitely many commuting high-order
symmetries and conserved densities, i.e., are Liouville integrable.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The finding of new integrable couplings has become an important area of research in mathematical
physics [1–24] and their study will aid in the classification of multi-component integrable systems. Originally,
the study of centerless Virasoro symmetry algebras of integrable systems revealed integrable couplings [1,2].
Given an integrable system ut = K(u), an integrable coupling of the system is a triangular system of the
form

ūt = [ut, vt]T = K̄(ū) = [K(u), S(u, v)]T , (1)
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where potentials u and v are scalar functions or vector functions with dependent variables x̄ = (t, x1, x2, . . .)
and ū = [u, v]T . It is important that the new differential equations in the bigger system (1) involve u and
all of its derivatives, i.e., ∂S

∂u ̸= 0, to avoid triviality. Integrable couplings were first constructed through
perturbations [1–3], then the spectral matrices were enlarged [4–6], and, in 2006, the connection between
integrable couplings and semi-direct sums of Lie algebras was realized [7,8]. Very recently, a novel kind
of AKNS integrable couplings was analyzed [14]. This paper has an enlarged spectral matrix with all sub-
matrices depending on λ. This technique has only be seen recently and can lead to Darboux transformations
for explicit solutions [25,26].

A generalized D-KN hierarchy was derived from the following isospectral problem

ϕx = U(λ, u)ϕ =
[
λ2 − r1 λp1 + s1
λq1 + v1 −λ2 + r1

]
ϕ, (2)

where u = [p1, q1, r1, s1, v1]T are potentials, ϕ = [ϕ1, ϕ2]T and U ∈ sl(2,R). The hierarchy is integrable in the
Liouville sense and a reduction to the spectral problem (2) is bi-Hamiltonian [27]. The spectral matrix (2) is
a generalization of the D-KN spectral matrix which is found by letting s1 = v1 = 0. The AKNS hierarchy [28]
may be found from (2) by letting p1 = q1 = r1 = 0 and choosing a suitable Laurent expansion. This new
generalized hierarchy contains equations from both the AKNS and the D-KN hierarchies through reductions
as well as many new interesting equations.

Two major sections complete this paper: integrable couplings and Hamiltonian structures. In the inte-
grable couplings section, an enlarged spectral matrix (2) is presented where all sub-matrices are dependent
on λ. Solving the zero-curvature equation, we find a system of recursive relations and prove they are local. We
use this to present the hierarchy of integrable couplings. Next, a reduction of the enlarged spectral matrix
leads to a second integrable coupling system. The section of Hamiltonian structures follows where non-
degenerate, ad-invariant, symmetric bilinear forms are found. The bilinear forms along with the variational
identity produce Hamiltonian structures of generalized D-KN integrable couplings and its reduced integrable
couplings. A bi-Hamiltonian structure is found for the reduced integrable couplings. We discover infinitely
many commuting high-order symmetries and conserved functionals for both hierarchies and, thus, their
Liouville integrability.

2. Integrable couplings

In order to simplify notation, we define a triangular block matrix as follows:

M(A1, A2) =
[
A1 A2
0 A1

]
. (3)

It can easily be shown that matrices of this form are closed under matrix multiplication, i.e., constitute a
Lie algebra. The associated matrix loop algebra g̃(λ) is formed by all block matrices of the type:

g̃(λ) ={M(A1, A2)| M defined by (3), entries of Ai are Laurent series in λ}. (4)

We will use this notation throughout this paper.

2.1. Generalized D-KN integrable couplings

A spectral matrix is chosen from g̃(λ) as

Ū = Ū(ū, λ) = M(U(λ, u), U1(λ, v)), (5)
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where ū = [u, v]T , u = [p1, q1, r1, s1, v1]T , v = [p2, q2, r2, s2, v2]T are potentials. U is from the generalized
D-KN spectral problem (2) and

U1 = U(λ, v) =
[
λ2 − r2 λp2 + s2
λq2 + v2 −λ2 + r2

]
. (6)

The isospectral problem is
ϕ̄x = Ū ϕ̄, (7)

where ϕ̄ = [ψ, ϕ]T , ψ = [ψ1, ψ2]T and ϕ = [ϕ1, ϕ2]T . Note that U is the same matrix as (2).
Assume that the solution to the stationary zero-curvature equation, W̄x = [Ū , W̄ ], is of the form

W̄ =
[
W W1
0 W

]
∈ g̃(λ),W =

[
a b
c −a

]
,W1 =

[
e f
g −e

]
, (8)

then we get the following matrix formulas{
Wx = UW −WU,

W1,x = U1W −WU1 + UW1 −W1U.
(9)

Solving these two formulas, we get the differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ax = −q1bλ+ p1cλ− v1b+ s1c,

bx = −2p1aλ+ 2bλ2 − 2s1a− 2r1b,

cx = 2q1aλ− 2cλ2 + 2v1a+ 2r1c,

ex = p1gλ+ p2cλ− q2bλ− q1fλ+ s1g + s2c− v1f − v2b,

fx = 2bλ2 + 2fλ2 − 2p1eλ− 2p2aλ− 2r1f − 2r2b− 2s1e− 2s2a,

gx = −2cλ2 − 2gλ2 + 2q1eλ+ 2q2aλ+ 2r1g + 2r2c+ 2v1e+ 2v2a.

(10)

By assuming a, b, c, e, f, g, have the following Laurent series expansions

a =
∞∑

i=0
aiλ

−i, b =
∞∑

i=0
biλ

−i, c =
∞∑

i=0
ciλ

−i,

e =
∞∑

i=0
eiλ

−i, f =
∞∑

i=0
fiλ

−i, g =
∞∑

i=0
giλ

−i,

(11)

and substituting (11) into (10), we have the recursion relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi+1 = bi−1,x

2 + p1ai + s1ai−1 + r1bi−1,

ci+1 = − ci−1,x

2 + q1ai + v1ai−1 + r1ci−1,

ai+1,x = −q1
bi,x

2 − p1
ci,x

2 + (p1v1 − q1s1)ai − q1r1bi + p1r1ci + s1ci+1

− v1bi+1,

fi+1 = fi−1,x

2 − bi+1 + p2ai + p1ei + s2ai−1 + s1ei−1 + r2bi−1 + r1fi−1,

gi+1 = − gi−1,x

2 − ci+1 + q2ai + q1ei + v2ai−1 + v1ei−1 + r2ci−1 + r1gi−1,

ei+1,x = − gi,x

2 p1 − fi,x

2 q1 + (p2 − p1)[− cm,x

2 + v1am + r1cm]
+ (q1 − q2)[ bm,x

2 + s1am + r1bm] + s1gi+1 + s2ci+1 − v1fi+1 − v2bi+1

+ (p1v2 − q1s2)ai + (p1v1 − q1s1)ei + p1r2ci − q1r2bi

+ p1r1gi − q1r1fi,

(12)

for all i ≥ 1 with initial values

a0 = α, b0 = c0 = 0, a1 = 0, b1 = αp1, c1 = αq1,
e0 = β, f0 = g0 = 0, e1 = 0, f1 = (β − α)p1 + p2α, g1 = (β − α)q1 + q2α,

(13)
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and the conditions for integration{
ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1,
ei|u=0 = fi|u=0 = gi|u=0 = 0, i ≥ 1,

(14)

which determine the sequence of {ai, bi, ci, ei, fi, gi|i ≥ 0} uniquely. For i = 2, 3, we have the following:

b2 = αs1, c2 = αv1, a2 = −α1
2p1q1,

f2 = (β − α)s1 + αs2, e2 = (αq1 + 1
2βq1 − 1

2q2)p1 − 1
2αp2q1,

g2 = (β − α)v1 + αv2;

b3 = α
1
2(−p2

1q1 + 2p1r1 + p1,x), c3 = −α1
2(q2

1p1 − 2q1r1 + q1,x),

a3 = −α1
2(p1v1 + q1s1),

f3 = 1
2[(β − 2α)p1,x + αp2,x + (β + 3α)p2

1q1 + (2β − 4α)r1p1

− α(p2q1p1 − 2r2p1 + q2p
2
1) + 2αp2r1],

g3 = −1
2 [(β − 2α)q1,x + αq2,x − (−β + 3α)q2

1p1α− (2β − 4α)r1q1

+ α(q2p1q1 − 2r2q1 + p2q
2
1) − 2αq2r1],

e3 = (v1α− 1
2v1β − 1

2v2α)p1 + (s1α− 1
2s1β − 1

2s2α)q1 − 1
2p2v1α− 1

2q2s1α.

All {ai, bi, ci, ei, fi, gi|i ≥ 0} can be proven as differential polynomials of ū with respect to x.

Proposition 2.1. Let {ai, bi, ci, ei, fi, gi|i = 0, 1} be given by Eq. (13). Then all functions {ai, bi, ci, ei,

fi, gi|i ≥ 0} determined by Eq. (12) with the conditions (14) are differential polynomials in ū with respect to
x, and thus, are local.

Proof. We compute from the enlarged stationary zero-curvature equation, W̄x = [Ū , W̄ ],

d

dx
tr(W̄ 2) = 2tr(W̄W̄x) = 2tr(W̄ [Ū , W̄ ]) = 2(tr(W̄ 2Ū) − tr(W̄ 2Ū)) = 0, (15)

and seeing that the tr(W̄ 2) = 4(a2 + bc), we have

a2 + bc = (a2 + bc)|u=0 = α2, (16)

following from the initial data (13). Now, we use (11), the Laurent expansions of a, b, c, to give

ai = α

2 − 1
2α

∑
k+l=i,k,l≥1

akal − 1
2α

∑
k+l=i,k,l≥0

bkcl, i ≥ 1. (17)

Based on the recursion relation above (17) and the previous (12), we use mathematical induction to see that
all functions {ai, bi, ci, i ≥ 0} are differential polynomials in u with respect to x, and therefore, are local.

Now, we have

d

dx
(2ae+ fc+ gb) =2axe+ 2aex + fxc+ fcx + gxb+ gbx

=2e(−q1bλ+ p1cλ− v1b+ s1c) + 2a(p1gλ+ p2cλ

− q2bλ− q1fλ+ s1g + s2c− v1f − v2b) + c(2bλ2

+ 2fλ2 − 2p1eλ− p2aλ− 2r1f − 2r2b− 2s1e− 2s2a)
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+ f(2q1aλ− 2cλ2 + 2v1a+ 2r1c) + b(−2cλ2 − 2gλ2

+ 2q1eλ+ q2aλ+ 2r1g + 2r2c+ 2v1e+ 2v2a)

+ g(−2p1aλ+ 2bλ2 − 2s1a− 2r1b) = 0.

Similarly, we get

2ae+ fc+ gb = (2ae+ fc+ gb)|ū=0 = αβ.

Therefore, using the Laurent expansions of a, b, c, e, f , and g in (11), we have

ei = β − β

α
ai − 1

2α
∑

k+l=i,k,l≥0
fkcl − 1

2α
∑

k+l=i,k,l≥0
gkbl − 1

α

∑
k+l=i,k,l≥1

akel, (18)

for all i ≥ 1. Using the localness of {ai, bi, ci|i ≥ 0} and the recursive relations (12) and (18), we may see
through mathematical induction that all functions {ei, fi, gi|i ≥ 0} are differential polynomials in ū with
respect to x. This completes the proof. ■

Now, we need to solve the zero-curvature equations,

Ūtm − V̄ [m]
x + [Ū , V̄ [m]] = 0, m ≥ 0, (19)

which are the compatibility conditions between (7) and the temporal problems,

ϕ̄tm = V̄ [m]ϕ̄ = V̄ [m](ū, λ)ϕ̄, m ≥ 0. (20)

In order to do this, we introduce a series of Lax operators

V̄ [m](ū, λ) = (λmW̄ )+. (21)

After solving (19), we generate a hierarchy of soliton equations, for all m ≥ 0,

ūtm = K̄m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2bm+1
−2cm+1

q1bm+1 − p1cm+1
−2p1am+1 + 2bm+2
2q1am+1 − 2cm+2
2fm+1 + 2bm+1

−2gm+1 − 2cm+1
q1fm+1 + q2bm+1 − p1gm+1 − p2cm+1

−2p1em+1 − 2p2am+1 + 2bm+2 + 2fm+2
2q1em+1 + 2q2am+1 − 2cm+2 − 2gm+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

We have

K̄m = Φ̄K̄m−1 = Φ̄mK̄0, m ≥ 0, (23)

where

Φ̄ =
[

Φ 0
Φ1 − Φ Φ

]
. (24)
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where Φ is the recursion operator of the original system ut = K(u) equal to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p1∂
−1v1 −p1∂

−1s1 2s1∂
−1 1 − p1∂

−1q1 −p1∂
−1p1

−s1∂
−1q1 −s1∂

−1p1

q1∂
−1v1 q1∂

−1s1 −2v1∂
−1 q1∂

−1q1 1 + q1∂
−1p1

+v1∂
−1q1 +v1∂

−1p1

p1v1∂
−1 q1

2 p1v1∂
−1 p1

2 −p1v1∂
−1 q1

2
p1

2
−q1s1∂

−1 q1

2 −q1s1∂
−1 p1

2 +q1s1∂
−1

1
2∂ + r1 − s1∂

−1v1 −s1∂
−1s1 2p1r1∂

−1 −s1∂
−1q1 −s1∂

−1p1

−p1r1∂
−1q1 −∂p1∂

−1 p1

2 +∂p1∂
−1

−∂p1∂
−1 q1

2 −p1r1∂
−1p1

v1∂
−1v1 − 1

2∂ + r1 + v1∂
−1s1 −2q1r1∂

−1 v1∂
−1q1 v1∂

−1p1

+∂q1∂
−1 q1

2 +q1r1∂
−1p1 −∂q1∂

−1

+q1r1∂
−1q1 +∂q1∂

−1 p1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

and Φ1 is the supplemental matrix differential operator with entries

[Φ1]11 = −p1∂
−1v2 − p2∂

−1v1 − s2∂
−1q1 − s1∂

−1q2,

[Φ1]12 = −p1∂
−1s2 − p2∂

−1s1 − s2∂
−1p1 − s1∂

−1p2,

[Φ1]13 = 2s2∂
−1 + 2s1∂

−1, [Φ1]14 = 1 − p1∂
−1q2 − p2∂

−1q1,

[Φ1]15 = −p1∂
−1p2 − p2∂

−1p1,

[Φ1]21 = q1∂
−1v2 + q2∂

−1v1 + v1∂
−1q2 + v2∂

−1q1,

[Φ1]22 = q1∂
−1s2 + q2∂

−1s1 + v1∂
−1p2 + v2∂

−1p1,

[Φ1]23 = −2v1∂
−1 − 2v2∂

−1,

[Φ1]24 = q1∂
−1q2 + q2∂

−1q1, [Φ1]25 = 1 + q1∂
−1p2 + q2∂

−1p1,

[Φ1]31 = (v1p2 − q2s1)
2 ∂−1q1 + (p1v2 − q1s2)

2 ∂−1q1 − (p1v1 − q1s1)
2 ∂−1q1

+ (p1v1 − q1s1)
2 ∂−1q2,

[Φ1]32 = (v1p2 − q2s1)
2 ∂−1p1 + (p1v2 − q1s2)

2 ∂−1p1 − (p1v1 − q1s1)
2 ∂−1p1

+ (p1v1 − q1s1)
2 ∂−1p2,

[Φ1]33 = −(p1v2 − q1s2)∂−1 − (p2v1 − q2s1)∂−1,

[Φ1]34 = q2

2 , [Φ1]35 = p2

2 ,

[Φ1]41 = r2 − s1∂
−1v2 − s2∂

−1v1 − ∂
(p2 − p1)

2 ∂−1q1 − (r1p2 + p1r2)∂−1q1

+ p1r1∂
−1q1 − r1p1∂

−1q2 − ∂
p1

2 ∂
−1q2,

[Φ1]42 = −s1∂
−1s2 − s2∂

−1s1 − ∂
(p2 − p1)

2 ∂−1p1 − (r1p2 + p1r2)∂−1p1

+ p1r1∂
−1p1 − r1q1∂

−1p2 − ∂
p1

2 ∂
−1p2,
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[Φ1]43 = ∂(p2 − p1)∂−1 + 2(r1p2 + p1r2)∂−1 + ∂p1∂
−1,

[Φ1]44 = −s1∂
−1q2 − s2∂

−1q1, [Φ1]45 = −s1∂
−1p2 − s2∂

−1p1,

[Φ1]51 = v1∂
−1v2 + v2∂

−1v1 + ∂
(q1 − q2)

2 ∂−1q1 + (r1q2 + q1r2)∂−1q1

− q1r1∂
−1q1 + r1q1∂

−1q2 − ∂
q1

2 ∂
−1q2,

[Φ1]52 = r2 + v1∂
−1s2 + v2∂

−1s1 + ∂
(q1 − q2)

2 ∂−1p1 + (r1q2 + q1r2)∂−1p1

− q1r1∂
−1p1 + r1q1∂

−1p2 − ∂
q1

2 ∂
−1p2,

[Φ1]53 = −∂(q1 − q2)∂−1 − 2(r1q2 + q1r2)∂−1 + ∂q1∂
−1,

[Φ1]54 = v1∂
−1q2 + v2∂

−1q1, [Φ1]55 = v1∂
−1p2 + v2∂

−1p1, (26)

with ∂ = ∂

∂x
and ∂−1 as the inverse operator of ∂.

2.2. A specific reduction with two less potentials

A spectral matrix, Ū , chosen from g̃(λ), is of the form:

Ū = M(U(λ, u), U1(λ, v)), (27)

where r1, r2 from (5) are replaced with r̃1 = 1
2p1q1, r̃2 = 1

2 (p1q2 + p2q1 − p1q1), and ū = (u, v)T ,
u = [p1, q1, s1, v1]T , v = [p2, q2, s2, v2]T are potentials. The corresponding spacial spectral problem is

ϕ̄x = Ū(ū, λ)ϕ̄, (28)

where ϕ̄ = [ψ, ϕ]T , ψ = [ψ1, ψ2]T and ϕ = [ϕ1, ϕ2]T .
Again, we assume that the solution to the stationary zero-curvature equation, W̄x = [Ū , W̄ ], is of the

form as (8). Solving the stationary zero-curvature equation (19), we have the following differential equations
as (10) with r1 = r̃1 and r2 = r̃2. By assuming a, b, c, e, f, g, have the Laurent expansions (11), we have the
recursion relations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi+1 = bi−1,x

2 + p1ai + s1ai−1 + 1
2p1q1bi−1,

ci+1 = − ci−1,x

2 + q1ai + v1ai−1 + 1
2p1q1ci−1,

ai+1,x = −q1
bi,x

2 − p1
ci,x

2 + (p1v1 − q1s1)ai − 1
2p1q

2
1bi

+ 1
2p

2
1q1ci + s1ci+1 − v1bi+1,

fi+1 = fi−1,x

2 − bi+1 + p2ai + p1ei + s2ai−1 + s1ei−1

+ 1
2 (p1q2 + p2q1 − p1q1)bi−1 + 1

2p1q1fi−1,

gi+1 = − gi−1,x

2 − ci+1 + q2ai + q1ei + v2ai−1 + v1ei−1

+ 1
2 (p1q2 + p2q1 − p1q1)ci−1 + 1

2p1q1gi−1,

ei+1,x = − p1gi,x

2 − q1fi,x

2 + (p2 − p1)[− cm,x

2 + v1am + 1
2p1q1cm]

+ (q1 − q2)[ bm,x

2 + s1am + 1
2p1q1bm]

+ s1gi+1 + s2ci+1 − v1fi+1 − v2bi+1 + (p1v2 − q1s2)ai

+ (p1v1 − q1s1)ei + 1
2p1(p1q2 + p2q1 − p1q1)ci

− 1
2q1(p1q2 + p2q1 − p1q1)bi + 1

2p
2
1q1gi − 1

2p1q
2
1fi,

(29)

for all i ≥ 1 with the same initial values (13) and conditions for integration (14) which determine the sequence
of {ai, bi, ci, ei, fi, gi|i ≥ 0} uniquely. All {ai, bi, ci, ei, fi, gi} can be proven as differential polynomials of ū
with respect to x.
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Proposition 2.2. Let {ai, bi, ci, ei, fi, gi|i = 0, 1} be given by Eq. (13). Then all functions {ai, bi, ci, ei,

fi, gi|i ≥ 0} determined by Eqs. (29) with the conditions (14) are differential polynomials in ū with respect to
x, and thus, are local.

Proof. For brevity, we leave the proof out. It is similar to Proposition 2.1. ■

We solve the zero-curvature equations (19) with the Lax matrices (21) to generate a hierarchy of soliton
equations for all m ≥ 0,

ūtm = K̄m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2bm+1
−2cm+1

−2p1am+1 + 2bm+2
2q1am+1 − 2cm+2
2fm+1 + 2bm+1

−2gm+1 − 2cm+1
−2p1em+1 − 2p2am+1 + 2bm+2 + 2fm+2
2q1em+1 + 2q2am+1 − 2cm+2 − 2gm+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (30)

We have
K̄m = Φ̄K̄m−1 = Φ̄mK̄0, m ≥ 0, (31)

where Φ̄ is a recursion operator determined from (29) and given by

Φ̄ =
[

Φ 0
Φ1 − Φ Φ

]
. (32)

The matrix blocks of Φ̄ are defined by

Φ =

⎡⎢⎢⎣
−p1∂

−1v1 −p1∂
−1s1 1 − p1∂

−1q1 −p1∂
−1p1

q1∂
−1v1 q1∂

−1s1 q1∂
−1q1 1 + q1∂

−1p1
1
2∂ + r̃1 − s1∂

−1v1 −s1∂
−1s1 −s1∂

−1q1 −s1∂
−1p1

v1∂
−1v1 − 1

2∂ + r̃1 + v1∂
−1s1 v1∂

−1q1 v1∂
−1p1

⎤⎥⎥⎦ , (33)

and

Φ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p1∂
−1v2 −p1∂

−1s2 1 − p1∂
−1q2 −p1∂

−1p2
−p2∂

−1v1 −p2∂
−1s1 −p2∂

−1q1 −p2∂
−1p1

q1∂
−1v2 q1∂

−1s2 q1∂
−1q2 1 + q1∂

−1p2
+q2∂

−1v1 +q2∂
−1s1 +q2∂

−1q1 +q2∂
−1p1

r̃2 − s1∂
−1v2 −s1∂

−1s2 −s1∂
−1q2 −s1∂

−1p2
−s2∂

−1v1 −s2∂
−1s1 −s2∂

−1q1 −s2∂
−1p1

v1∂
−1v2 r̃2 + v2∂

−1s1 v1∂
−1q2 v1∂

−1p2
+v2∂

−1v1 +v1∂
−1s2 +v2∂

−1q1 +v2∂
−1p1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where r̃1 = 1
2p1q1 and r̃2 = 1

2 (p1q2 + p2q1 − p1q1).
A specific example can be found from the reduced hierarchy of integrable couplings (30) when m = 6 by

setting the eight potentials and α and β to be the following: {p1 = q1 = 0, s1 = u, v1 = −u, p2 = q2 = v, s2 =
w, v2 = r, α = −4, β = −8}. We find a coupled mKdV [10,11] system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = −uxxx − 6u2ux,

vt = −vxxx − 4uvux − 2u2vx + (4r − 4w)u2,

wt = −wxxx + uxxx + (6u2 + (4v − 4w)u)ux − 4u2vx − 2u2wx,

rt = −rxxx − uxxx + (−6u2 + (−4r + 4v)u)ux − 2u2rx − 2u2vx.

(35)
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3. Hamiltonian structures

3.1. Constructing bilinear forms over a non-semisimple Lie algebra

For generating Hamiltonian structures for the integrable couplings in (22) and (30), we use the variational
identity over the non-semisimple Lie algebra g̃(λ) [9,12,13]. The variational identity is a generalization of
the trace identity and may be applied to non-semisimple Lie algebras which is a limitation of the trace
identity [9,29]. The idea is to use non-degenerate, symmetric, and ad-invariant bilinear forms on the Lie
algebra. We begin with a construction of the bilinear forms on g̃(λ) by rewriting g̃(λ) into a vector form.

The isomorphism
σ : g̃(λ) → R6, A ↦→ (a1, . . . , a6)T , (36)

where
A = M(A1, A2) ∈ g̃(λ), Ai =

[
a3i−2 a3i−1
a3i −a3i−2

]
, i = 1, 2, (37)

and a constant symmetric matrix,

F = F1 ⊗
[
1 0
0 0

]
+ F2 ⊗

[
0 1
1 0

]
, Fi =

⎡⎣2ηi 0 0
0 0 ηi

0 ηi 0

⎤⎦ , i = 1, 2, (38)

where ⊗ is the Kronecker product and arbitrary constants η1 and η2, we furnish the bilinear forms on g̃(λ)
defined as

⟨A,B⟩g̃(λ) =⟨σ(A), σ(B)⟩R6

=(a1, . . . , a6)F (b1, . . . , b6)T

=(2a1b1 + a2b3 + a3b2)η1 + (2a1b4 + a2b6 + a3b5

+ 2a4b1 + a5b3 + a6b2)η2.

(39)

The bilinear forms (39) are symmetric and ad-invariant due to the isomorphism σ. The bilinear forms, defined
by (39), are non-degenerate if and only if the determinant of F is not zero, i.e.,

det(F ) = −4η6
2 ̸= 0. (40)

Therefore, we choose η2 ̸= 0 to obtain the required non-degenerate, symmetric, and ad-invariant bilinear
forms over the enlarged matrix loop algebra g̃(λ). For simplicity, we choose η1 = 0 and η2 = 1.

3.2. Hamiltonian structures of generalized D-KN integrable couplings

Now, we begin with the enlarged spectral matrix of a generalized D-KN hierarchy (7) and compute

⟨W̄ , Ūλ⟩g̃(λ) = (4a+ 4e)λ+ fq1 + bq2 + cp2 + gp1, (41)

and
⟨W̄ , Ūū⟩g̃(λ) = [gλ, fλ,−2e, g, f, cλ, bλ,−2a, c, b]T . (42)

Substituting the Laurent series and comparing powers of λ, we have

δ

δū

∫ (4am+2 + 4em+2) + fm+1q1 + bm+1q2 + cm+1p2 + gm+1p1

m
dx =

[gm+1, fm+1,−2em, gm, fm, cm+1, bm+1,−2am, cm, bm]T , m ≥ 1.
(43)
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A long calculation involving the recursion relations (12) shows that

δH̄m+1

δū
= Ψ̄

δH̄m

δū
, (44)

where
Ψ̄ = Φ̄† =

[
Φ† (Φ1 − Φ)†

0 Φ†

]
, (45)

with Φ and Φ1 from (24), (25) and (26), respectively. We consequently obtain Hamiltonian structures for
the hierarchy of integrable couplings (22), i.e.,

ūtm = J̄
δH̄m

δū
, m ≥ 0, (46)

with the Hamiltonian functionals,

H̄m =
∫ (4am+2 + 4em+2) + fm+1q1 + bm+1q2 + cm+1p2 + gm+1p1

m
dx, (47)

for m ≥ 1, and
H̄0 =

∫
[(β − α)p1q1 + α(p1q2 + p2q1) − 2βr1 − 2αr2]dx, (48)

calculated directly from [g1, f1,−2e0, g0, f0, c1, b1,−2a0, c0, b0]T . The Hamiltonian operator in (46) is the
block matrix of the form:

J̄ =
[

0 J1
J1 J2

]
, (49)

where

J1 =

⎡⎢⎢⎢⎢⎣
0 2 0 0 0

−2 0 0 0 0
0 0 1

2∂ s1 −v1
0 0 −s1 0 ∂ + 2r1
0 0 v1 ∂ − 2r1 0

⎤⎥⎥⎥⎥⎦ , J2 =

⎡⎢⎢⎢⎢⎣
0 2 0 0 0

−2 0 0 0 0
0 0 0 s2 −v2
0 0 −s2 0 2r2
0 0 v2 −2r2 0

⎤⎥⎥⎥⎥⎦ . (50)

As a direct result of the Hamiltonian structures (46), the recursion structure (23) and (44), and the property
J̄Ψ̄ = Ψ̄ †J̄ , the hierarchy (22) has the following commutativity of flows

{H̄k, H̄l}J̄ =
∫ (

δH̄k

δū

)T

J̄
δH̄l

δū
dx = 0. (51)

We also have the commutativity of high-order symmetries for {K̄n}, i.e.,

[K̄k, K̄l] = K̄ ′
k(ū)[K̄l] − K̄ ′

l(ū)[K̄k] = 0, k, l ≥ 0. (52)

Therefore, the hierarchy (22) is Liouville integrable, as expected.

3.3. Bi-Hamiltonian structures of the reduced integrable couplings

Next, we focus on the reduced spectral matrix (28) and compute

⟨W̄ , Ūλ⟩g̃(λ) = (4a+ 4e)λ+ fq1 + bq2 + cp2 + gp1, (53)

and

⟨W̄ , Ūū⟩g̃(λ) =[(a− e)q1 − aq2 + gλ, (a− e)p1 − ap2 + fλ, g, f,

− aq1 + cλ,−ap1 + bλ, c, b]T .
(54)
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Again, we compare powers of λ after substituting the Laurent series for a, b, c, e, f, g to get

δ

δū

∫ (4am+2 + 4em+2) + fm+1q1 + bm+1q2 + cm+1p2 + gm+1p1

m
dx =

[(am − em)q1 − amq2 + gm+1, (am − em)p1 − amp2 + fm+1, gm, fm

−amq1 + cm+1,−amp1 + bm+1, cm, bm]T , m ≥ 1.

(55)

Now using the recursion relations (29), we have

δH̄m+1

δū
= Ψ̄

δH̄m

δū
, (56)

where
Ψ̄ = Φ̄† =

[
Φ† (Φ1 − Φ)†

0 Φ†

]
, (57)

with Φ and Φ1 from (33) and (34), respectively.
We finally obtain the bi-Hamiltonian structure for the hierarchy of integrable couplings (30),

ūtm = J̄
δH̄m+1

δū
= M̄

δH̄m

δū
, m ≥ 0, (58)

with the Hamiltonian functionals

H̄m =
∫ (4am+2 + 4em+2) + fm+1q1 + bm+1q2 + cm+1p2 + gm+1p1

m
dx, (59)

for m ≥ 1, and the block Hamiltonian operators J̄ given by

J̄ =
[

0 J
J J

]
, J =

⎡⎢⎢⎣
0 0 0 2
0 0 −2 0
0 2 0 0

−2 0 0 0

⎤⎥⎥⎦ , (60)

and M̄ = Φ̄J̄ where J̄ is above (60) and Φ̄ is the recursion operator (32) for the reduced integrable
couplings (30). Recall, a bi-Hamiltonian property means that J̄ and M̄ constitute a Hamiltonian pair, or,
N̄ = αJ̄+βM̄ , for any α, β ∈ R, is a Hamiltonian operator. As a direct result of the bi-Hamiltonian structure
(58), we can say that the soliton hierarchy (30) is integrable in the Liouville sense with⎧⎪⎪⎪⎨⎪⎪⎪⎩

{H̄k, H̄l}J̄ =
∫ (

δH̄k

δū

)T

J̄
δH̄l

δū
dx = 0,

{H̄k, H̄l}M̄ =
∫ (

δH̄k

δū

)T

M̄
δH̄l

δū
dx = 0,

(61)

and
[K̄k, K̄l] = K̄ ′

k(ū)[K̄l] − K̄ ′
l(ū)[K̄k] = 0, k, l ≥ 0. (62)

4. Concluding remarks

We have introduced a newly studied spectral matrix that is a generalization of the D-Kaup–Newell
spectral problems. Integrable couplings resulted from enlarging this spectral matrix and solving zero-
curvature equations. The Hamiltonian structures of the integrable couplings were constructed and presented.
The reduced hierarchy of integrable couplings was found to be bi-Hamiltonian and both hierarchies are
Liouville integrable. These enlarged hierarchies are both new and different from one another. Many new
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equations found in these hierarchies have been found to be integrable like the coupled mKdV presented in
(35).

This paper uses a relatively new idea of having ∂U1
∂λ ̸= 0 in the enlarged spectral matrix Ū where most

integrable couplings are generated through perturbations and ∂U1
∂λ = 0. Although the calculations are more

difficult and tedious, many new applications may arise from integrable couplings starting from enlarged
spectral matrices of this form. One application is the Darboux transformation method for the construction
of solutions to integrable couplings [25,26]. This construction also creates new integrable systems associated
with non-semisimple Lie algebras and brings us new insightful thoughts to classify integrable systems from
an algebraic point of view.
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