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Abstract By a class of zero curvature equations over a non-semisimple matrix loop
algebra, we generate a new hierarchy of bi-integrable couplings for a soliton hierarchy
associated with so(3, R). The bi-Hamiltonian structures are found by the associ-
ated variational identity, which imply that all the presented coupling systems possess
infinitely many commuting symmetries and conserved functionals and, thus, are Liou-
ville integrable.
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1 Introduction

The study of solitons in regard to integrable systems has facilitated a deeper under-
standing of mathematics and physics. Many well-known nonlinear partial differential
equations have been found to have soliton solutions, for example, the Korteweg—de
Vries equation and the sine-Gordon equation. It is known that zero curvature equa-
tions associated with simple Lie algebras generate classical integrable systems [1], and
semisimple Lie algebras generate non-coupled systems of classical integrable systems.
It is our business to further develop the study of non-semisimple Lie algebras in rela-
tion to integrable couplings. Soliton hierarchies, and specifically, integrable couplings
and bi-integrable couplings, provide valuable new insights into the classification of
multi-component integrable systems [2—-6].

It is known that zero curvature equations on semidirect sums of matrix loop alge-
bras generate integrable couplings [7,8], and the associated variational identity [9,10]
is used to furnish Hamiltonian structures and bi-Hamiltonian structures of the result-
ing integrable couplings and bi-integrable couplings [11-17]. An important step in
generating Hamiltonian structures is to search for non-degenerate, symmetric, and
ad-invariant bilinear forms on the underlying loop algebras [13, 18] as the trace iden-
tity proposed by Gui-Zhang Tu [18,19] is ineffective for non-semisimple Lie algebras
which possess a degenerate Killing form. Semidirect sums of loop algebras bring var-
ious interesting integrable couplings and bi-integrable couplings [20-24], including
higher-dimensional local bi-Hamiltonian integrable couplings [25-29], greatly enrich-
ing multi-component integrable systems. Recently, it has been of interest to study new
integrable couplings and bi-integrable couplings generated from spectral problems
associated with so(3, R) [14].

Integrable couplings enlarge an original integrable system and often times retain
its properties [2,4]. Bi-integrable couplings then take the integrable coupling system
and enlarge that system. Again, the original properties frequently are maintained. An
important feature is if a soliton hierarchy has infinitely many commuting symmetries
and conserved densities, the integrable coupling and then bi-integrable coupling gen-
erally will too [14-17,30,31]. A bi-integrable coupling system is a natural way of
extending a well-behaved integrable system. We show that the bi-integrable couplings
of an original spectral problem associated with so(3, R) will preserve bi-Hamiltonian
structures, i.e., Liouville integrability, of the integrable couplings associated with the
same spectral problem [32].

A zero curvature representation of a system of the form

ut=K(u):K(x,t,u,ux,uxx,...), (1)
where u is a column vector of dependent variables and means there exists a Lax pair
[331 U = U(u,r) and V = V(u, A) in a matrix loop algebra such that the zero

curvature equation,
U —Ve+[U,V]I=0, )
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Bi-Integrable Couplings Associated with so(3, R) 1923

will generate system (1) [19]. The integrable coupling of system (1) is an integrable
system of the form ([25,26] for definition):

_ = | K(u) _ | u
Mt—Kl(M)—[S(uvul)}, u—[ul], 3)

where 11 is a new column vector of dependent variables. An integrable system of the
form

B K (u) u
u=Ki(w) = | Si(u,uy) |, u=|u]|, 4
So(u, uy, uz) )

is called a bi-integrable coupling of (1). Note that in (4), S» depends on u3, but S1 does
not. Now, we use zero curvature equations in order to generate bi-integrable couplings
and associated Hamiltonian structures, through appropriate variational identities.

We will proceed with Sects. 2 through 6. In Sect. 2, we recall a soliton hierarchy
presented in [32] for a matrix spectral problem in so(3, R). In Sect. 3, we construct bi-
integrable couplings from the results in Sect. 2 using an enlarged matrix loop algebra.
We then use the corresponding variational identity to present the Hamiltonian structure
of the bi-integrable coupling system in Sect. 4. In Sect. 5, infinitely many symmetries
and conserved functionals are discussed. We finish the paper with a couple open
questions.

2 A Soliton Hierarchy Associated with so(3, R)

Let us recall the a soliton hierarchy [32] given by the spectral problem

0 g X
¢pr=U¢, U=Uu,\)=|—-qg 0 —p|eso0), )
-2 p 0

where

wo[i) e[

A is a spectral parameter, p = p(x,t), ¢ = q(x, t), and so(3) is the special matrix
loop algebra, i.e.,

g =s50(3) = {A € so(3)|entries of A are Laurent series in A} . (6)

Under the assumption that W is of the form

0 ¢ a 0 ¢ a; ' '
W=|—- 0 —b|= Z —c; 0 —=b; | 1A'= Z Wir™", 7
—a b 0 i>0 | —a; b; 0 i>0
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1924 M. McAnally, W.-X. Ma

then the stationary zero curvature equation,
Wy =1[U, W], (®)

determines the system of equations

ax = pc —qb,
by = —Xic+qa, )
cx = —pa + Ab.

After setting a, b, c to appropriate Laurent expansions, system (9) equivalently gen-
erates
bit1 = paj + cix,
Civ1 = —bix +qa;, i>0. (10)
Ait1,x = pCi+1 — qbit1,

Next, we set the initial conditions as {ag = —1, by = 0 = ¢¢} and take all constants
of integration to be zero. We can present for 1 <i < 4:

a1=O9 CIZ_Q1 bl:_p9
1
azzz(Pz‘H]Z), 2 = px, br=—qy,
15 13 15 1 5
az = pqx — pxq, C3=¢qxx+ P9+ =97, b3=pxx+-p +2-pq°,

2 2 2 2
320 34, 1, 34,1,
a4=—ZPq —gp ‘I'pr_prx_gq +§qx—qqxx,

1 1
by = Gxxx + §(3P2 + 36]2)51):» C4 = —Pxxx — 5(3172 + 36]2)Px-

All functions {a;, b;, c;|i > 0} are differential polynomials of u# with respect to x.
The zero curvature equations are

U,m—Vx[’”]+[U, v[’"]]zo with V"l = 07w, a1

where m > 0, and, therefore, provide a hierarchy of soliton equations, i.e.,

_ 5
vy = Ky = [ Cm+li| _pm [_qp} = J%, (12)

where m > 0. The Hamiltonian operator J, the hereditary recursion operator @, and
the Hamiltonian functions are defined as follows:

[0 —1 _ gd~'p d+qd7 g _ am+2
J_[l 0]’ (p_[—a—l?a_lp —p g | = T
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in whichm > 0 and 0 = %. The first nonlinear example is

U, = Ky = —qxx — %P26] - %QS —J Pxx + %P3 + %qu . ]37’[2 (14)
, =Ky = = =J—=.
Pxx +30° + 1pg® gex + 1p%q + 143 Su

3 Bi-Integrable Couplings

We construct Hamiltonian bi-integrable couplings for the soliton hierarchy by using
a matrix loop Lie algebra. Define a triangular block matrix

Al Ay Az
M(A,A2,A3)=| 0 A aAr]. (15)
0 0 Al

It is known that block matrices of this form are closed under multiplication, i.e.,
constitute a Lie algebra [34]. The associated loop matrix Lie algebra g(2) is formed
by all block matrices of the type

g) = {M (A1, Az, A3)|M defined by (15), entries of A are Laurent series in 1}.
(16)
A spectral matrix is chosen from g() as

U=U@,\)=MU, U, Uy, = (p,q,rs, v,w), (17)

where U is defined as in (5) and the supplementary spectral matrices U; and U, are

0O s O

Uy=Uiu)=|-s 0 —r], ulz[;], (18)
_O r 0
0 w 0

Up=Us(uz) = | —w 0 —v], u2=|:::)j|. (19)
_0 v 0

In order to solve the enlarged stationary zero curvature equation,
W, =[U, W1, (20)
we take the solution to be of the following form:
W = Wi, \) = M(W, W, Wa) € g(»), (21)

where W is defined by (7) and solves Wy = [U, W], and W; and W, are assumed to
be

0 g e
Wi=Wiw,u,A)=|—-g 0 —f]|€s00), (22)
—e f 0
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1926 M. McAnally, W.-X. Ma

and
0 g ¢
Wo = Wau,ur,u2, 1) =|—-g 0 —f"|eso@). (23)
_e/ f/ 0

Equation (20) is equivalent to satisfying the following matrix equations:

Wy =[U, W],
Wox =[U, Wol + [Ua, W]+ a[U;, Wi].

The second and third equations in (24) generate

ex =pg —qf +rc—sb,
fx = —rg +qe+sa, (25)
gx =—pe+Arf —ra,

and
e, =—fsa+gra—qf’ + pg —wb+ vc,
fi=qe —rg' + wa + sea, (26)
gy =—pe +Arf —rea —va,

respectively. Plugging into recursion relations (25) and (26) into the Laurent expan-

sions,
e=Y e, f=) firT, g=) ar,
i>0 ' i>0 ' i>0 ' (27)
6/2261{)»_[, flzzfi/)‘_l’ g/zzgz{)‘_l’
i>0 i>0 i=0
we have

fi+1 = gix + pei tra,

gi+1 = —fix +qei + sai,

€itlx = P&i+1 — qfi+1 +rciy1 —sbiq1,

i1 = 8+ péf +var + v

8iy1 = — [l Tae +wai +asc,

€iy1x = P8y — afi —asfivr +argivi — wbip +veiq,

(28)

where i > 0. We take the initial data as {eg = —1, fo = go = 0;¢; = —1, fy = g, =
0} and suppose that the integration constants are zero. Then, recursion relation (28)
uniquely generates {e;, fi, g e/, f/. g/|i > 1}. We obtain
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and

e1 =0,
fi=-p—r
gr=—q-s

ey = %pz + %qz +rp+sq,

f2=—qx —sx,

82 = px +rx;

€3 =qxp — qpx — spx +rqx +sxp — 12q.

f3 = pxx + 503+ Spa® + 3rp% + psq + 3rq? + e,

83 = aqrx + 5% + 2ap? + 3567 + qrp + Lsp? + sxx:

e4 = (=p = r)pxx + (=q — $)qxx — Prax — qsxx 3 p2 + per + 342 + qusa
—%(p2 + a2 (P +4pr+q(g +49),

f4 = Grxx + Sxax + 532 +6pr +3¢% +65)qx + 5 3p? +3¢%)sx,

84 = —Prxx — Foxx + 3(=3p% — 6pr —3¢% — 6q5)px + 3 (=3p* = 3¢%)rx:

e} =0,

fl=-p—ar—uv,

gy =—q—as—uw;

e/2 = %pz + %qQ +arp +asq +vp +wqg + %asz + %arz,

f3=—qx —asx —wy,

&) = Px +ary + vx;

eé =qxP — qpx — ASPx +arqgy +asyp —rxq — wpy +vgx + wWxp —aqry
—Uxq + aSxr — oSry,

fi=pax+ 307 + 3pa® +@3rp? +apsq + agrg® + rex + a3 pr’ +arsq
+pqw + 3vp? + Lvg? + Laps? + arve + vx,

gé = (qgxx + %q3 + %qu + a%sqz + agrp +o¢%xp2 + Sxx —i—oz%qs2 + asrp
+ pvg + %qu + %pr + %Olprz + Sy + Wx;

€y = (=ar — p = V)pxx + (—as — ¢ — w)gxx — @(p +1)rxx — (g + 5)sxx
—Uxx P — Wxxq + %pﬁ + (ary + vx)px
+ %q% + (osx + wy)gx + %ar% + %as% - %p4 + %(—ar —v)p?
+ §(=642 + (= 12as — 12w)q — 18ar? — 6as?) p?
- %q((ar +v)g +2ars)p — %qz (%qz + (s +w)g + %ct(r2 + 3s2)) ,

f;{ = @xxx + ASxxx + Wxxx + %(31)2 + (6ar + 6v)p + 3q2 + (6as + 6w)gq
+3ar? + 3ozs2)qx + %(30{172 + 6apr + 3aq2 + 6aqs)sy
+5Gp? + 3¢Pwy,

84 = —Prxx — @rrxx — Vrxx + 3(=3p% — (6ar + 6v)p — 3¢ — (6as + 6w)g
—3ar? — 30{52)px + %(—30{p2 — 6apr — 3aq2 — 6ags)ry
- 13p? +3¢%)s.

These functions are differential polynomials in the variables p, g, r, s, v, and w.
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1928 M. McAnally, W.-X. Ma

Similar to [35], for each integer m > 0, we further introduce an enlarged Lax matrix
ylml — ()\mW)-i- - M (V[m], Vl[m]’ Vz[m]) € g, 29)

where V"l is defined by (11) and Vl.[m] = (A" W;)4+,i = 1,2. The enlarged zero
curvature equation,

0, — vim 4 [U, V['"]] =0, (30)

gives the following matrix equations:

Uty = VI3 [U v ]+ [0, v = o,
(31)
Unay = VI + [0 VI] + U2 V] o [0, v ] = 0,

along with the system in (11). The above equations then present the additional systems

N — — =) — Sl,m(uvul)
vtm - Sm - Sm(v) - [Sz,m(u, uy, uz)} ) m 2 0’ (32)

where v = (r, s, v, w)T and

Sl,m(u, u]) = [_fgnj:’l_l} ’
m

and

/
So o, Uy, u) = [ f/mH} .
m+1

Then the enlarged zero curvature equation generates a hierarchy of bi-integrable cou-
plings,

—Cm+1

bm+1

= _fiﬁjl = Kp(it), m >0, (33)

/!
_g/m—H
Im fm+l

ug,, =

I
E 2 v S QT

for soliton hierarchy (12).
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In particular, when m = 2, we have u;, = 152, ie.,

c v NS

—qxx — 3074 — 34° T
Pax + 507 + 3P4

~qvr = 34° = 390" = 35¢° = qrp — 35P” — Sxx

Pux + 307 + 3P4 + 307 + psq + 37q* +

1.3_ 1,72 3.2 1.2 3.2

—qux — 39° — 3qP* — @35q* — agrp — azsp® — sy —a3qs* —asrp
3,,,2 1 1

—pvg + 5wq° — —211)p2 - EOlps2 — ®Syy — Wiy

Pex +3P° + 5pq* + a3rp? + apsq + asrg® 4+ rox + a3 pr? + arsq

+pqw + 3vp? + Jvg® + Japs? + ary + viy |
(34)

4 Hamiltonian Structures

We have a systematic approach for generating Hamiltonian structures for the bi-
integrable coupling in (33) using the variational identity over the enlarged matrix
loop algebra g(1) [13,18]. The variational identity is as follows:

) - 9 -
s (W, Up)dx = A VakV(W, 7), ¥y = constant. (35)

As seen in [35], there is a convenient method to constructing a symmetric and ad-
invariant bilinear form on g(A) by rewriting the semidirect sum g(}) into a vector
form. First, we define a mapping

o: g >R A (ar,...,a0)T, (36)
where
0 as; asi—2
A=M(A, A, A3) eg(h), A =| —az 0  —az-1|, l=<i<3.
—azi—2 azi—| 0
37
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1930 M. McAnally, W.-X. Ma

The map o induces a Lie algebra structure on R isomorphic to the enlarged matrix
loop algebra g(1). Thus, the corresponding Lie bracket [-, -] on R is generated by
letting

[a,b]" = a"R(b), (38)
wherea = (a1, ...,a9)Y, b= (b1, ...,by)T € R® and
R(b) = M(Ry, R2, R3), (39)
with
0 —b3;i  b3i_1
R = bs3; 0 —b3io|, 1<i=<3. (40)

—b3i_1 b3 0

There is an Lie isomorphism, o, between the Lie algebra (]Rg, [-, -1) with the enlarged
matrix loop algebra g(1).
We may find a bilinear form on R? by

(a, b) :aTFb, 41)
where F is a constant matrix and the symmetric property of (-, -) requires that
FT =F. (42)
The symmetric condition along with the ad-invariance property
{a,[b,c]) = (la, b], c),
provides the condition
F(R(b)T = —RWb)F, beR’. (43)

Upon solving the derived system of equations from (43) for an arbitrary vector b € R?,
we find

n n2 n3
F=|nmn an 0|Q® F, 44)
nz 0 0
where
1 0 O
Fo=(0 1 0f, (45)
0 0 1
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Bi-Integrable Couplings Associated with so(3, R) 1931

and n;, 1 < i < 3, are arbitrary constants. Thus, the bilinear form on the semidirect
sum g(2) of the two Lie subalgebras g and g, is defined as

(A, B)goy = (0(A),0(B))go

= (ai,...,a0)F(bi,...,bo)T
(a1by + axby 4+ azb3)ny + (a1bg + arbs + azbg + asby + asby
+aeb3)ny + (xasbs + aasbs + aaegbe + a1b7 + axbg + azbo
+ab1 + agby + agb3z)ns, (46)

where A and B are two matrices in g(A) presented by

(47)

A=o0"Y(ai,...,a9)") € g,
B=0o"Y(b1,...,b9)T) € g0).

Bilinear form (46) is symmetric and ad-invariant due to the isomorphism o. A bilinear
form, defined by (46), is non-degenerate iff the determinant of F is not zero, i.e.,

det(F) = —n3a® #0. (48)

Therefore, we choose 13 7# 0 to obtain a non-degenerate, symmetric, and ad-invariant
bilinear form over the enlarged matrix loop algebra g(1).
Now, we compute

(W, Up)goy = an +ena +e'n3 49)
and
by + fna+ f'm3
et +gm+&'n3
Ty bny +afns
W,Ui)zon = 50
( g -+ g3 (50)
bns
cn3
In addition, the formula y = —%%ln|tr(W2)| [19] yields that the constant y = O,
and thus, the corresponding variational identity is
bt + fun2 + frm3
, CmM1 +gm772+g;n773
_/ —Am+11M1 — €m+1M2 — €, 113 dx — b + afmn3 -1
Sit m N CmM2 + 0gmN3 -
bun3
CmM3
(51)

We consequently obtain a Hamiltonian structure for hierarchy (33) of bi-integrable
couplings, )
-6H

iy, = J——=, m >0, (52)
Su
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1932 M. McAnally, W.-X. Ma

with the Hamiltonian functionals,

. / —Am12M1 — em4212 — €, >3

Hp = m 1 dx, (53)

and the Hamiltonian operator,

0O m 0 mo 0 !
-n 0 —n2 0 -3 0
Y 2 0 an3 0 0
I = - 0 —any O 0 0 ’ (34
0O 75 0 0 0 0
;3 0 0 0 0 0

and note that det(J) # 0. In particular, when m = 2, the Hamiltonian functional is

_ 1 )
Hy = 3 (—asm — eany — eyn3) dx, (55)

where

—agn — eany —eyn3 = (N1 +n2 +n3)p + (@n3 + m)r + N30) pax
+ ((m +n2+m)g + (@n3 + n2)sn3w) gxx
+ ((anz +n2)p + n3ar) rex ((anz + n2)g + N308) Sxx
1
+ I PUe3q e — 5 (0 + m3)p2
+ ((—ans — n)ry — n3vy) px — (01 + m2 + 13)q2
1

1
+ ((—am3 — m2)sy — N3wx) gx — Enwrf - Ensan

3 3
+ g(m +m+ 773)1745 ((an3 + m)r + 13v) p°

1
+ 8<6(m +m +m) q> + ((12am3 + 12m2)s + 12m3w) g
2 1 2 2 3
+ 18n3 | r° + 357 ) )p + 5(((an3 + n2)r + n3v)q

3
+ 2n3ars)pq + ng((m + 12+ 13)g% + ((dans

+ 4m)s + dpzw)g + 2am3(r% + 352)).
(56)
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5 Symmetries and Conserved Functionals
We may solve the recursion relation of symmetries
Igm = €5Izm—l’ m >0, (57)

for a recursion operator, @, to obtain

@ =

SRS IS
N =
Q

SRS

0

01, (58)
()]

where @ is given by (13) and

o~ lr + 501 9~ ls + 507!
® = { 1 b 71, (59)

—pd~lr —rd7'p —pdls —ra~lq
and

& g3y w+wd p+asdlr g 'w+wd g +asd s 60)
:T —pdlv—vd lp—ardlr —po~lw —vd g —aro~ls |’

It can be shown by a symbolic computation that @ is a hereditary operator [36,37].
Therefore,

Q' (W)[@T\ 1T, — D' (W)[T11T>

is symmetric with respect to 7} and 7>, and the two operators J and M = & J make a
Hamiltonian pair [38], i.e., J, M, and J + M are all Hamiltonian operators. Thus, the
hierarchy (33) of bi-integrable couplings possesses a bi-Hamiltonian structure [38,39]
and is Liouville integrable. It follows that there are infinitely many symmetries and
conserved functionals:

(K, Kal =0, m,n=0, (61)

and o o
{Hm, Hn}j = {Hm, Hn}M =0, mn=>0. (62)

6 Concluding Remarks

We have obtained a new class of bi-integrable couplings (33) for the soliton hierarchy
(12) using on non-semisimple Lie algebra (16). We showed the resulting hierarchy
of bi-integrable couplings possesses a bi-Hamiltonian structure and is Liouville inte-
grable. It remains an open question how to generate a Hamiltonian structure for matrix
loop algebra (15) when o = 0 as the bilinear form presented in Sect. 4 is degenerate.
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1934 M. McAnally, W.-X. Ma

Some enlarged matrix loop algebras do not possess any non-degenerate, symmetric,
and ad-invariant bilinear forms required in the variational identity. In the following
example of a bi-integrable coupling,

u; = K(u)
v, = K'(u)[v] (63)
w; = K'(w)[w].

where K'(u) denotes the Gateaux derivative, is there any Hamiltonian structure for
this specific bi-integrable coupling?
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