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Preface 

The 6th International Virtual Workshop on Nonlinear and Modern Mathematical 
Physics (NMMP2022) took place virtually from June 17 to 19, 2022, hosted by 
Florida Agricultural and Mechanical University. This workshop is part of a series 
of conferences organized periodically, starting with the inaugural workshop held 
in China from July 15 to 21, 2009. Subsequent events took place in Tampa at the 
University of South Florida from March 9 to 11, 2013, at the African Institute for 
Mathematical Sciences in Cape Town, South Africa from April 9 to 11, 2015, in 
Kuala Lumpur, Malaysia, from May 4 to 8, 2017, and the 5th edition, which was 
successfully conducted in Honolulu, Hawaii, from May 20 to 24, 2019. 

The 6th edition of the NMMP workshop served as a dynamic forum, bringing 
together scholars and researchers from various institutions worldwide. Florida A&M 
University led the organization, with support from the University of South Florida, 
Florida State University, Embry-Riddle Aeronautical University, Savannah State 
University, Prairie View A&M University, and Beijing Jiaotong University. The 
focus of the workshop was on recent advances and prevailing trends in nonlinear 
science, with a specific emphasis on nonlinear partial differential equations and their 
applications. Featuring 42 distinguished speakers, the three day event attracted over 
300 participants globally, fostering collaboration and knowledge exchange in the 
field. 

This book, a compilation of papers from both speakers and participants of 
NMMP2022, aims to showcase new ideas and discoveries in the field of partial 
differential equations (PDEs), integrable systems, and related areas in mathemat-
ical physics. In the dynamic landscape of mathematical physics, the exploration of 
nonlinear phenomena takes center stage, and this compendium, titled “Nonlinear and 
Modern Mathematical Physics,” endeavors to encapsulate the forefront of research 
and discourse in this field. As customary, each contribution in the book has undergone 
standard double-blind refereeing. 

Nonlinearity, with its intriguing and often unpredictable nature, has emerged as 
a central theme in contemporary mathematical physics. From the theoretical realms 
of chaos theory to the practical applications in fluid dynamics, the study of nonlinear 
phenomena has opened up new avenues of exploration and understanding. One

ix



x Preface

remarkable example of this is the discovery of solitons, which has had a profound 
impact on mathematical physics, reshaping our understanding of nonlinear dynamics 
and leaving a lasting imprint on various scientific disciplines. The introduction of 
solitons has not only revolutionized our conceptual framework but has also brought 
forth powerful mathematical methods. Techniques such as the inverse scattering 
transform and Hirota’s method have been developed, offering sophisticated tools to 
solve a wide range of nonlinear equations across diverse fields. These methods have 
not only expanded our analytical capabilities but have also facilitated deeper insights 
into the behavior of nonlinear systems. 

This compilation of works boldly explores the forefront of advancements in 
nonlinear theories, offering a comprehensive examination of the richness and diver-
sity inherent in this dynamic field. The contributors, by delving into the intricacies 
of nonlinear dynamics, illuminate the multifaceted nature of nonlinear phenomena. 
Their collective efforts shed light on the profound implications and versatile applica-
tions of nonlinear theories across various scientific domains. This volume serves as a 
testament to the far-reaching impact and ongoing exploration within the captivating 
realm of nonlinear mathematical physics. 

As editors, our aim is to curate a collection that not only reflects the current state 
of nonlinear mathematical physics but also serves as an intellectual catalyst for future 
explorations. The breadth and depth of topics covered herein cater to both seasoned 
researchers navigating the cutting edge and aspiring scholars embarking on their 
journey into this captivating realm. May this compilation serve as both a testament 
to the vibrant state of nonlinear mathematical physics and an inspiration for those 
who embark on the quest to unravel the mysteries that lie beyond the linear veil. 

Tallahassee, USA 
Tampa, USA 

Solomon Manukure 
Wen-Xiu Ma
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A Hamiltonian Set-Up for 4-Layer 
Density Stratified Euler Fluids 

R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and T. T. Vu Ho 

Abstract By means of the Hamiltonian approach to two-dimensional wave motions 
in heterogeneous fluids proposed by Benjamin [ 1] we derive a natural Hamiltonian 
structure for ideal fluids, density stratified in four homogenous layers, constrained 
in a channel of fixed total height and infinite lateral length. We derive the Hamilto-
nian and the equations of motion in the dispersionless long-wave limit, restricting 
ourselves to the so-called Boussinesq approximation. The existence of special sym-
metric solutions, which generalise to the four-layer case the ones obtained in [ 11] 
for the three-layer case, is examined. 
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Keywords Hamiltonian structures · Stratified fluids · Boussinesq approximation 

1 Introduction 

Density stratification in incompressible fluids is an important aspect of fluid dynam-
ics, and plays an important role in variety of phenomena occurring in both the ocean 
and the atmosphere. In particular, displacement of fluid parcels from their neutral 
buoyancy position within a density stratified flow can result in internal wave motion. 
Effective one-dimensional models (in particular, their quasi-linear limit) were intro-
duced to study these phenomena, and were the subject of a number of investigations 
(see, e.g., [ 6– 10, 13, 14, 16] and references therein). Although most of the theoretical 
and numerical results that can be found in the literature are focussed on the .2-layer 
case, multiply-layered fluid configurations appear as effective models of physical 
phenomena, e.g., in the atmosphere or in mountain lakes. The extension to the. n > 2
layers case can also be seen as a refined approximation to the real-world continuous 
stratification of incompressible fluids. 

The focus of the present paper is on the dynamics of an ideal (incompressible, 
inviscid) stably stratified fluid consisting of . 4 layers of constant density . ρ1 < ρ2 <

ρ3 < ρ4, confined in a channel of fixed height . h (see Fig. 1 for a schematic of our 
setup), and, in particular, on its Hamiltonian setting. This will be obtained by a 
suitable reduction of the Hamiltonian structure introduced by Benjamin [ 1] in the  
study of general density stratifications for Euler fluids in . 2 dimensions. 

We shall follow the approach set forth in our recent paper [ 4], where the .3-layer 
case was considered by extending to the multiple layer case a technique introduced 
in [ 3]. In particular, after having discussed in details the construction of the Hamilto-
nian operator for an effective . 1D model, we shall consider the so-called Boussinesq 
limit of the system, and explicitly determine its Hamiltonian structure and Hamilto-
nian functional, as well as point out the existence of special symmetric solutions. 

Our mathematical model is based on some simplifying hypotheses. At first, we 
assume that an inviscid model suffices to capture the essential features of the dynam-
ics since the scales associated with internal waves are large, and consequently the 
Reynolds number is typically high (. >10. 5). Although in the ocean and the atmo-
sphere (as well as in laboratory experiments) the density stratification arises as a 
consequence of diffusing quantities such as temperature and salinity, we can neglect 
diffusion and mixing since the time scales associated with diffusion processes are 
far larger than the time scale of internal wave propagation. Finally, we use the rigid 
lid assumption for the upper surface since the scales associated with internal wave-
motion are greatly exceeding the scales of the surface waves (see, e.g., [17] for further 
details on these assumptions). 

The Hamiltonian .4-layer model herewith discussed is a natural extension of the 
. 2 and.3-layer model. Indeed, when two adjacent densities are equal (and as a conse-
quence the relative interface becomes meaningless) we fully recover the dynamics
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of the . 3 layer model (see, e.g., [ 4, 11]). Similarly, the .3-layer model reduces to the 
ordinary .2-layer model when two mass densities coincide. 

The layout of the paper is the following. In Sect. 2 we briefly review the Hamilto-
nian representation for .2-dimensional incompressible Euler fluids of [ 1]. Section 3 
is devoted to a detailed presentation of our Hamiltonian reduction scheme, which 
endows the dynamics of the set of.4-layer stratified fluids with a natural Hamiltonian 
structure. In Sect. 4 we compute the reduced Hamiltonian and the ensuing equations 
of motion, confining ourselves to the case of the so-called Boussinesq approximation. 
In Sect. 5 a class of special evolutions, selected by a symmetry of the Hamiltonian, 
is found and briefly examined. 

2 The 2D Benjamin Model for Heterogeneous Fluids 
in a Channel 

Benjamin [ 1] proposed and discussed a set-up for the Hamiltonian formulation of an 
incompressible stratified Euler system in . 2 spatial dimensions, which we hereafter 
summarize for the reader’s convenience. 

The Euler equations for a perfect inviscid and incompressible but heterogeneous 
fluid in 2D, subject to gravity .−gk, are usually written for the the density . ρ(x, z)
and the velocity field .u = (u, w) as 

.
Dρ

Dt
= 0, ∇ · u = 0, ρ

Du
Dt

+ ∇ p + ρgk = 0 (1) 

together with appropriate boundary conditions, where, as usual,. D/Dt = ∂/∂t + u ·
∇ is the material derivative. 

ρ3 

η2(x,t) 

η4(x,t)=ζ3(x,t) 

z 

x 

ρ2 

ρ1 

η3(x,t) 

ζ2(x,t) 

h 

ρ4 

η1(x,t) 

ζ1(x,t) 

0 

Fig. 1 Four-layer rigid lid setup and relevant notation: .ζi are the surface heights and .ηi are the 
layer thicknesses
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Benjamin’s contribution was to consider, as basic variables for the evolution of 
such a fluid, the density . ρ together with the “weighted vorticity” .∑ defined by 

..∑ = ∇ × (ρu) = (ρw)x − (ρu)z . (2) 

The equations of motion for these two fields, ensuing from the Euler equations for 
incompressible fluids, are 

..
ρt + uρx + wρz = 0
∑t + u∑x + w∑z + ρx

(
gz − 1

2 (u
2 + w2)

)
z + 1

2ρz
(
u2 + w2

)
x = 0 .

(3) 

They can be written in the form 

..ρt = −
[
ρ,

δH

δ∑

]
, ∑t = −

[
ρ,

δH

δρ

]
−

[
∑,

δH

δ∑

]
, (4) 

where, by definition, the bracket is .[A, B] ≡ Ax Bz − Az Bx , and the functional 

.H =
{

D
ρ

(
1

2
|u|2 + gz

)
dx dz (5) 

is simply given by the sum of the kinetic and potential energy, .D being the fluid 
domain. The most relevant feature of this coordinate choice is that.(ρ,∑) are physical, 
directly measurable, variables. Their use, though confined to the 2D case with the 
above definitions, allows one to avoid the introduction of Clebsch variables (and 
the corresponding subtleties associated with gauge invariance and limitations of the 
Clebsch potentials) which are often used in the Hamiltonian formulation of both 2D 
and the general .3D case (see, e.g., [ 18]). 

As shown by Benjamin, Eq. (4) are a Hamiltonian system with respect to a Lie-
theoretic Hamiltonian structure, that is, they can be written as 

.. ρt = {ρ, H}, ∑t = {∑, H},

for the Poisson bracket defined by the Hamiltonian operator 

.JB = −
(

0 ρx∂z − ρz∂x
ρx∂z − ρz∂x ∑x∂z − ∑z∂x

)
. (6) 

3 The Hamiltonian Reduction Process 

As mentioned in the Introduction, we shall consider special stratified fluid configura-
tions, consisting of a fluid with.n = 4 layers of constant density. ρ1 < ρ2 < ρ3 < ρ4

and respective thicknesses. η1, . η2, . η3, . η4, confined in a channel of fixed height. h. We
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define, as in Fig. 1, the locations of the interfaces at .z = ζk , .k = 1, 2, 3, related to 
the thickness .η j by 

.ζ3 = η4, ζ2 = η4 + η3, ζ1 = η4 + η3 + η2. (7) 

The velocity components in each layer are denoted by .(ui (x, z), wi (x, z)), . i =
1, . . . , 4. By means of the Heaviside. θ and Dirac. δ generalized functions, a four-layer 
fluid configuration can be described within Benjamin’s setting as follows. First, the 
.2D density and velocity variables can be written as 

.

ρ(x, z) = ρ4 + (ρ3 − ρ4)θ(z − ζ3) + (ρ2 − ρ3)θ(z − ζ2) + (ρ1 − ρ2)θ(z − ζ1)

u(x, z) = u4 + (u3 − u4)θ(z − ζ3) + (u2 − u3)θ(z − ζ2) + (u1 − u2)θ(z − ζ1)

w(x, z) = w4 + (w3 − w4)θ(z − ζ3) + (w2 − w3)θ(z − ζ2) + (w1 − w2)θ(z − ζ1) .

(8) 

Thus, the density-weighted vorticity .∑ = (ρw)x − (ρu)z can be computed as 

.

∑ =
3∑

j=1

(
ρ j+1Ω j+1 − ρ jΩ j

)
θ(z − ζ j ) + ρ4Ω4

+
3∑

j=1

(
(ρ j+1u j+1 − ρ j u j ) + (ρ j+1w j+1 − ρ jw j )ζ j x

)
δ(z − ζ j ) ,

(9) 

where .Ωi = wi x − ui z for .i = 1, . . . , 4 are the bulk vorticities. 
Next, we assume the bulk motion in each layer to be irrotational, so that . Ωi = 0

for all .i = 1, . . . , 4. Thus the density weighted vorticity is explicitly given by 

. ∑ = (
(ρ4u4 − ρ3u3) + (ρ4w4 − ρ3w3)ζ3x

)
δ(z − ζ3)

+ (
(ρ3u3 − ρ2u2) + (ρ3w3 − ρ2w2)ζ2x

)
δ(z − ζ2) (10) 

+ ((ρ2u2 − ρ1u1) + (ρ2w2 − ρ1w1)ζ1x ) δ(z − ζ1) .  

A further assumption we make right from the outset is that of the long-wave asymp-
totics, with small parameter .∈ = h/L << 1, . L being a typical horizontal scale of the 
motion such as wavelength. This assumption implies (see, e.g., [ 8] for further details) 
that at the leading order as .∈ → 0 we have 

. ui ∼ ui , wi ∼ 0 ,

i.e., we can neglect the vertical velocities .wi and trade the horizontal velocities . ui
with their layer-averaged counterparts, 

.ui = 1

ηi

{ ζi−1

ζi

u(x, z)dz, where ζ0 ≡ h, ζ4 ≡ 0 . (11)
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Hence, from (10) and recalling the first of (8), we obtain 

.

ρ(x, z) = ρ(x, z) = ρ4 +
3∑

i=1

(ρi − ρi+1) θ(z − ζi )

∑(x, z) =
3∑

i=1

σi δ(z − ζi ) ,

(12) 

where, hereafter, 
.σi ≡ ρi+1ui+1 − ρi ui (13) 

is the horizontal averaged momentum shear. We remark that field configurations of 
the form (12) can be regarded as defining a submanifold, which will be denoted by. I, 
of Benjamin’s Poisson manifold .M described in Sect. 2. 

The . x and .z-derivative of the Benjamin’s variables given by Eq. (12) are gener-
alized functions supported at the interfaces .{z = ζ1} ∪ {z = ζ2} ∪ {z = ζ3}, and are 
computed as 

.
ρx = − ∑3

i=1(ρi − ρi+1)δ(z − ζi )ζi x

ρz =∑3
i=1(ρi − ρi+1)δ(z − ζi ) ,

(14) 

and 

.
∑x = − ∑3

i=1σiζi xδ
'(z − ζi ) + ∑3

i=1σi xδ(z − ζi )

∑z =∑3
i=1σiδ

'(z − ζi ) .
(15) 

To invert the map (12) we choose to integrate along the vertical direction . z. To  
this end, we define the two intermediate isopycnals 

.ζ 12 = ζ1 + ζ2

2
, ζ 23 = ζ2 + ζ3

2
. (16) 

ζ3(x,t) 

z 

x 

ζ2(x,t) 

h 

ζ1(x,t) 

0 

ζ12(x,t) 

ζ23(x,t) 

Fig. 2 Choice of the isopycnals:. ζi are the surface heights and.ζ 12, ζ 23 the intermediate isopycnals
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Remarking that .ζ 12 lies in the .ρ2-layer and .ζ 23 in the .ρ3-layer (see Fig. 2), by 
means of this choice we can introduce on . I the “projection” . π by 

.

π (ρ(x, z),∑(x, z)) ≡ (ξ1, ξ2, ξ3, τ1, τ2, τ3)

=
({ h

0 (ρ(x, z) − ρ4) dz,
{ ζ 12

0 (ρ(x, z) − ρ4) dz,
{ ζ 23

0 (ρ(x, z) − ρ4) dz,{ h
0 ∑(x, z)dz,

{ ζ 12

0 ∑(x, z)dz,
{ ζ 23

0 ∑(x, z)dz

)
(17) 

which maps Benjamin’s manifold of.2D fluid configurations to the space of effective 
.1D fields . S, parameterized by the six quantities .(ζk, σk). A straightforward compu-
tation shows that the relations 

.

ξ1 = (h − ζ1)(ρ1 − ρ2) + (h − ζ2)(ρ2 − ρ3) + (h − ζ3)(ρ3 − ρ4)

ξ2 = ρ2 − ρ3

2
(ζ1 − ζ2) + ρ3 − ρ4

2
(ζ1 + ζ2 − 2ζ3)

ξ3 = 1

2
(ρ3 − ρ4)(ζ2 − ζ3)

τ1 = σ1 + σ2 + σ3, τ2 = σ1 + σ2, τ3 = σ3

(18) 

hold. 
To obtain a Hamiltonian structure on the manifold .S by reducing Benjamin’s 

parent structure (6), we have to perform, as per the Hamiltonian reduction scheme 
of [ 15], the following steps: 

1. Starting from a 1-form on the manifold . S, represented by the 6-tuple 

. (α1
S, α

2
S, α

3
S, α

4
S, α

5
S, α

6
S) ,

we construct its lift to . I, that is, a 1-form.βM = (βρ, β∑) satisfying the relation 

.

{ +∞

−∞

{ h

0
(βρρ̇ + β∑∑̇) dx dz =

{ +∞

−∞

6∑

k=1

αk
S · (

π∗(ρ̇, ∑̇)
)k

dx , (19) 

where.π∗ is the tangent map to (17) and.(ρ̇, ∑̇) are generic infinitesimal variations 
of .(ρ,∑) in the tangent space to . I. 

2. We apply Benjamin’s operator (6) to the lifted one form.βM to get the vector field 

.

(
ρ̇

∑̇

)
=

(
Y (1)
M

Y (2)
M

)
= JB ·

(
βρ

β∑

)
. (20) 

3. We project the vector .(Y (1)
M ,Y (2)

M ) under .π∗ and obtain a vector field on . S. The  
latter depends linearly on .{α(i)

S }i=1,...,6, and defines the reduced Poisson operator 
.P on . S.
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As in the three layer case of [ 4] this construction essentially works as in the two-layer 
case considered in [ 3], provided one subtle point is taken into account. Thanks to the 
relations (12) and the definition of . π , we have that, for tangent vectors .(ρ̇, ∑̇), 

.π∗
(

ρ̇

∑̇

)
=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

{ h
0 ρ̇ dz

{ ζ 23

0 ρ̇ dz + ζ̇ 23 (ρ(x, ζ 23) − ρ4){ ζ 12

0 ρ̇ dz + ζ̇ 12 (ρ(x, ζ 12) − ρ4){ h
0 ∑̇ dz

{ ζ 23

0 ∑̇ dz + ζ̇ 23 ∑(x, ζ 23){ ζ 12

0 ∑̇ dz + ζ̇ 12 ∑(x, ζ 12)

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

. (21) 

Note that in this formula we have an explicit dependence on the variations . ζ̇ 12

and .ζ̇ 23. To express these quantities in terms of . ρ̇, which is needed to perform 
the abovementioned steps of the Poisson reduction, we can use the analogue of 
relations (14), that is 

.ρ̇ = ∑3
i=1(ρi+1 − ρi )ζ̇iδ(z − ζi ) . (22) 

Integrating this with respect to. z on the relevant intervals.[0, h], .[0, ζ 12] and. [0, ζ 23]
yields 

..

{ h

0
ρ̇ dz = (ρ4 − ρ3)ζ̇3 + (ρ3 − ρ2)ζ̇2 + (ρ2 − ρ1)ζ̇1 ,

{ ζ 12

0
ρ̇ dz = (ρ4 − ρ3)ζ̇3 + (ρ3 − ρ2)ζ̇2 ,

{ ζ 23

0
ρ̇ dz = (ρ4 − ρ3)ζ̇3 .

(23) 

Solving the linear system (23) with respect to the . ζ̇k’s, we can obtain .ζ̇ 12 and .ζ̇ 23 in 
terms of integrals of . ρ̇ along . z, and thus trade Eq. (21) for  

..π∗
(

ρ̇

∑̇

)
=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

{ h
0 ρ̇ dz

c1
{ h
0 ρ̇ dz + (1 + c3 − c2)

{ ζ 12

0 ρ̇dz − c3
{ ζ 23

0 ρ̇dz

c2
{ ζ 12

0 ρ̇dz +
(
1

2
− c2

) { ζ 23

0 ρ̇dz
{ h
0 ∑̇ dz

{ ζ 12

0 ∑̇ dz
{ ζ 23

0 ∑̇ dz

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (24) 

where, for the sake of compactness, we use the notation 

.c1 = 1

2

ρ2 − ρ4

ρ2 − ρ1
, c2 = 1

2

ρ3 − ρ4

ρ3 − ρ2
, c3 = 1

2

ρ2 − ρ4

ρ3 − ρ2
. (25)
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We now have at our disposal all the elements to perform the Poisson reduction 
process. 

Step 1: The construction of the lifted 1-form.(βρ, β∑) satisfying (19), i.e., 

.

{ +∞

−∞

{ h

0
(ρ̇ βρ + ∑̇ β∑) dx dz =

{ +∞

−∞
∑6

k=1α
k
Sπ★(ρ̇, ∑̇)kdx , (26) 

yields 

.

βρ = α1
S + (

c1 + (1 + c3 − c1)θ(ζ 12 − z) − c3θ(ζ 23 − z)
)
) α2

S+(
c2θ(ζ 12 − z) + (

1

2
− c2)θ(ζ 23 − z)

)
α3
S

β∑ = α4
S + θ(ζ 12 − z) α5

S + θ(ζ 23 − z)α6
S .

(27) 

In this equation, Heaviside . θ ’s appear and enable the computation of integrals from 
the bottom to the chosen isopycnals .ζ 12 and .ζ 12 along the full channel .[0, h]. 
Step 2: The computation of the vector fields .(Y 1

M ,Y 2
M) from the relation 

.

(
Y (1)
M

Y (2)
M

)
= JB ·

(
βρ

β∑

)
=

(
0 ρx∂z − ρz∂x

ρx∂z − ρz∂x ∑x∂z − ∑z∂x

)
·
(

βρ

β∑

)
(28) 

is greatly simplified by the specific dependence of the lifted 1-form.(βρ, β∑) of (27) 
on . z and and on the crucial fact that the inequalities 

. ζ3 <
ζ3 + ζ2

2
= ζ 23 < ζ2 < ζ 12 = ζ1 + ζ2

2
< ζ1

hold in the strict sense, so that the terms .ρx∂z and .∑x∂z when acting on . (βρ, β∑)

generate products of Dirac . δ’s supported at different points, which vanish qua gen-
eralized functions. Moreover, 

. 

∑z · ∂x (β∑) = (∑3
i=1σiδ

'(z − ζi ))
(
α4
S + θ(ζ 12 − z) α5

S + θ(ζ 23 − z)α6
S

)
x

= (∑3
i=1σiδ

'(z − ζi ))
(
α4
S,x + θ(ζ 12 − z) α5

S,x + θ(ζ 23 − z)α6
S,x

)

+ (∑3
i=1σiδ

'(z − ζi ))
(
δ(ζ 12 − z)ζ 12,xα

5
S + δ(ζ 23 − z)ζ 23,xα

6
S

)

= (∑3
i=1σiδ

'(z − ζi ))
(
α4
S,x + θ(ζ 12 − z) α5

S,x + θ(ζ 23 − z)α6
S,x

)
,

(29) 
still due to the above observation about the supports of the Dirac . δ’s. Denoting by 
.Δ(2) this term, we can write (28) as  

.Y (1)
M = −ρz(β∑)x , Y (2)

M = −ρz(βρ)x − Δ(2) . (30)
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We obtain 

.

Y (1)
M =

(
3∑

k=1

(ρk − ρk+1)δ(z − ζk)

)

α4
S,x

+
(

3∑

k=2

(ρk − ρk+1)δ(z − ζk)

)

α5
S,x + (ρ3 − ρ4)δ(z − ζ3)α

6
S,x ,

(31) 

as well as the more complicated formula for .Y (2)
M , 

.Y (2)
M = (

3∑

i=1

(ρi − ρi+1)δ(z − ζi )) (α1
S,x + K2α

2
S,x + K3α

3
S,x ) − Δ(2) , (32) 

where 

.

K2 = c1 + (1 + c3 − c1)θ(ζ 12 − z) − c3θ(ζ 23 − z)

K3 = c2θ(ζ 12 − z) +
(
1

2
− c2

)
θ(ζ 23 − z) .

(33) 

Step 3: The computation of the push-forward under the map .π∗ of the vector field 
.(Y (1)

M ,Y (2)
M ), to obtain the six-component vector field .(ξ̇k, τ̇k) on .S is a direct but 

tedious task. Thanks to the explicit expressions (25) and (33), substituting in (24) 
and noticing that, due to the presence of the .z-derivatives of the Dirac . δ, .Δ(2) is in 
the kernel of .π∗, yields 

.

ξ̇1 = α4
S,x (ρ1 − ρ4) + α5

S,x (ρ2 − ρ4) + α6
S,x (ρ3 − ρ4)

ξ̇2 = 1

2
(ρ2 − ρ4)α

5
S,x + (ρ3 − ρ4)α

6
S,x

ξ̇3 = 1

2
(ρ3 − ρ4)α

6
S,x

σ̇1 = (ρ1 − ρ4)α
1
S,x

σ̇2 = (ρ2 − ρ4)α
1
S,x + 1

2
(ρ2 − ρ4)α

2
S,x

σ̇3 = (ρ3 − ρ4)α
1
S,x + (ρ3 − ρ4)α

2
S,x + 1

2
(ρ3 − ρ4)α

3
S,x .

(34) 

Thus, the Poisson tensor. P on the manifold. S in the coordinates. (ξ1, ξ2, ξ3, τ1, τ2, τ3)
becomes 

.P =
(

0 A
AT 0

)
∂x , where A =

⎛

⎜⎜
⎝

ρ1 − ρ4 ρ2 − ρ4 ρ3 − ρ4

0
ρ2 − ρ4

2
ρ3 − ρ4

0 0
ρ3 − ρ4

2

⎞

⎟⎟
⎠ .



A Hamiltonian Set-Up for 4-Layer Density Stratified Euler Fluids 11

Recalling relations (18), a straightforward computation shows that in the coordinates 
.(ζ1, ζ2, ζ3, σ1, σ2, σ3) the reduced Poisson operator acquires the particularly simple 
form 

.P =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

∂x . (35) 

Remark 1 According to the terminology favored by the Russian school, for Hamil-
tonian quasi-linear systems of PDEs the coordinates.(ξl, τl) and, a fortiori, the coor-
dinates .(ζl, σl), are “flat” coordinates for the system. In view of the particularly 
simple form of the Poisson tensor (35), the latter set could be called a system of flat 
Darboux coordinates. 

Remark 2 In [ 4] we conjectured that in the.n-layered case, with a stratification given 
by densities .ρ1 < ρ2 < · · · < ρn and interfaces .ζ1 > ζ2 > · · · > ζn−1, a procedure 
yielding a natural Hamiltonian formulation for the averaged problem was to consider 
intervals 

. I1 = [0, h], I2 =
[
0,

ζ1 + ζ2

2

]
, I3 =

[
0,

ζ2 + ζ3

2

]
, . . . , In =

[
0,

ζn−2 + ζn−1

2

]
.

(36) 
We explicitly proved it here for.n = 4, together with the conjecture that the quantities 

.(ζ1, ζ2, ζ3, σ1, σ2, σ3), (37) 

where .σk = ρk+1uk+1 − ρkuk , are flat Darboux coordinates for the reduced Poisson 
structure. 

4 The Reduced Hamiltonian Under the Boussinesq 
Approximation 

The energy of the .2D fluid in the channel is just the sum of the kinetic and potential 
energy, 

.H =
{ +∞

−∞

{ h

0

ρ

2

(
u2 + w2

)
dx dz +

{ +∞

−∞

{ h

0
g(ρ − ρ0)z dx dz , (38) 

where .ρ0 is the reference density fixed by the far field constant values of the layers’ 
thicknesses. In our case we have.ρ0 = ∑4

i=1 ρiη
(∞)
i , where.η

(∞)
i are the asymptotic 

values of the . ηi ’s as .|x | → ∞.
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The potential energy is thus readily reduced, using the first of (8), to 

. U =
{ +∞

−∞
1

2

(
g (ρ2 − ρ1) ζ1

2 + g (ρ3 − ρ2) ζ2
2 + g (ρ4 − ρ3) ζ 2

3

)
dx +UΔ ,

(39) 
where.UΔ contains constant and linear in the. ζk’s terms, which ensure the convergence 
of the integral, but that do not affect the equations of motion in view of the form (35) 
of the Poisson tensor. 

To obtain the reduced kinetic energy density, we use the fact that at order . O(∈2)

we can disregard the vertical velocity. w, and trade the horizontal velocities with their 
layer-averaged means. Thus the .x-density is computed as 

.

T = 1

2

({ ζ3

0
ρ4u

2
4 dz +

{ ζ2

ζ3

ρ3u
2
3 dz +

{ ζ1

ζ2

ρ2u
2
2 dz +

{ h

ζ1

ρ1u
2
1 dz

)

= 1

2

(
ρ4ζ3u

2
4 + ρ3(ζ2 − ζ3)u

2
3 + ρ2(ζ1 − ζ2)u

2
2 + ρ1(h − ζ1)u

2
1

)
.

(40) 

The so-called Boussinesq approximation consists of the double scaling limit 

.ρi → ρ̄, i = 1, . . . , 4, g → ∞ with g(ρ j+1 − ρ j ) finite, j = 1, 2, 3, (41) 

where 

. ρ̄ = 1

4

4∑

i=1

ρi

denotes the average density. This approximation then consists of neglecting density 
differences in the inertia terms of stratified Euler fluids, while retaining these differ-
ences in the buoyancy terms, owing to the relative magnitude of gravity forces with 
respect to those from inertia. This results in the Boussinesq energy density 

.

E = ρ̄

2

(
ζ3u

2
4 + (ζ2 − ζ3)u

2
3 + (ζ1 − ζ2)u

2
2 + (h − ζ1)u

2
1

)

+ 1

2

(
g (ρ2 − ρ1) ζ 2

1 + g (ρ3 − ρ2) ζ 2
2 + g (ρ4 − ρ3) ζ 2

3

)
.

(42) 

To express this energy in terms of the Hamiltonian variables .(ζi , σi ), .i = 1, 2, 3, we  
use the dynamical constraint 

.(h − ζ1)u1 + (ζ1 − ζ2)u2 + (ζ2 − ζ3)u3 + ζ3u4 = 0 , (43) 

as well as the definitions (13) that, in the Boussinesq approximation, are turned into 

.σk = ρ̄(uk+1 − uk) . (44)
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We get 

.

u1 = −ζ1σ1 + ζ2σ2 + ζ3σ3

hρ̄
,

u2 = −ζ1σ1 + ζ2σ2 + ζ3σ3 − hσ1

hρ̄
,

u3 = −ζ1σ1 + ζ2σ2 + ζ3σ3 − hσ1 − hσ2

hρ̄
,

u4 = −ζ1σ1 + ζ2σ2 + ζ3σ3 − hσ1 − hσ2 − hσ3

hρ̄
.

(45) 

Hence, from (42), the Hamiltonian functional acquires its final form in the Boussinesq 
approximation as 

.

HB =
{

IR

(
1

2 hρ̄

(
σ 2
1 ζ1 (h − ζ1) + σ 2

2 (h − ζ2) ζ2 + σ 2
3 (h − ζ3) ζ3+

2σ1σ2ζ2 (h − ζ1) + 2σ1σ3ζ3 (h − ζ1) + 2σ2σ3ζ3 (h − ζ2)) +
g

2

(
(ρ2 − ρ1)ζ

2
1 + (ρ3 − ρ2)ζ

2
2 + (ρ4 − ρ3)ζ

2
3

))
dx .

(46) 

Thanks to the simple form of the Poisson tensor (35), the ensuing equations of 
motion can be written as the conservation laws 

.. 

ζ1t +
(

σ1ζ1 (h − ζ1)

hρ
+ σ3ζ3 (h − ζ1)

hρ
+ σ2ζ2 (h − ζ1)

hρ

)

x

= 0

ζ2t +
(

σ2 (h − ζ2) ζ2

hρ
+ σ3 (h − ζ2) ζ3

hρ
+ σ1ζ2 (h − ζ1)

hρ

)

x

= 0

ζ3t +
(

σ3 (h − ζ3) ζ3

hρ
+ σ2 (h − ζ2) ζ3

hρ
+ σ1ζ3 (h − ζ1)

hρ

)

x

= 0

σ1t +
(

(h − 2ζ1) σ 2
1

2hρ
− σ1σ2ζ2

hρ
− σ1σ3ζ3

hρ
+ g (ρ2 − ρ1) ζ1

)

x

= 0

σ2t +
(

(h − 2ζ2) σ 2
2

2hρ
− σ2σ3ζ3

hρ
+ σ1σ2 (h − ζ1)

hρ
+ g (ρ3 − ρ2) ζ2

)

x

= 0

σ3t +
(

(h − 2ζ3) σ 2
3

2hρ
+ σ2σ3 (h − ζ2)

hρ
+ σ1σ3 (h − ζ1)

hρ
+ g (ρ4 − ρ3) ζ3

)

x

= 0 .

(47) 
The Hamiltonian formalism easily shows the existence of the eight conserved quan-
tities 

.

Z j =
{ +∞

−∞
ζ j dx, Sj =

{ +∞

−∞
σ j dx, j = 1, 2, 3 ,

K =
{ +∞

−∞

3∑

k=1

ζkσk dx and HB given by (4.9).

(48)
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Remark 3 The first six quantities are Casimir functionals for the Darboux Poisson 
tensor (35), while the seventh one, . K , is the generator of .x-translations. Note that, 
formulas (45) imply that the total linear momenta of the individual layers are con-
served quantities. This is consistent with the fact that the dispersionless limit of the 
.N -layer equations are conservation laws for the averaged momenta, and no pressure 
imbalances can arise in the Boussinesq approximation [ 2]. 

Remark 4 The steps leading to the computation of the effective Hamiltonian (46) 
can be performed also by dropping the assumptions (41) of the Boussinesq approxi-
mation. In this case, the kinetic energy acquires a non trivial rational dependence on 
the density differences .ρi − ρi+1, and the equations of motion become much more 
complicated (as already seen in the . 2 and .3-layer cases). However, they are still 
Hamiltonian equations of motion that preserve, together with their Hamiltonian, the 
quantities.Z j , Sj , j = 1, 2, 3 and the generator of.x-translations.K of Eq. (48). Note 
that, as shown in [ 2] and further discussed in [ 4], once beyond the Boussinesq approx-
imation pressure imbalances can appear. Hence the individual layer momenta are no 
longer conserved quantities and .K does not even coincide with the total horizontal 
momentum. 

5 Symmetric Solutions 

Symmetric solutions of the three-layer configurations were ingeniously found in [ 11] 
by a direct inspection of the equations of motion (written in velocity – thickness coor-
dinates). They exist provided a certain relation is enforced on the density differences 
of the individual layers, and were interpreted in [ 4] as the fixed point of a suitable 
canonical involution of the phase space of the 3-layer model. 

Here we shall adopt the latter point of view, and identify an involution of the phase 
space of the.4-layer model above that leads to the existence of a family of symmetric 
solutions. First, we focus on the kinetic energy part of the Boussinesq model (46), 

.

TB = 1

2 hρ̄

(
σ 2
1 ζ1 (h − ζ1) + σ 2

2 (h − ζ2) ζ2 + σ 2
3 (h − ζ3) ζ3+

2σ1σ2ζ2 (h − ζ1) + 2σ1σ3ζ3 (h − ζ1) + 2σ2σ3 (h − ζ2) ζ3

)
.

(49) 

This expression is clearly invariant under the involutive map 

.ζ1 → h − ζ3, ζ2 → h − ζ2, ζ3 → h − ζ1, σ1 → −σ3, σ2 → −σ2, σ3 → −σ1 . (50) 

If we assume that the densities .ρk fulfill the relations 

.ρ4 − ρ3 = ρ2 − ρ1 ≡ ρ
Δ

, (51)



A Hamiltonian Set-Up for 4-Layer Density Stratified Euler Fluids 15

the Hamiltonian density (46) is invariant as well, up to the addition of linear terms 
in the. ζ ’s, that is, up to constant terms and Casimir densities of the Poisson tensor. P
of (35) which do not affect the equations of motion. A straightforward computation 
shows that the Poisson tensor (35) is left invariant by the above involution. Hence, the 
manifold .F of fixed points of the involution (50) is invariant under the Hamiltonian 
flow (47). 

The above statement can be cast in a more geometrical light. Suppose that we are 
given a Poisson manifold .(M, P) with Hamilton equations written generically as 

.zt = P dH , (52) 

and suppose that .z → ϕ(z) is an involution preserving . P , i.e., 

(i) . ϕ ◦ ϕ = Id
(ii) .ϕ∗ P ϕ∗ = P , where .ϕ∗ is the (Fréchet) derivative of . ϕ, and .ϕ∗ is its pull-back 

(from the linear algebra perspective, the adjoint map). 

Then 

.ϕ(z)t = ϕ∗zt = ϕ∗P dH = ϕ∗Pϕ∗ϕ∗dH = Pϕ∗dH = Pdϕ∗H . (53) 

Hence, if . z satisfies .ϕ(z) = z we have .ϕ(z)t − zt = 0 so that initial data fixed by 
the involution . ϕ remain on the invariant submanifold during the time evolution. In 
our case, the invariant manifold can be explicitly described as the submanifold of . S
characterized by the constraints (see Fig. 3) 

.ζ1 + ζ3 − h = 0 , ζ2 − h

2
= 0 , σ1 + σ3 = 0 , σ2 = 0 , (54) 

and is parametrized by two of the remaining variables, for instance the two quantities 

.σ ≡ σ3 , ζ ≡ ζ3. (55) 

The reduced equations of motion on .F in these variables are 

.

⎧
⎪⎪⎨

⎪⎪⎩

ζt − 2(ζ 2σ)x

hρ̄
+ (ζσ )x

ρ̄
= 0

σt + 1

2

((h − 4ζ )σ 2)x

hρ̄
+ 2gρ

Δ
ζζx = 0

, (56) 

while the restriction of the Hamiltonian (46) is  

.HF =
{

IR

(
ζ (h − 2ζ ) σ 2

hρ̄
+ gρΔζ 2

)
dx . (57) 

One can readily check that Eq. (56) are the Hamiltonian equations of motion.
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ρ3 ζ3(x,t) 

z 

x 

ρ2=ρ1+ρΔ 

ρ1 

ζ2(x,t)=h/2 

h 

ρ4=ρ3+ρΔ 

ζ1(x,t)=h-ζ3(x,t) 

0 

u2(x,t) 

u3(x,t) 

Fig. 3 Example of a symmetric solution 

.

(
ζt
σt

)
= PF

(
δζ HF
δσ HF

)
with PF =

⎛

⎜
⎝

0 −1

2
∂x

−1

2
∂x 0

⎞

⎟
⎠ . (58) 

The appearance of the factor.1/2 in the expression of.PF is readily explained within 
Dirac’s theory of constrained Hamiltonian systems. Indeed, if we consider the con-
straints (54), we notice that, renaming the constraint densities as 

.ϕ1 = ζ1 + ζ3 − h , ϕ2 = ζ2 − h/2 , ϕ3 = σ1 + σ3 , ϕ4 = σ2 , (59) 

the sixtuple.(ζ = ζ3, σ = σ3,ϕ1, . . . , ϕ4) is clearly a set of coordinates. The Poisson 
tensor in these coordinates is given by the block matrix 

.P = −∂x

(
A BT

B C

)
, (60) 

with 

.A =
(
0 1
1 0

)
, B =

⎛

⎜⎜
⎝

0 1
0 0
1 0
0 0

⎞

⎟⎟
⎠ , C =

⎛

⎜⎜
⎝

0 0 2 0
0 0 0 1
2 0 0 0
0 1 0 0

⎞

⎟⎟
⎠ . (61) 

In this formalism, Dirac’s formula [ 12] for the.2 × 2 reduced tensor.PD with respect 
to the pair of coordinates .(ζ, σ ) on the constrained manifold is 

.PD = (
A − BT · C−1 · B)

∂x , (62) 

by which we recover the tensor .PF of (58).
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As a final remark, we notice that the symmetric solutions might appear somewhat 
trivial, especially in view of the constraint that fixes the intermediate height .ζ2 to 
be at the middle of the channel. However, one should remark that the additional 
requirement (51) on the densities reads.ρ3 = ρ4 − ρ2 + ρ1. Thus in general. ρ3 /= ρ2

and, in the non-Boussinesq case, the constraint .σ2 = ρ3u3 − ρ2u2 = 0 generates a 
velocity shear along the flat interface . ζ2. 

6 Conclusions and Discussion 

Building on our previous paper [ 4], we have considered the reduction of a natural 
Hamiltonian structure from the space of .2D general stratified configurations for an 
Euler incompressible, non-homogeneous fluid, to an effective .1D model of a four-
layered sharply stratified fluid, in the long-wave dispersionless approximation. We 
have applied a general scheme for reducing Hamiltonian structures and constructed a 
set of natural Darboux coordinates on the reduced space of sharply stratified configu-
rations. We then constructed an effective Hamiltonian in the Boussinesq approxima-
tion setting, which basically retains density differences only in the buoyancy terms. 
We finally pointed out the existence of a special family of symmetric solutions to 
the effective equations of motion which generalize their 3-layer counterpart and can 
serve to illustrate the expected differences and analogies between the general cases 
of odd and even number of layers. Symmetric solutions in the .3-layer case were 
introduced in [ 11] as a natural setting for the so-called mode 2 internal waves, that is, 
internal waves with out-of-phase pycnocline displacements. We have geometrically 
shown that four layer stratifications can support a similar family of waves, with the 
notable peculiarity that such “opposite” disturbances in the pycnocline displacement 
happen in the first and fourth layer only. While the middle interface.ζ2 is forced to be 
flat and at the middle of the channel, velocity shears along this interface are not ruled 
out. Analytical and numerical properties of these .4-layers solutions (e.g., stability 
and well-posedness) are currently under investigation and will be communicated 
elsewhere. 
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Long Wave Propagation in Canals 
with Spatially Varying Cross-Sections 
and Currents 

Semyon Churilov and Yury Stepanyants 

Abstract Two aspects of wave propagation in inhomogeneous media moving with a 
spatially varying speed are considered. Firstly, we analyze the mutual transformation 
of co- and counter-current propagating waves. In sub-critical flows with the current 
velocity .U less than the local wave speed relative to the medium . c, this process 
is known as a reflection. In super-critical flows with .U > c, the process manifests 
as a simultaneous amplification of positive- and negative-energy waves. The most 
interesting phenomena in such a case are the wave transformation in currents that 
transit from sub- to super-critical regime and vice versa. Secondly, we find and 
examine such inhomogeneous flows that allow an independent propagation of co-
and counter-current waves, so-called reflectionless flows. In the latter case, wave 
energy can be transmitted most efficiently in space which can have both positive and 
negative effects depending on the particular situation. 

Keywords Shallow water flow · Wave-current interaction · Reflectionless wave 
propagation · Wave scattering · Negative energy waves 
1 Introduction 

The theory of wave propagation in inhomogeneous and moving media has a long 
story (see, for example, [ 4– 6, 15]). An interplay of Doppler effect and spatial non-
homogeneity makes the problem rich in physical content and practically important. 
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Fig. 1 Sketch of the flow configuration in the vertical plane. The perturbed upper boundary is 
drawn in dashes 

Many studies have been devoted to the investigation into various aspects of this 
immense topic, mainly based on approximate methods, such as geometric optics 
[ 17, 27] and the WKB [ 1, 20]. In this review, we consider two classes of wave prob-
lems that require the development of exact solutions whereas approximate methods 
play only an auxiliary role. Exact solutions can be obtained as usual for reasonably 
simplified problem statements that are still of physical meaning. 

Let us consider in linear approximation a one-dimensional problem of wave prop-
agation in a stationary current assuming that all parameters of a medium, including 
the current velocity . U , depend only on the .x-coordinate (see Fig. 1). If an incident 
wave propagates in such a medium in one direction, for example, from left to right 
then, due to the inhomogeneities, almost inevitably another reflected wave arises, 
traveling in the opposite direction, from right to left. The aforementioned approx-
imate methods usually do not allow one to calculate the mutual transformation of 
these waves, while this process is interesting both per se and in its consequences. 

In the space where the background flow is subcritical, i.e. where its speed . U (x)
is less than the speed of wave propagation relative to the medium, .c(x), the mutual 
wave transformation generally leads to the decrease of incident wave energy. How-
ever, there are such configurations of the background flow in which waves reflected 
from its different parts add out of phase and diminish each other; this dramatically 
reduces the total wave reflection. A more interesting phenomenon arises in the wave 
transformation in supercritical flows, where .U > c. In such a case, a wave traveling 
against the current has a negative energy (for details on this concept, see, for example, 
[ 14, 23]), and a kind of positive feedback can occur when the amplitudes of both 
waves grow together whereas the total energy conserves (growing positive energy of
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an incident wave is compensated by growing (in absolute value) negative energy of 
a reflected wave). As a result, the incident wave of positive energy passing through 
the supercritical region leaves it significantly enhanced, while the negative energy 
wave (NEW) absorbs in the transition zone. 

Another circle of problems opposite in its physical content is connected with the 
interesting phenomenon when waves can propagate in an inhomogeneous medium 
with a certain flow configuration without reflection. In such cases, both waves can 
travel in opposite directions independently of each other despite the medium inhomo-
geneity and movement. Similar situations occur, for example, when a wave scatters 
on a hump or well of a finite-length . l at a specific relationship between its length 
and wavelength. This effect is well-known in quantum mechanics [ 19] and in the 
water-wave theory (see, e.g., [ 13]). The search for conditions of such reflectionless 
wave propagation is also based on exact solutions of model equations describing the 
medium and current configurations. 

The problem of the existence of waves propagating without large energy losses 
in an inhomogeneous moving medium is extremely important for explaining the 
propagation of waves over long distances, such as tsunami waves, storm surges and 
tidal bores in the ocean, acoustic waves in the atmosphere, and plasma waves in 
astrophysics. Knowledge of conditions for non-reflective wave propagation allows 
one to undertake measures to protect coasts against unwanted highly energetic wave 
impacts. 

As the basic physical model of wave processes under this study, we consider the 
propagation of surface gravity waves on a shallow water current with the depth.H and 
speed.U both dependent on. x . We begin with the problem formulation and derivation 
of the governing equations. Then, we apply the equations derived to two classes of 
problems outlined above. 

Firstly, we consider the flows transiting from subcritical regime to supercritical 
one and (or) vice versa and analyze the solutions in the vicinity of critical points 
where.U (x) = c(x). On this basis, we describe in detail the wave propagation along 
sub- and super-critical parts of the flow and transition through the critical points, and 
then calculate the transformation coefficients. 

Secondly, we use the wave equation in two alternative forms to obtain the condi-
tions for wave propagation without reflection and analyse them in detail. We show 
that there are three classes of non-reflecting flows, examine their general properties 
and illustrate the results by particular solutions. We conclude this chapter with a 
discussion of the results obtained and their practical applications. 

2 Problem Statement and Governing Equations 

Let us consider the propagation of surface waves on a shallow water flow with the 
velocity.U (x) in a duct with the width.W (x) and bottom profile.zB = B(x) gradually 
varying along the direction of the flow as shown in Fig. 1 (note that the water surface 
is not horizontal in the presence of spatially inhomogeneous flow).
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In a stationary flow, the current velocity .U (x) is related to the canal parameters 
by the flux conservation law, 

.Φ = U (x)H(x)W (x) = const, (1) 

and the Bernoulli equation 

.
1

2
U 2(x) + g

[
H(x) + B(x)

]
= const, (2) 

where . g is the acceleration due to gravity. It is easy to see that by appropriately 
choosing profiles .B(x) and .W (x) one can provide the desired (and independent) 
variation along the duct of the flow velocity .U (x) and the speed of long waves 
.c(x) = √

gH(x); this velocities are assumed to be positive everywhere. 
In the shallow-water theory (see, e.g., [ 18]), the linearized Euler equation has the 

form 

.
∂ũ

∂t
+ ∂(Uũ)

∂x
= −g

∂η

∂x
, (3) 

where.ũ(x, t) is the perturbation of the longitudinal component of fluid velocity, and 
.η(x, t) is the deviation of a free surface from the equilibrium state. Then the mass 
balance equation is 

.
∂S

∂t
+ ∂

∂x

[
S(U + ũ)

]
= 0, (4) 

where .S(x, t) = [H(x) + η(x, t)]W (x) is a part of the duct cross-section occupied 
by water. Linearizing this equation with respect to small perturbations . η and . ũ and 
taking into account Eq. (1) with .Φ /= 0, we obtain 

.
∂η

∂t
+ 1

W

∂

∂x

[
W (U η + H ũ)

]
≡ ∂η

∂t
+ HU

∂

∂x

(
η

H
+ ũ

U

)
= 0. (5) 

Let us introduce the functions .ϕ(x, t) and .φ(x, t) such that 

.ũ = ∂ϕ/∂x and W (x)η = ∂φ/∂x, (6) 

and integrate Eqs. (3) and (5) in . x . We obtain 

. 
∂ϕ

∂t
+U (x)

∂ϕ

∂x
+ 1

W (x)

∂φ

∂x
= 0,

∂φ

∂t
+U (x)

∂φ

∂x
+ W (x)H(x)

∂ϕ

∂x
= 0.

(7) 
Equations describing the characteristics of this system, 

.
dx

dt
= U (x) ± c(x), (8)



Long Wave Propagation in Canals with Spatially Varying … 23

show that it is hyperbolic for any flow. Eliminating . φ from Eq. (7) yields the wave 
equation 

.

(
∂

∂t
+U

∂

∂x
− 2U

c'

c

) (
∂ϕ

∂t
+U

∂ϕ

∂x

)
= c2U

∂

∂x

(
1

U

∂ϕ

∂x

)
, (9) 

where the prime denotes the derivative with respect to . x . For an elementary 
monochromatic wave with frequency . ω, .ϕ = ϕ̃(x)e−iω t , this equation transforms 
to 

. (c2 −U 2)
d2ϕ̃

dx2
+

[
2U 2 c

'

c
− (c2 +U 2)

U '

U
+ 2iωU

]
dϕ̃

dx
+

(
ω2 − 2iωU

c'

c

)
ϕ̃ = 0.

(10) 
Following [ 2], we seek an exact solution to Eq. (10) in the form resembling a 

JWKB solution: 

.

ϕ̃(x) = B(x)

[
exp

(
iω

{ dx

c(x) +U (x)

)
+ R(x)exp

(
−iω

{ dx

c(x) −U (x)

)]

≡ B
[
e+ + Re−

]
,

(11) 

where functions .B(x) and .R(x) can be interpreted, to a certain extent, as, respec-
tively, the complex amplitude of a co-current propagating wave and the relative 
amplitude of the counter-current propagating wave (i.e., “the local reflection coef-
ficient”); .e± denote the corresponding exponential functions. Note that the second 
term in the square brackets is singular at the critical points, where .U (x) = c(x). 
From the physical point of view, the singularities are caused by the blocking of the 
wave propagating against the current, so that its phase velocity and wavelength tend 
to zero at the critical point. Therefore, crossing through the critical point requires 
special attention and will be discussed in Sect. 3.2. 

Using the method of variation of constants (see, e.g., [ 3]) we arrive at the equations 

.
dB

dx
= b(x)

(
1 − R(x)e−iΨ(x)

)
B(x), (12) 

.
dR

dx
= − b(x)

(
eiΨ(x) − R2(x)e−iΨ(x)

)
, (13) 

where (see Eq. (11)) 

.

b(x) = 1

2

(
c'

c
+ U '

U

)
≡ d ln a(x)

dx
, a(x) =

[
c(x)U (x)

]1/2
,

eiΨ(x) = e+(x)

e−(x)
, Ψ(x) = ω

{
α(x)dx,

α(x) = 1

c(x) +U (x)
+ 1

c(x) −U (x)
.

(14)



24 S. Churilov and Y. Stepanyants

The system of equations (12) and (13) has a number of useful properties that make 
the analysis of wave propagation simpler and more intuitive. Firstly, it is clear that if in 
some flow region function.a(x) = const, then both.B(x) = const and.R(x) = const, 
i.e., waves in this region do not experience reflection despite that. c and.U depend on 
. x . Secondly, the problem is reduced to the nonlinear first-order ODE—the Riccati 
equation (13). After finding a solution to this equation, the amplitude equation for 
.B(x) (12) is immediately integrated: 

.B(x) = B0 a(x) exp
[
−

{
dx b(x) R(x)e−iΨ(x)

]
, B0 = const. (15) 

Thirdly, it is easy to see that in the flow regions that do not contain critical points 
(where .U (x) = c(x)) Eqs. (12) and (13) have the first integral: 

.E = |B(x)|2
a2(x)

[
1 − |R(x)|2

]
= const, (16) 

This equation can be treated as the conservation of wave action which is equivalent in 
our case to the conservation of the pseudo-energy [ 14, 21]. According to this law, the 
amplitude of the incident wave.|B(x)| can be expressed in terms of the transformation 
coefficient .|R(x)|2 and the “geometric factor” of the flow.a(x). 

For the further consideration, it is convenient to introduce the normalized ampli-
tude that does not depend on the geometric factor, .D(x) = B(x)/a(x), and the 
normalized coefficient .r(x) = R(x)e−iΨ(x) (recall that .R(x) is a complex-valued 
function). These functions satisfy the following equations (see Eqs. (12)–(14)): 

.
dD

dx
= −b(x) r(x) D(x), (17) 

.
dr

dx
= −b(x)

[
1 − r2(x)

]
− iω α(x) r(x). (18) 

Then, Eqs. (11), (15), and (16) take the form: 

.ϕ̃(x) = B(x)
[
1 + r(x)

]
exp

(
iω

{
dx

c(x) +U (x)

)
, (19) 

.B(x) = B0 a(x) exp
[
−

{
dx b(x) r(x)

]
, (20) 

.E = |B(x)|2
a2(x)

[
1 − |r(x)|2

]
≡ |D(x)|2

[
1 − |r(x)|2

]
= const. (21) 

It should be noted that if at some point of the flow .|r(x)| < 1, then this inequality 
holds throughout the entire flow due to the conservation law (21) (the same is true  
for .|r(x)| > 1).
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In some cases it is convenient to express.r(x) in terms of the module and argument, 
.r(x) = |r(x)| ei θ(x) (recall that .|r(x)| ≡ |R(x)|); then for these quantities we have 
the equations: 

.
d|r |
dx

= −b(x)
[
1 − |r(x)|2

]
cos θ(x), (22) 

.|r(x)| dθ
dx

= b(x)
[
1 + |r(x)|2

]
sin θ(x) − ωα(x)|r(x)|. (23) 

3 Solution in the Vicinity of a Critical Point 

3.1 The Asymptotic Expansion 

Let .x = x0 be a regular critical point. This means that in its neighbourhood . U (x)
and .c(x) are smooth functions such that .U (x0) = c(x0) ≡ c0 and the difference 
.σ = U '(x0) − c'(x0) is of the order of unity. Let us introduce a parameter.0 < ε << 1, 
put.x − x0 = εξ, and use the notation. f0 = f (x0) for any function. f (x). Expanding 
functions .c(x) and .U (x) in the Taylor series in the vicinity of .x = x0 and replacing 
. x with . ξ in Eq. (18), we obtain: 

.ξ
dr

dξ
= iω

σ
r+εξ

[
c'
0+U '

0

2c0

(
r2−1

)
− iω

2

(
1

c0
− c''

0−U ''
0

σ2

)
r

]
+ ε2ξ2S + . . . , (24) 

where 

. 

S = 1

2

[(
c''
0 +U ''

0

c0
− c'

0
2 +U '

0
2

c20

) (
r2 − 1

)

+ iω

2

(
c'
0 +U '

0

c20
+ 2

3

c'''
0 −U '''

0

σ2
+ (c''

0 −U ''
0 )2

σ3

)
r

]
.

Let us look for a solution to this equation in the form. r = r (0) + εr (1) + ε2r (2) +
. . . and introduce a notation .β = ω/σ. In the zero order on the parameter . ε, we  
obtain: 

.ξ
dr (0)

dξ
= iβ r (0), r (0) = B̃0ξ

iβ, B̃0 = const. (25) 

In the first order on this parameter, .O(ε), the equation is: 

.ξ
dr (1)

dξ
= iβ r (1) + ξ

[
c'
0+U '

0

2c0

(
B̃2
0ξ

2iβ −1
)
− iω

2

(
1

c0
− c''

0−U ''
0

σ2

)
B̃0ξ

iβ

]
. (26)
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A solution to this equation can be readily derived: 

.r (1) = ξ
(
B10 + B11ξ

iβ + B12ξ
2iβ

)
, (27) 

where 

. B10 = − c'
0+U '

0

2c0(1 − iβ)
, B11 = − iω

2

(
1

c0
− c''

0−U ''
0

σ2

)
B̃0, B12 = c'

0+U '
0

2c0(1 + iβ)
B̃2
0

(28) 
In the second order on the parameter . ε, .O(ε2), the equation is: 

.

ξ
dr (2)

dξ
= iβ r (2) + ξ

[
c'
0+U '

0

c0
r (0)− iω

2

(
1

c0
− c''

0−U ''
0

σ2

)]
r (1)

+ ξ2

2

[(
c''
0 +U ''

0

c0
− c'

0
2 +U '

0
2

c20

)(
r (0)2 − 1

)

+ iω

2

(
c'
0 +U '

0

c20
+ 2

3

c'''
0 −U '''

0

σ2
+ (c''

0 −U ''
0 )2

σ3

)
r (0)

]
.

(29) 

The solution to this equation we present in the form: 

.r (2) = ξ2
(
B20 + B21ξ

iβ + B22ξ
2iβ + B23ξ

3iβ
)
, (30) 

where 

.

B20 = − 1

2(2 − iβ)

[
c''
0 +U ''

0

c0
− c'

0
2 +U '

0
2

c20
+ iω

(
1

c0
− c''

0 −U ''
0

σ2

)
B10

]
,

B21 =
[
c'
0 +U '

0

2c0
B10 + iω

8

(
c'
0 +U '

0

c20
+ 2

3

c'''
0 −U '''

0

σ2
+ (c''

0 −U ''
0 )2

σ3

)]
B̃0

− iω

4

(
1

c0
− c''

0 −U ''
0

σ2

)
B11,

B22 = 1

2(2 + iβ)

[(
c''
0 +U ''

0

c0
− c'

0
2 +U '

0
2

c20

)
B̃2
0 + 2

c'
0 +U '

0

c0
B̃0B11

− iω

2

(
1

c0
− c''

0 −U ''
0

σ2

)
B12

]
,

B23 = c'
0 +U '

0

2c0(1 + iβ)
B̃2
0 B12.

(31)
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The solution obtained consists of two parts. One of them is the sum of a slowly 
varying terms that vanish at the critical point; this part of the solution is represented 
by the Taylor series: 

.rsl(x) = B10(x − x0) + B20(x − x0)
2 + . . . . (32) 

Another part of the solution contains the terms with the coefficients .B̃0 and . Bnm

(.m ≥ 1); these terms are strongly oscillating when .x → x0 (see Eqs. (25), (27), and 
(30)). Note that .Bnm ∼ (B̃0)

m and stress that .Bnm depend on .Bi0, but  .Bi0 does not 
depend on .Bnm with .m ≥ 1 (this property holds in the higher orders of expansion 
too). Therefore, the slowly varying part of the solution is entirely determined by the 
local behavior of functions .c(x) and .U (x) in the vicinity of the critical point and 
does not depend on the fast oscillating contribution. The latter is determined by both 
the boundary conditions and behavior of functions .c(x) and .U (x) to the right or to 
the left of the point . x0. Note, by the way, that .B̃0 and the entire quickly oscillating 
contribution can be different at the left and right sides of . x0, therefore, the found 
solution is reasonable to represent in the form: 

.r(x) = rsl(x) + B̃(±)
0 |x − x0|i β

[
1 + O(x − x0)

]
, (33) 

where the signs plus and minus pertain to the regions where .x > x0 and .x < x0, 
respectively. 

The integrals in the Eqs. (19) and (20) converge for .x → x0 ± 0, and the asymp-
totic expansions for .B(x) and .ϕ̃(x) can be written as: 

.B(x) = c0B
(±)
0

[
1+ c'

0+U '
0

2c0
(x−x0)

(
1− B̃(±)

0

1+iβ
|x−x0|iβ

)
+O(|x−x0|2)

]
, (34) 

.ϕ̃(x) = c0B
(±)
0

[
1+ B̃(±)

0 |x−x0|iβ +O(|x−x0|)
]
eiΨ+ , Ψ+ = ω

{ x0 dx

c +U
. (35) 

3.2 Transition Through the Critical Point 

As the next step, we need to understand how these solutions can be continued through 
the critical point. This problem was originally studied for a simplified flow model 
with a piecewise-linear velocity profile .U (x) and .c(x) = const [ 8], and then the 
results obtained were generalized to arbitrary smooth profiles of .c(x) and.U (x) [ 9]. 

Equation (35) contains only the principal expansion terms. The first term in the 
square brackets refers to the co-current propagating wave, and the second term (that 
is rapidly oscillating) refers to the counter-current propagating wave. As shown in 
[ 8, 9], for the correct matching solutions through the critical point, it is necessary to 
take into account a small viscosity of the medium. The final result is as follows.
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If the current passes from the subcritical regime into the supercritical, then 

.B(+)
0 = B(−)

0 , B̃(+)
0 = B̃(−)

0 = 0. (36) 

In other words, co-current traveling waves “do not feel” that the point is critical. The 
absence of counter-current running waves is due to the fact that on both sides of the 
critical point, they propagate out of this point and therefore, cannot reach it. Hence, 
for such a transition we have (see Eqs. (32), (33), (21), and (22)): 

.r(x0) = 0 and E(x0 + 0) = E(x0 − 0). (37) 

Therefore, we conclude that if .b(x0) /= 0 in Eqs. (22) and (23), then functions . r(x)
and.cos θ change their signs in the course of transition through the critical point, i.e. 
.θ(x0 + 0) = θ(x0 − 0) ± π. 

On the contrary, in the course of the transition from the supercritical to the subcrit-
ical regime, the counter-current propagating waves run to the critical point from both 
sides and, approaching it with a decreasing wavelength, are completely absorbed in 
its viscous neighborhood. Their relative amplitudes .B̃(+)

0 and .B̃(−)
0 depend on their 

propagation prehistory in the different flow regions and therefore, are not related 
to each other, whereas .B(+)

0 = B(−)
0 . The energy flux in the course of the transition 

through the critical point is not generally conserved, 

. E(x0 − 0) = |B(−)
0 |2

a2(x0)

(
1 − |B̃(−)

0 |2
)

/= E(x0 + 0) = |B(+)
0 |2

a2(x0)

(
1 − |B̃(+)

0 |2
)
,

it can either decrease or increase (see [ 8, 9]) since the waves absorbed have both 
positive and negative energy. 

Thus, co-current propagating waves do freely transit through critical points of both 
kinds with no change in their amplitude. By contrast, counter-current propagating 
waves can not transit through any critical point because they are either unable to reach 
it or absorbed in its neighborhood. In the next three sections, we consider flows with 
two critical points in order to highlight the features of wave propagation in ducts 
with alternating sub- and supercritical parts. In particular, we give special attention 
to transmitting properties of these parts. 

4 Wave Propagation in a Sub–Super–Subcritical Flow 

4.1 The Flow Model and Preliminary Analysis 

Consider a current on the left (.−∞ < x < x1) and right (.x2 < x < +∞) ends of 
which the flow is subcritical,.0 < U (x) < c(x), and within the middle part, for. x1 <

x < x2,—supercritical, .U (x) > c(x), as shown in Fig. 2. Such flows were studied
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Fig. 2 (color online) Sketch of the flow with two critical points, view from the top. Arrows indicate 
the flow direction, incident (. I ), transmitted (. T ), and reflected (.R1 and .R3) waves in subcritical 
domains 1 and 3, as well as positive (. P) and negative (. N ) energy waves in the supercritical 
domain 2 

in Ref. [ 9] as a hydrodynamic model for a wormhole directed from the black to 
the white hole. Here .x1 and .x2 are the critical points such that . U (x1) = c(x1) ≡ c1
and .U (x2) = c(x2) ≡ c2. We assume that in both critical points the differences of 
slopes, .σ1,2 ≡ U '(x1,2) − c'(x1,2), are not small (see Fig. 3) and use in this Section 
the dimensionless variables 

.x̃ = x

Λ
, Ũ (x̃) = U (x)

c1
, c̃(x̃) = c(x)

c1
, ω̃ = ω

σ1
, Λ = c1

σ1
. (38) 

In what follows, tildes will be omitted for brevity. 
Let us assume that a plane wave of frequency . ω arrives from the left. Its propa-

gation will be described in terms of functions .D(x) and .r(x). At the critical point 
.x = x1 and when .x → +∞ there is no wave traveling upstream, therefore solution 
to Eq. (18) must satisfy the boundary conditions: 

.r(x1) = 0, r(+∞) = 0. (39) 

Therefore, we can conclude that, firstly, in the entire flow .|r(x)| < 1 (as it follows 
from the conservation law (21)) and, secondly, the Eq. (18) should be integrated into 
the upstream direction in the subcritical areas and downstream—on the supercritical 
section .x1 ≤ x < x2. 

Further, suppose that for.x → ±∞ functions.c(x) and.U (x) tend to their nonzero 
limiting values, and let.D(−∞) = 1. Then from Eq. (20) and the matching conditions 
(36), .B(+)

0 = B(−)
0 , we find the amplitude of the downstream propagating wave as 

the function of . x :
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Fig. 3 (color online) The 
flow models with two critical 
points: a—flow (66), 
.M = 1.5; b—flow (69), 
.c2 = 2c1 = 2,.d = 1; 
c—reflectionless flow with 
. a2(x) ≡ c(x)U (x) = 1

.D(x) = exp

⎡
⎣−

x{

−∞
b(x ') r(x ') dx '

⎤
⎦ , −∞ < x < ∞. (40) 

Then we can define the transmission ratio .K (x)≡|D(x)| and present it as: 

. K (x) = exp

⎡
⎣−

x{

−∞
dx ' b(x ')Re

(
r(x ')

)⎤
⎦ ≡ exp

⎡
⎣−

x{

−∞
dx ' b(x ')|r(x ')| cos θ(x ')

⎤
⎦ .

(41) 
As can be seen from Eqs. (22) and (41), the reflection coefficient .|r(x)| and trans-
mission ratio .K (x) both increase or decrease simultaneously depending on the sign 
of the product .b(x) cos θ(x). Finally, in those regions where .b(x) = 0, i.e. . a(x) =
const, they are constant too and, as already noted, waves running in the opposite 
directions do not interact, but the phase difference between them .θ(x) changes due
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to the difference in the directions of propagation and difference in the wavelengths 
(i.e., because .α(x) /= 0—see Eq. (23)). 

In accordance with the flow structure and conservation law (21), one can distin-
guish three stages for the downstream propagating wave. In the interval .x < x1, the  
transmission ratio .K (x) decreases from unity to .K (x1) = √

1 − |r(−∞)|2. In the  
supercritical interval, amplitude increases, and .K (x2) = K (x1)/

√
1 − |r(x2 − 0)|2, 

and in the last interval, .x > x2, .K (x) decreases again to . K (+∞) = K (x2)√
1 − |r(x2 + 0)|2 (recall that in the general case .|r(x2 − 0)| /= |r(x2 + 0)|, there-

fore the increase and subsequent decrease of .K are independent). In addition, . K (x)
can vary non-monotonically in any of these three intervals. As a result, in each interval 
of the flow, its integral transmission ratios are presented by the formulae: 

.

K1 = √
1 − |r(−∞)|2 ≤ 1, K2 =

[
1 − |r(x2 − 0)|2

]−1/2 ≥ 1,

K3 = √
1 − |r(x2 + 0)|2 ≤ 1,

(42) 

and the total transmission ratio (the transmission coefficient) is . T ≡ K (+∞) =
K1 · K2 · K3. It can be increased by (i) reducing the transformation of the co-current 
propagating wave into reflected waves in the subcritical intervals of the flow and (ii) 
increasing its transformation into the NEW in the supercritical interval. 

The first condition can be fulfilled at once for all frequencies if in the subcritical 
regions .b(x) ≡ 0 (i.e. .c(x)U (x) ≡const) and waves propagate without reflection; 
then.K1 = K3 = 1. Note that this condition does not prevent the change of the Mach 
number .M(x) ≡ U (x)/c(x) along the flow, (see, e.g., Fig. 3c). Another way to do 
it is based on the effect similar to that of anti-reflective coating in the optics. Its 
principle is that waves reflected from the different flow intervals add up in anti-phase 
and extinguish each other. As can be seen from Eq. (22), the quenching is complete 
if: 

.r(−∞) =
x1{

−∞
b(x)

[
1−|r(x)|2

]
cos θ(x) dx = 0, (43) 

.r(x2+0) =
∞{

x2

b(x)
[
1−|r(x)|2

]
cos θ(x) dx = 0. (44) 

Since in those intervals where .b(x) = 0, function .θ(x) continues to vary, the ful-
fillment of Eqs. (43) and (44) can be ensured by variation of .θ(x) due to “inserts” 
with .b(x) = 0 of the required length in the proper intervals of the flow. But since 
for .b = 0 .dθ/dx ∼ ω (see Eq. (23)), the choice of the positions of such inserts and 
especially their lengths significantly depend on the wave frequency. 

As for the second condition, we shall see below that both the selection of inserts 
and the difference in the speeds of wave propagation at the ends of the supercritical
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interval (no matter.c1 < c2 or.c1 > c2) can make.K2 greater, but the increase in wave 
frequency prevents to this. 

To simplify further analysis, let us strengthen the previously formulated condi-
tion of fast convergence of .c(x) and .U (x) to their limiting values when .x → ±∞, 
assuming that. c and. U are constants and, respectively,.b(x) = 0 for.x < x− < x1 and 
.x > x+ > x2. Below we perform the analysis for two limiting cases, when . ω << 1
and .ω >> 1. 

4.2 The Low-Frequency Limit, . ω << 1

Setting .ω = 0 in Eq. (18), we get 

.
dr0
dx

= −a'(x)
a(x)

(
1 − r20

)
=⇒ r0(x) = R0 − a2(x)

R0 + a2(x)
, R0 = ciUi

1 + r0i
1 − r0i

, (45) 

where. ci ,.Ui , and.r0i are the values of.c(x),.U (x),.r0(x) in some starting point.x = xi , 
and .R0 is a constant of integration that depends on the initial conditions in the point 
.x = xi . If .xi coincides with the first critical point . x1, then .r0i = 0, .R0 = 1 and 

.r0(x) = 1 − a2(x)

1 + a2(x)
≡ 1 − c(x)U (x)

1 + c(x)U (x)
= 1 − 2c(x)U (x)

1 + c(x)U (x)
. (46) 

Next, we look for a solution in the form: .r(x) = r0(x) + ω r1(x) + ω2r2(x) + . . . . 
In the lowest order on the frequency, .O(ω), we have:  

. 
dr1
dx

= 2
a'(x)
a(x)

r0(x)r1(x) − iα(x)r0(x).

Integrating this equation with the initial condition.r1(xi ) = 0 and using Eq. (45), we 
get: 

.r1(x) = − 2ia2(x)

[R0 + a2(x)]2
x{

xi

dξ r0(ξ)

U (ξ)

[R0 + a2(ξ)]2
c2(ξ) −U 2(ξ)

. (47) 

In the next order on the frequency, .O(ω2), we have the following equation: 

. 
dr2
dx

= a'(x)
a(x)

[
2r0(x)r2(x) + r21 (x)

]
− iα(x)r1(x).

Its solution subject to the initial condition .r2(xi ) = 0 is:
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. r2(x) = − 4a2(x)

[R0 + a2(x)]3
x{

xi

dξ

U (ξ)

R0a2(x) + a4(ξ)

c2(ξ) −U 2(ξ)

ξ{

xi

dη r0(η)

U (η)

[R0 + a2(η)]2
c2(η) −U 2(η)

.

(48) 
The integral in the right-hand side of Eq. (47) can be evaluated in the vicinity of 

the point . x2; when .x → x2 we have: 

. I (x) =
x{

xi

dξ r0(ξ)

U (ξ)

[R0 + a2(ξ)]2
c2(ξ) −U 2(ξ)

= I1i − R2
0 − c42
2σ2c22

ln |x − x2| + O(|x − x2|),

where .I1i =const, .σ2 = U '
2 − c'

2. The integral converges if .r0(x2) = 0 (i.e. if . R0 =
c22), otherwise it logarithmically diverges. 

Similarly one can evaluate the integral on the right-hand side of Eq. (48): 

. 

x{

xi

dξ

U (ξ)

R0a2(x) + a4(ξ)

c2(ξ) −U 2(ξ)

ξ{

xi

dη r0(η)

U (η)

[R0 + a2(η)]2
c2(η) −U 2(η)

= I2i − R0 + c22
2σ2

[
I1i ln |x − x2| − R2

0 − c42
4σ2c22

ln2 |x − x2|
]

+ O(|x − x2|),

where .I2i =const. Therefore, when .x → x2, the solution is: 

. 

r(x) = R0 − c22
R0 + c22

[
1 + iω

σ2
ln |x − x2| − ω2

2σ2
2

ln2 |x − x2| + . . .

]

− 2iωc22 I1i
(R0 + c22)

2

[
1 + iω

σ2
ln |x − x2| + . . .

]
− 4ω2c22 I2i

(R0 + c22)
3

+ O(|x − x2|).
(49) 

On the other hand, setting in Eq. (33).x0 = x2 and.σ = σ2, we obtain for. |x − x2| << 1
and .ω| ln |x − x2|| << 1: 

. 

r(x) = rsl(x) + B(±)
0 |x − x2|iω/σ2

[
1 + O(|x − x2|)

]
=

rsl(x) + B(±)
0

[
1 + iω

σ2
ln |x − x2| − ω2

2σ2
2

ln2 |x − x2| + . . .

] [
1 + O(|x − x2|)

]
.

Matching of this solution with solution (49) shows that when.x → x2 ± 0 the solution 
should be as this: 

. r(x) = rsl (x) +
[
R(±)
0 − c22

R(±)
0 + c22

− 2iωc22 I
(±)
1i

(R(±)
0 + c22)

2
+ O(ω2)

]
|x − x2|iω/σ2

[
1 + O(|x − x2|)

]
,

(50)
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where.rsl(x) is determined by the series (32) with.x0 = x2. It was taken into account 
that.R0 and.I1i can be different on the left and right of the point. x2, because according 
to the boundary conditions (39), they are calculated through the integration of Eq. (18) 
in the different flow regions. Therefore, if .r0(x2 ± 0) /= 0 (i.e., .R(±)

0 /= c22), then the 
reflection coefficient and transmission ratios are: 

. |r(x)| →
|||||
R(±)
0 − c22

R(±)
0 + c22

||||| = O(1),

. K2 ≈
⎡
⎣1 −

|||||
R(−)
0 − c22

R(−)
0 + c22

|||||
2
⎤
⎦

−1/2

, K3 ≈
⎡
⎣1 −

|||||
R(+)
0 − c22

R(+)
0 + c22

|||||
2
⎤
⎦

1/2

.

Otherwise, .|r(x)| is of the order of .O(ω2). 
It should be emphasized that for .x → x2 ± 0, the quantity 

. r0(x2 ± 0) = R(±)
0 − c22

R(±)
0 + c22

determined by Eq. (45) does not describe the limiting value of.r(x) (or its main part), 
but, as seen from Eq. (50), the amplitude of the rapidly oscillating part of the solution. 
Note that oscillations are concentrated in the exponentially narrow neighborhood of 
the point . x2, 

.|x − x2| = O(e−1/ω). (51) 

This allows us, firstly, to consider .r0(x2 ± 0) as the main part of the intermediate 
asymptotic of the solution, and, secondly, greatly complicates the detection of oscil-
lations in the numerical solution even in the case of not very small. ω (see Sect. 6 and 
Fig. 5). 

Based on these results, we will consider wave propagation within each section of 
the flow. Let’s start from the left interval,.−∞ < x < x1, where.U (x) < c(x). Given  
that .b(x) /= 0 only in the interval .X = (x−, x1), we consider two options. The first 
option is that.x1 − x− = O(1) and.b(x) = O(1) in the entire interval. X . Then, taking 
into account the boundary condition (39), we obtain (see Eqs. (46), (22), and (42)): 

. r− ≡ r(x−) = 1 − a2−
1 + a2−

+ O(ω) and K1 = 1 −
(
1 − a2−
1 + a2−

)2

+ O(ω), a− = a(x−).

(52) 

Within the context of the analog gravity, subcritical flows simulate the “ordinary” 
space-time, with the quite natural constancy of the wave velocity, .c ≡ 1. Then. a2− =
U (−∞) < 1 and there is necessarily a reflected wave; the transmission rate is. K1 <

1. The reflectionless propagation with .a− = 1 is possible only in a more complex
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model, where .c(x) > 1 for .x → −∞ and decreases to 1 as we approach the critical 
point .x1 (black-hole horizon)—see, for example, Fig. 3c. 

In the second option, the interval .X contains two intervals of the length . O(1)
each, .X1 = (x−, xa) and.X2 = (xb, x1), with .b(x) = O(1). These intervals are sep-
arated by the insert .X0 = (xa, xb) with .b(x) ≡ 0. Then, Eq. (46) gives  . r0(xb) =
(1 − a20)/(1 + a20), where .a0 = a(xa) = a(xb). As .b ≡ 0 within the insert, . |r(x)| =
const, and only the phase difference of waves.θ(x) varies with. x ; however, this vari-
ation affects the transmission rate. Indeed, in the case of the ‘phase inverting insert’, 
when 

.θ(xa) − θ(xb) = ω

xb{

xa

α(x)dx = (2n + 1)π, (53) 

where . n is natural, .r0(xa) = −r0(xb), so that in accordance with Eq. (45), . R0 = a40
and 

.r0(x−) = a40 − a2−
a40 + a2−

, K1 =
[
1 −

(
a40 − a2−
a40 + a2−

)2
]1/2

. (54) 

(Note that because the flow is uniform when .x < x−, therefore .r−∞ = r−.) As a 
result, the waves reflected in the intervals .X1 and.X2 cancel out each other upon the 
condition.a20 = a−, which can be easily implemented even in traditional flow models 
with .c ≡ 1 (see Fig. 3a), if in the insert section .U (x) = Ua = Ub = √

U (−∞) (in 
this case, .U (−∞) < Ua < 1). This equality sets the position of the anti-reflective 
insert; its length is determined by Eq. (53) and is very long, since it is proportional 
to .ω−1. 

In conclusion, we note that wave propagation in the interval.x2 < x < ∞ does not 
differ qualitatively from that just described. Indeed, since.b(x) = 0 for.x > x+, then 
.a+ ≡ a(x+) = a(+∞) and integration of Eq. (18) starts at  .x = x+ with . r(x+) =
r(+∞) = 0. If .x+ − x2 = O(1) and .b(x) = O(1), then 

.r0(x2 + 0) = a2+ − a22
a2+ + a22

, K3 =
[
1 −

(
a2+ − a22
a2+ + a22

)2
]1/2

+ O(ω), (55) 

and the condition of suppression of the reflected wave, .a+ = a2, is satisfied if 
.c(+∞) > c2, i.e. requires an increase in the wave speed downstream from the criti-
cal point .x2 (see Fig. 3c). But it is possible to suppress the reflected wave using the 
above-described ‘anti-reflective optics effect’, i.e. with the help of inverting insert 
with .b(x) = 0 in such point .x = xa where .a2(xa) = a2a+. 

Let us now turn to the region .x1 < x < x2 where the flow is supercritical. If 
.x2 − x1 = O(1) and .b(x) = O(1), then  Eq. (46) gives:
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. r0(x2 − 0) = 1 − c22
1 + c22

, K2 =
⎡
⎣1 −

(
1 − c22
1 + c22

)2
⎤
⎦

−1/2

+ O(ω) = 1 + c22
2c2

+ O(ω).

(56) 
In the case when the wave speeds at the ends of the region are the same (.c2 = c1 = 1), 
.r0(x2 − 0) = 0, and .K2 = 1 + O(ω2) differs almost not from one. Again, one can 
significantly increase the transmission ratio using an inverting insert. Indeed, since 
.a1 = a2 = 1, there is a point .x = xm at which .a(x) reaches its extreme (maximum 
or minimum) value, say, .am . Here  .b(x) changes sign, and the growth of .|r(x)|2 is 
replaced by a decrease, which leads to a decrease in the amplitudes of waves of both 
positive and negative energy. Changing at this point (more precisely, on the inverting 
insert with.b = 0) the sign of .cos θ (and with it the. r sign), we will continue to grow 
.|r(x)|2, 

. r0(xm − 0) = 1 − a2m
1 + a2m

−→ r0(xm + 0) = −r0(xm − 0) −→ r0(x2 − 0) = a4m − 1

a4m + 1
,

(57) 
and amplitudes of both waves. As the result, .K2 ≈ (a4m + 1)/(2a2m) > 1, and to a 
greater extent, the more strongly .am differs from 1 (to either way, since . K2(am) ≈
K2(a−1

m )). 
If.c2 /= 1, then.K2 > 1 and without an inverting insert, and, in addition,. K2(c2) =

K2(c
−1
2 ) up to .O(ω). In other words, the amplification of a wave of positive energy 

due to its transformation into a NEW is promoted by both a decrease and an increase 
in the speed of waves in the supercritical section of the flow. 

4.3 The High-Frequency Limit, . ω >> 1

Let us turn now to waves with.ω >> 1. This limiting case can be still consistent with the 
shallow-water approximation because, in the dimensional variables, the inequalities 
.ω/σ1 = O(kΛ) >> 1 and.kH << 1 are consistent when.Λ >> H . As follows from the 
analysis carried out in Sect. 3, in the vicinity of the critical point. x1, the function. r(x)
is defined by the series (32) with coefficients having the order of.O(ω−1). Therefore, 
it is natural to assume that the solution to Eq. (18) has the same order. Setting 
.r(x) = iP(x)/ω where .|P| = O(1), but .|dP/dx | = O(ω), we get the equation: 

. 
1

ω

dP

dx
= −iα(x)P + ib(x)

(
1 + P2

ω2

)
.

Neglecting the term .O(ω−2) in this equation, we arrive at the linear non-homoge-
neous equation whose solution subject to the boundary conditions (39) is:



Long Wave Propagation in Canals with Spatially Varying … 37

.P(x) = iω exp
[
−iωΨ(x)

] x{

x0

dξ b(ξ) exp
[
iωΨ(ξ)

]
, Ψ(x) =

{
α(x)dx, (58) 

and .x0 = x1 when .x < x2 and .x0 = x+ when .x > x2. 
In Eq. (58), when calculating the integral of a rapidly oscillating function, we 

take into account that .dΨ/dx = α(x) has no zeros on the real axis and therefore, 
there are no stationary phase points, but .α(x) has poles at .x = x1,2. Hence, the 
main contribution to the integral comes from a neighborhood of the upper limit of 
integration (see, for example, [ 22]), then we have: 

.

x{

x0

dξ b(ξ) exp
[
iωΨ(ξ)

]
∼

b(x) exp
[
iωΨ(x)

]

iωα(x)
= O(ω−1). (59) 

We see that indeed .P(x) = O(1) in general. However, .P(x) = o(1) when . x →
x2 ± 0 because of presence of .α(x) in the denominator. Thus, in the high-frequency 
limit .K1 differs from unity by .O(ω−2) whereas .K2 and .K3 differ from unity even 
less, only by .o(ω−2). Therefore, both the wave reflections in the subcritical regions 
of the flow and wave amplification in the supercritical region diminish. 

5 Wave Propagation in a Super–Sub–Supercritical Flow 

Let us consider now a duct with a supercritical flow (.U (x) > c(x)) in the outer 
domains, left: (.−∞ < x < x1), and right: (.x2 < x < +∞), and subcritical in the 
inner domain (.x1 < x < x2). In this Section we make scaling in the same way as in 
Eq. (38), namely, with the use of flow parameters at the critical point .x = x2 corre-
sponding to the transition from sub- to super-critical flow. As a result, in dimension-
less variables, 

.U2 = c2 = 1, σ2 = U '
2 − c'

2 = 1. (60) 

In this case, the physical statement of the problem is not so evident as for the 
sub-super-subcritical flow considered in Sect. 4. First of all, it is hard to determine 
what is the incident wave. Indeed, the left part of the flow is supercritical, and the 
waves, both with positive and negative energies, entering the duct from the left end, 
propagate to the critical point .x1 interacting with each other in such a way that the 
total energy flux . E determined by Eq. (21) is conserved, whereas the amplitudes 
of both waves change. Because only a finite domain to the left of the point .x1 is 
accessible for observation, in any point of it we see a superposition of both waves 
and have no possibility to recognize which of these two waves arrives from the left 
infinity. Of course, if.E > 0, the positive energy wave does unambiguously present at
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left infinity but the negative energy wave can present there as well, and the amplitudes 
of both waves remain unknown. 

However, we know that in the neighborhood of the critical point .x1 any NEW 
is completely absorbed (see Sect. 3.2). Therefore, it seems that the only reasonable 
statement of the problem in this case is to set the amplitude of the co-current propa-
gating wave at either end of the subcritical domain and ignore the prehistory of wave 
propagation in the left supercritical domain.x < x1. Technically, it is more convenient 
to set the amplitude of the co-current propagating wave at .x = x2, because both the 
reflected wave and NEW vanish in this point. Assume that the co-current propagating 
wave arriving from the domain where .x < x1 has the amplitude .D(x2) = 1. Then, 
in the domain .x1 < x < ∞ (cf. Eqs (40) and (41)) we have: 

.D(x) = exp

⎡
⎣−

x{

x2

b(x ') r(x ') dx '
⎤
⎦, (61) 

. K (x) = exp

⎡
⎣−

x{

x2

b(x ')Re
(
r(x ')

)
dx '

⎤
⎦ ≡ exp

⎡
⎣−

x{

x2

b(x ')|r(x ')| cos θ(x ') dx '
⎤
⎦,

(62) 

and the integral transmission ratios of sub- and supercritical domains are (cf. 
Eq. (42)): 

. K2 =
√
1 − |r(x1)|2 ≤ 1, K3 =

[
1 − |r(+∞)|2

]−1/2 ≥ 1, K (+∞) = K2 · K3.

(63) 
It should be borne in mind that the oscillating component of .r(x) develops with the 
distance from.x2 rather than from. x1. 

Scaling as per Eq. (60) yields .a22 ≡ c2U2 = 1, therefore, the scattering of low 
frequency waves in the subcritical domain is approximately described by Eq. (46). 
Then, the transmission ratio in this domain is: 

.K2 =
/
1 −

(
1 − c21
1 + c21

)2

+ O(ω) = 2c1
1 + c21

+ O(ω). (64) 

From this formula, it follows (bearing in mind a small contribution of the last term 
.O(ω)) that .K2 is only slightly less than unity if the wave velocities in the ending 
points of the domain are the same, .c1 = c2 = 1, but .K2 decreases when .c1 deviates 
from.c2 in the either side. It should be also noted that .K2(c1) ≈ K2(1/c1). 

In the high-frequency limit, one can demonstrate by analogy with Sect. 4.2 that 
.K2 → 1 − 0 for any. c1. As a consequence of this, when.c1 = 1,.K2(ω) goes to unity 
in both limiting cases, when .ω → 0 or .ω → ∞, and inside this frequency range, it 
has at least one minimum. If .c1 /= 1, then.K2(ω) grows from.K2(0) < 1 up to 1, but
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not necessarily monotonically (this will be confirmed below through the numerical 
calculations shown in Fig. 16). 

In the right outer domain .x > x2, the transformation of a positive-energy low-
frequency wave into a NEW is described by the same Eq. (46), and the transmission 
ratio is: 

.K3 =
[
1 −

(
a2(+∞) − 1

a2(+∞) + 1

)2
]−1/2

+ O(ω) = a2(+∞) + 1

2a(+∞)
+ O(ω) (65) 

Asymptotically .K3 ∼ a(+∞)/2 increases with .a(+∞) ≡ [c(+∞)U (+∞)]1/2. 
However, when the frequency increases .K3 approaches unity from the top. 

6 Numerical Calculations and Some Remarks 

6.1 Sub–Super–Subcritical Flows 

The analysis presented above shows that the most interesting scenarios of wave 
propagation occurs in the middle (supercritical) flow region where a positive energy 
wave is amplified due to the coupling with the NEW; then the transmission coefficient 
can be noticeably greater than one. Numerical calculations were performed mainly 
for this region. Recall that at the far end of the region where .x2 − x ∼ exp(−ω−1), 
the function.r(x) rapidly oscillates; therefore, the spatial resolution of the oscillating 
solution in the numerical calculations can be performed without extra complications 
only for not too low. ω. Below we consider separately two particular cases when the 
wave speed is (i) the same at the ending points of the supercritical interval and (ii) 
when it is different. 
Currents with the equal velocities at the ending points Bearing in mind the con-
ditions (38), we take for calculations a simple flow model with .c1 = c2 = 1 (see 
Fig. 3a): 

.c(x) ≡ 1, U (x) = 1 + x(2d − x)/(2d), x1 = 0, x2 = 2d. (66) 

For such a flow, the Mach number attains its maximum, .M = 1 + d/2, at the  
midpoint of the supercritical interval,.xm = d, and function.b(x) changes its sign. As 
was discussed in Sect. 4, the wave amplification can be increased with the use of a 
properly chosen phase-shifting insert. In our calculations, such an insert begins in the 
point .xm and is simulated by changing of the phase.θ = arg(r) by the required value 
.Δθ. As a result, function .θ(x) becomes discontinuous in the point .xm . Note that in 
the limit .ω → 0, the most effective insert is inverting one, with .Δθ = ±π; we have  
considered this above. However, when the frequency increases, the phase. θ changes 
more and more significantly in that region where .b(x) /= 0, therefore the optimal 
phase shift that maximizes the transmission ratio .K2, depends on the frequency.
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Table 1 Data for the optimal phase shift versus frequency used in the numerical calculations 

.ω 0.2 0.3 0.5 1 3 5 8 

.Δθ 2.688 2.443 1.990 0.977 .−1.187 .−2.234 . −3.002

Fig. 4 (color online) The 
optimal phase shift as a 
function of frequency. Dots 
show the values used in the 
numerical calculations and 
presented in Table 1 

Specific values of .Δθ(ω) used in our calculations for the flow with .M = 4 (.d = 6) 
are given in Table 1 and shown in Fig. 4. 

Figure 5 shows the reflection coefficient .|r(x)| that describes the transformation 
of the co-current propagating wave into the NEW, as well as .θ(x) ≡ arg(r) for the 
frequencies .ω ≤ 1, both with the optimal phase-shifting insert (OI), and without 
it (NI). The upper part of Fig. 5 shows that even when the frequency is not very 
small, the “zero” approximation .|r0(x)| as defined by the Eq. (45) (and with phase 
inversion, if any) describes pretty well the behavior of the function .|r(x)|, except 
for the neighborhood of the point .x = x2 = 2d in the NI version when there is 
no insert. The difference between the curves is caused by missing in .r0(x), but  
accumulated in .r(x) (due to .ω /= 0) a rapidly oscillating component, although its 
amplitude is significantly less than in the OI version. For .ω = 1, the downstream 
change in. θmanifests faster, therefore.|r(x)| and.|r0(x)| differ notably throughout the 
entire supercritical region, in both versions of the flow, with the insert (OI-version) 
and without the insert (NI-version). Note that when .x → x2 = 2d, the reflection 
coefficients (which are equal here to the amplitudes of fast oscillations of the functions 
.r(x)) corresponding to the different flow versions, approach each other (cf. lines 1 
and 2 in Fig. 5) and slightly decrease compared with what was for .ω = 0.3 in the 
OI-version. Moreover, we draw attention to the fluctuation of.|r(x)| near the point. x2, 
which became noticeable as the result of the expansion of the region of oscillations. 

Figure 6 shows the reflection coefficient .|r(x)| and function .θ(x) for .ω > 1 for 
both flow models, OI (with insert) and NI (no insert). Here the region of oscillations 
is even wider, and oscillations of.|r(x)| are seen in a notably greater range of. x . When 
.x → x2, these oscillations, as expected, decay, and .|r(x)| approaches a finite limit
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Fig. 5 (color online) The reflection coefficient (left panels) and function .θ(x) (right panels) as 
functions of. x for three values of frequency.ω ≤ 1 in the flow model (66) with.M = 4: line 1—NI; 
line 2—OI. Dashed lines correspond to the reference case with .ω = 0 and .Δθ = π: line 3—NI; 
line 4—OI. Function.θ(x) has a jump at the point.xm within the OI model due to the phase shifting 
insert 

which is equal to the amplitude of oscillations of the function .r(x). Comparison of 
graphs for.ω = 1, 3, 8 confirms the conclusion made at the end of Sect. 4 that. |r(x)|
decreases as .ω−1, and even faster in the vicinity of . x2. 

In the course of propagation from.x1 to. x2, waves of positive and negative energies 
interact such that the total energy flux (21) conserves. As a result, their amplitudes 
synchronously increase or decrease in accordance with the change in their phase 
difference. Quantitative measure of wave interaction is the gain of the positive energy 
wave: 

.Q(x) =
(
1 − |r(x)|2

)−1; (67)
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Fig. 6 (color online) The reflection coefficient (left panels) and function .θ(x) (right panel) as 
functions of . x for two values of the frequency .ω > 1 in the flow model (66) with .M = 4: line  
1—NI; line 2—OI. Function.θ(x) has a jump at the point.xm within the OI model due to the phase 
shifting insert 

this quantity is shown in Fig. 7. According to Eq. (22), the growth is replaced by the 
decrease when the sign of either .b(x) or .cos θ changes. 

At low frequencies (.ω < 1) in the OI model of the flow, the change of the . b(x)
sign is compensated to a large extent by the phase jump, therefore .Q(x) grows 
monotonically and begins to slightly oscillate only near the point .x2 (see curves 3). 
As the frequency increases, .θ(x) varies more and more rapidly, and .Q(x) acquires 
more and more distinct oscillatory character whereas its value becomes closer and 
closer to unity. Figure 8 shows the dependence of the transmission ratio .K2 of the 
supercritical domain on the frequency. ω for the NI (line 1) and OI (line 2) models. As 
one can see from the comparison of lines 1 and 2, both models, with the optimal phase-
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Fig. 7 (color online) The gain coefficient as the function of. x for the several particular frequencies: 
1—.ω = 0.2, 2—.ω = 0.5, 3—.ω = 1, 4—.ω = 3, 5—.ω = 5, 6—.ω = 8. Solid lines pertain to 
the NI model, dashed lines—to the OI model 

Fig. 8 (color online) The 
transmission ratio.K2 as 
functions of frequency. ω for 
the NI (line 1) and OI (line 
2) models 

shifting insert (OI) and without it (NI), provide approximately the same transmission 
ratio for .ω > 1, whereas they differ in the low-frequency domain. Whereas the OI 
model provides monotonic increase of .K2 when .ω → 0, in the NI model, .K2 has 
a maximum at .ω = 1, and then goes to zero when .ω → 0. Even in the NI model 
without any insert, the transmission ratio is notably greater than one, which can 
provide the laser effect of wave amplification in the “active zone”. The amplitude 
gain in the supercritical domain may be drastically reduced by wave reflection in the 
left and right subcritical domains. To gain a better insight into the effect of domain
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Fig. 9 (color online) Top panels: left—velocity profiles (68) for  .U0 = 0.1 and .U0 = 0.8, and  
right—the total transmission ratio .K = K1K2K3 as a function of frequency . ω. Bottom panels: 
left—transmission ratios of the left (.K1) domain and right—for the middle (.K2) domain as functions 
of frequency. ω; 1—.U0 = 0.1, 2—.U0 = 0.4, 3—. U0 = 0.8

competition, we have calculated the wave transmission through all three domains in 
the bell-shaped velocity profile (see Fig. 3a) with following dependences: 

.c(x) ≡ 1, and U (x) = U0 + (M −U0) sech x . (68) 

Calculations were performed for the fixed Mach number .M = 4 and with various 
velocities at the infinity .U0 ∈ (0, 1). The results obtained are presented in Fig. 9. 

As one can see, the supercritical flow with any .U0 acts as a broadband amplifier 
(see the top right panel in Fig. 9). This can be explained as follows: the wave reflection 
plays a noticeable role only at low frequencies, whereas the transmission ratio . K2

responsible for the wave amplification decreases with .ω rather slowly. It should 
be noted in passing that due to the flow symmetry, the transmission ratios in the 
subcritical domains of the flow are equal, .K1 = K3, so that the total transmission 
ratio is .K = K 2

1K2. And finally, when comparing .K2(ω) shown in Fig. 9 with that 
presented in Fig. 8 by curve 1, it should be born in mind that in calculations presented
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in Fig. 9 the scaling (38) was not fulfilled. Due to this, the dimensionless frequencies 
of the maximal amplification are different. 

Currents with the different velocities at the ending points In this section, we 
consider currents in which wave velocity.c(x) monotonically increases or decreases 
downstream from.c1 = 1 to . c2. For calculations, we take a modification of the flow 
model (66) without a phase-shifting insert (see Fig. 3b), 

.c(x) = 1 + c2 − 1

2d
x, U (x) = c(x) + x(2d − x)

2d
, x1 = 0, x2 = 2d. (69) 

In such a flow, the maximum Mach number is attained at .x = 2d/(1 + √
c2): 

.M = 1 + 2d

(1 + √
c2)2

, (70) 

so that for the given Mach number we have: 

.d = M − 1

2

(
1 + √

c2
)2

. (71) 

Let us assume that in the entire region function .a2(x) = c(x)U (x) varies mono-
tonically, and.b(x) does not change its sign. This limits the range of the flow param-
eters, so that 

.d ≤ |c2 − 1|, 1 < M ≤

⎧⎪⎪⎨
⎪⎪⎩

3 − 4

1 + √
c2

, if c2 > 1,

4

1 + √
c2

− 1 , if c2 < 1.
(72) 

The parameters.c2 and.M used for calculations are shown in Table 2. For a given. c2, 
the Mach number.Mwas chosen close to the maximum value, and then the parameter 
. d was calculated using Eq. (71). 

For the flows with the increasing velocity .c(x), Fig.  10 shows the dependence 
.|r(x)| for different .c2 and . ω. It is clearly seen that the transformation into the NEW 
increases with an increase of. c2, but falls abruptly when the frequency grows. This is 
also exhibited by the graphs of the gain coefficient.Q for the same set of parameters, 
see Fig. 11. 

Similar relations for the flows with the decreasing function .c(x) are shown in 
Figs. 12 and 13. They demonstrate the strengthening of the wave transformation 

Table 2 The Mach numbers used in numerical calculations with the different values of. c2
.c2 2 3 5 9 .2/3 0.5 .1/3 .1/6 0.1 

.M 1.3 1.5 1.6 2 1.2 1.3 1.5 1.8 2
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Fig. 10 (color online) Dependence of .|r(x)| in the flows with increasing wave velocity .c(x) for 
different values of.c2 and frequencies shown by the numbers next to the curves. Dotted line pertains 
to. ω = 0

with the decrease of the ending value .c2 and its sharp weakening with the increase 
of . ω. The oscillatory nature of the transformation near .x2 is seen even more clearly 
than for .c2 > 1. 

Figure 14 shows the transmission ratio .K2 of the inner domain as function of 
frequency . ω for the different values of .c2 > 1 (left panel) and .c2 < 1 (right panel). 
As one can see from the figure, the transmission ratio in both panels monotonically 
decreases from some maximal value .K2(ω = 0), which depends on . c2, to zero.
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Fig. 11 (color online) The gain coefficient in the flows with increasing wave velocity.c(x) for the 
different frequencies and ending values of.c2 shown by numbers next to the curves 

6.2 Super–Sub–Supercritical Flows 

For this type of flow, the inner domain, .x1 < x < x2, is subcritical and the corre-
sponding transmission ratio is less than one, .K2(ω) ≤ 1. The frequency dependence 
of .K2 is determined by the particular profiles .c(x) and .U (x) (see Sect. 4.3). For the 
numerical calculations, we chose a family of flows with the linear.c(x) and quadratic 
.U (x) profiles (cf. Eqs. (66) and (69)), 

.c(x) = 1 + (c1 − 1)(2d − x)

2d
, U (x) = c(x) − x(2d − x)

2d
. (73)



48 S. Churilov and Y. Stepanyants

Fig. 12 (color online) Dependence of .|r(x)| in the flows with the decreasing wave velocity . c(x)
for the different values of.c2 and frequencies: 1—.ω = 0.2, 2—.ω = 0.5, 3—.ω = 1, 4—.ω = 2, 
5 –. ω = 5

Here .c1 = c(0), and . d is chosen such that .U (x) > 0 in the entire interval . x1 = 0 ≤
x ≤ x2 = 2d. 

If .c1 = c2 = 1, then .c(x) ≡ 1, and .a2(x) = c(x)U (x) ≡ U (x). In this case, the 
transmission ratio .K2(ω) → 1 when the frequency goes either to zero or to infinity, 
and its minimum decreases with the decreasing of .Umin = (1 − d/2) (see Fig. 15). 
If, however, .c1 /= 1, then .K2(0) < 1 (see Eq. (64)) and .K2(ω) increases to 1 (not 
necessarily monotonically) when frequency grows (see right panel in Fig. 16).
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Fig. 13 (color online) The gain coefficient in the flows with decreasing wave velocity.c(x) for the 
different frequencies and ending values of.c2 shown by numbers next to the curves in the upper left 
panel 

The positive energy wave is amplified after passing into the supercritical domain 
.x > x2 due to the interaction with the NEW [ 14], therefore, the transmission ratio 
.K3 ≥ 1. For the calculations, we choose.c(x) and.U (x) in such that the scaling (60) 
is satisfied and the finite limits exist when.x → +∞. In particular, if .c(x) ≡ 1, than 
we take 

.U (x) = 1 + D tanh(x/D), x2 = 0. (74) 

The results of calculations for .D = 1 (.Umax = 2) and.D = 3 (.Umax = 4) are shown 
in Fig. 17.
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Fig. 14 (color online) The transmission ratio.K2 of the inner domain as a function of frequency. ω
for different values of .c2 > 1 (left panel) and .c2 < 1 (right panel). Numbers next to curves show 
the values of. c2

Fig. 15 (color online) Graphics of the flow as per Eq. (73) with.c1 ≡ 1. Left panel: the flow velocity 
.U (x) ≡ ∏(x) as the function of. x . Right panel: the frequency dependence of the transmission ratio 
.K2(ω). Lines 1 are plotted for.d = 1 with.Umin = 0.5; lines 2—for.d = 1.5 with. Umin = 0.25

In the more interesting case when .c(x) and .U (x) grow simultaneously with . x
(and .U (x) ≥ c(x) everywhere), the calculations were carried out for current and 
wave speed in the following forms, respectively: 

.U (x) = 1 + AU tanh

(
x

DU

)
, c(x) = 1 + Ac tanh

(
x

Dc

)
, (75)
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Fig. 16 (color online) Graphics of the flow as per Eq. (73) with.c1 /= 1. Left panel: the flow velocity 
.U (x) (solid lines) and.∏(x) (dashed lines) as functions of. x . Right panel: the frequency dependence 
of the transmission ratio.K2(ω). Lines 1 are plotted for.c1 = 0.5,.d = 1; lines  2—for.c1 = 2,.d = 1; 
lines 3—for.c1 = 2,. d = 1.5

Fig. 17 (color online) The flow (74), .c(x) ≡ 1. Left panel: flow velocity .U ≡ a2 versus . x . Right 
panel: frequency dependence of the transmission ratio .K3. 1—.D = 1 (.Umax = 2), 2—. D = 3
(.Umax = 4). For comparison, the dashed line presents curve 2 plotted in the right panel of Fig. 18 

with the various combinations of parameters satisfying the condition: 

. 
AU

DU
− Ac

Dc
= 1,

which follows from the scaling (60). Figure 18 presents the results of calculations 
for the three cases:
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Fig. 18 (color online) Left panel: .U (x) (solid lines), .a2(x) (dashes), and.c(x) (dash-dotted lines) 
graphs. Right panel: frequency dependence of the transmission ratio .K3. The numbers next to 
curves indicate the number of a Case in Eq. (76) 

.

Case 1 : AU = 5

3
, DU = 4

3
, Ac = 0.5, Dc = 2,

Case 2 : AU = 2, DU = 1.6, Ac = 1

3
, Dc = 4

3
,

Case 3 : AU = 1, DU = 0.8, Ac = 1, Dc = 4.

(76) 

As one can see from Fig. 18, the dependence .K3(ω) in the Case 3 notably devi-
ates from the dependences .K3(ω) in the Cases 1 and 2. There are two distinction 
peculiarities in the Case 3. Firstly, the characteristic width of variation of the wave 
speed, .Dc, significantly exceeds (5 times) that of current variation .DU . Secondly, 
.U (+∞) = c(+∞), that is there is a third critical point at infinity. The former dis-
tinction feature seems, however, not very important since even if .c(x) ≡ 1, . K3

depends on . ω in nearly the same way as in Cases 1 and 2 (cf. line 2 and dashed line 
in the right panel of Fig. 17). On the contrary, the presence of an additional (albeit 
infinitely remote) critical point has a profound impact on the behavior of function 
.r(x) which determines the progress of the wave transformation. 

Figure 19 demonstrates the absolute value and argument of .r(x) for Case 2 and 
Case 3; it allows us to compare the wave propagation in these two cases with greater 
detail. It is clearly seen that in the Case 3 the oscillations of .r(x) begin to develop 
noticeably at a much smaller distance from the critical point .x2 = 0, and this results 
in lesser values and more pronounced oscillatory character of .|r(x)|. Moreover, 
when. x increases, the oscillation period in the Case 3 decreases whereas in Case 2 it 
approaches a constant value.
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Fig. 19 (color online) The absolute value and argument of the function .r(x) for the Case 2 (top) 
and Case 3 (bottom). Different numbered curves pertain to different frequencies: 1—.ω = 0, 2—  
.ω = 0.5, 3—.ω = 1, 4—.ω = 2, 5—. ω = 5

6.3 Some Remarks 

We have carried out the analysis of simple harmonic wave propagation in quite 
general stationary flows inhomogeneous in the streamwise direction, with emphasis 
on currents with critical points separating sub- and supercritical flow regimes. Note 
that in contrast to Ref. [ 26] where the propagation of dispersive gravity-capillary 
waves was studied, in our paper devoted to non-dispersive purely gravity long waves, 
each of the currents is traversable only in the co-current direction, from left to right 
in the considered geometry. The reason is that the counter-current waves can not 
transit through critical points (see Sect. 3.2).
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To describe the wave propagation, we have derived the wave equation (9) and 
reduced it (for a single harmonic) to the set of two first-order ODEs (17) and (18). 
Solutions to this set of equations have been investigated analytically to describe the 
transition through the critical points and to determine the conditions of the opti-
mal wave amplification. Our analytical study together with numerical calculations 
provides results that can be of interest to the interpretation of wave amplification 
in natural estuaries (rivers, canals, and straits) or laboratory tanks. In addition, this 
should shed light on the intriguing (and somewhat exotic) problem of wave propa-
gation through wormholes if they exist in nature indeed. 

The performed analysis has highlighted a very significant influence of the “geo-
metric factor” .a(x) on the wave propagation. So, in the sub-super-subcritical flows, 
the reflection coefficient in the subcritical regions depends mainly on the behavior 
of function .a(x) rather than on the Mach number at the infinity, .M±∞ = U/c . In  
addition to that, amplification of positive energy waves in the supercritical region is 
also determined mainly by the difference in the values of .a(x) at the ending points 
of the ‘active’ (supercritical) region. With regard to this, we recall that at low fre-
quencies, the gain does not depend on which of the speeds is greater, .c1 or .c2 but is 
determined entirely by their ratio. 

In a super-sub-supercritical flow, the.a(x) behavior has a profound impact on the 
wave propagation as well. However, the frequency dependence of the transmission 
ratio .K3 of its final (supercritical) domain is highly sensitive to that does the Mach 
number tends to unity at the infinity or not (see Fig. 18). 

Finally, with the proviso that.a(x) = const the waves propagate without reflection 
and transformation regardless of the frequency. In what follows we shall derive 
and examine other conditions for .a(x) which provide the reflectionless (RL) wave 
propagation as well. 

7 Surface Wave Propagation Without Reflection: 
Equations for . a(x)

To find all conditions of RL propagation for surface waves of arbitrary frequency on 
inhomogeneous flows (see Fig. 1), let us return to Eqs. (7) and eliminate.ϕ(x, t). We  
arrive at the equation 

.

(
∂

∂t
+U

∂

∂x
+ 2U '

)(
∂φ

∂t
+U

∂φ

∂x

)
= c2W

∂

∂x

(
1

W

∂φ

∂x

)
, (77) 

which is complementary to Eq. (9). Then, we represent 

. ϕ(x, t) = A1(x)ψ(x, t) and φ(x, t) = A2(x)χ(x, t),

substitute into Eqs. (9) and (77), and obtain
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.

∂2ψ

∂t2
+ (U 2 − c2)

∂2ψ

∂x2
+ 2U

∂2ψ

∂t∂x
+ 2U

(
A'
1

A1
− c'

c

)
∂ψ

∂t

+
[
2(U 2 − c2)

A'
1

A1
+ (U 2 + c2)

U '

U
− 2U 2 c

'

c

]
∂ψ

∂x
+ T1(x)ψ = 0,

(78) 

where 

. A1(x) T1(x) = (U 2 − c2)A''
1 + A'

1

[
(U 2 + c2)(lnU )' − 2U 2(ln c)'

]
,

and 

.

∂2χ

∂t2
+ (U 2 − c2)

∂2χ

∂x2
+ 2U

∂2χ

∂t∂x
+ 2

(
U

A'
2

A2
+U '

)
∂χ

∂t

+
[
2(U 2 − c2)

A'
2

A2
− c2

U '

U
+ 3UU ' − 2cc'

]
∂χ

∂x
+ T2(x)χ = 0,

(79) 

where 
. A2(x) T2(x) = (U 2 − c2)A''

2 +
[
3UU ' − c2(lnU )' − 2cc'

]
A'
2.

One can see (for more details, see [ 10, 11]) that .T1(x) ≡ 0 if 

.
dA1

dx
= B c2(x)U (x)

c2(x) −U 2(x)
, B = const, (80) 

and .T2(x) ≡ 0 when 

.
dA2

dx
= C

U (x)
[
U 2(x) − c2(x)

] , C = const. (81) 

As the next step, we consider the model equation 

.

(
∂

∂t
+ w1(x)

∂

∂x
+ G(x)

) (
∂

∂t
+ w2(x)

∂

∂x

)
F(x, t) = 0, (82) 

where .w1(x), .w2(x), and .G(x) are as yet undefined functions. One of its solutions 
describes a traveling wave, 

. F(x, t) = F1

(
t −

{
dx

w2(x)

)
,

where .F1(X) is an arbitrary function. Expansion of Eq. (82) leads to
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. 
∂2F
∂t2

+ w1w2
∂2F
∂x2

+
(
w1 + w2

) ∂2F
∂t∂x

+ G
∂F
∂t

+
[
w1w

'
2 + G w2

]∂F
∂x

= 0.

(83) 
Let us compare this equation with Eq. (78) provided that .T1(x) ≡ 0 and Eq. (80) 
holds. The equations are identical if 

.w1w2 = U 2 − c2, w1 + w2 = 2U, G = 2U

(
A'
1

A1
− c'

c

)
, (84) 

and 

.w1w
'
2 + G w2 = 2

(
U 2 − c2

) A'
1

A1
− 2U 2 c

'

c
+

(
U 2 + c2

)U '

U
. (85) 

The first two Eqs. (84) show that either.w1 = U − c and.w2 = U + c, or. w1 = U + c
and .w2 = U − c. In both these cases Eq. (85) provides (cf. with Eq. (14)) . A1(x) =[
c(x)U (x)

]1/2 ≡ a(x), and Eq. (80) takes the form 

.
da

dx
= B c2(x)U (x)

c2(x) −U 2(x)
. (86) 

Similar calculations demonstrate that Eq. (83) is identical to Eq. (79) with . T2(x)
≡ 0 for the same.(w1, w2) pairs (i.e., for .w1 = U − c, .w2 = U + c or .w1 = U + c, 
.w2 = U − c) and.A2(x) = a−1(x). Substituting the last relation into Eq. (81) yields 

.
da

dx
= C c(x)

c2(x) −U 2(x)
. (87) 

As a result, we see that Eq. (78) with .T1 ≡ 0 can be presented in two equivalent 
forms: 

.

{
∂

∂t
+

[
U (x) − c(x)

] ∂

∂x
+U (x)

(
U '(x)
U (x)

− c'(x)
c(x)

)}

×
(

∂

∂t
+

[
U (x) + c(x)

] ∂

∂x

)
ψ ≡

{
∂

∂t
+

[
U (x) + c(x)

] ∂

∂x
+U (x)

(
U '(x)
U (x)

− c'(x)
c(x)

)}

×
(

∂

∂t
+

[
U (x) − c(x)

] ∂

∂x

)
ψ = 0.

(88) 

The general solution to this equation is a superposition of two waves of arbitrary 
form which propagate along the characteristics (8),
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. ψ(x, t) = ψ1

(
t −

{
dx

U (x) + c(x)

)
+ ψ2

(
t −

{
dx

U (x) − c(x)

)
.

The independent propagation of each of these waves in an inhomogeneous medium 
is provided by Eq. (86) specifying the necessary relation between .c(x) and .U (x). 
Similarly, when .T2 ≡ 0, .χ(x, t) obeys Eq. (88) as well and can be represented as a 
sum of two waves of arbitrary form, 

. χ(x, t) = χ1

(
t −

{
dx

U (x) + c(x)

)
+ χ2

(
t −

{
dx

U (x) − c(x)

)
,

but in this case .c(x) and .U (x) must be related by Eq. (87). 
Thus, we have derived Eqs. (86) and (87) which relate the flow and wave velocities 

.U (x) and .c(x) in such a manner that the fulfillment of either of the two ensures 

RL wave propagation. When corresponding .a(x) =
[
c(x)U (x)

]1/2
is found, the 

perturbed flow velocity . ũ and free surface elevation . η in the wave are expressed in 
terms of . ψ and . χ as follows (see Eqs. (1), (3), (5), and (6)): 

. ũ = a(x)
∂ψ

∂x
+ a'(x)ψ, η = −a(x)

g

[
∂ψ

∂t
+U (x)

∂ψ

∂x
+ a'(x)

a(x)
U (x)ψ

]
,

(89) 
and 

.

ũ = − U (x)

a(x)Φ

[
∂χ

∂t
+U (x)

∂χ

∂x
− a'(x)

a(x)
U (x)χ

]
,

η = 1

W (x) a(x)

[
∂χ

∂x
− a'(x)

a(x)
χ

]
.

(90) 

Equations (86) and (87) are very similar, but the properties of the RL velocity 
profiles that satisfy them notably differ. Only when.B = C = 0, both equations lead 
to the already known relation .a(x) = const, or  

.c(x)U (x) = ∏ = const > 0. (91) 

An example of the flow belonging to this class of RL flows (let’s call it class A) is 
shown in Fig.  3c. Note that one may interchange.c(x) and.U (x) profiles in this figure 
to obtain the other flow of this class. In view of the flux conservation equation (1), 
the velocity and width of an A-class flow are related to its depth by 

.U (x) H 1/2(x) = const and W (x) H 1/2(x) = const, (92) 

so that .U (x)/W (x) = const, that is, the wider the channel, the higher the fluid 
velocity.
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In studies of RL propagation of long surface waves in channels without current, 
the second relation (92) plays an important role (see, for example, [ 12, 16, 24, 25]). It 
distinguishes the so-called self-consistent channels—the only class of channels with 
regular .W (x) and.H(x) profiles, in which waves propagate without reflection along 
the entire.x-axis. Class A contains RL flows in self-consistent channels with currents, 
and these flows are also regular. One can set the profile of one of the velocities (for 
example, .c(x)) on the entire .x-axis in the form of an arbitrary continuous positive 
function and, using Eq. (91), obtain a family of corresponding profiles for another 
velocity (.U (x)) “labelled” by the parameter .∏ (as an example, see Fig. 3c). 

The class of RL flows controlled by Eq. (86) with .B /= 0 (the B-class of flows) 
has been studied in detail in [ 10] and is described in the next section. And Sect. 9 is 
devoted to the third class of RL flows controlled by equation Eq. (87) with . C /= 0
(the C-class of flows) which was examined in [ 11]. 

8 B–class RL Flows 

8.1 General Properties and Some Examples 

Let us note first that Eq. (86) is invariant with respect to the simultaneous replacement 
.x → −x and .B → −B. For this reason, we introduce a variable .ξ = B x which 
remains the same under such a transformation and rewrite Eq. (86) in two forms: 

.
da

dξ
= c2(ξ)U (ξ)

c2(ξ) −U 2(ξ)
and c(ξ)

dU

dξ
+U (ξ)

dc

dξ
= 2c5/2(ξ)U 3/2(ξ)

c2(ξ) −U 2(ξ)
. (93) 

In addition, Eqs. (86) and (93) are invariant with respect to the scaling transformation 
.U (x) → U (x)/c0, .c(x) → c(x)/c0, where .c0 = const. In what  follows, we  
will choose the appropriate scale . c0. Note also that these equations possess the 
translational symmetry which means that if .c(ξ) and .U (ξ) satisfy Eq. (93), then 
.c(ξ + b) and .U (ξ + b), where . b is an arbitrary constant, satisfy this equation too. 
And finally, it is easily seen that.a(ξ) monotonically increases in subcritical (.U < c) 
flows and decreases in supercritical ones. 

The right-hand side of Eq. (93) is singular for .U = c, .U = 0, .c = 0, as well  
as for unbounded growth of .U (ξ) or .c(ξ). To solve the question of whether these 
singularities are attainable at a finite . ξ, we rewrite the first Eq. (93) in the  form  

.
1

a(ξ)

da

dξ
= c3/2(ξ)U 1/2(ξ)

c2(ξ) −U 2(ξ)
. (94) 

It is easy to see that if .c(ξ) is bounded everywhere, that is .0 < c(ξ) ≤ cM < ∞, 
then the singularities .U = 0 and .U = ∞ are attainable only asymptotically, when
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.|ξ| → ∞. The same is true for .c = 0 and .c = ∞ if .U (ξ) is bounded everywhere, 
and only .U = c can be reached at a finite . ξ, in critical point(s). 

In distinction to regular critical points in A-class flows (see Sect. 3), the critical 
points in B-class flows are singular. At such a point, both velocities, .c(ξ) and .U (ξ), 
are finite and nonzero, but their derivatives can be singular. Let us examine the neigh-
borhood of a critical point (say,.ξ = 0) where.U = c. Assume that the normalization 
constant .c0 is chosen such that .U (0) = c(0) = 1. Let us set 

. c(ξ) = 1 + s(ξ), U (ξ) = 1 + v(ξ),

where .s(ξ) → 0 and .v(ξ) → 0 when .ξ → 0. Substituting into the second Eq. (93) 
yields 

. 

(
s − v

)(
s ' + v'

)
= 1 + 2 s + v + O(s2 + v2),

where prime stands for the derivative with respect to. ξ. From here, we see that. (s − v)

and .(s + v) are power-type functions of . ξ: 

.(s − v) ∼ ξλ1 , (s + v) ∼ ξλ2 , (95) 

where .λ1 + λ2 = 1, .λ1,2 > 0. 
Since .ξ = 0 is a branching point and .s(ξ) and .v(ξ) are real functions, the cases 

.ξ > 0 and .ξ < 0 should be considered separately. 
Case A. If .λ1 = λ2 = 1/2, then we readily find for .ξ ≥ 0: 

.c(ξ) = 1 + s+ξ1/2 + O(ξ), U (ξ) = 1 + v+ξ1/2 + O(ξ), (96) 

where .s2+ = v2+ + 2. 
For .ξ ≤ 0, we find: 

.c(ξ) = 1 + s−(−ξ)1/2 + O(ξ), U (ξ) = 1 + v−(−ξ)1/2 + O(ξ), (97) 

where.s2− = v2− − 2. Here.s± and.v± are constants which can have any sign, depend-
ing on the branch of the solution (subcritical or supercritical). Moreover, it is not 
necessary that both velocities have singularities at.ξ = 0. In particular, in the domain 
.ξ ≥ 0 the flow velocity can be regular (.v+ = 0), while the wave speed can be regular 
(.s− = 0) in the domain where .ξ ≤ 0 . 

If .λ1 /= λ2 we can present .s(x) and .u(x) as: 

. s(ξ) = sa±|ξ|λ1 + sb±|ξ|λ2 + . . . , v(ξ) = va±|ξ|λ1 + vb±|ξ|λ2 + . . . ,

where the indices plus (minus) pertain to the regions .ξ ≥ 0 (.ξ ≤ 0). 

Case B. If .0 < λ1 < λ2, then from the condition .(s + v) ∼ |ξ|λ2 , we obtain: 

.sa± + va± = 0, 2λ2sa±(sb± + vb±) = ±1. (98)
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Case C. When, conversely, .λ1 > λ2 > 0, from the condition.(s − v) ∼ |ξ|λ1 , we  
obtain: 

.sb± = vb±, 2λ2sb±(sa± − va±) = ±1. (99) 

Emphasize that in any case at least one of the velocities is singular at the critical 
point.ξ = 0. Moreover, both flows, subcritical and supercritical, do exist on the same 
semiaxis of . ξ, positive or negative. Since the flow velocities at the critical point do 
not vanish, the flow exists on the complementary part of.ξ-axis as well, but ceases to 
be reflectionless. It would be very interesting to know what happens when the wave 
passes through a critical point,—its reflection, or (most likely, partial) absorption, or 
a combination of these,—but this issue requires a separate study. 

For further consideration, it is convenient to introduce functions determined by 
the ratio of the velocities .U (ξ) and .c(ξ) in each point . ξ, 

.F(ξ) =
[
U (ξ)

c(ξ)

]1/2

≡
[
U 2(ξ)

gH(ξ)

]1/4

and f (ξ) = 1

F(ξ)
. (100) 

For the sake of brevity, we will call function .F(ξ) the Froude number, and function 
. f (ξ) the reciprocal Froude number. Note that .M = F2, where .M is the Mach 
number introduced in Sect. 4.1. In terms of .F and . f , Eq. (93) can be written in two 
equivalent forms: 

.
dF

dξ
= F2(ξ)

1 − F4(ξ)
− F(ξ)

c(ξ)

dc(ξ)

dξ
, (101) 

.
d f

dξ
= f 3(ξ)

1 − f 4(ξ)
+ f (ξ)

c(ξ)

dc(ξ)

dξ
, (102) 

where .c(ξ) is assumed to be given. As a useful illustration, let us consider two 
examples. 

8.1.1 Currents of a Constant Depth, . H(x) = const

In this case, the wave velocity is also constant, .c(ξ) = c0. Setting .c0 = 1 and inte-
grating Eq. (101), we arrive at the algebraic equation 

.F4 + 3(ξ − ξ0)F + 3 = 0. (103) 

When.ξ < ξ∗ = ξ0 − 4/3, it has two positive roots,.F−(ξ) < 1 and.F+(ξ) > 1 which 
merge in one double root .F = 1 at .ξ − ξ∗. These solutions do exist only for . ξ < ξ∗
and are singular,
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Fig. 20 (color online) Solutions to Eq. (103) for different values of .ξ0 in the subcritical (.F < 1) 
and supercritical (.F > 1) regimes  

. F±(ξ) = 1 ±
(

ξ∗ − ξ

2

)1/2

+ ξ∗ − ξ

12
+ . . . , U±(ξ) = F2±(ξ) = 1 ±

[
2(ξ∗ − ξ)

]1/2+ . . . ,

(104) 
where plus/minus signs correspond to super/subcritical flow. And for . ξ → −∞
the asymptotic solutions originated for each root are (we are recalling that . a(ξ) =
c(ξ) F(ξ)): 

.

a−(ξ) = F−(ξ) ≈ (−ξ)−1, a+(ξ) = F2(ξ) ≈ (−3ξ)1/3,

U−(ξ) = F2−(ξ) ≈ (−ξ)−2, U+(ξ) = F2+(ξ) ≈ (−3ξ)2/3.
(105) 

Solutions of Eq. (103) are  shown in Fig.  20. 

8.1.2 Flows with the Exponential Variation of Wave Speed . c(ξ)

Let .c(ξ) = C exp(μξ). Then Eq. (101) takes the form: 

.
dF

dξ
= F2

1 − F4
− μF. (106) 

This equation, in contrast to the one considered above, has a null-isocline (NI). F(ξ) =
F0 = const on which its right-hand side vanishes. The value of .F0 is a positive root 
of the equation
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.F4
0 + F0

μ
− 1 = 0. (107) 

It is evident that for .μ > 0, the  value of  .F0 < 1, i.e. corresponds to the subcritical 
domain, whereas for.μ < 0, the  value of.F0 > 1, which corresponds to the supercrit-
ical domain. It can be shown (for more details, see [ 10]) that the phase trajectories 
of Eq. (106) are moving apart from NI as . ξ increases, see Fig. 21. 

As a result, the upper half-plane .(ξ, F) is split into three strips (separated from 
each other by the straight lines .F = F0 and .F = 1), in which the behavior of solu-
tions to Eq. (106) is significantly different. If .μ > 0, then.0 < F0 < 1, and solutions 
to equation (106) are such as shown in Fig. 21a. In the lower strip, .0 < F < F0, any  
solution.F(ξ) decreases monotonically approaching.F0 from below when. ξ → −∞
and zero from the top when .ξ → +∞, according to .F ≈ Fm+ exp(−μξ). Respec-
tively, in the same limit we have .a(ξ) → const and 

.W (ξ) ∼ U (ξ) ∼ F(ξ) ∼ H−1/2(ξ) ∼ c−1(ξ). (108) 

In the middle strip,.F0 < F ≤ 1, any solution.F(ξ) grows monotonically from. F0

when.ξ → −∞ to.F = 1 at some. ξ∗. Near this critical point the asymptotic solution 
is 

.F(ξ) = 1 −
(

ξ∗ − ξ

2

)1/2

− 1 − 8μ

12

(
ξ∗ − ξ

)
+ . . . (109) 

In the upper strip any solution tends to infinity as .F ≈ Fm− exp(−μξ) when 
.ξ → −∞ and decreases with . ξ approaching unity, when . ξ tends to some .ξ+ as per 
the formula: 

.F(ξ) = 1 +
(

ξ+ − ξ

2

)1/2

− 1 − 8μ

12

(
ξ+ − ξ

)
+ . . . (110) 

If .μ < 0, then .F0 > 1. Solutions to Eq. (106) are  shown in Fig.  21b. In the lower 
strip,.0 < F < 1, all solutions.F(ξ)monotonically increase from. F ≈ FM− exp(−μξ)
when .ξ → −∞ attaining .F = 1 at some finite . ξ as per dependence similar to 
described by Eq. (109). In the middle strip, .1 < F < F0, solutions .F(ξ) monotoni-
cally decrease from.F0 when.ξ → −∞ to.F = 1 achieving this value at some finite. ξ
as per dependence similar to (110). In the upper strip,.F > F0, solutions.F(ξ)mono-
tonically increase from.F0 when.ξ → −∞, to.F ≈ FM+ exp(−μξ)when.ξ → +∞; 
the dependences similar to (108) are held in this limit. 

It should be noted that in the lower strip for.μ > 0 and in the upper strip for. μ < 0
solutions are global, i.e., they are defined on the entire.ξ-axis, whereas in other strips, 
solutions are defined only to the left of some finite point .ξ∗ which is different for 
each particular realization.
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Fig. 21 (color online) Solutions of Eq. (106) with  a positive.μ = 0.4 (.F0 = 0.3907) and  b negative 
.μ = −0.4 (.F0 = 1.4705). Blue lines correspond to global solutions



64 S. Churilov and Y. Stepanyants

8.2 Global Solutions and Conditions of Their Existence 

As follows from the analysis presented above for the specific flow models, in the 
majority of cases solutions for the RL current profile are valid only on the limited 
spatial interval, because the profiles of the flow depth, width, or velocity become 
either singular in certain points, or diverge at the infinity. Therefore, one of the 
important questions is whether it is possible to find such conditions when solutions 
for the profiles are globally defined on the entire .x-axis. Such a problem was solved 
in the case when there is no current [ 24]. We provide the solution for the case when 
the current is taken into account. 

Let us recall that in the case of the exponential variation of the wave speed . c(ξ)
considered above, horizontal NI (.F = F0 = const) is the flow trajectory in itself and 
serves as the separatrix separating the global trajectories from those that are defined 
on the bounded.ξ-interval. Under a non-exponential variation of.c(ξ), NI.F = F0(ξ), 
on which the right-hand side of Eq. (101) vanishes, is still described by Eq. (107) 
but now .μ(ξ) ≡ d ln c(ξ)/dξ /= const. In other words, NI is not horizontal, not a 
trajectory, and not a separatrix because it does not obey Eq. (101) and is intersected 
on the .(ξ, F)-plane by some trajectories of Eq. (101). Nevertheless, it is necessary 
for the existence of global solutions. 

In the subcritical domain (.F < 1) NI exists if .c(ξ) increases (.μ(ξ) > 0) whereas 
in the supercritical domain (.F > 1) decreasing of .c(ξ) (.μ(ξ) < 0) is required. Let 
us consider first subcritical flows. If.c(ξ) grows so fast that.μ(ξ) increases monotoni-
cally, with or without limit (see lines 2 and 1 in Fig. 22a respectively). NI. F = F0(ξ)
also increases monotonically starting at .ξ = ξm (possibly, at .ξ = −∞) to some  
.FM ≤ 1 when .ξ → +∞ (see line 1 in Fig. 23a).Trajectories representing solutions 
of Eq. (101) either intersect NI and are global, or lie entirely above it and are bounded 
from the right by some .ξ = ξb. (Note that NI has a positive derivative, whereas tra-
jectories below it have negative slopes. Therefore, all such trajectories intersect NI 
when . ξ decreases.) 

If function.c(ξ) grows slower than exponentially, then.μ(ξ) has a maximum (pos-
sibly, even more than one, but it does not matter, in principle) and vanishes when 
.ξ → +∞ (see Fig. 22b). NI .F = F0(ξ) has qualitatively the same shape (see line 
1 in Fig.  23b). All trajectories lying above or crossing its right (descending) slope 
(for example, like line 2 in Fig. 23b) are, obviously, bounded from the right by some 
.ξ = ξb. The global trajectories such as shown by line 3 in Fig. 23b must lie below 
.F0(ξ) for sufficiently large . ξ. 

Consider the trajectory passing through the point.(ξ1, F1) in the subcritical domain 
(.0 < F1 < 1). Integrating Eq. (94) with the use of the mean-value theorem provides 

.
1

a(ξ)
= 1

a(ξ1)
−

ξ{

ξ1

dy

c(y)[1 − F4(y)] = 1

c(ξ1) F1
− 1

1 − F4(ξa)

ξ{

ξ1

dy

c(y)
, (111)
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Fig. 22 (color online) The qualitative dependence of .μ(ξ) for the flows with a fast and b slow 
growth of. c(ξ)

where .ξa is between .ξ1 and . ξ. It turns out that in the subcritical domain both the 
existence of global solutions and asymptotic (as.ξ → ±∞) behavior of.F(ξ) depend 
on the convergence of integrals 

.IF±(ξ) = ±
±∞{

ξ

dy

c(y)
(112) 

on the upper limit. Indeed, let .μ(ξ) << 1 and decreases monotonically for .ξ ≥ ξ1. 
Then, according to Eq. (107),.F0(ξ) ≈ μ(ξ) and decreases as well. For.F1 < F0(ξ1), 
the trajectory lies below NI on some interval containing . ξ1. If .IF+(ξ1) diverges, the 
right-hand side of Eq. (111) vanishes at some finite. ξ and.F(ξ) increases up to.F = 1, 
and therefore the trajectory intersects NI. If, however, .c(ξ) grows rapidly enough 
(faster than. ξ) so that.IF+(ξ1) converges, and if.F1 is sufficiently small, the right-hand 
side of Eq. (111) tends to a finite limiting value .a−1

1+ > 0 as .ξ → +∞. Then. a(ξ) =
c(ξ)F(ξ) → a1+ while.c(ξ)F0(ξ) ≈ μ(ξ)c(ξ) = c'(ξ) → +∞, and the trajectory is 
global because it lies below NI when .ξ > ξ1. Thus, the convergence of the integral 
.IF+(ξ) for any finite. ξ is necessary and sufficient for the existence of global subcritical 
RL flows of class B. Figure 24 demonstrates a qualitative variation of the global flow 
parameters along the channel. 

In the supercritical domain, NI exists if.μ(ξ) < 0, i.e., if the depth.H(ξ) and wave 
speed .c(ξ) decrease with . ξ. In this domain, it is convenient to use the reciprocal 
Froude number. f (ξ) = 1/F(ξ); then.a(ξ) = c(ξ)/ f (ξ)). In this case, all the reason-
ing presented above remains almost the same. As a result, it is sufficient to replace
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Fig. 23 (color online) Solutions of Eq. (101) for  a fast and b slow growth of.c(ξ). Line 1 corresponds 
to NI in both frames. Lines 2 in frame a illustrate examples of global trajectories; other non-
numbered blue lines illustrate bounded solutions that exist for .ξ ≤ ξb with the individual value 
of .ξb for each line. In frame b non-numbered blue lines depict bounded trajectories, line 2 is an 
.ξ-bounded trajectory partially passing below NI, and line 3 illustrates a global solution
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Fig. 24 (color online) Typical variation of the subcritical global flow parameters along the channel. 
All variables are normalized to some reference values and presented in dimensionless form 

. μ by .|μ| (or by .−μ) in Fig.  22 and .F by . f in Fig. 23 in order to have an idea of the 
solutions of Eq. (102). 

In this domain, NI is described by the algebraic equation 

. f 40 (ξ) + f 30 (ξ)

|μ(ξ)| − 1 = 0, (113)
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and global solutions exist if the integral .I f +(ξ), where 

.I f ±(ξ) = ±
±∞{

ξ

dyc3(y), (114) 

converges for any finite . ξ, that is, if .c(ξ) decreases with . ξ faster than .ξ−1/3. Indeed, 
let us consider the trajectory passing through the point .(ξ2, f2) and rewrite Eq. (94) 
in terms of . f (ξ): 

. 
1

a(ξ)

da(ξ)

dξ
= − f 3(ξ)

1 − f 4(ξ)
= − c3(ξ)

a3(ξ)[1 − f 4(ξ)]
Integrating it with the use of the mean-value theorem provides 

.a3(ξ) = a3(ξ2) − 3

ξ{

ξ2

dyc3(y)

1 − f 4(y)
= c3(ξ2)

f 32
− 3

1 − f 4(ξb)

ξ{

ξ2

dyc3(y), (115) 

where .ξb is between .ξ2 and . ξ. Suppose that for .ξ ≥ ξ2 .|μ(ξ)| << 1 and decreases 
monotonically. Then Eq. (113) yields . f0(ξ) ≈ |μ(ξ)|1/3 << 1. If .I f +(ξ2) converges, 
the right-hand side of Eq. (115) tends to a finite limiting value.a32+ as.ξ → +∞, and 
this value is positive for sufficiently small . f2. Therefore, . f 3(ξ) ≈ c3(ξ)/a32+ << ξ−1

on the trajectory while . f 30 (ξ) ≈ |μ(ξ)| = |c'(ξ)|/c(ξ) >∼ ξ−1. Hence, . f (ξ) << f0(ξ)
and the trajectory is global. 

In closing, it should be noted that the conditions for the existence of global sub-
and supercritical RL flows are incompatible, therefore, depending on the behavior 
of .c(ξ), there may be either one or the other (or there may not be global flows at all, 
see Fig. 20). 

8.3 Asymptotic Behavior When . ξ → −∞

Consider the trajectory passing through the point .(ξ1, F1) and use Eq. (111) for  
.ξ < ξ1. Its right-hand side is positive and grows with a decrease in . ξ. If the integral 
.IF−(ξ1) converges (see Eq. (112)),.a(ξ) → aF− = const > 0 and relations (108) are  
fulfilled. 

If, conversely, .IF−(ξ1) diverges, let us suppose first that 

.c(ξ) ∼ (−ξ)p, p < 1, =⇒ μ(ξ) ≡ c'(ξ)
c(ξ)

= − p

ξ
, a−1(ξ) ∼

ξ{
dy

c(y)
∼ (−ξ)1−p.
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The solution to Eq.  (101) is .F(ξ) = (p − 1)/ξ. For .ξ → −∞, it has a qualitatively 
similar behavior at any .p < 1 including .p < 0 when .μ(ξ) becomes positive and NI 
.F0(ξ) ≈ μ(ξ) = −p/ξ emerges. On the contrary, the flow velocity and other flow 
parameters do significantly depend on . p: 

. U (ξ) ∼
(
−ξ

)p−2
, W (ξ) ∼

(
−ξ

)2−3p
, H(ξ) ∼

(
−ξ

)2p
, a(ξ) ∼

(
−ξ

)p−1
.

(116) 
In particular, the channel width is constant at .p = 2/3, expands for .p < 2/3, and 
contracts when .p > 2/3. 

To change qualitatively the .F(ξ) behavior, .μ(ξ) should be greater. For example, 
if .μ(ξ) = b(−ξ)β with .−1 < β < 0, then NI .F = F0(ξ) ≈ μ(ξ), and 

. F(ξ) = μ(ξ) + 1

F(ξ)

dF

dξ
≈ b(−ξ)β − β

ξ

approaches NI when .ξ → −∞. And in the limiting case .β → 0 we obtain . F0(ξ) =
const and the trajectories .F = F(ξ) shown in Fig. 21a. 

Similarly, for the supercritical trajectory going through the point.(ξ2, f2) into the 
.ξ < ξ2 domain, Eq. (115) shows that if the integral.I f −(ξ2) converges (see Eq. (114)) 
then .a(ξ) → a2− = const > 0, and relations (108) are fulfilled. If, conversely, it 

diverges and .μ(ξ) = q/ξ with .q > − 1
3 , then we obtain . f (ξ) =

[
−(q + 1

3 )/ξ
]−1/3

and 

.

U (ξ) ∼
(
−ξ

)q+2/3
, W (ξ) ∼

(
−ξ

)−(3q+2/3)
,

H(ξ) ∼
(
−ξ

)2q
, a(ξ) ∼

(
−ξ

)q+1/3
.

(117) 

Finally, when .|μ(ξ)| is greater, . f (ξ) approaches NI . f = f0(ξ) as .ξ → −∞. 

9 C–class RL Flows 

9.1 The Distinctive Features of C-Class Flows 

The similarities and differences in the behavior of C-class and B-class flows are 
determined by the similarities and differences between Eqs. (86) and (87). Equation 
(86) is homogeneous in the velocities . c and . U , and the constant . B has the dimen-
sion of inverse length, whereas Eq. (87) does not have this property, and . C has the 
dimension of acceleration. Therefore, in the C-class the dimensionless variables can 
be introduced only through the scaling 

.ξ̃ = Cx/c20, c̃ = c/c0, Ũ = U/c0, ã = a/c0. (118)



70 S. Churilov and Y. Stepanyants

Omitting the tildes, we rewrite Eq. (87) in two equivalent forms: 

.
da

dξ
= c(ξ)

c2(ξ) −U 2(ξ)
and

d(cU )

dξ
= 2 c3/2(ξ)U 1/2(ξ)

c2(ξ) −U 2(ξ)
. (119) 

The right-hand side of the second Eq. (119) is singular for .U = c, .U = 0, . c = 0
as well as for the unbounded growth of .U (ξ) or .c(ξ). To understand whether these 
singularities are attainable at a finite . ξ, we rewrite the first Eq. (119) in the form 

.
d

dξ
ln a(ξ) = c1/2(ξ)

U 1/2(ξ)
[
c2(ξ) −U 2(ξ)

] . (120) 

It is easy to see that, if .c(ξ) is bounded everywhere, i.e., .0 < c(ξ) < ∞, then not 
only can .U = c be reached at a finite . ξ, as in the B-class of flows, but also . U = 0
can be reached at some other finite point . ξ, whereas .U = ∞ can be attained only 
asymptotically, when .ξ → −∞. Similarly, .c = 0 and .c = ∞ are attainable only 
asymptotically. 

It is easily shown that in the neighborhood of the critical point .U = c the class-
C flows have the same behavior as the B-class ones. But the singularity .U = 0 at 
some finite .ξ = ξU is the distinctive property of the C class. Near this point, we set 
.c(ξ) = cU + c'

U (ξ − ξU ) + . . . and obtain using Eq. (119) 

.. 
d

dξ

(
cU

)1/2= c

c2 −U2 ≈ c−1 =⇒
(
cU

)1/2= ξ − ξU

cU

[
1 − c'

U

2cU
(ξ − ξU ) + . . .

]
,

so that when . ξ → ξU + 0

.
U (ξ) = (ξ − ξU )2

c3U

[
1 − 2c'

U

cU
(ξ − ξU ) + . . .

]
,

F(ξ) ∼ (ξ − ξU ), and W (ξ) ∼ (ξ − ξU )−2.

(121) 

For further analysis, it is convenient to rewrite Eq. (119) in terms of the Froude 
numbers .F(ξ) and . f (ξ) (see Eq. (100)): 

.c2(ξ)
dF

dξ
= 1

1 − F4(ξ)
− M(ξ)F(ξ), (122) 

.c2(ξ)
d f

dξ
= f 6(ξ)

1 − f 4(ξ)
+ M(ξ) f (ξ), (123) 

.c(ξ)
da

dξ
= 1

1 − F4(ξ)
= f 4(ξ)

f 4(ξ) − 1
, (124) 

where 

.M(ξ) = c(ξ)
dc

dξ
≡ d

dξ

(
c2(ξ)

2

)
≡ g

2

dH(ξ)

dξ
(125)
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is determined by the variation of the flow depth. It is convenient to present solutions 
of these equations as a set of trajectories (the phase portrait) on the half-plane. (ξ, F)

or .(ξ, f ) (recall that functions .F and . f are positive). 
As a useful illustration, consider flows of constant depth where the wave speed is 

also constant, .c(ξ) = c0. Setting .c0 = 1 and integrating Eq. (122), we arrive at the 
algebraic equation 

. F5(ξ) − 5F(ξ) + 5(ξ − ξ0) = 0, ξ0 = const.

If .ξ ≤ ξ∗ = ξ0 + 4/5, it has two positive roots .F±(ξ) which merge into one double 
root .F = 1 at .ξ = ξ∗. In the vicinity of the point .ξ∗ these solutions are 

.F±(ξ) = 1 ±
[
1

2

(
ξ∗ − ξ

)1/2
]

− 1

4

(
ξ∗ − ξ

)
+ . . . (126) 

The bigger root, .F+ > 1, grows indefinitely when . ξ decreases from .ξ∗ up to minus 
infinity, whereas the smaller root, .F− < 1, changes its sign at . ξ = ξ0

.F−(ξ) = ξ − ξ0 + 1

5
(ξ − ξ0)

5 + . . . , (127) 

so that, for .ξ < ξ0 there is only a single positive root. 
Thus, in C-class, subcritical flows of constant depth (as opposed to those of B-

class) remain RL only within a finite interval of . ξ, .ξ0 < ξ < ξ∗, and supercritical 
flows are RL on the semi-axis .ξ < ξ∗ (see Fig. 25 and compare it with Fig. 20). Let 
us find the conditions under which these restrictions are absent for some part of the 
trajectories. 

9.2 Global Trajectories and Asymptotic Behavior 

For a subcritical trajectory to be unbounded in. ξ, i.e. to be global, it must reach neither 
.F = 1 when. ξ increases, nor.F = 0 when. ξ decreases. Thus, the task is split into two 
parts. Let us find first the conditions under which a trajectory is not bounded from 
the right. As in the B-class flows, reaching the value .F = 1 can only be prevented 
by the presence of NI separating regions with opposite signs of the right-hand side 
of Eq. (122). NI is described by the equation 

.G(F0) = F5
0 (ξ) − F0(ξ) = −M−1(ξ), (128) 

which has two positive roots, .0 < F0−(ξ) ≤ F0+(ξ) < 1 if (see Fig. 26a) 

.M(ξ) ≥ Mc = 55/4

4
≈ 1.8692. (129)
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Fig. 25 (color online) Phase portrait of C-class flows of constant depth in subcritical (.F < 1) and  
supercritical (.F > 1) domains 

Fig. 26 (color online) Roots of equations for null isoclines: a Eq. (128): dashed lines 1—.M = 1.25, 
2—.M = Mc and 3—.M = 3; b Eq. (136): the left-hand side (curve 1) and the right-hand side for 
.M = −0.5 (curve 2), .M = −1 (curve 3), and.M = −1.6 (curve 4)
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Fig. 27 (color online) The subcritical part of the phase portrait of Eq. (128) for  .M0 = 3. a NI 
(curve 1) and surrounding trajectories, bounded (curves 2–4) and unbounded (curves 5–8) on the 
right; trajectories 7 and 8 are bounded from the left by the singularity .F = 0. b Bounded (curves 
2–4 and 8) and global (curves 5–7) trajectories in the presence of a NI (curve 1) and with inequality 
(135) fulfilled; blue and red dashed lines show the boundaries of the bundle of global trajectories 

Thus, in the subcritical region, NI appears only at a sufficiently large depth gradient 
as a result of the merger of two complex conjugate roots of Eq. (128). NI has two 
branches that cannot extend far to the left. Indeed, if.c(ξ1) = c1 > 0 and. M(ξ) ≥ Mc

for .ξ < ξ1 then, with decreasing . ξ, we will inevitably arrive at the singularity . c = 0
(.H = 0) for a finite . ξ. 

Let us assume that .M(ξ) = Mc at .ξ = ξc and grows monotonically for .ξ > ξc. 
Then NI branches, .F = F0±(ξ), start in the point .ξ = ξc and each monotonically 
tends to its own limit (see Fig. 27). The slope of the trajectories is negative between
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the branches and positive outside. Therefore, trajectories passing above .F0+(ξ) end 
up reaching .F = 1 at finite . ξ. But any trajectory that crosses any branch remains 
between them up to.ξ = +∞, i.e. is not bounded on the right, as well as all trajectories 
lying below it (see Fig. 27a). 

Monotonic growth of .M(ξ) does not require so fast an increase in depth. In the 
borderline case, when .M(ξ) tends to the finite limit .M0 > Mc when .ξ → +∞, 

. H(ξ) ∼ M0ξ, F(ξ) → F0− > 0, U (ξ) ≈ F2
0−c(ξ) ∼ ξ1/2, W (ξ) ∼ ξ−3/2,

(130) 
that is, the flow and wave velocities grow in the same way, and the channel is nar-
rowed. 

If.M(ξ) grows with no limit then.F0−(ξ) ≈ M−1(ξ) → 0. Consider the trajectory 
passing through the point .(ξ3, F3) into the .ξ > ξ3 region and denote .c3 = c(ξ3) and 
.a3 = c3F3. From Eq.  (123) we find 

.a(ξ) = a3 +
ξ{

ξ3

dy

c(y)[1 − F4(y)] = a3 + 1

1 − F4(ξd)

ξ{

ξ3

dy

c(y)
, (131) 

where .ξd is between .ξ3 and . ξ, and see that the integral .IF+(ξ) (see Eq. (112)) again 
plays a crucial role. If it converges,.a(ξ) tends to.a3+ > 0 as.ξ → +∞, and relations 
(108) are fulfilled. If .c(ξ) grows more slowly than . ξ, e.g., .ξ p with . 12 ≤ p < 1, the  
integral diverges and 

. a(ξ) ∼ ξ1−p, F(ξ) ∼ ξ1−2p, U (ξ) ∼ ξ2−3p, W (ξ) ∼ ξ p−2, H(ξ) ∼ ξ2p.
(132) 

At .p = 1/2 these relations turn to Eq. (130), and when.p < 1/2, NI disappears and 
all trajectories become bounded on the right. 

Consider now the continuation of the trajectory passing through the point. (ξ3, F3)

to the left, into the region.ξ < ξ3. For.a(ξ) not to vanish (together with.F(ξ)) at some  
finite . ξ, the integral .IF−(ξ3) must converge and provide a positive limiting value 
.a3− for .a(ξ) when .ξ → −∞. Since .M(ξ) < 0 and .F(ξ) grows monotonically, the 
following inequalities hold: 

. a3 − IF−(ξ3)

1 − F4
3

< a3− < a3 − IF−(ξ3).

For an unlimited continuation of the trajectory to the left, it is necessary that 

.a3 ≡ c3F3 > IF−(ξ3). (133) 

Because .max
[
F(1 − F4)

]
= M−1

c at .F = Fc = 5−1/4, we obtain the condition 

.c3 ≥ Mc IF−(ξ3), (134)
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sufficient for the trajectory passing through the point.(ξ3, Fc) to continue with no limit 
to the left as well. Together with this trajectory, all the above-lying (with .F3 > Fc) 
and some part of the below-lying (with .F3 < Fc) trajectories also continue with no 
limit to the left. The condition (133) cuts off low-lying trajectories which inevitably 
reach .F = 0 at some finite . ξ (curves 7 and 8 in Fig. 27a and curve 8 in Fig. 27b). 

Thus, we see that, for the existence of global subcritical flows of C class, the 
flow depth .H(ξ) must increase indefinitely both to the left (faster than . ξ2), for the 
inequality 

.c(ξc) ≥ Mc IF−(ξc), (135) 

to be hold, and to the right (faster than.Mcξ) to ensure the monotonic growth of.Mξ) 
for.ξ > ξc, which is necessary to maintain NI. When these conditions are met, the set 
of global trajectories forms a bundle of trajectories strung on the trajectory passing 
through the point .(ξc, Fc) (in Fig. 27b the bundle boundaries are shown by dashed 
lines). 

Note that for.M(ξ) > 0 all trajectories in the supercritical part of the phase portrait 
(.F > 1) are bounded on the right by the singularity.F = f = 1, as in Fig.  20. Global 
supercritical trajectories can arise if, to the right of some point .ξm ≥ −∞, function 
.c(ξ) decreases monotonically (i.e., .M(ξ) < 0) that leads to the appearance of NI 
. f = f0(ξ) described, according to Eq. (123), by the equation 

. f 50 (ξ) = −M(ξ)
[
1 − f 40 (ξ)

]
. (136) 

As seen in Fig. 26b, for any .M < 0 there is one positive root . f0 < 1 such that 

. f0(ξ) =
[
−M(ξ)

]1/5 + 1
5 M(ξ) + O(|M |9/5), (−M) << 1, (137) 

. f0(ξ) = 1 + 1
4 M

−1(ξ) + O(M−2), (−M) >> 1. (138) 

The existence of global solutions and the asymptotic behavior of . f (ξ) depend 
on the convergence of integrals (114). For the trajectory passing through the point 
(.ξ4, f4), we write Eq. (124) in the  form  

. c(ξ)
da

dξ
= − f 4(ξ)

1 − f 4(ξ)
= − c4(ξ)

a4(ξ)[1 − f 4(ξ)]
and integrate it 

.a5(ξ) ≡
[
c(ξ)

f (ξ)

]5
= a5(ξ4) − 5

ξ{

ξ4

c3(y)dy

1 − f 4(y)
=

[
c(ξ4)

f4

]5
− 5

1 − f 4(ξ f )

ξ{

ξ4

c3(y)dy, (139)
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where .ξ f is between .ξ4 and . ξ. The trajectory will be global if the integral . I f +(x4)
converges and . f4 is small enough for positiveness of the limit .a54+ of the right-hand 
side of Eq. (139) when .ξ → +∞. Then .a(ξ) → a4+, and relations (108) are valid. 

For .ξ → −∞, all trajectories are unlimited, but the behavior of function . f (ξ)) 
depends on the convergence of the integral.I f −(x4). If it converges,.a(ξ) → a4− > 0, 
and relations (108) hold. If it diverges and, for example,.c(ξ) ∼ (−ξ)q with. −1/3 <

q < 1/2, then 

.
a(ξ) ∼ (−ξ)(1+3q)/5, f (ξ) ∼ (−ξ)(2q−1)/5,

U (ξ) ∼ (−ξ)(2+q)/5, W (ξ) ∼ (−ξ)−(2+11q)/5.
(140) 

For .q > 0, we have  .M(ξ) ∼ −q(−ξ)2q−1 < 0, and NI . f = f0(ξ) ≈ M1/5(ξ)
appears, to which . f (ξ) tends asymptotically. And when .q ≥ 1/2, they both tend 
to a finite non-zero limit, so that, in this case, we have for . ξ → −∞

.a(ξ) ∼ U (ξ) ∼ c(ξ), W (ξ) ∼ c−3(ξ), H(ξ) ∼ c2(ξ). (141) 

Let us describe in more detail the phase portrait of flows with the depth decreasing 
in such a manner that .M(ξ) < 0 monotonically increases. Let .M(ξ) has a negative 
(finite or infinite) limit .M− when .ξ → −∞, whereas .M(ξ) goes to zero when . ξ →
+∞ faster than .ξ−5/3 to secure the existence of global trajectories. Then NI . f0(ξ)
decreases monotonically from . f0(M−) (see Fig. 26b) to zero. Each trajectory lying 
above NI or intersecting it is bounded on the right, but there are also global trajectories 
that lie entirely below NI and approach it from below as .ξ → −∞ (see Fig. 28a). 

Since .M(ξ) < 0, in the subcritical part of the phase portrait (. f > 1, .F < 1) 
all trajectories are bounded on the right by the singularity .F = f = 1. Suppose, 
however, that for some .ξ3 condition (134) is satisfied, so that there are trajectories 
that are unbounded from the left. From underlying trajectories, bounded on both 
sides, they are separated by a separatrix. For greater clarity, this part of the phase 
portrait is shown in Fig. 28b in coordinates .(ξ, F). 

10 Discussion and Conclusion 

Thus, in this chapter, we have studied some specific features of long surface waves 
propagating in the inhomogeneous environment, in canals with a variable cross-
section and spatially varying current. In a particular case, the canal can be unbounded 
in width. 

We have analyzed two classes of related problems. Firstly, we considered the 
mutual transformation of co- and counter-current propagating waves and calculated 
the transformation coefficients, that is, the reflection and transmission coefficients. It 
has been shown that in super-critical flows with .U > c, the transmission coefficient 
can be greater than unity which means that the transmitted wave can be amplified by
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Fig. 28 (color online) Qualitative view of the phase portrait for.M(ξ) < 0: a the supercritical part 
(. f < 1,. f0(M−) = 0.8), line 1 is the NI; b the subcritical part (.F < 1), the dashed line shows the 
separatrix 

a current. This phenomenon is related to the existence of negative energy waves. The 
coefficient of amplification has been calculated. The most interesting phenomena in 
such a case are the wave transformation in currents that transit from sub- to super-
critical regime and vice versa. 

Secondly, we have shown that in spatially inhomogeneous flows of specific config-
urations, the linear waves can propagate in opposite (co-current and counter-current) 
directions independently, without reflection. We have found that there are three 
classes of RL flows, both sub- and supercritical, and have studied their properties 
in detail. It is interesting to note that for the A-class flows the critical point . U = c
is not a singular one, whereas the B- and C-class flows can be either sub-critical or 
supercritical. However, under certain conditions, each class contains global flows.
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The phenomenon of reflectionless propagation in inhomogeneous media is well-
known in general (see, for example, [ 5, 6, 12, 15, 16, 24, 25] and references the-
rein); here we have generalized it to moving fluids. The practical importance of such 
a regime is related to the possibility of the most efficient energy transport which 
can have, however, both positive and negative effects depending on the particular 
situation. 
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Abstract For the case of nonlinear second-order differential equations with a con-
stant coefficient of the first derivative term and polynomial nonlinearities, the fac-
torization conditions of Rosu & Cornejo-Pérez are approached in two ways: (i) by 
commuting the subindices of the factorization functions in the two factorization con-
ditions and (ii) by leaving invariant only the first factorization condition achieved by 
using monomials or polynomial sequences. For the first case the factorization brack-
ets commute and the generated equations are only equations of Ermakov-Pinney 
type. The second modification is non commuting, leading to nonlinear equations 
with different nonlinear force terms, but the same first-order part as the initially fac-
tored equation. It is illustrated for monomials with the examples of the generalized 
Fisher and FitzHugh-Nagumo initial equations. A polynomial sequence example is 
also included. 
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Keywords Nonlinear second-order differential equation · Factorization 
condition · Generalized Fisher equation · FitzHugh-Nagumo equation · Implicit 
solution 

1 Introduction 

Many dynamical systems in mechanics and in physics in general are described by 
non linear second order differential equations or evolve under the action of internal 
forces with small non-linear components, especially during external forcing or along 
the relaxing stage after the forcing has been canceled. In their homogeneous form, 

.
d2x

dt2
+ γ(x)

dx

dt
+ f (x) = 0 , (1) 

these equations are traditionally known in the literature as Liénard equations [ 1– 
3], although in the case of the constant parameter .γ(x) = γ, they may be consid-
ered as of Duffing type, because the Duffing oscillator corresponding to .γ > 0 and 
. f (x) = r1x + r2x3, with .r1 and .r2 two real constants, is a representative example. 
The simplest physical description of (1) in the latter case is that of a particle attached 
to a spring which provides a restoring force which is close to linear, i.e., .r1 > 0 and 
.|r2| << 1. Two types of springs can be introduced, known as soft and hard [ 4], for 
.r2 < 0 and.r2 > 0, respectively. In the case of soft springs, in the extension phase the 
restoring force becomes progressively weaker than for the linear spring. The hard 
springs which become stiffer than the linear one while increasing the extension are 
less frequent. 

Moreover, if one goes beyond mechanical oscillators and nonlinear electronic 
circuits, one comes across a second important and widespread category of equations 
of constant . γ coefficient which are obtained by the travelling wave reduction of 
reaction-diffusion equations and nonlinear evolution equations. In such cases, the 
coefficient . γ that we denote by . ν is the constant velocity of the travelling fronts [ 5]. 
The nonlinear force . f covers the phenomenology due to (bio)chemical reactions or 
any process capable of producing new components. 

A simple way to obtain particular solutions of these non linear second order 
differential equations consists in using the factorization method, where the second-
order differential operator 

.D2 + γ(x)D + f (x)

x
, D = d

dt
, (2) 

is factored in terms of two different first-order differential operators in the operatorial 
form of Eq. (1) 

. (D − φ2(x)) (D − φ1(x)) x = 0 . (3)
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This may provide particular solutions of (1) by a single quadrature of 
.(D − φ1(x)) x = 0. To match the factored operator in (3) to the operator (2), the 
factoring functions .φi should satisfy the conditions 

.φ1 + φ2 + x
dφ1

dx
= −γ (4) 

.φ1φ2 = f (x)

x
(5) 

that have been introduced in 2005 by two of the authors [ 6, 7]. They applied this kind 
of factorization to many well-known equations with polynomial nonlinearities by 
taking additional advantage from the polynomial factorization of the nonlinear part. 
The second condition shows that.

√
f (x)/x is the geometric mean of the functions. φi

that can be chosen from combinations of the factors of. f (x)/x if. f (x) is a polynomial 
which does not have the zero degree power. This also assures that from (3) one can 
obtain a particular solution of (1) by the quadrature of .(D − φ1(x)) x = 0, 

.

{
dx

xφ1(x)
= t − t0 (6) 

since .φ1 can be chosen as one of the factors of . f (x)/x . 
Moreover, as in supersymmetric quantum mechanics [ 8, 9], the reverting of the 

factorization brackets has been used in [ 6, 7] to obtain particular solutions of equa-
tions with identical operator part, but different polynomial part . f̃ , of the  form  

.
d2x

dt2
+ γ(x)

dx

dt
+ f̃ (x) = 0 , f̃ (x) = f (x) + φ2(φ1,x − φ2,x )x

2 , (7) 

where the subscript . x denotes the derivative with respect to . x . As well known, the 
reverting of the factorization brackets in quantum mechanics is equivalent to going 
to the Darboux-transformed partner equation of a given linear Schrödinger equation 
and it is also based on the logarithmic derivative connection between the solutions 
of the Riccati and Schrödinger equations. Such logarithmic connections between the 
solutions of different nonlinear evolution equations are also well known being a very 
useful tool for obtaining new analytic solutions [ 10, 11]. 

On the other hand, with a different grouping of terms, one can also obtain particular 
solutions of ‘supersymmetric’ nonlinear equations of the form 

.
d2x

dt2
+ γ̃

dx

dt
+ f (x) = 0 , γ̃ = γ + (φ1,x − φ2,x )x , (8) 

i.e., with the same polynomial nonlinearities, but a different operator part which 
turns nonlinear in damping. Resorting again to the mechanical and electronic cir-
cuit description, Eq. (7) describes springs with additional stiffness, whereas Eq. (8) 
describes more complicated oscillators that can display positive and negative damp-
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ing and chaotic dynamics, such as the cases of Rayleigh’s equation of violin strings 
and van der Pol equation of self-excited valve circuit [ 4] which are amongst the 
simplest particular cases of (8). 

All these calculus properties have yielded many interesting particular solutions 
of the kink and soliton type for well-known nonlinear equations obtained by the 
traveling wave change of variables from evolution equations [ 6, 7, 12– 22] and have 
been also widely implemented in Matlab and Maple algorithms [ 23]. 

In this chapter, we discuss similar nonlinear equations and their particular solu-
tions obtained through some additional conditions and/or modifications of the fac-
torization functions in the factorization conditions (4) and (5) for  Eq. (1) of the  Duff-
ing type (constant parameter .γ(x) = γ) and traveling wave reductions of reaction-
diffusion equations with .γ = ν. Regarding the variable . γ class, some cases have 
been presented previously in [ 7] and their study with the same focus as here is left 
for future work. 

In particular, we will consider here the effect of two types of modifications of the 
factorization brackets in Eqs. (4) and (5): 

• The first modification is performed in a way that keeps invariant the two factoriza-
tion conditions, which leads to a commutative factorization setting in which the 
reverting of the factorization brackets does not generate a new equation. 

• The second type of modification is by adding a polynomial into the multiplication 
brackets in such a way that only the first factorization condition is kept invariant 
which generates a non-commutative factorization. 

The chapter is organized as follows. In the second section, the conditions for having a 
commutative factorization scheme are presented together with some physical exam-
ples of this approach. In the third section, a non-commutative factorization which 
generalizes the Rosu and Cornejo-Pérez factorization is introduced and some exam-
ples are presented for illustrative purposes. The conclusions are summarized in the 
last section. 

2 Commutative Factorization Setting 

We now study the consequences of interchanging the subindexes in the RCP pair 
of factorization conditions. This is equivalent to adding another pair of conditions 
obtained by commuting the subindexes in both equations. However, one can instantly 
find that this is a minimal change since the second factorization condition keeps its 
form under such an interchange. Therefore, proceeding in this way, we obtain the 
following triplet of different factorization conditions
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.φ1 + φ2 + x
dφ1

dx
= −γ (9) 

.φ2 + φ1 + x
dφ2

dx
= −γ (10) 

.φ2φ1 (= φ1φ2) = f (x)

x
. (11) 

In this case, by comparing the first two equations, one can see that. dφ1/dx = dφ2/dx
implying 

.φ2 = φ1 + c0 , (12) 

where .c0 is an arbitrary real constant. In other words, these extended (commuting) 
factorization conditions introduce the additional restriction on the factoring functions 
of being different only by a constant. Furthermore, from (8) one has .γ̃ = γ, so that 
the interchange of the factorization brackets does not produce a new equation in this 
case. Thus, in factored form, one deals with equations of the type 

.(D − φ1 − c0)(D − φ1)x = 0 , (13) 

where .φ1 satisfies 

.x
dφ1

dx
+ 2φ1 = −γ − c0 , (14) 

which is obtained by substituting (12) into (9). For constant . γ, (14) implies 

.φ1(x) = −γ + c0
2

+ κ1

x2
, φ2(x) = −γ − c0

2
+ κ1

x2
, (15) 

where.κ1 is an arbitrary integration constant. Besides, . f (x) is obtained from (11) as  

. f (x) = γ2 − c20
4

x − κ1γ

x
+ κ2

1

x3
. (16) 

A direct connection, not depending on . γ, between the factoring functions and the 
nonlinear term. f (x) is obtained by substituting (12) in (11) 

.φ1,2 =
∓c0 −

/
c20 + 4 f (x)/x

2
. (17) 

(i) Case .γ = 0. For this case, let us take .c0 = −2a and .κ1 = b in (15), writing 
the factorization functions as 

.φ1(x) = a + b

x2
, φ2(x) = −a + b

x2
. (18)
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These factorization functions provide the standard Ermakov-Pinney differential 
equation 

.
d2x

dt2
− a2x + b2

x3
= 0 , (19) 

which admits the following commuting factorizations 

..

(
D ± a − b

x2

) (
D ∓ a − b

x2

)
x = 0 , (20) 

providing two particular solutions from each of the first-order equations 

..
dx

dt
= ±ax + b

x
. (21) 

For each of the signs of the linear term, these particular solutions are given by 

.x(t) = ±
/

−b

a
+ e2a(t+c)

a
, x(t) = ±

/
b

a
+ e−2a(t−c)

a
, (22) 

respectively, where . c is an integration constant. These particular Ermakov solutions 
correspond to a different nonlinear superposition compared to that of Pinney [ 24]. 
If one writes the general Ermakov solution for .d2x/dt2 − a2x + b2x−3 = 0 in the 

known form .xg =
/

α1x21 + α2x22 + 2α3x1x2 with the superposition constants . αi

of .x1,2 = e2ace±at related by .α1α2 − α2
3 = −b2/W 2, where .W is the Wronskian 

determinant of .x1,2, then one can see that they correspond to.α1 = 1/a, .α2 = 0, and 
.α3 = b/W . 

Moreover, if .γ = 0, one can obtain the general solution as follows. Substituting 
.φ2 = f (x)

φ1x
in the first factorization condition, the Abel equation of the second kind 

[ 13] 

.xφ1
dφ1

dx
+ φ2

1 + f (x)

x
= 0 (23) 

is obtained, which for . f (x) = −a2x + b2/x3 has the solution 

.φ1(x) = ±
/
a2 + κ̃

x2
+ b2

x4
, (24) 

where. κ̃ is an integration constant. For.κ̃ = ±2ab, one obtains the previous particular 
cases in Eq. (18). Next, from 

.
dx

dt
= φ1(x)x = ±

/
a2x2 + κ̃ + b2

x2
(25) 

for the positive sign, one obtains the solutions
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.x(t) = ± 1

2a

√
e2a(t−t0) − 2κ̃ + (κ̃2 − 4a2b2)e−2a(t−t0) (26) 

whereas for the negative sign, the solutions are 

.x(t) = ± 1

2a

√
e−2a(t−t0) − 2κ̃ + (κ̃2 − 4a2b2)e2a(t−t0) , (27) 

all of which are general Ermakov-Pinney solutions. The solutions (22) are obtained 

for .κ̃ = 2ab and .t0 = −
(
c + ln(4a)

2a

)
. 

(ii) Case .γ = constant /= 0. For this case, the simplest factorization is obtained 
by setting.φ1 = φ2 = φ (.c0 = 0), making identical the two factorization brackets. In 
this special case, we have 

.φ(x) = −γ

2
+ b

x2
, (28) 

which one can easily verify that satisfies the triplet factorization conditions. The 
obtained second order non linear differential equation is of the following Ermakov-
Pinney type 

.
d2x

dt2
+ γ

dx

dt
+ γ2

4
x − γb

x
+ b2

x3
= 0 , (29) 

or in operatorial form 

.

(
D + γ

2
− b

x2

)2

x = 0 (30) 

which yields the particular solutions given by 

.x(t) = ±
/
2b

γ
+ e−γ(t−2c)

γ
, (31) 

where . c is an integration constant. 
Another possible pair of factorization functions for this case is 

.φ1(x) = a1 + b

x2
, φ2(x) = −a2 + b

x2
, (32) 

which generate the following equation 

.
d2x

dt2
+ (a2 − a1)

dx

dt
− a1a2x − (a2 − a1)b

x
+ b2

x3
= 0 . (33) 

Thus, for .γ = a2 − a1, Eq. (33) admits the following commuting factorizations
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.

(
D + a2 − b

x2

) (
D − a1 − b

x2

)
x = 0 , (34) 

.

(
D − a1 − b

x2

)(
D + a2 − b

x2

)
x = 0 , (35) 

which lead to two particular solutions obtained from 

.
dx

dt
= a1x + b

x
,

dx

dt
= −a2x + b

x
. (36) 

These solutions are 

.x(t) = ±
/

−b

a1
+ e2a1(t+c1)

a1
, x(t) = ±

/
b

a2
+ e−2a2(t−c2)

a2
, (37) 

respectively; .c1 and .c2 are integration constants. 
In closing this section, we notice that multiplying each of the factorization brackets 

by an exponential factor in the independent variable, 

.e±c0t (D − φ1) e
±c0t (D − φ1) x = 0 , (38) 

is another way of producing the triplet of commuting factorization conditions. How-
ever, in this case, only the constants.±c0 are introduced in the factorization brackets. 

3 Non-commutative Factorization Setting 

We move now to the study of additive extensions of the factorization functions, 

.φ̃1(x) = φ1 + ∈1(x) , φ̃2(x) = φ2 + ∈2(x) , (39) 

where the . ∈ functions are arbitrary functions so far. Of course, both factorization 
conditions can change under the additive extension, but to keep a link with the initial 
equation defined through the . φ factorization functions, we are interested in those 
. φ̃ functions for which the first factorization condition is satisfied for the same . γ
parameter while the product one is changed to a different nonlinear force . f̃ , 

.φ̃1 + φ̃2 + x
dφ̃1

dx
= −γ (40) 

.φ̃1φ̃2 = f̃ (x)

x
. (41)
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Therefore the factored equation .

(
D − φ̃2

) (
D − φ̃1

)
x = 0 is 

.
d2x

dt2
+ γ

dx

dt
+ f̃ (x) = 0 . (42) 

The additions.∈1(x) and.∈2(x) are not independent, but related through the following 
relation 

.∈1(x) = −
{

∈2(x)dx

x
, (43) 

obtained by substituting (39) into (40) and (41), (for zero integration constant). This 
condition can be fulfilled by power functions or a finite sum of power functions. For 
the monomial case, .∈1(x) = −axm and .∈2(x) = a(m + 1)xm , .m ∈ N, the nonlinear 
force . f̃ (x) has the expression 

. f̃m(x) = a
[
(m + 1)φ1 − φ2

]
xm+1 − a2(m + 1)x2m+1 . (44) 

From the physical point of view, it is useful to think of (42) as an equation that 
replaces (1) under small perturbations of the nonlinear force. In this perturbative 
context, the most interesting cases are the lowest powers, .m = 0 and .m = 1, which 
provide the following . f̃m(x)

. f̃0(x) = f (x) + a(φ1 − φ2 − a)x , (45) 

. f̃1(x) = f (x) + a(2φ1 − φ2)x
2 − 2a2x3 . (46) 

3.1 Examples 

We illustrate the monomial extension with two cases that are traveling wave frame 
forms of reaction-diffusion equations and also provide a finite polynomial sequence 
case. In the traveling wave context, the. γ parameter is the velocity. ν of the traveling 
wave. 

(1). The generalized Fisher equation 

The generalized Fisher equation has the form [ 6] 

.x '' + νx ' + x(1 − xn) = 0 , ν /= 0 , n ≥ 1 , (47) 

where the primes stand for derivatives with respect to .ζ = s − νt . In the reaction-
diffusion form, the case.n = 2 has been proposed by Fisher as an equation governing 
the population dynamics in the genetics context of the alleles. It has become over 
the years the fundamental law of population genetics. The general solution, obtained 
using Mathematica, can be written in terms of Kummer’s confluent hypergeometric
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Fig. 1 Particular solutions obtained from (48) for the values of . n and constants of integration as 
displayed 

function of the second kind (the Tricomi function), . U , as  

.x(ζ) = 1

ν

[
ζ

ν
+ ζ2

2
− ζn+2

n + 2
−U (1, n + 3; νζ) + c1e

νζ

]
+ c2 . (48) 

where .c1 and .c2 are integration constants. Plots of particular solutions derived from 
this general Fisher solution are provided in Fig. 1. 

On the other hand, Eq. (47) can be factored with [ 6] 

.φ1 = h−1
n

(
1 − xn/2

)
, φ2 = hn

(
1 + xn/2

)
, h2n = 1 + n/2 . (49) 

for .νn = − (
hn + h−1

n

)
. 

The monomially-only-extended factoring functions read 

.φ̃1(x) = h−1
n

(
1 − xn/2

) − axm , φ̃2(x) = hn
(
1 + xn/2

) + a(m + 1)xm , (50) 

which lead to 

. f̃ (x) = f (x) + a

[
m + 1

hn
− hn − a(m + 1)xm −

(
m + 1

hn
+ hn

)
xn/2

]
xm+1

(51) 
Using (50), a particular solution of 

. x '' + νnx
' + x(1 − xn) + a

[
m + 1

hn
− hn − a(m + 1)xm −

(
m + 1

hn
+ hn

)
xn/2

]
xm+1 = 0 ,

(52) 
is obtained from 

.
dx

dζ
− h−1

n

(
1 − xn/2

)
x + axm+1 = 0 , (53)
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1 

Fig. 2 Particular solutions from (55) for negative values of. a and the values of. n, . ν, and constants 
of integration as displayed 

as 

.

{
dx

x(hnaxm − xn/2 + 1)
= 1

hn

{
dζ . (54) 

For .n = 2 and the cases .m = 0 and .m = 1, the quadrature in the latter equation 
provides the following particular solutions 

. x0(ζ) = 1 − √
2a

2
e

1−√
2a

2

(
ζ√
2
−c0

)
sech

1 − √
2a

2

(
ζ√
2

− c0

)
, x1(ζ) = e

ζ√
2
−c1

1 +
(
1 + √

2a
)
e

ζ√
2
−c1

,

(55) 
respectively, where .c0 and .c1 are integration constants. This kind of particular solu-
tions are presented in Fig. 2 and have typical traveling wave front profiles. 

The differences between the nonlinear forces for these cases are given by the 
expressions 

.Δ f0(ζ) = f̃0 − f = − a√
2

(√
2a + 1 + 3x0(ζ)

)
x0(ζ) , (56) 

.Δ f1(ζ) = f̃1 − f = −2a(a + √
2)x31(ζ) (57) 

and are plotted in Fig. 3. For small values of the parameter . a, they still have the 
switching profile of the solutions. 

(2). The FitzHugh-Nagumo Equation 

The FitzHugh-Nagumo equation, 

.x '' + νx ' + f (x) = 0 , f (x) = x(x − 1)(β − x) , (58)
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Fig. 3 Differences between the nonlinear forces as given by (56) and  (57), respectively 

Fig. 4 Particular solutions obtained from (59) for the values of . β and constants of integration as 
displayed. The values of. ν, .−1/

√
2 and.3/

√
2, correspond to positive and negative. β, respectively 

emerged in a simplified system of two equations modelling the transmission of elec-
trical impulses through a nerve axon with the variable. x representing the axon mem-
brane potential. In the homogeneous Eq. (58) the effect of a slow negative feedback 
on the membrane potential is not taken into account which eliminates the evolution 
equation of the feedback. The general solution is 

.x(ζ) = − 1

ν

[
2p1(ν) + βν2

ν3
ζ − 2p1(ν) + βν2

ν2
ζ2

2
+ p1(ν)

ν

ζ3

3
− ζ4

4
+ c̃1e

−νζ

]
+ c̃2 , (59) 

where .p1(ν) = 3 + (β + 1)ν and.c̃1,2 are arbitrary integration constants. Some par-
ticular solutions derived from this general Fitz-Hugh-Nagumo solution are plotted 
in Fig. 4. Their profiles are not very different from the particular Fisher solutions 
obtained from the general Fisher solution. 

For the particular value .νβ = (1 − 2β)/
√
2, Eq.  (58) is a particular case of the 

generalized Burgers-Huxley equation and can be factorized [ 7] with . φ1(x) = (x −
1)/

√
2 and .φ2(x) = √

2(β − x), which we use in the monomially-only-extended 
factorization functions
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.φ̃1 = x − 1√
2

− axm , φ̃2 = √
2(β − x) + a(m + 1)xm (60) 

to factorize the equation 

.x '' + νβx
' + f̃ (x) = 0 , (61) 

where 

. f̃ (x) = f (x) − a

(√
2β + m + 1√

2

)
xm+1 + a

(√
2 + m + 1√

2

)
xm+2 − a2(m + 1)x2m+1 .

(62) 
A particular solution of (61) is obtained from 

.
dx

dζ
− 1√

2
(x − 1)x + axm+1 = 0 (63) 

through the following quadrature 

.

{
dx

x(x − 1 − √
2axm)

= 1√
2

{
dζ . (64) 

For the .m = 0 and .m = 1 cases, the particular solutions are given by 

.x0(ζ) =
√
2(1 + √

2a)
√
2 − e(1+√

2a) ζ+2c0√
2

, x1(ζ) =
√
2

√
2(1 − √

2a) − e
ζ+2c1√

2

(65) 

respectively, where .c0 and .c1 are integration constants. These solutions plotted in 
Fig. 5 are manifestly singular; they blow up at finite traveling variables given by 
.ζ∗
0 (a) = ln 2/(

√
2 + 2a) − 2c0 and .ζ∗

1 (a) = √
2 ln[√2(1 − √

2a)] − 2c1, respec-
tively. 

Fig. 5 Particular solutions as obtained from (65) for zero integration constants and the displayed 
values of the parameter.a
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Fig. 6 Differences between the nonlinear forces as given by (66) and  (67), respectively, for the 
displayed values of the parameters 

From (62), one can also obtain the differences between the nonlinear functions of 
the two equations 

.Δ f0(ζ) = f̃0 − f = a√
2

[
3x0(ζ) − 2β − √

2a − 1
]
x0(ζ) , (66) 

.Δ f1(ζ) = f̃1 − f = √
2a

[
(2 − √

2a)x1(ζ) − β − 1
]
x21 (ζ) , (67) 

for.m = 0 and.m = 1, respectively. These differences are plotted in Fig. 6 for several 
values of the parameter . a and .β = 1. 

The interesting feature to be noticed is that the particular solutions obtained for the 
monomially-only-extended FitzHugh-Nagumo equation depend only on the param-
eter . a, while the forces depend also on the parameter . β. This is due to the fact that 
the factoring functions .φ1(x) and .φ̃1(x) do not depend on . β. 

(3). Polynomial sequence example 

Finally, we discuss a polynomial sequence extension of the factorization functions 
involving .N terms of a .γ = 0 initial case for which the factorization functions . φ1,2

are both zero, i.e., a degenerate .D2x = 0 case. Then, we have 

.φ̃1(x) = −
N∑

m=0

amx
m , φ̃2(x) =

N∑
m=0

(m + 1)amx
m , (68) 

which one can easily verify that satisfies the conditions given in Eqs. (40) and (41). 
Using the first pair of factorization functions, the corresponding second order non 

linear differential equation has the form
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. 
d2x

dt2
−

(
N∑

m=0

amx
m

)(
N∑

m=0

(m + 1)amx
m

)
x ≡ d2x

dt2
−

[ N∑
m=0

(
m∑
l=0

(m − l + 1)alam−l

)
xm

]
x = 0 ,

(69) 
which admits the following non-commuting factorization 

.

(
D −

N∑
m=0

(m + 1)amx
m

) (
D +

N∑
m=0

amx
m

)
x = 0 . (70) 

One particular solution for Eq. (69) can be obtained from the first order equation 

.
dx

dt
= −

N∑
m=0

amx
m+1 . (71) 

While for .N < 2 one can easily obtain simple explicit solutions of (71), for .N ≥ 2, 
the solutions will be in general implicit solutions depending on the roots of the cubic, 
quartic, a.s.o., algebraic equations. 

Let us consider the.N = 2 case for which. 
∑2

m=0 amx
m+1 = x(a0 + a1x + a2x2) =

a2x(x − α1)(x − α2), where .α1,2 are the roots of the quadratic algebraic equation. 
Then, we have the quadrature 

.

{
dx

x(x − α1)(x − α2)
= −a2

{
dt . (72) 

The classification of the solutions in terms of the roots is the following [ 25]: 

(i). If .α1,2 = 1
2a2

(
−a1 ± √

Δ
)

, Δ = a21 − 4a0a2 > 0, then by the method of 

partial fraction decompositions, one obtains 

. 
1

α1α2(α1 − α2)

[
ln x (α1−α2) + ln(x − α1)

α2 − ln(x − α2)
α1

]
= −a2(t − t0) ,

(73) 
which leads to the implicit solution 

.
(x − α1)

α2

(x − α2)α1
x (α1−α2) = e−a2α1α2(α1−α2)(t−t0) ≡ e− a0

a2

√
Δ(t−t0) . (74) 

(ii). When .α1 = α2 = α (= − a1
2a2

), .Δ = 0, the implicit solution is 

. − 1

x − α
+ 1

α
ln

|||| x

x − α

|||| = −α (a2t + c) ≡ a1
2

(t − t0) . (75)
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(iii). If .α1 = ᾱ2 = r + is, .Δ < 0, the implicit solution is 

. − ln
||√(x − r)2 + s2

|| + ln |x |
s

+ r

s
arctan

x − r

s
= a2(r

2 + s2)(t − t0) .

(76) 
(iv). In the degenerate case .α1 = α2 = 0, i.e., .a0 = a1 = 0, one obtains the simple 

explicit solution 

.
1

2x2
= a2(t − t0) . (77) 

In all cases, . t0 is an arbitrary integration constant. 
In a very limited amount of these kinds of zero. γ cases, one can also obtain implicit 

solutions with two integration constants (general solutions). As in the Ermakov-
Pinney case, this is obtained through the Abel equation of the second kind for the 
factorization function . φ̃1, which reads 

.φ̃1
dφ̃1

dx
+ 1

x
φ̃2
1 =

N∑
m=0

(
m∑
l=0

(m − l + 1)alam−l

)
xm−1 . (78) 

In terms of the function .ψ = φ̃2
1, this equation is a linear first order equation, which 

in the .N = 2 leads to the solution 

.φ̃1(x) = ±
/

(a0 + a1x + a2x2)2 + k1
x2

, (79) 

where .k1 is an integration constant. Then, from 

.
dx

dt
= φ̃1(x)x = ±

√
(a0x + a1x2 + a2x3)2 + k1 , (80) 

one can obtain for.a0 = a1 = 0,.a2 /= 0 (case (iv) above) the general implicit solution 

.

√
(a2x3)2 + k1 2F1

(
2

3
, 1,

7

6
;− (a2x3)2

k1

)
= k1(t − t0) , (81) 

where .2F1 is Gauss’ hypergeometric function. For .k1 = 0, one obtains the explicit 
singular solution given in (77).



Factorization Conditions for Nonlinear Second-Order Differential Equations 97

4 Conclusions 

We have discussed some minimal extensions of the factorization conditions of Rosu 
and Cornejo-Pérez in the case of the constant . γ coefficient of the first derivative 
with emphasis on the generated nonlinear equations and their particular solutions. 
The necessary conditions to have commutative factorizations have been introduced 
which lead to equations of the Ermakov-Pinney type at most as has been shown in 
this paper. For the non-commutative factorization case, one can obtain equations 
with the same . γ parameter through designed additive monomial extensions of the 
factorization functions. The new equations have nonlinear forces that differ from the 
initial nonlinear elastic forces by supplementary terms. In the mechanical context of 
spring models, one may seek applications in cases of weak nonlinear nanoelasticity 
[ 26, 27]. On the other hand, in this paper, the illustrative examples have been chosen 
from the vast area of reaction-diffusion equations in which a huge variety of travel-
ling fronts are present and . γ is just the constant velocity of their motion. We have 
presented such kinds of modified counterparts of the generalized Fisher equation and 
the FitzHugh-Nagumo equation, and their particular solutions have been obtained 
by the factorization method. A polynomial sequence extension in the case.γ = 0 has 
been also provided, for which various types of implicit solutions have been given 
for the .N = 2 size of the sequence. We hope to extend these ideas in future work to 
the more general case of dissipation depending on the spatial coordinate and time 
and also to inhomogeneous equations of this kind [ 28] with the goal of enlarging 
the class of nonlinear equations with analytic solutions and identifying their possible 
applications. 
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Symbolic Computation of Solitary Wave 
Solutions and Solitons Through 
Homogenization of Degree 

Willy Hereman and Ünal Göktaş 

Abstract A simplified Hirota method for the computation of solitary waves and 
solitons of nonlinear partial differential equations (PDEs) is presented. A change 
of dependent variable transforms the PDE into an equation that is homogeneous 
of degree. Solitons are then computed using a perturbation-like scheme involving 
linear and nonlinear operators in a finite number of steps. The method is applied 
to fifth-order Korteweg-de Vries (KdV) equations due to Lax, Sawada-Kotera, and 
Kaup-Kupershmidt. The method works for non-quadratic homogeneous equations 
for which the bilinear form might be unknown. Furthermore, homogenization of 
degree allows one to compute solitary wave solutions of nonlinear PDEs that do 
not have solitons. Examples include the Fisher and FitzHugh-Nagumo equations, 
and a combined KdV-Burgers equation. When applied to a wave equation with a 
cubic source term, one gets a “bi-soliton” solution describing the coalescence of two 
wavefronts. The method is largely algorithmic and implemented in Mathematica. 
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In memory of Prof. R. Hirota (1932–2015) 
Photograph courtesy of J. Hietarinta.
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1 Introduction 

In the 1970s, Hirota [ 42, 43] started working on an algebraic method to compute 
solitons of completely integrable nonlinear partial differential equations (PDEs). 
His method has three major steps. Given a nonlinear PDE, (i) change the depen-
dent variable (a.k.a. apply Hirota’s transformation) so that the transformed PDE 
is homogeneous of degree in a new dependent variable (or variables), (ii) express 
that homogeneous equation into one or more bilinear equations using the Hirota 
operators, (iii) solve the bilinear equation(s) using a perturbation-like scheme that 
terminates after a finite number of steps. 

Finding the Hirota transformation is quite challenging and often requires insight 
and ingenuity. Based on experience, Hietarinta [ 37] provides some useful tips for 
finding a suitable candidate thereby reducing the guesswork. 

Next, finding the appropriate bilinear form for the homogeneous equation can also 
be a difficult task. In particular in cases where the homogeneous equation is cubic 
or quartic in the new dependent variable and would have to be decoupled into a pair 
of bilinear equations, either involving an extra independent variable or an additional 
function [ 40]. To circumvent this difficulty, we will not use the bilinear form of the 
homogeneous equation but include it for completeness. 

To compute solitons, the type of solutions one seeks for the homogeneous equation 
is quite specific. They are a finite sums of polynomials in exponential functions with 
different traveling wave arguments. The terms in that sum are computed order-by-
order, using a “tracking” or “bookkeeping” parameter .(∈) which is set equal to one 1

after the exact solutions are computed. 
Hirota’s method [ 45– 49] can be found in many books on solitons and complete 

integrability [ 2, 3, 16, 77, 82], books on differential equations (e.g., [108]), ency-
clopedia (e.g., [112]), and survey papers [ 9, 70, 71, 78, 92] most noteworthy those 
by Hietarinta [ 38– 40]. 

Hietarinta’s papers have a wealth of information about Hirota’s method: how to use 
it to construct regular and oscillatory solitons (breathers), Bäcklund transformations 
and Lax pairs, and as a tool in a computer-aided search for possibly new completely 
integrable systems. His surveys have a plethora of examples including nonlinear 
Schrödinger (NLS) equations, the sine- and sinh-Gordon equations, shallow water 
wave equations, the Sasa-Satsuma equation, and systems of coupled equations such 
as the Hirota-Satsuma and Davey-Stewartson systems. 

Hirota wrote a book [ 49] about his method. As far as we know, the only other 
book about the bilinear method is by Matsuno [ 74]. Several theses, for example, [ 89, 
115, 126] have been written about Hirota’s method and it is the subject of thousands 
of research papers. 

Of course, there are several mathematically more rigorous methods to compute 
solitons, such as the Inverse Scattering Transform (IST), the Wronskian determi-
nant methods, the Riemann-Hilbert approach, the dressing method, the Darboux and

1 Unlike the small parameter. ∈ used in perturbation methods where one seeks approximate solutions 
up to some order in. ∈. 
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Bäcklund transformation methods, etc. In contrast to the more advanced analytic 
methods that use complex analysis, such as IST and the Riemann-Hilbert method, 
Hirota’s method can not solve the initial value problem for nonlinear PDEs. Regard-
less, Hirota’s method is a direct, powerful, and effective method to quickly find the 
explicit form of solitons. Apart from soliton solutions, Hirota’s method can be used 
to find rational (lump) solutions of PDEs and the method applies to various types of 
discrete equations as well. A discussion of those is beyond the scope of this paper. 

A mathematical foundation for the Hirota method by Sato and other researchers at 
the Kyoto School of Mathematics can be found in, for example, [ 13, 14, 54, 66, 86, 
116]. There are deep connections of Hirota’s method with infinite dimensional Lie 
algebras, transformation groups, Grassmanian manifolds, Wronskians, Gramians, 
Pfaffians, Bell polynomials, Plücker relations, etc. We refer the interested reader to 
the literature. 

This survey paper is based on one (WH) of the authors’ thirty years of experi-
ence with Hirota’s method mainly from the perspective of applications and computer 
implementation. He argues that if one seeks solutions involving exponentials, replac-
ing a nonlinear PDE (which usually consists of both linear and nonlinear terms) with 
an equation that is homogeneous in degree in a new dependent variable (or variables) 
is quite important, perhaps more so than working with Hirota’s bilinear form(s) of 
the transformed equation. Therefore, “homogenization of degree” is at the core of 
what is now called 2 the simplified Hirota method in which Hirota’s bilinear operators 
are no longer used. Instead, we use a perturbation-like scheme involving linear and 
nonlinear operators to solve the homogeneous equation without first recasting it into 
bilinear form. 

Although the bilinear representation of the PDE is not used in our approach, 
dismissing it would be a mistake because it is a valuable tool in the search for 
completely integrable equations [ 36, 37] and theoretical considerations (see, e.g., 
[116] and the references therein). 

The concept of homogenization of degree is illustrated for the Burgers equation 
and the ubiquitous Korteweg-de Vries (KdV) equation. For the Burgers equation, a 
truncated Laurent series of its solution yields the Cole-Hopf transformation, which 
allows one to transform the Burgers equation into the heat equation. The latter is 
homogeneous of degree one (linear) and can be solved by separation of variables 
and other methods. Using Hirota’s method, traveling wave solutions of the heat 
equation involving one or more exponentials readily lead to multiple kink solutions 
of the Burgers equation. Contrary to solitons, these do not collide elastically but 
coalesce into a single wavefront. 

In the case of the KdV equation, a truncated Laurent series reveals the transfor-
mation that Hirota used to replace the KdV by a quadratic (bilinear) equation. The 
connection between Hirota’s transformation and the truncated Laurent expansion, 
a.k.a. truncated Painlevé expansion or singular manifold expansion, has been long 
known [ 17, 81, 84]. As the examples will show, it is a crucial step in the application 
of any flavor of Hirota’s method.

2 Some authors [ 65, 97, 114, 123] call it the Hereman or Hereman-Nuseir method. 
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The idea of homogenization is further illustrated on a class of completely inte-
grable fifth-order KdV equations, including those of Lax [ 67], Sawada-Kotera (SK) 
and Caudrey-Dodd-Gibbon (CDG) [ 28, 95], and Kaup-Kupershmidt (KK) [ 19, 50, 
57]. Their solitons are computed with a straightforward algorithm involving linear 
and nonlinear operators which are not necessarily quadratic. Also, the cubic oper-
ators we introduce are not the same as the trilinear operators discussed in [ 25, 40] 
because we split off the linear operator the same way as for quadratic equations. 

The computations for the KK case are complicated, lengthy, and nearly impossible 
without using a symbolic manipulation program such as Maple or Mathematica. One  
reason is that the homogeneous equation is of fourth degree. Another reason is that 
the structure of the soliton solutions is quite different from those of the KdV, Lax, 
and SK equations. Although the soliton solutions of the KK equation were already 
presented in [ 30], and these for the Lax and SK equations have been computed long 
before that, from time to time their computation resurfaces in the literature, most 
recently in [ 56, 63, 64, 104, 107, 113, 114]. 

Homogenization of degree also allows one to find solitary wave solutions of 
nonlinear PDEs that are either not completely integrable or for which the bilinear 
form is unknown. A couple of such examples, mainly from mathematical biology, 
will be shown. We pay particular attention to a FitzHugh-Nagumo (FHN) equation 
with convection term for it has a so-called bi-soliton solution that describes the 
coalescence of wavefronts. The same happens for Burgers and wave equations with 
cubic source terms which are also discussed in detail. 

The simplified Hirota method has been successfully used by many authors to find 
solitary wave and soliton solutions. Most notably, Wazwaz has extensively applied 
the method to find bi-soliton solutions [109, 110] and soliton solutions of a large 
number of PDEs involving one or more space variables (see, e.g., [111–113] and 
many of his other papers). Additional applications to PDEs with multiple space 
variables can be found in, e.g., [ 65, 97, 114, 123]. 

Before applying the (simplified) Hirota method, it is a good idea to test if the 
PDE has the Painlevé property [ 2, 11] by running, e.g., the PainleveTest.m 
code [ 6]. The Laurent series used in the Painlevé test often provides insight in which 
homogenizing transformation to use. 

We developed a Mathematica package, called PDESolitonSolutions.m 
[ 22]. It uses the homogenization method to solve several polynomial PDEs that 
are completely integrable as well as some that do not have soliton solutions. In this 
paper we focus on .(1 + 1)-dimensional PDEs although our code already works for 
some PDEs involving up to three space variables.(x, y, z) in addition to time.(t). We  
cover only two examples of PDEs with multiple space variables. One of the examples 
is the well-studied Kadomtsev-Petviashvili (KP) equation. 

The paper is organized as follows. In Sect. 2 we discuss the homogenization of 
the Burgers and KdV equations using logarithmic derivative transformations. 

After a brief review of the original Hirota method, we describe the simplified 
version in Sect. 3 still using the KdV equation as the prime example. 

In Sect. 4, we apply the simplified Hirota method to the Lax, SK, and KK equa-
tions. For each we compute the one-, two- and three-soliton solutions explicitly.
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In Sect. 5 we show how the method needs to be adjusted to find solitons for the 
modified KdV (mKdV) equation. 

To show how the simplified method can be applied to PDEs that are not “solitonic” 
in Sect. 6 we compute solitary wave solutions of the Fisher and FHN equations with 
and without convection terms. Additional examples include a combined KdV-Burgers 
equation, a Burgers and wave equation with cubic source terms, and an equation due 
to Calogero. For each of these equations we compute exact travelling wave solutions. 
None has soliton solutions although some have bi-soliton solutions. 

Section 7 covers an equation in.(1 + 1) dimensions which has two-soliton but not 
three-soliton solutions. 

In Sect. 8 we compute multi-soliton solutions for the KP equation and an equation 
in .(3 + 1) dimensions studied by Geng and Ma [ 21]. 

Section 9 covers software to automate Hirota’s method. In particular, we discuss 
the implementation and limitations of PDESolitonSolutions.m and review 
related software packages. 

Finally, some conclusions are drawn in Sect. 10 followed by a brief discussion of 
future work. 

2 Homogenization of Nonlinear PDEs 

2.1 The Burgers Equation 

Our initial example is the Burgers (a.k.a. Burgers-Bateman) equation, 

.ut + 2uux − uxx = 0, (1) 

named after Harry Bateman (1882–1946) and Johannes Burgers (1895–1981). The 
subscripts denote partial derivatives, e.g.,.uxx = ∂2u

∂x2 and later on.u3x = ∂3u
∂x3 , etc. Note  

that the coefficient of the diffusion term.(uxx ) has been normalized. Equation (1) can 
be linearized with a logarithmic derivative transformation due to Cole and Hopf. 
First integrate 3 the Burgers equation with respect to . x , yielding 

.∂t

({ x

u dx

)
+ u2 − ux = 0. (2) 

Then substitute 

.u = c (ln f )x = c

(
fx
f

)
, (3)

3 Alternatively, set.u = vx and integrate with respect to. x to get.vt + v2x − vxx = 0. Substitution of 
.v = c ln f yields (4). The same can be done for other equations in this paper. 
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where . c is a constant, to get 

. f ( ft − fxx ) + (c + 1) f 2x = 0. (4) 

Setting .c = −1 yields the heat equation 

. ft − fxx = 0. (5) 

Then, 

.u(x, t) = −(ln f )x = − fx
f

(6) 

is the well-known Cole-Hopf transformation. 4 We now show where this mysterious 
transformation comes from. As in the Painlevé test [ 6], substitute a Laurent series 

.u(x, t) = f α(x, t)
∞∑
k=0

uk(x, t) f
k(x, t) (7) 

into (1). Note that . f (x, t) is the manifold of the poles since . α is a negative integer. 
The most singular terms . f 2α−1 and . f α−2 will balance when .α = −1 and vanish 
for .u0(x, t) = − fx . Truncating (7) at the constant level term in . f yields an auto-
Bäcklund transformation, 

.u(x, t) = − fx
f

+ u1(x, t) = −(ln f )x + u1(x, t), (8) 

provided .u1(x, t) is also a solution of the Burgers equation. For the zero solution 
.(u1 = 0) (8) becomes the Cole-Hopf transformation (6). The transformation allows 
us to replace the Burgers equation which has a mismatch of linear and quadratic terms 
in . u by an equation that is homogeneous in degree in the new field variable . f . The  
fact that the resulting equation happens to be of first degree (linear) is advantageous 
for it can be solved by separation of variables eventually resulting in a large class of 
solutions of (1). 

Setting the stage for what follows, we consider a couple of simple solutions of 
(5). Substituting . f (x, t) = 1 + eθ = 1 + ek x−ω t+δ, where . k is the wave number, . ω
the angular frequency, and . δ a phase constant, into (5) yields the dispersion law 
.ω = −k2. Hence,

4 This transformation is consistent with the scaling symmetry [ 29] of the Burgers equation which 
is invariant under.x → λ−1x, t → λ−2t, u → λu with an arbitrary constant. λ. Hence, one would 
expect a first derivative of.ln f . 
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Fig. 1 2D and 3D graphs of the one-kink solution (10) for.K = 1 and. Δ = 0

. u(x, t) = −(ln f )x = − fx
f

= −k

(
eθ

1 + eθ

)
= −k

(
eθe− θ

2

(1 + eθ)e− θ
2

)

= −k

(
e

θ
2

e
θ
2 + e− θ

2

)
= − 1

2k

(
2e

θ
2

e
θ
2 + e− θ

2

)

= − 1
2k

(
e

θ
2 + e− θ

2 + e
θ
2 − e− θ

2

e
θ
2 + e− θ

2

)
= − 1

2k
(
1 + tanh θ

2

)
(9) 

with .θ = kx + k2t + δ, or,  simply  

.u(x, t) = K (1 − tanhΘ) , (10) 

with .Θ = Kx − 2K 2t + Δ, .K = − k
2 , and .Δ = − δ

2 . This kink-shaped solution 
(shock wave) of the Burgers equation is pictured in Fig. 1. 

Due to its linearity, . f (x, t) = 1 + ∑N
i=1 e

θi where .eθi = eki x+k2i t+δi with .ki and 
. δi arbitrary constants, also solves (5) yielding a .N -kink solution 

.u(x, t) = − ki
∑N

i=1 e
θi

1 + ∑N
i=1 e

θi
(11) 

for any integer.N ≥ 1. Figure 2 shows solution (11) for the case where two wavefronts 
(.N = 2) coalesce into a single kink-shaped wavefront as time progresses. For a more 
detailed analysis of solutions of type (11) we refer to [106]. 

2.2 The Korteweg-de Vries Equation 

Next we explore the homogenization of the ubiquitous KdV equation, 

.ut + 6uux + u3x = 0, (12)
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Fig. 2 2D and 3D graphs of the two-kink solution (11) for.k1 = −1, k2 = −2, and. δ1 = δ2 = 0

Fig. 3 Graphs of the solitary wave (dashed line) and cnoidal wave (solid line) solutions for 
.k = 2, m = 9

10 , and. δ = 0

named after Diederik Korteweg (1848–1941) and Gustav de Vries (1866–1934). 
In [ 61] they derived the equation and its solitary wave and cnoidal wave solutions: 

.u(x, t) = 2k2 sech2(kx − 4k3t + δ), (13) 

.u(x, t) = 4
3k

2(1 − m) + 2k2 m cn2(kx − 4k3t + δ;m), (14) 

where .m ∈ (0, 1) is the modulus of the Jacobi elliptic cosine (cn) function. Both 
solutions are shown in Fig. 3. As .m approaches 1, the peaks of the periodic solution 
get a little taller, the valleys become lower and flatter before they eventually spread 
out horizontally to become the pulse-type hyperbolic secant solution. 

The interaction of the more complicated soliton solutions (to be discussed later 
in this paper) were first observed in numerical simulations by Zabusky and Kruskal 
[122] in 1965. 

To compute soliton solutions with Hirota’s method the original KdV equation 
needs to be replaced by an equation (in a new field variable) that is homogeneous 
of degree. To get a candidate transformation, again substitute a Laurent series (7) 
into (12). The most singular terms. f 2α−1 and. f α−3 will balance when.α = −2. The
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terms . f −5 and . f −4 vanish when .u0(x, t) = − fx and .u1(x, t) = 2 fxx . Hence, we 
obtain an auto-Bäcklund transformation for the KdV equation 

.u(x, t) = −2 fx 2

f 2
+ 2 fxx

f
+ u2(x, t) = 2(ln f )xx + u2(x, t), (15) 

where .u2(x, t) is also a solution of the KdV equation. Taking .u2 = 0 yields the 
Hirota transformation 5 that “bilinearizes” the KdV equation. To see the effect of a 
logarithmic derivative transformation substitute 

.u = c (ln f )xx = c

(
f fxx − fx

2

f 2

)
, (16) 

where . c is an undetermined constant, into the integrated version of (12): 

.∂t

({ x

u dx

)
+ 3u2 + uxx = 0. (17) 

This yields 

. f 3( fxt + f4x ) − f 2( fx ft − 3(c − 1) f 2xx + 4 fx f3x ) + 3(c − 2) f 2x ( f 2x − 2 f fxx ) = 0.

(18) 

Setting .c = 2 (confirming what we learned from the truncated Laurent series), (18) 
simplifies into 6

. f ( fxt + f4x ) − fx ft + 3 f 2xx − 4 fx f3x = 0, (19) 

which is homogeneous of second degree in. f . Hirota [  49] introduced the transforma-
tion.u = 2 (ln f )xx in the early 1970s and realized that (19) can be written in bilinear 
form 

.
(
Dx Dt + D4

x

)
( f · f ) = 0, (20) 

with operators .Dx and .Dt defined (see, e.g., [ 46, 49]) as 

.Dm
x ( f ·g) = (∂x − ∂x ')m f (x, t)g(x ', t)

||||
x '=x

, (21) 

.Dn
t ( f ·g) = (∂t − ∂t ')

n f (x, t)g(x, t ')
||||
t '=t

, (22) 

with .m and . n positive integers.

5 Note that the KdV equation is invariant [ 29] when.x → λ−1x, t → λ−3t, u → λ2u. Therefore, 
a second derivative of.ln f makes sense. 
6 Many authors, in particular those working on the mathematical foundation of Hirota’s method, 
use. τ instead of. f and investigate the rich mathematical properties of the “tau” function. 
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Working with these Hirota operators is easy because it amounts to applying 
Leibniz rule for derivatives of products of functions with every other sign flipped. 
Thus, 

.Dm
x ( f ·g) =

m∑
j=0

(−1)m− jm!
j !(m − j)!

(
∂ j f

∂x j

)(
∂m− jg

∂xm− j

)
, (23) 

and, more general, 

.Dm
x D

n
t ( f ·g) = (∂x − ∂x ')m(∂t − ∂t ')

n f (x, t)g(x ', t ')
||||
x '=x,t '=t

(24) 

. =
m∑
j=0

n∑
i=0

(−1)n+m−i− jm!n!
j !(m − j)!i !(n − i)!

(
∂i+ j f

∂t i∂x j

) (
∂n+m−i− jg

∂tn−i∂xm− j

)
. (25) 

For example, 

.D4
x( f ·g) = f4xg − 4 f3xgx + 6 fxxgxx − 4 fxg3x + f g4x , (26) 

and 
.Dx Dt ( f ·g) = fxtg − ftgx − fxgt + f gxt . (27) 

With the above one can readily verify that .
(
Dx Dt + D4

x

)
( f · f ) = 0 yields (19). 

3 Solving the Homogeneous PDE 

3.1 Hirota’s Method 

We now show how Hirota computed soliton solutions of (20). He sought a solution 
of the form 

. f (x, t) = 1 +
∞∑
n=1

∈n f (n)(x, t) = 1 + ∈ f (1) + ∈2 f (2) + . . . , (28) 

where. ∈ is a formal parameter. The building blocks of solitons are exponentials with 
different plane-wave arguments. Actually, . f (1) will be the sum of a chosen but fixed 
number .(N ) of exponentials .eθi = eki x−ωi t+δi (i = 1, . . . , N ). Then, . f (2) will have 
products of just two of these exponentials such as.e2θi and.eθi+θ j (i, j = 1, . . . , N ). In  
turn,. f (3) will have products of three exponentials, for example,. e3θi , e2θi+θ j , eθi+2θk ,

and.eθi+θ j+θk (i, j, k = 1, . . . , N ). The role of . ∈ is to keep track of how many expo-
nentials are in the mix because terms involving products of two exponentials can 
never be equated to terms with products of three exponentials, etc. In other words, 
. ∈ serves as a bookkeeping parameter which can be set to one once the computations
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are done. As we will see in all the examples that follow, when solitons exist (28) will 
truncate and therefore be a finite sum of exponentials. 

Substituting (28) into (20) and splitting order-by-order in . ∈ gives 

. O(∈0) : B(1·1) = 0,

O(∈1) : B(1· f (1) + f (1)·1) = 0,

O(∈2) : B(1· f (2) + f (1)· f (1) + f (2)·1) = 0,

O(∈3) : B(1· f (3) + f (1)· f (2) + f (2)· f (1) + f (3)·1) = 0,

O(∈4) : B(1· f (4) + f (1)· f (3) + f (2)· f (2) + f (3)· f (1) + f (4)·1) = 0,
...

...

O(∈n) : B

⎛
⎝ n∑

j=0

f ( j)· f (n− j)

⎞
⎠ = 0, n ≥ 0, with f (0) = 1, (29) 

where for the present example .B = Dx Dt + D4
x . 

To illustrate, we compute the one- and two-soliton solutions of (12). Note that the 
first equation in (29) is trivially satisfied. Using (26) and (27), the second equation 
reduces 7 to . f (1)

xt + f (1)
4x = 0. 

One-soliton Solution of the KdV Equation 
If we take . f (1) = eθ ≡ ek x−ω t+δ , that second equation yields the dispersion law 
.ω = k3. Next, one can readily verify that .B( f (1)· f (1)) is zero. Consequently, . f (2) is 
zero and so are. f (3), f (4), etc. Therefore, there are only two terms in (28). Explicitly, 

. f = 1 + eθ = 1 + ek x−k3 t+δ (30) 

after setting .∈ = 1. Hence, 

. u(x, t) = 2

(
f fxx − fx 2

f 2

)
= 2k2 eθ

(
1 + eθ

)2 = 2k2 eθe−θ

[
e− θ

2
(
1 + eθ

)]2

= 1
2k

2sech2
[
1
2 (kx − k3t + δ)

] = 2 K 2sech2
(
Kx − 4 K 3t + Δ

)
, (31) 

where.K = k
2 and.Δ = δ

2 . Figure 4 shows a 3D graph of this so-called solitary wave 
solution or one-soliton solution for .K = 2 and .Δ = 0. 

Two-soliton Solution of the KdV Equation 

Starting with. f (1) = eθ1 + eθ2 , where.eθi = eki x−ωi t+δi , the first nontrivial equation in 
(29) yields.ωi = k3i . Then,.B( f (1)· f (1)) = −6k1k2(k1 − k2)2eθ1+θ2 which determines 
the form of . f (2), namely, . f (2) = a12eθ1+θ2 , with some constant coefficient .a12 to be 
computed. Then,.B(1· f (2)) = B( f (2)·1) = f (2)

xt + f (2)
4x = 3a12k1k2(k1 + k2)2eθ1+θ2 .

7 With.B = Dx Dt + D4
x , one has.B(1. f ) = B( f.1) = fxt + f4x for any function. f . 
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Fig. 4 3D graph of the hump-shaped solution (31) for.K = 2 and. Δ = 0

Substitution of the pieces into the third equation of (29) then gives 

.a12 =
(
k1 − k2
k1 + k2

)2

. (32) 

One can show that from .O(∈3) onward one can set . f (3), f (4), etc., equal to zero. 
Thus, . f contains only four terms. With .∈ = 1, using  

. f = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (33) 

and .u = 2(ln f )xx , this yields 

.u(x, t) = 2
[
k21e

θ1 + k22e
θ2 + 2(k1 − k2)2eθ1+θ2 + a12(k22e

θ1 + k21e
θ2)eθ1+θ2

]
(
1 + eθ1 + eθ2 + a12 eθ1+θ2

)2 . (34) 

Setting .ki = 2Ki , δi = 2Δi + ln
(

K2+K1
K2−K1

)
, the above can be written as 

. u(x, t) = 4
(
K 2

2 − K 2
1

) [
(K 2

2 − K 2
1 ) + K 2

1 cosh(2Θ2) + K 2
2 cosh(2Θ1)

]
[(K2 − K1)cosh(Θ2 + Θ1) + (K2 + K1)cosh(Θ2 − Θ1)]

2

= 2
(
K 2

2 − K 2
1

) (
K 2

1 sech
2(Θ1) + K 2

2 csch
2(Θ2)

[K1 tanh(Θ1) − K2 coth(Θ2)]
2

)
, (35) 

where .Θi = Ki x − 4K 3
i t + Δi (i = 1, 2). The elastic scattering of two solitons for 

the KdV equation is shown in Figs. 5 and 6 for .k1 = 2, k2 = 3
2 , and .δ1 = δ2 = 0.
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Fig. 5 Graph of the two-soliton solution (35) of the KdV equation at three different moments in 
time 

Fig. 6 Bird’s eye view of a two-soliton collision for the KdV equation. Notice the phase shift after 
collision: the taller (faster) soliton is shifted forward and the shorter (slower) soliton backward 
relative to where they would have been if they had not collided 

3.2 Simplified Hirota Method 

In this Section we use a simplified version of Hirota’s method which does not use 
the bilinear representation (20). Instead, we write (19) in the  form  

. f L f + N ( f, f ) = 0, (36) 

where 
.L f = fxt + f4x (37)
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and 
.N ( f, g) = − fxgt + 3 fxxgxx − 4 fxg3x (38) 

define a linear differential operator . L and a quadratic differential operator . N . Note  
that the latter is linear in each of the auxiliary functions . f (x, t) and .g(x, t). So, we 
could also call it “bilinear” but, of course, .N differs from Hirota’s bilinear operator 
. B. Substituting (28) into (36), and setting the coefficients of powers of . ∈ to zero 
yields 8

. O(∈1) : L f (1) = 0,

O(∈2) : L f (2) = −N ( f (1), f (1)),

O(∈3) : L f (3) = − (
f (1)L f (2) + N ( f (1), f (2)) + N ( f (2), f (1))

)
,

...
...

O(∈n) : L f (n) = −
n−1∑
j=1

(
f ( j)L f (n− j) + N ( f ( j), f (n− j))

)
, n ≥ 2. (39) 

The .N -soliton solution of the KdV is then generated from 

. f (1) =
N∑
i=1

eθi ≡
N∑
i=1

eki x−ωi t+δi , (40) 

where.N is a natural number, by solving the equations (39) successively to determine 
. f (2), f (3), etc. The first equation, .L f (1) = 0, yields the dispersion relation .ωi = k3i . 
With (40) one readily computes 

. − N ( f (1), f (1)) = −
N∑

i, j=1

3ki k
2
j (ki − k j )e

θi+θ j =
∑

1≤i< j≤N

3ki k j (ki − k j )
2eθi+θ j .

(41) 
Note that there are no terms .e2θi . Hence, . f (2) must be of the from 

. f (2) =
∑

1≤i< j≤N

ai je
θi+θ j , (42) 

with constants 9 .ai j to be determined. Next, compute 

.L f (2) =
∑

1≤i< j≤N

3ki k j (ki + k j )
2 ai j e

θi+θ j , (43)

8 Details of the derivation are given in the Appendix. 
9 The.ai j are often called phase factors because they can be absorbed in the exponents via.ai j = eAi j . 
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Fig. 7 Graph of the three-soliton solution of the KdV equation at three different moments in time 

and equate (41) with (43) to get 

.ai j =
(
ki − k j

ki + k j

)2

, 1 ≤ i < j ≤ N . (44) 

To keep matters transparent we show some details of the computation of the three-
soliton solution and the result for the four-soliton solution. 

Three-soliton Solution of the KdV Equation 
Proceeding in a similar way with the third equation in (39) leads to the explicit form 
of . f (3). For .N = 3, we find 

. f (3) = b123e
θ1+θ2+θ3 (45) 

with 

.b123 = a12 a13 a23 =
[
(k1 − k2) (k1 − k3) (k2 − k3)

(k1 + k2) (k1 + k3) (k2 + k3)

]2

. (46) 

For .N = 3, one can verify that . f (n) = 0 for .n > 3. Thus, 

. f = 1 + eθ1 + eθ2 + eθ3 + a12 e
θ1+θ2 + a13 e

θ1+θ3 + a23 e
θ2+θ3

+a12 a13 a23 e
θ1+θ2+θ3 (47) 

after setting.∈ = 1. Notice that (47) has no terms in.e2θ1 ,.e2θ2 ,.e2θ1+θ2 , eθ1+2θ2 , etc. The  
explicit expression of .u(x, t) (not shown due to length) then follows from. u(x, t) =
2(ln f )xx . 

The elastic collision of three solitons for the KdV equation is shown in Figs. 7 
and 8 for .k1 = 2, k2 = 3

2 , k3 = 1, and .δ1 = δ2 = δ3 = 0. 

Four-soliton Solution of the KdV Equation 
The computation of the four-soliton solution proceeds along the same lines. After 
setting .∈ = 1,
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Fig. 8 Bird’s eye view of three solitons colliding for the KdV equation. Notice the phase shift after 
collision: the faster soliton has advanced and the slower ones are behind. The shortest of the three 
solitons is shifted the most 

. f = 1 + eθ1 + eθ2 + eθ3 + eθ4 + a12 e
θ1+θ2 + a13 e

θ1+θ3 + a14 e
θ1+θ4 + a23 e

θ2+θ3

+a24 e
θ2+θ4 + a34 e

θ3+θ4 + a12a13a23 e
θ1+θ2+θ3 + a12a14a24 e

θ1+θ2+θ4

+a13a14a34e
θ1+θ3+θ4 +a23a24a34e

θ2+θ3+θ4 +a12a13a14a23a24a34e
θ1+θ2+θ3+θ4 , (48) 

with .ai j as defined in (44). 
The four-soliton solution .u(x, t) of the KdV equation follows from . u(x, t) =

2(ln f )xx . Its analytic expression is not shown for it would fill pages. 

N-soliton Solution of the KdV Equation 

Hirota introduced [ 46, Eq. (5.38)] a concise formula for the function . f leading to 
the .N -soliton solution of the KdV equation, 

. f =
∑

μ=0,1

e
[∑(N )

i< j μiμ j Ai j+∑N
i=1 μi θi

]
, (49) 

where .
∑

μ=0,1 denotes the sum over the .2N combinations of .μ1 = 0, 1, . μ2 = 0, 1,

.. . . , μN = 0, 1. Furthermore,.
∑(N )

i< j indicates summation over all possible pairs. (i, j)
with . i and . j chosen from the .N elements .{1, 2, ..., N } but .i < j , and .ai j = eAi j .
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Inspired by the result obtained by the IST, the .N -soliton solution can be written 
in a compact form [ 20, 42, 101, 103] as  

.u(x, t) = 2 (ln det(I + M))xx (50) 

where . I is the .N × N identity matrix and 

.Mlm = eΘl+Θm

Kl + Km
with Θl = Klx − 4K 3

l t + Δl. (51) 

Note that .det(I + M) will match . f in (30), (33), (47), and (48) when .ki = 2Ki and 
.δi = 2Δi − ln(2Ki ) with .Ki > 0. 

4 Application to a Class of Fifth-Order Evolution 
Equations 

In this section we investigate the soliton solutions of a three-parameter family of 
fifth-order KdV equations, 

.ut + αu2ux + βuxuxx + γuu3x + u5x = 0, (52) 

where .α,β, and . γ are nonzero real parameters. With .u = 1
γ
ũ one gets 

.ũt + α
γ2 ũ

2ũx + β
γ
ũx ũxx + ũũ3x + ũ5x = 0, (53) 

showing that the individual values of the parameters are less important than the 
ratios . α

γ2 and . 
β
γ
. Table 1 shows the values of these ratios for which (52) is known  to  

be completely integrable together with values of.(α,β, γ) used in the literature. The 
names of the equations are also listed together with a couple of references. Using 
scales on .u, x, and . t , the named equations cannot be transformed into one another; 
they are fundamentally different. 10

Integrate (52), 

.∂t

({ x

u dx

)
+ 1

3αu
3 + 1

2 (β − γ)u2x + γuuxx + u4x = 0, (54) 

and substitute (16) where . c is a constant, to get 

. 6 f 5( fxt + f6x ) − 3 f 4(2 fx ft + . . . + 12 fx f5x ) + 2 f 3
(
(...) f 3xx + . . . + (...) f 2x f4x

)
+3 f 2 f 2x

(
(...) f 2xx +(...) fx f3x

) +2 f 4x (360−6βc+αc2−12γc)(3 f fxx − f 2x )=0, (55)

10 After a trivial scaling the CDG equation becomes the SK equation. They are the same equations 
which often goes unnoticed in the literature (see, e.g., [ 64, 91]). 
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Table 1 Completely integrable fifth-order evolutions equations of type (52) 

.
α
γ2

.
β
γ .(α,β, γ) Name References 

.
3
10 .2 .(30, 20, 10) Lax [ 67] 

.(120, 40, 20) [ 94] 

. 
1 
5 .1 .(45, 15, 15) Sawada-Kotera [ 95] 

.(180, 30, 30) Caudrey-Dodd-Gibbon [ 10, 15] 

. 
1 
5 . 

5 
2 .(20, 25, 10) Kaup-Kupershmidt [ 19, 50, 57] 

which is of sixth degree. In the next subsections we investigate the integrable cases 
listed in Table 1. For each case the constant . c can be obtained from substituting a 
Laurent series into (52). 

4.1 The Lax Equation 

Using .α = 3 
10 γ

2, β = 2γ, and .c = 20 
γ , (55) reduces to a homogeneous trilinear 

equation 

. f 2( fxt  + f6x ) − f ( fx ft − 5 fxx  f4x + 6 fx f5x ) + 10( f 3 xx  − 2 fx fxx  f3x + f 2 x f4x )=0, (56) 

which can be written in bilinear form consisting of two coupled equations (see [ 49, 
p. 56] and [ 46, 94]): 

. 
(
Dx Ds + D4 

x

)
( f · f ) = 0,(

Dx Dt + D6 
x

)
( f · f ) − 5 3

(
D2 

s + Ds D
3 
x

)
( f · f ) = 0, (57) 

for only one function. f but with an extra independent variable . s which corresponds 
to the time variable in the KdV equation. This comes as no surprise because the Lax 
equation belongs to the family of KdV flows [ 82, p. 114] each with its own time 
variable. Upon elimination of . s via suitable cross differentiations one obtains (56). 

Note that (56) can also be recast in terms of Hirota trilinear operators 
[ 40, Eq. (8.113)]. Completely integrable trilinear equations have been studied [ 25, 
40, 41, 69] but are less common than their bilinear counterparts. Specific examples 
can be found in, for example, [ 72, 93, 96]. 

We will not use (57) in the subsequent computation of solitons. Instead, we write 
the cubic equation (56) as  

. f 2L f + f N1( f, f ) + N2( f, f, f ) = 0, (58) 
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with operators 

. L f = fxt  + f6x , 
N1( f, g) = −( ft gx − 5 fxx  g4x + 6 fx g5x ), (59) 

N2( f, g, h) = 10( fxx  gxx  hxx  − 2 fx gxx  h3x + fx gx h4x ), 

where . f, g, and . h are auxiliary functions. 
Upon substitution of (28) into (58) the first four equations of the perturbation 

scheme become 11 

. O(∈1 ) : L f (1) = 0, 
O(∈2 ) : L f (2) = −N1( f (1) , f (1) ), 
O(∈3 ) : L f (3) = − (

2 f (1)L f (2) + N1( f (1) , f (2) ) + N1( f (2) , f (1) ) 
+ f (1)N1( f (1) , f (1) ) + N2( f (1) , f (1) , f (1) )

)
, 

O(∈4 ) : L f (4) = −
(
2 f (1)L f (3) +

(
2 f (2) + f (1)2

)
L f (2) + N1( f (1) , f (3) ) 

+N1( f (3) , f (1) ) + N1( f (2) , f (2) ) + f (1)
(
N1( f (1) , f (2) ) 

+N1( f (2) , f (1) )
) + f (2)N1( f (1) , f (1) ) + N2( f (1) , f (1) , f (2) ) 

+N2( f (1) , f (2) , f (1) ) + N2( f (2) , f (1) , f (1) )
)
, (60) 

where we used the first equation to simplify the other ones. Starting from (40), one 
can proceed as in KdV case to construct soliton solutions of any order . N . The only 
difference is that for the Lax equation .ωi = k5 i instead of .ωi = k3 i . For example, the 
one-soliton solution 

.u(x, t) = 5 
γ k

2 sech2
[
1 
2 (kx  − k5 t + δ)

] = 20 
γ K 

2 sech2
(
Kx  − 16 K 5 t + Δ

)
, (61) 

where .K = k 2 and .Δ = δ 
2 , solves  

.ut + 3 
10 γ

2 u2 ux + 2γuxuxx  + γuu3x + u5x = 0. (62) 

4.2 The Sawada-Kotera Equation 

Using .α = 1 5 γ
2, β = γ, and .c = 30 

γ one gets a quadratic equation, 

. f ( fxt  + f6x ) − fx ft − 10 f 2 3x + 15 fxx  f4x − 6 fx f5x = 0, (63) 

11 The derivation is given in the Appendix. 
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which can be written in bilinear form [ 46] as  

.
(
Dx Dt + D6 

x

)
( f · f ) = 0. (64) 

Ignoring the bilinear representation, we write (63) in the  form  (36) with 

.L f = fxt  + f6x , (65) 

.N ( f, g) = −  fx gt − 10 f3x g3x + 15 fxx  g4x − 6 fx g5x , (66) 

and proceed as in the KdV case, leading to the following soliton solutions. 

One-soliton Solution of the SK Equation 
The solitary wave solution 

. u(x, t) = 15 2γ k
2 sech2

[
1 
2 (kx  − k5 t + δ)

]
= 30 

γ K 
2 sech2

(
Kx  − 16 K 5 t + Δ

)
, (67) 

where .K = k 2 and .Δ = δ 
2 , solves  

.ut + 1 5 γ
2 u2 ux + γuxuxx  + γuu3x + u5x = 0. (68) 

Higher-order Soliton Solutions of the SK Equation 
The computation of higher-order soliton solutions is analogous to the KdV equation; 
see (33), (47), and (48). Except that the dispersion relation is now quintic, . ωi = k5 i , 
and the .ai j  must be replaced by 

.ai j  = 
(ki − k j )2 (k2 i − ki k j + k2 j ) 
(ki + k j )2 (k2 i + ki k j + k2 j ) 

= 
(ki − k j )3 (k3 i + k3 j ) 
(ki + k j )3 (k3 i − k3 j ) 

. (69) 

The actual two- and three-soliton solutions .u(x, t) of the SK equation are very long 
expressions (not shown). 

4.3 The Kaup-Kupershmidt Equation 

Using .α = 1 5 γ
2, β = 5 2 γ, and .c = 15 

γ , (55) becomes a quartic equation, 

. 4 f 3 ( fxt  + f6x ) − f 2 (4 ft fx − 5 f3x 2 + 24 fx f5x ) 
−30 f fx ( fxx  f3x − 2 fx f4x ) + 15 fx 2 (3 fxx  2 − 4 fx f3x ) = 0, (70) 

which can be written as a coupled system of bilinear equations (see [ 49, p. 36] and 
[ 88, 104]), 
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.
(
Dx Dt + 1 

16 D
6 
x

)
( f · f ) + 15 4 D

2 
x ( f ·g) = 0, (71) 

. D4 
x ( f · f ) − 4 f g = 0, (72) 

for two unknown functions . f and . g. One can verify that upon elimination of . g in 
(71) and (72) indeed yields (70). 

In what follow, we will ignore the bilinear system and write (70) in operator form 
as 

. f 3L f + f 2N1( f, f ) + f N2( f, f, f ) + N3( f, f, f, f ) = 0. (73) 

This homogeneous equation involves one linear operator and three nonlinear opera-
tors defined as 

.L f = 4( fxt  + f6x ), (74) 

.N1( f, g) = −(4 ft gx − 5 f3x g3x + 24 fx g5x ), (75) 

.N2( f, g, h) = −30 fx (gxx  h3x − 2gx h4x ), (76) 

.N3( f, g, h, j ) = 15 fx gx (3hxx  jxx  − 4hx j3x ), (77) 

for auxiliary functions. f (x, t), g(x, t), h(x, t), and. j (x, t). The nonlinear operators 
are bilinear, trilinear, and quadrilinear, respectively. 

Substituting (28) into (73) and equating the coefficients of powers of . ∈ to zero 
yields 12 the perturbation scheme of which the first four equations read 

. O(∈1) : L f (1) = 0, 
O(∈2) : L f (2) = −N1( f (1) , f (1) ), 

O(∈3) : L f (3) = −
(
3 f (1)L f (2) + 2 f (1)N1( f (1) , f (1) ) + N1( f (2) , f (1) ) 

+N1( f (1) , f (2) ) + N2( f (1) , f (1) , f (1) )
)

, 

O(∈4) : L f (4) = −
(
3 f (1)L f (3) + 3

(
f (2) + f (1)2

)
L f (2) + N1( f (1) , f (3) ) 

+N1( f (3) , f (1) ) + N1( f (2) , f (2) ) + 2 f (1)
(
N1( f (1) , f (2) ) 

+N1( f (2) , f (1) )
)

+
(
2 f (2) + f (1)2

)
N1( f (1) , f (1) ) 

+N2( f (1) , f (1) , f (2) ) + N2( f (1) , f (2) , f (1) ) + N2( f (2) , f (1) , f (1) ) 

+ f (1)N2( f (1) , f (1) , f (1) ) + N3( f (1) , f (1) , f (1) , f (1) )
)

, (78) 

where we used the first equation to simplify the subsequent ones. Clearly, the num-
ber of terms grows at each order in . ∈ and the computational complexity increases 
accordingly. Full details of the step-by-step solution of the perturbation scheme for 
the KK equation with coefficients .α = 20, β = 25, and .γ = 10, can be found [ 30, 
85] where we used Macsyma to perform the lengthy computations. Here we sum-

12 Details of the derivation are given in the Appendix. 
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marize the results for general .α, β, and . γ subject to the conditions .α = 1 5 γ
2, and 

.β = 5 2 γ. 
One-soliton Solution of the KK Equation 
Taking. f (1) = eθ = ekx−ωt+δ , .L f (1) = 0 yields.ω = k5. In contrast to the KdV case, 
the right hand side of the second equation, 

. − N ( f (1) , f (1) ) = 15k6 e2θ , (79) 

does not vanish but has a term in .e2θ. Thus, . f (2) must be of the form 

. f (2) = a e2θ , (80) 

with undetermined constant coefficient . a. Then, 

.L f (2) = 240ak6 e2θ (81) 

and equating the right hand sides of (79) and (81) yields.a = 1 
16 . Next, we check that 

we can set. f (n) = 0 for.n ≥ 3 by verifying that the right hand sides of the subsequent 
equations in (78) are all zero. This is indeed the case and the perturbation scheme 
terminates after two steps. Setting .∈ = 1, 

. f = 1 + eθ + 1 
16 e

2θ , (82) 

and .u = 15 
γ (ln f )xx  yields 

.u = 240 
γ k

2

[
eθ (16 + 4eθ + e2θ ) 
(16 + 16eθ + e2θ)2

]
(83) 

which solves 
.ut + 1 5 γ

2 u2 ux + 5 2 γuxuxx  + γuu3x + u5x = 0. (84) 

The one-soliton solution can also be written as 

.u = 240 
γ k

2

([
1 − tanh2 ( θ 

2 )
] [
21 − 30 tanh θ 

2 + 13 tanh2 ( θ 
2 )

]
[
33 − 30 tanh θ 

2 + tanh2 ( θ 
2 )

]2
)

(85) 

. = 240 
γ k

2

(
4 + 17 cosh θ − 15 sinh θ 

[16 + 17 cosh θ − 15 sinh θ]2

)
, (86) 

where .θ = kx  − k5t + δ. Figure 9 shows the 2D and 3D graphs of the one-soliton 
solution for.γ = 10, k = 2, and.δ = 0. In comparison with the solitary wave solution 
of the KdV equation shown in Figs. 3 and 4, the solution of the KK equation is wider 
and flatter at the top. 
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Fig. 9 2D and 3D graphs of solution (85) with.γ = 10, k = 2, and. δ = 0 

Two-soliton Solution of the KK Equation 
Starting from 

. f (1) = eθ1 + eθ2 , (87) 

where .θi = ki x − k5 i t + δi (i = 1, 2), we compute 

. − N1( f (1) , f (1) ) = 15k6 1 e
2θ1 + 15k6 2 e

2θ2 + 10k1k2(2k4 1 − k2 1k
2 
2 + 2k4 2) e

θ1+θ2 . 
(88) 

Thus . f (2) must be of the form 

. f (2) = a1 e2θ1 + a2 e2θ2 + a12 eθ1+θ2 , (89) 

with the (constant) coefficients .a1, a2, and .a12 to be determined. Then, 

. L f (2) = 240a1k6 1 e
2θ1 + 240a2k6 2 e

2θ2 

+ 20a12k1k2(k1 + k2)2 (k2 1 + k1k2 + k2 2) e
θ1+θ2 . (90) 

Equating (88) with (90) determines .a1 = a2 = 1 
16 , as expected, and 

.a12 = 2k4 1 − k2 1k2 2 + 2k4 2 
2(k1 + k2)2 (k2 1 + k1k2 + k2 2) 

. (91) 

Therefore, 

. f (2) = 1 
16 e

2θ1 + 1 
16 e

2θ2 + (2k4 1 − k2 1k2 2 + 2k4 2) 
2(k1 + k2)2 (k2 1 + k1k2 + k2 2) 

eθ1+θ2 . (92) 

The main difference with the the KdV, Lax, and SK equations is that the terms . e2θ1 

and .e2θ2 in . f (2) no longer drop out. At .O(∈3) one gets 

. f (3) = b12
(
eθ1+2θ2 + e2θ1+θ2

)
, (93) 
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Fig. 10 Graph of the two-soliton solution of the KK equation at three different moments in time 

with 

.b12 = (k1 − k2)2(k2 1 − k1k2 + k2 2) 
16(k1 + k2)2(k2 1 + k1k2 + k2 2) 

. (94) 

At the next order 

. f (4) = b2 12 e
2(θ1+θ2) = (k1 − k2)4(k2 1 − k1k2 + k2 2)2 

256(k1 + k2)4(k2 1 + k1k2 + k2 2)2 
e2(θ1+θ2) . (95) 

After verification that all . f (n) are zero for .n ≥ 5 and setting .∈ = 1, 

. f = 1 + eθ1 + eθ2 + 1 
16 e

2θ1 + 1 
16 e

2θ2 + a12 eθ1+θ2 

+ b12
(
e2θ1+θ2 + eθ1+2θ2

) + b2 12 e
2(θ1+θ2) . (96) 

The explicit expression of .u(x, t) (not shown due to length) then follows from 
.u = 15 

γ (ln f )xx . The collision of two solitons for the KK equation is shown in Figs. 10 
and 11 for .k1 = 2, k2 = 1, and .δ1 = δ2 = 0. 

Three-soliton Solution of the KK Equation 

Starting with 

. f (1) = 
3∑

i=1 

eθi = eθ1 + eθ2 + eθ3 , (97) 

where.θi = ki x − k5 i t + δi , the equations of the perturbation scheme are solved order-
by-order yielding expressions for. f (2) , f (3) , . . . ,  f (6) because, as it turns out,. f (n) = 
0 for .n ≥ 7. The latter requires verification that the right hand sides at .O(∈7) and 
beyond all vanish in order for the perturbation scheme to terminate. The computations 
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Fig. 11 Bird’s eye view of the collision of two solitons for the KK equation. Notice the phase shift 
after the collision 

are very lengthy, time consuming, and currently at the limit of what Mathematica 
can handle. 13 Summarizing the results: 

. f (2) = 1 
16 

3∑
i=1 

e2θi +
∑

1≤i< j≤3 

ai j  e
θi+θ j , (98) 

with phase factors 

.ai j  =
2k4 i − k2 i k2 j + 2k4 j 

2(ki + k j )2 (k2 i + ki k j + k2 j ) 
, 1 ≤ i < j ≤ 3. (99) 

Next, 
. f (3) =

∑
1≤i< j≤3 

bi j
(
e2θi+θ j + eθi+2θ j

) + c123 eθ1+θ2+θ3 , (100) 

where 

.bi j  =
(ki − k j )2(k2 i − ki k j + k2 j ) 

16(ki + k j )2(k2 i + ki k j + k2 j ) 
, 1 ≤ i < j ≤ 3, (101) 

13 With the code PDESolitonSolutions.m discussed in Sect. 9, the computation of the three-soliton 
solution takes about 4 min on a Dell XPS-15 laptop with Intel Core i7 processor at 4.7GHz and 32 
GB of memory. 
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Fig. 12 Graph of the three-soliton solution of the KK equation at three different moments in time 

and 

. c123 = 1 D
[
(2k4 1 − k2 1k

2 
2 + 2k4 2)(k

8 
3 + k4 1k

4 
2) + (2k4 1 − k2 1k

2 
3 + 2k4 3)(k

8 
2 + k4 1k

4 
3) 

+(2k4 2 − k2 2k
2 
3 + 2k4 3)(k

8 
1 + k4 2k

4 
3)

]− 1 2D

[
(k2 1 + k2 2)(k

4 
1 + k4 2)(k

6 
3 + k2 1k

2 
2k

2 
3) 

+(k2 1 + k2 3)(k
4 
1 + k4 3)(k

6 
2 + k2 1k

2 
2k

2 
3) + (k2 2 + k2 3)(k

4 
2 + k4 3)(k

6 
1 + k2 1k

2 
2k

2 
3) 

+12k4 1k
4 
2k

4 
3

]
(102) 

with 
.D = 4

∏
1≤i< j≤3 

(ki + k j )2 (k2 i + ki k j + k2 j ). (103) 

Carrying on, 

. f (4) =
∑

1≤i < j≤3 

b2 i j  e
2(θi+θ j ) + 16

(
a23b12b13 e

2θ1+θ2+θ3 

+ a13b12b23eθ1+2θ2+θ3 + a12b13b23 eθ1+θ2+2θ3
)
, (104) 

. f (5) = 256 b12b13b23
(
b12 e

2θ1+2θ2+θ3 + b13e2θ1+θ2+2θ3 

+ b23 eθ1+2θ2+2θ3
)
, (105) 

. f (6) = 16 (16b12b13b23)2 e2(θ1+θ2+θ3) . (106) 

Finally, after setting .∈ = 1, 

. f = 1 + f (1) + f (2) + f (3) + f (4) + f (5) + f (6) , (107) 

and .u(x, t) = 15 
γ (ln f )xx  (not shown due to length) then solves (84). 

The collision of three solitons for the KK equation is shown in Figs. 12 and 13 
for .k1 = 2, k2 = 3 2 , k3 = 1, and .δ1 = δ2 = δ3 = 0. 
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Fig. 13 Bird’s eye view of the collision of three solitons for the KK equation. Notice the phase 
shift after the collision 

5 The Modified KdV Equation 

Of course, not every polynomial soliton equation in.(1 + 1) dimensions can be solved 
with a solution of type (28). Consider, for example, the mKdV equation, 

.ut + 24u2 ux + u3x = 0, (108) 

which after integration becomes 

.∂t

({ x 

u dx

)
+ 8u3 + uxx  = 0. (109) 

The Laurent series for (108) suggests the transformation 

.u = ± 1 
2 i (ln f̃ )x = ± 1 

2 i

(
f̃x 

f̃

)
. (110) 

Substitution of either of these branches into (109) yields 

. f̃ ( f̃t + f̃3x ) − 3 f̃x f̃x x  = 0. (111) 
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Although homogeneous of second degree and deceptively simple, it has no solution 
of the form. f̃ = 1 + eθ where.θ = k x  − ω t + δ. Indeed, the term in.eθ vanishes for 
.ω = k3 but the term .−3k3e2θ is only zero when .k = 0. It is clear from (110) that to 
obtain a real-valued solution, i.e., .u★ = u, . f̃ must be a complex function. One can 
readily verify that .u = ± 1 

2 i (ln( f + ig))x , for real functions . f and. g does not work 
either. So, . f̃ must be a ratio of complex functions. Hence, 

.u = ± 1 
2 i

(
ln

(
f + i g 
h + i j

))
x 

, (112) 

where . f, g, h, and . j are real functions. From .u★ = u it follows that .h = f and 
. j = −g. Observe that (108) remains invariant when . u is replaced by its negative. 
Therefore, without loss of generality, we continue with the plus sign, 

.u = 1 2 i
(
ln

(
f + i g 
f − i g

))
x 

=
(
arctan

(
f 
g

))
x 

= 
fx g − f gx 
f 2 + g2 

, (113) 

which is Hirota’s transformation for the mKdV equation [ 43]. Note that the roles of 
. f and . g can thus be interchanged in the computations below. 

Goldstein [ 23] gave a different argument 14 to arrive at (113). Accounting for the 
.± signs in (110), he argued that the solution may have two families of singularities 
and therefore assumed 15 

.u = 1 2 i
(
Fx 

F 
− 

Gx 

G

)
= 1 2 i

(
ln

(
F 

G

))
x 

. (114) 

Note that the two terms (in the first equality above) indeed account for the two 
branches in (110). Setting .F = f + i g and .G = f − i g then gives (113). 

Applying Hirota’s transformation (113) to (109) yields 

. f 3 (gt + g3x ) − g3 ( ft + f3x ) − f 2 ( ft g + 3 fx gxx  + 3 fxx  gx + f3x g) 
+g2 ( f gt + f g3x + 3 fx gxx  + 3 fxx  gx ) + 6 f gx ( f 2 x + g2 x ) 
−6 fx g( f 2 x + g2 x ) + 6 f g( fx fxx  − gx gxx  ) = 0, (115) 

which is clearly not of the usual form the simplified Hirota method applies to. The 
terms in (115) can be regrouped as 

. ( f 2 + g2 )( ft g − f gt − f g3x + 3 fx gxx  − 3 fxx  gx + f3x g) 
−6( fx g − f gx )( f fxx  − f 2 x + ggxx  − g2 x ) = 0. (116) 

14 The argument is based on modified singular manifold expansion methods [ 17, 24, 81]. 
15 With.u = ± 1 

2 i (ln(F/G))x , (108) can be replaced by.(Dt + D3 
x )(F ·G) = 0 and. D2 

x (F ·G) = 0 
where .G = F★. See, e.g., [ 28] for explicit expressions of .F and .G for the two- and three-soliton 
cases. 
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Taking advantage of the fact that there are two free functions in play, Hirota [ 43, 45] 
then set the factors multiplying . f 2 + g2 and . fx g − f gx separately equal to zero, to 
get the coupled system 

. f (gt + g3x ) − g( ft + f3x ) − 3( fx gxx  − fxx  gx ) = 0, (117) 

. f fxx  − f 2 x + ggxx  − g2 x = 0, (118) 

which can be written in bilinear form as 

. (Dt + D3 
x )( f ·g) = 0, (119) 

. D2 
x ( f · f + g·g) = 0. (120) 

Ignoring the bilinear form, one could write (117) and (118) as  

. f Lg − g L f + N1( f, g) = 0, (121) 

. N2( f, f ) + N2(g, g) = 0, (122) 

with 
.L f = ft + f3x (123) 

and 

.N1( f, g) = −3( fx gxx  − fxx  gx ), (124) 

.N2( f, g) = f gxx  − fx gx . (125) 

With a suitable adaptation of the method in Sect. 3.2, one could then seek a solution 
of (121) and (122) using  

. f = f (0) + ∈ f (1) + ∈2 f (2) + . . . , (126) 

.g = g(0) + ∈g(1) + ∈2 g(2) + . . .  . (127) 

Based on the interchangeability of . f and . g, one can either take . f (0) = g(1) = 0 
and .g(0) = 1, or equivalently, .g(0) = f (1) = 0 and . f (0) = 1. In either case, . Leθi = 
Leki x−ωi t+δi = 0 determines the dispersion relation .ωi = k3 i . Proceeding with the 
former case but skipping the details of the computations we summarize the results. 

One-soliton Solution of the mKdV Equation 
With 

. f = eθ = ekx−k3t+δ and g = 1, (128) 

one gets 
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. u = 
fx 

1 + f 2 
= k 

eθ 

1 + e2θ = 1 2 k sech θ 

= 1 2 k sech (kx  − k3 t + δ) = K sech
(
2 Kx  − 8 K 3 t + δ

)
(129) 

with .K = k 2 . 
Two-soliton Solution of the mKdV Equation 
Now 

. f = eθ1 + eθ2 , 
g = 1 − a12eθ1+θ2 , (130) 

with .θi = ki x − k3 i t + δi and .a12 =
(
k1−k2 
k1+k2

)2 
. Then, 

.u = k1eθ1 + k2eθ2 + a12 (k1eθ2 + k2eθ1 )eθ1+θ2 

1 + e2θ1 + e2θ2 + 
8k1k2 

(k1 + k2)2 
eθ1+θ2 + a2 12 e

2θ1+2θ2 
. (131) 

Three-soliton Solution of the mKdV Equation 
After some computations one finds that 

. f = eθ1 + eθ2 + eθ3 − b123eθ1+θ2+θ3 , 
g = 1 − a12 eθ1+θ2 − a13 eθ1+θ3 − a23 eθ2+θ3 , (132) 

with .θi = ki x − k3 i t + δi , .ai j  =
(
ki−k j 
ki+k j

)2 
, and .b123 = a12a13a23. 

N-soliton Solution of the mKdV Equation 

A concise formula [ 35, 52, 73] for the function. F̃ = g + i f  leading to the.N -soliton 

solution .u = 1 2 i
(
ln

(
F̃ 
F̃★

))
x 
of the mKdV equation is given 16 by 

. F̃ =
∑

μ=0,1 

e
[∑(N ) 

i < j μi μ j Ai j+∑N 
j=1 μ j (θ j+i π 

2 )
]
, (133) 

where the summations have the same meaning as in (49) and again .ai j  = eAi j  . The  
extra .i π 

2 takes care of the complex coefficients and sign reversals. 
The .N -soliton solution can be written [ 43, 100, 102] as  

.u(x, t) = 
1 

2i

(
ln 

det(I + iM) 
det(I − iM)

)
x 

, (134) 

16 Recall that the roles of . f and. g can be interchanged because.−u solves (108) whenever. u does. 
. F̃ is.F with the roles of. f and. g reversed. 



132 W. Hereman and Ü. Göktaş 

where . I is the .N × N identity matrix and 

.Mlm = 
eΘl+Θm 

Kl + Km 
with Θl = Klx − 4K 3l t + Δl. (135) 

Note that. det(I +iM) 
det(I −iM) matches. F̃ 

F̃★
= g+i f  

g−i f  with. f and. g in (128), (130), and (132) when 
.ki = 2Ki and .δi = 2Δi − ln(2Ki ) with .Ki > 0. 

6 Application to Non-solitonic PDEs 

6.1 The Fisher Equation with Convection 

One of the examples discussed in [ 26] is the Fisher equation with convection term 
[ 76, 79], 

.ut + αuux − uxx  − u(1 − u) = 0, α /= 0, (136) 

where. α is the convection coefficient. This equation can also be viewed as a Burgers 
equation with quadratic source term. Motivated by a truncated Laurent series, use 

.u = − 2 
α (ln f )x = − 2 

α

(
fx 
f

)
(137) 

to replace (136) with a homogeneous equation of second degree 

. f ( f3x + fx − fxt  ) + fx ( ft − fxx  + 2 
α fx ) ≡ f L f + N ( f, f ) = 0, (138) 

where 

.L f = f3x + fx − fxt  , (139) 

.N ( f, g) = fx (gt − gxx  + 2 
α gx ). (140) 

Seeking a solution of type (28), .L f (1) = L(
∑N 

i=1 e
θi ) yields .ωi = −(1 + k2 i ). The 

second equation in (39) then becomes 

.L f (2) = −  
N∑
i=1 

ki
(
1 + 2 

α ki
)
e2θi −

∑
1≤i< j≤N

(
ki + k j + 4 

α ki k j
)
eθi+θ j . (141) 

If we were to include the terms .e2θi in . f (2) the perturbation scheme would not 
terminate. Hence, we are forced to set all wave numbers equal to . ki = −α 

2 (i = 
1, 2, . . . ,  N ). Thus, .N = 1 and only a solitary solution can be obtained. Note that 
both sums in (141) vanish when .ki = −α 

2 . Hence, . f 
(2) = 0 and 
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. f (x, t) = 1 + eθ = 1 + e− α 
2 x+

1 
4 (4+α2)t+δ 

. (142) 

Finally, from (137) 

.u(x, t) = 
eθ 

1 + eθ = 1 2
(
1 − tanh

[
1 
2

(
α 
2 x − 1 4 (4 + α2 )t − δ

)])
, (143) 

since .k = −α 
2 . The graphs of the kink solution (143) in 2D and 3D are similar to 

those in Fig.  1. 

6.2 The Fisher Equation 

A transformation to homogenize the Fisher equation [ 18, 80] without convection, 

.ut − uxx  − u(1 − u) = 0, (144) 

is remarkably different from (137). Indeed, a truncated Laurent series suggests 

.u = −6(ln f )xx  + 6 5 (ln f )t , (145) 

which yields 

. f ( f4x + fxx  − 6 5 fxxt  + 1 5 ftt  − 1 5 ft ) − 4 fx f3x + 3 f 2 xx  − f 2 x 
− 6 

5 ft fxx  + 12 5 fx fxt  + 1 
25 f 

2 
t ≡ f L f + N ( f, f ) = 0. (146) 

Here, 

.L f = f4x + fxx  − 6 5 fxxt  + 1 5 ftt  − 1 5 ft , (147) 

.N ( f, g) =−4 fx g3x + 3 fxx  gxx  − fx gx − 6 5 ft gxx  + 12 5 fxt  gx + 1 
25 ft gt . (148) 

Solving (39) with . f (1) = ∑N 
i=1 e

θi = ∑N 
i=1 e

ki x−ωi t+δi as a starting point, one gets 
.ωi = −5k2 i or . ωi = −(1 + k2 i ). 
Case 1: For .ωi = −5k2 i the second equation in (39) reads 

.L f (2) = 
N∑
i=1 

k2 i (1 − 6k2 i ) e
2θi + 2

∑
1≤i< j≤N 

ci j  e
θi+θ j , (149) 

where .ci j  = ki k j
[
1 + 2ki k j − 4(k2 i + k2 j )

]
. If we put terms .e2θi in . f (2) the pertur-

bation scheme does not terminate. Hence, .ki = ±  1√
6 

(i = 1, 2, . . . ,  N ) which also 
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makes .ci j  = 0. This leads us to conclude that a multi-soliton solution does not exist 
and .N = 1. With .k = ±  1√

6 
we have .ω = − 5 

6 . Using  (145) with . f = 1 + eθ gives 

.u(x, t) = 
e2θ 

(1 + eθ)2 
= 1 

(1 + e−θ)2 
= 1 4

(
1 + tanh θ 

2

)2 
, (150) 

where each of these forms of the solution appears in the literature (see, e.g., [ 4]). 
Explicitly, for .k = −  1√

6 
, 

.u(x, t) = 1 4
(
1 − tanh

[
1 
2

(
1√
6 
x − 5 6 t − δ

)])2 
, (151) 

which is a wave traveling to the right. The graph of this kink solution is the same as 
in Fig. 1 but with a steeper slope due to the square in (151). For .k = 1√

6 
, 

.u(x, t) = 1 4
(
1 + tanh

[
1 
2

(
1√
6 
x + 5 6 t + δ

)])2 
, (152) 

which is a left-traveling wave, a bit steeper than the one shown in Fig. 1 after a vertical 
flip. Note that (152) does not follow from (143) in the limit for . α → 0. 
Case 2: For .ωi = −(1 + k2 i ) the second equation in (39) becomes 

.L f (2) = −  1 25 

⎛ 

⎝ 
N∑
i=1 

(1 + k2 i )(1 + 6k2 i ) e
2θi + 2

∑
1≤i< j≤N 

ci j  e
θi+θ j 

⎞ 

⎠ , (153) 

where .ci j  =
[
1 + 35ki k j + 46k2 i k2 j − 2(k2 i + k2 j )(7 + 10ki k j )

]
. So, for real wave 

numbers .ki the terms .e2θi do not vanish. No solitary wave solutions or solitons can 
be obtained in this case. 

6.3 The FitzHugh-Nagumo Equation with Convection 

The FHN equation with convection term [ 58], 

.ut + αuux − uxx  + u(1 − u)(a − u) = 0, (154) 

where . α denotes the convection coefficient and . a is an arbitrary constant, is also 
called the Burgers-Huxley equation [ 87]. 

A truncated Laurent series suggests two possible transformations, namely, 

.u = 
√
m (ln f )x = 

√
m

(
fx 
f

)
, m > 0. (155) 
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and 

.u = −  
2√
m 

(ln f )x = −  
2√
m

(
fx 
f

)
, m > 0, (156) 

where we have replaced. α by. 
m−2√

m 
in (154) to simplify their forms and the computa-

tions below. Using (155), (154) transforms into 

. f ( f3x − a fx − fxt  ) + fx
(
ft − (m + 1) fxx  + 

√
m(1 + a) fx

)
≡ f L f + N ( f, f ) = 0, (157) 

where 

.L f = f3x − a fx − fxt  , (158) 

.N ( f, g) = fx
(
gt − (m + 1)gxx  + 

√
m(1 + a)gx

)
. (159) 

To compute a single solitary wave solution we take. f = 1 + eθ. Then,.Leθ = 0 yields 
.ω = a − k2. Next,  .N (eθ , eθ ) = 0 determines .k = 1√

m 
or .k = a√

m 
. Thus, . ω = am−1 

m 

or .ω = a(m−a) 
m , respectively. Returning to . u, we obtain the solitary wave solutions 

.u(x, t) = 1 2

(
1 + tanh

[
1 
2

(
1√
m 
x − 

(am − 1) 
m 

t + δ
)])

(160) 

and 

.u(x, t) = 1 2 a
(
1 + tanh

[
1 
2

(
a√
m 
x − 

a(m − a) 
m 

t + δ
)])

. (161) 

Although it is impossible to find a two-soliton solution, a so-called bi-soliton solution 
can be computed which describes coalescent wave fronts. Indeed, taking . f = 1 + 
eθ1 + eθ2 , with .ωi = a − k2 i (i = 1, 2), after some computations one gets 

.u(x, t) = 
eθ1 + a eθ2 

1 + eθ1 + eθ2 
, (162) 

where 
.θ1 = 1√

m 
x − (

am−1 
m

)
t + δ1, θ2 = a√

m 
x −

(
a(m−a) 

m

)
t + δ2. (163) 

Since .α = m−2√
m 
, possible 17 values for .m are 

.m = 1 2
(
4 + α2 ± α

√
8 + α2

)
, m > 0. (164) 

This solution can be found in [ 30, 58] where it was obtained with a different method. 

17 For any positive value of. m, the pair.(α, m) must still satisfy.α = m−2√
m 
. 
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Fig. 14 3D graphs of solution (162) with (163) (left) and  (167) (right) both for.a = 3, α = 1 (i.e., 
.m = 4), and. δ1 = δ2 = 0 

Skipping the details, with (156) one obtains the following solutions 

.u(x, t) = 1 2

(
1 − tanh

[
1 
2

(√
m 

2 
x + 

(4a − m) 
4 

t − δ
)])

(165) 

and 

.u(x, t) = 1 2 a
(
1 − tanh

[
1 
2

(
a
√
m 

2 
x + 

a(4 − am) 
4 

t − δ
)])

, (166) 

with .m given in (164). The bi-soliton solution corresponding to (156) is (162) with 

.θ1 = −  
√
m 
2 x −

(
4a−m 

4

)
t + δ1, θ2 = − a

√
m 

2 x −
(
a(4−am) 

4

)
t + δ2. (167) 

Solution (162) with either (163) or (167) describes the coalescence of two wave 
fronts pictured in Fig. 14. 

Finally, for.m = 2 (i.e.,.α = 0), one gets a solitary wave solution of the FHN equation 
without convection [ 5]. 

6.4 A Burgers Equation with a Cubic Source Term 

Consider the Burgers equation with a polynomial source term of third degree, 

.ut + αuux − uxx  = 3u(2 − u)(u + 1), (168) 



Symbolic Computation of Solitary Wave Solutions … 137 

which is of the kind treated in [ 99, Eq. (26)]. Equation (168) can also be viewed as 
an equation of FitzHugh-Naguma-type with convection term. 18 Such equations are 
known to have coalescent wave fronts [ 27, 58]. Based on a truncated Laurent series, 
there are potentially two homogenizing transformations: 

.u = 
√
m (ln f )x = 

√
m

(
fx 
f

)
, m > 0. (169) 

and 

.u = −  
2 

3
√
m 

(ln f )x = −  
2 

3
√
m

(
fx 
f

)
, m > 0, (170) 

where we used .α = 3m−2√
m 

in (168) to simplify their forms. Starting with (169), sub-
stitution into (168) yields 

. f (6 fx − fxt  + f3x ) + fx
(
ft + 3

√
m fx − (1 + 3 m) fxx

)
(171) 

. ≡ f L f + N ( f, f ) = 0. (172) 

Here, . L and .N are defined by 

.L f = 6 fx − fxt  + f3x , (173) 

.N ( f, g) = fx
(
gt + 3

√
mgx − (1 + 3 m) gxx

)
. (174) 

For the single solitary wave solution,.Leθ = 0 yields.ω = −(k2 + 6). Next,. N (eθ , eθ ) 
= 0 determines .k = −  1√

m 
or .k = 2√

m 
. Thus, .ω = − 6m+1 

m or .ω = − 2(3m+2) 
m , respec-

tively. So, with . f = 1 + eθ we obtain the solitary wave solutions 

.u(x, t) = − 1 
2

(
1 − tanh

[
1 

2
√
m 
x − 

(6 m + 1) 
2 m 

t − 
δ 
2

])
(175) 

and 

.u(x, t) = 1 + tanh
[

1√
m 
x + 

(3 m + 2) 
m 

t + 
δ 
2

]
, (176) 

where, with regard to .α = 3m−2√
m 
, possible values 19 for .m are 

.m = 1 
18

(
12 + α2 ± α

√
24 + α2

)
, m > 0. (177) 

As with the FHN equation with convection term, no two-soliton solution exists but 
a bi-soliton solution can be found which describes coalescent wave fronts. Indeed, 
taking . f = 1 + eθ1 + eθ2 where .ωi = −(k2 i + 6) (i = 1, 2) one gets 

18 Except that.u − 1 is now replaced by.u + 1. 
19 For any positive value of. m, the pair.(α, m) must still satisfy.α = 3m−2√

m 
. 
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. u(x, t) = 
√
m(k1eθ1 + k2eθ2 ) 
1 + eθ1 + eθ2 

= 
2 e  

2√
m 
x+ 2(3 m+2) 

m t+δ1 − e− 1√
m 
x+ (6 m+1) 

m t+δ2 

1 + e 
2√
m 
x+ 2(3 m+2) 

m t+δ1 + e− 1√
m 
x+ (6 m+1) 

m t+δ2 
, (178) 

because .k1 = 2√
m 
and .k2 = −  1√

m 
with .m in (177). For .m = 1, a solution of (168) 

with .α = 1 then reads 

.u(x, t) = 2e2x+10t+δ1 − e−x+7t+δ2 

1 + e2x+10t+δ1 + e−x+7t+δ2 
. (179) 

The solution procedure using (170) is similar and leads to 

.u(x, t) = − 1 
2

(
1 + tanh

[
3
√
m 

4 x + 
3(3 m + 8) 

8 
t + 

δ 
2

])
(180) 

and 

.u(x, t) = 1 − tanh
[
3
√
m 

2 
x − 

3(3 m + 2) 
2 

t − 
δ 
2

]
, (181) 

with .m given in (177). The bi-soliton solution corresponding to (170) reads 

. u(x, t) = −  
2 

3
√
m 

(k1eθ1 + k2eθ2 ) 
(1 + eθ1 + eθ2 ) 

= −  
e 

3
√
m 

2 x+ 3(3 m+8) 
4 t+δ1 − 2 e−3

√
mx+3(3 m+2)t+δ2 

1 + e 
3
√
m 

2 x+ 3(3 m+8) 
4 t+δ1 + e−3

√
mx+3(3 m+2)t+δ2 

, (182) 

because.k1 = 3
√
m 

2 and.k2 = −3
√
m with. m in (177). For.m = 1, a bi-soliton solution 

of (168) with .α = 1 then becomes 

.u(x, t) = −  
e 

3 
2 x+ 33 

4 t+δ1 − 2e−3x+15t+δ2 

1 + e 3 2 x+ 33 
4 t+δ1 + e−3x+15t+δ2 

. (183) 

Solutions (179) and (183), describing two coalescent wave fronts, are shown in 
Fig. 15. 

Returning to. α via (177) also allows one to consider the case.α = 0 (i.e.,.m = 2 3 ), 
leading to solutions of (168) with a cubic source but without convection. 
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Fig. 15 3D graphs of (179) (left) and  (183) (right) for. δ1 = −δ2 = 1 

6.5 A Wave Equation with Cubic Source Term 

Consider the wave equation, 

. 
1 
8 utt  + ut + uux − 1 8 uxx  = u(u − 1)(u + 2), (184) 

which is a special case of an equation investigated in [ 99, Eq. (2)]. The Laurent series 
solution suggests the transformation 

.u = 1 2 κ [(ln f )t − κ(ln f )x ] = 1 2 κ
(

ft − κ fx 
f

)
, (185) 

with .κ = ±1. We first consider the case where .κ = 1. Using  

.u = 1 2

(
ft − fx 

f

)
, (186) 

allows one to replace (184) by  

. f (16 ft + 8 ftt  + f3t − 16 fx − 8 fxt  − fxtt  − fxxt  + f3x ) 
− (3 ft − fx ) (4 ft + ftt  − 4 fx − 2 fxt  + fxx  ) 
≡ f L f + N ( f, f ) = 0, (187) 

with 

.L f = 16 ft + 8 ftt  + f3t − 16 fx − 8 fxt  − fxtt  − fxxt  + f3x , (188) 

.N ( f, g) = −  (3 ft − fx ) (4gt + gt t  − 4gx − 2gxt  + gxx  ) . (189) 

Then, .Leθ = 0 yields .ω = −k, ω = 4 − k, or .ω = 4 + k. With . f = 1 + eθ , one 
readily obtains 
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.u(x, t) = − 1 
2 (ω + k)

(
eθ 

1 + eθ

)
= − 1 

4 (ω + k)
(
1 + tanh θ 

2

)
. (190) 

Obviously, the choice .ω = −k must be rejected. For .ω = 4 − k, one finds that 
.N (eθ , eθ ) ≡ 0 and 

.u(x, t) = − (
1 + tanh

[
1 
2 (kx  − (4 − k)t + δ)

])
(191) 

with arbitrary. k and. δ. For.ω = 4 + k,.N (eθ , eθ ) = 0 determines.k = −2 or. k = −3 
resulting in .ω = 2 or .ω = 1, respectively. The case .k = −2 (i.e., .ω = 2) is rejected 
for it leads to .u(x, t) ≡ 0. For .k = −3 (i.e., .ω = 1) one gets 

.u(x, t) = 1 2
(
1 − tanh

[
1 
2 (3x + t − δ)

] )
, (192) 

which is different from (191) when .k = −3. 
Attempting to find a solution of type (28), .L f (1) = L(

∑N 
i=1 e

θi ) determines 
.ωi = −ki , 4 − ki , or.4 + ki . As with the solitary wave solution, to avoid trivial solu-
tions we continue with .ωi = 4 − ki and .ωi = 4 + ki . 

Here again, it is impossible to find a two-soliton solution but a bi-soliton solution 
can be computed. Indeed, taking . f = 1 + eθ1 + eθ2 + a12eθ1+θ2 , leads to . a12 = 0. 
Then, for .ωi = 4 − ki (i = 1, 2), after some computation one gets 

.u(x, t) = −2

(
eθ1 + eθ2 

1 + eθ1 + eθ2

)
, (193) 

where .θ1 = k1x − (4 − k1)t + δ1 and .θ2 = k2x − (4 − k2)t + δ2. Solution (193) 
agrees with the result in [ 99, Eq. (37)]. As shown in Fig. 16, (193) describes 
two coalescent wave fronts. For .ωi = 4 + ki , after some computations one gets 
.k1 = −2, k2 = −3, and .a12 = 1, resulting in (192) with . δ replaced by . δ2. 

The computations for .κ = −1 in (185) are similar but only lead to 

.u(x, t) = 1 2
(
1 + tanh

[
1 
2 (x − 3t + δ)

] )
(194) 

which does not follow from (191) when .k = 1. 

6.6 A Combined KdV-Burgers Equation 

A combined KdV-Burgers equation [ 98], 

.ut + 6uux + u3x − 5βuxx  = 0, (195) 
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Fig. 16 3D graph of (193) with.k1 = 1, k2 = −2, and. δ1 = δ2 = 0 

where .β > 0, is used in models where both dispersive and dissipative effects are 
relevant. A Laurent series of the solution of (195) suggests the transformation 

.u = 2(ln f )xx  − 2β(ln f )x , (196) 

which we substitute into the integrated KdV-Burgers equation, 

.∂t

({ x 

u dx

)
+ 3u2 + uxx  − 5βux = 0 (197) 

to get 

. f ( fxt  − β ft + 5β2 fxx  − 6β f3x + f4x ) 
− fx ft + β2 f 2 x + 6β fx fxx  + 3 f 2 xx  − 4 fx f3x = 0. (198) 

This homogeneous equation is of the form. f L f + N ( f, f ) = 0. Therefore, we can 
proceed as in the KdV case and solve (39) step-by-step with 

.L f = fxt  − β ft + 5β2 fxx  − 6β f3x + f4x , (199) 

.N ( f, g) = −  fx gt + β2 fx gx + 6β fx gxx  + 3 fxx  gxx  − 4 fx g3x . (200) 

We summarize the results. First, .Leθ = Lekx−ωt+δ = 0 yields . (β − k)(ω − k3 + 
5βk2) = 0. Thus, two cases have to be considered. 
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Fig. 17 3D graphs of (201) (left) and  (202) (right) for.β = 2 and. δ = 0 

Case 1: When .ω = k2(k − 5β) and .k /= β, .N (eθ , eθ ) = 0 determines .k = −β. So, 
.ω = −6β3. Inserting . f = 1 + eθ into (196) yields 

.u(x, t) = 2β2

(
eθ (2 + eθ ) 
(1 + eθ)2

)
= 1 2 β

2
(
3 − tanh θ 

2

) (
1 + tanh θ 

2

)
, (201) 

with .θ = −βx + 6β3t + δ. 
Case 2: When .k = β, .N (eθ , eθ ) = 0 determines .ω = −6β3, yielding 

.u(x, t) = −2β2

(
e2θ 

(1 + eθ)2

)
= − 1 

2 β
2
(
1 + tanh θ 

2

)2 
, (202) 

with .θ = βx + 6β3t + δ. Solutions (201) and (202) are  shown in Fig.  17 for . β = 2 
and .δ = 0. 

An attempt to find a multi-soliton or bi-soliton solutions based on (28) failed. Assum-
ing.ki /= β (discussed in Case 2) and  working with  (28),.L f (1) = L(

∑N 
i=1 e

θi ) deter-
mines .ωi = k2 i (ki − 5β). The second equation in (39) then becomes 

.L f (2) = −β 
N∑
i=1 

k2 i (ki + β) e2θi −
∑

1≤i< j≤N 

ci j  e
θi+θ j , (203) 

where .ci j  = ki k j
[
2β2 + β(ki + k j ) + 6ki k j − 3(k2 i + k2 j )

]
. Putting terms .e2θi in 

. f (2) prevents the perturbation scheme from terminating. Hence, . ki = −β 
(i = 1, 2, . . . ,  N ) which also makes .ci j  = 0. But if the wave numbers have to be 
equal then .N = 1 and that brings us back to Case 1 and (201). 
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6.7 An Equation due to Calogero 

For the equation 
.ut − 3(3uu2 x + u4 ux + u2 uxx  ) − u3x = 0 (204) 

due to Calogero [ 8], the Laurent series (7) has .α = − 1 
2 . Therefore, to apply the 

simplified Hirota method we first change the dependent variable. Setting . u = 
√

v 
with .v >  0 gives 

.4v2 vt − 3v3 
x − 12v2 v2 

x − 12v4 vx + 6vvx vxx  − 12v3 vxx  − 4v2 v3x = 0, (205) 

which looks more complicated than (204) but has a truncated Laurent series with 
.α = −1. Then, with the transformation 

.v = 1 2 (ln f )x = 1 2

(
fx 
f

)
(206) 

(205) can be replaced by an equation of fourth degree, 

. f (4 f 2 x fxt  − 3 f 3 xx  + 6 fx fxx  f3x − 4 f 2 x f4x ) − f 2 x (4 fx ft + 3 f 2 xx  − 4 fx f3x ) 
≡ f N1( f, f, f ) + N2( f, f, f, f ) = 0, (207) 

with 

.N1( f, g, h) = 4 fx gx hxt  − 3 fxx  gxx  hxx  + 6 fx gxx  h3x − 4 fx gx h4x , (208) 

.N2( f, g, h, j ) = −  fx gx (4hx jt + 3hxx  jxx  − 4hx j3x ). (209) 

If one seeks a solution to (207) of type  (28), then.N1(eθ , eθ , eθ ) with. θ = kx  − ωt + δ 
yields.ω = − 1 

4 k
3. Fortuitously, if the dispersion law holds then. N2(eθ , eθ , eθ , eθ ) = 0 

and, therefore,. f = 1 + eθ solves (207). Using (206) and.u = 
√

v, after some algebra 
one gets 

.u = 1 2 
√
k

/
1 + tanh

[
1 
8

(
4kx  + k3t + 4δ

)]
, (210) 

where .k > 0. This solution was computed in [ 30] with a different method. It is 
graphed in Fig. 18 for .k = 4 and .δ = 0. 

If one tries to find a multi-soliton solution with . f (1) = ∑N 
i=1 e

θi with . θi = ki x +
1 
4 k

3 
i t + δi , then .N1( f (1) , f (1) , f (1) ) only vanishes if the wave numbers are equal. 
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Fig. 18 2D and 3D graphs of (210) for.k = 4 and. δ = 0 

7 An Equation with Two but Not Three Solitons 

Equations that have two-soliton but not three-soliton solutions have been discovered. 
The best known example is the sine-Gordon equation in two space variables which 
already appears in early work by Hirota [44] and was later studied in greater generality 
in [ 59]. Another example is a .(3 + 1)-dimensional eight-order equation due to Kac-
Wakimoto [ 90, 105]. 

With respect to equations in.(1 + 1) dimensions, Hietarinta (see [ 36, 37] and ref-
erences therein) did an extensive search of bilinear forms for which the necessary 
condition to have a three-soliton solution is violated. Although the appropriate bilin-
ear forms are given explicitly, the equations in the original field variable . u are not 
always available in his papers. Reversing the process, i.e., finding the nonlinear PDE 
(or a system thereof) that leads to a (known) bilinear form is not straightforward. 
Consult, e.g., [ 36, 37, 40, 70] for strategies and explicit examples. 

Taking a different example, we study the soliton solutions of a polynomial equation 
in .(1 + 1) dimensions, 

. ut + 15 
784 u

3 ux + 15 28 uuxuxx  + 15 56 u
2 u3x + 5 2 uxxu3x + uxu4x + uu5x + u7x = 0, 

(211) 
which appears in [ 51, Eq. (19) for.K = 56]. The authors claim that this equation has 
at most a two-soliton solution. However, they do not give the constraint on the wave 
numbers. ki that prevents the existence of, e.g., a three-soliton solution. We therefore 
investigate (211) in more detail. 

Based on a truncated Laurent series, we substitute 

.u = 56 (ln f )xx  = 56
(

f fxx  − fx 2 

f 2

)
(212) 

into the integrated form of (211), 

.∂t

({ x 

u dx

)
+ 15 

3136 u
4 + 15 56 u

2 uxx  + 5 4 u
2 
xx  + uu4x + u6x = 0, (213) 
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yielding 

. f ( fxt  + f8x ) − fx ft + 35 f4x 2 − 56 f3x f5x + 28 fxx  f6x − 8 fx f7x = 0, (214) 

which is of the form. f L f + N ( f, f ) = 0 with 

.L f = fxt  + f8x , (215) 

.N ( f, g) = −  fx gt + 35 f4x g4x − 56 f3x g5x + 28 fxx  g6x − 8 fx g7x . (216) 

As usual, .Leθ = 0 yields the dispersion relation .ω = k7. So, with . f = 1 + eθ we 
obtain the solitary wave solution 

.u(x, t) = 14k2 sech2
[
1 
2

(
kx  − k7 t + δ

)]
. (217) 

Seeking a solution of the form (28), as before .L f (1) = L(
∑N 

i=1 e
θi ) = 0 with . θi = 

ki x − ωi t + δi yields .ωi = ki 7 . 
For the two-soliton solution, taking . f = 1 + eθ1 + eθ2 + a12eθ1+θ2 , after some 

computations one gets 

.a12 =
(

(k1 − k2)
(
k1 

2 − k1k2 + k2 2
)

(k1 + k2)
(
k1 2 + k1k2 + k2 2

)
)2 

(218) 

and, then from (212), 

. u(x, t) = 56
(
k1 2 eθ1 + k2 2 eθ2 + a12eθ1+θ2 (k1 + k2)2 

1 + eθ1 + eθ2 + a12eθ1+θ2 

−
(
k1eθ1 + k2eθ2 + a12eθ1+θ2 (k1 + k2)

)2 
(1 + eθ1 + eθ2 + a12eθ1+θ2 )2

)
(219) 

with .θi = ki x − ki 7 t + δi . 
The collision of two solitons for Eq. (211) is shown in Figs. 19 and 20 for 

.k1 = 1, k2 = 2, and .δ1 = δ2 = 0. 
The existence of a two-soliton solution comes as no surprise because (214) can 

be written in bilinear form as 

.
(
Dx Dt + D8 

x

)
( f · f ) = 0, (220) 

which satisfies the conditions 20 for the existence of a two-soliton solution (see, for 
example, [ 34, Eq. (22)] and [ 46, Eq. (5.47)]). 

In an attempt to find a three-soliton solution, one would take 

20 For a derivation of such conditions see, e.g., [ 74]. 
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Fig. 19 Graph of the two-soliton solution (219) of (211) at three different moments in time 

Fig. 20 Bird’s eye view of the collision of two solitons for Eq. (211). Notice the phase shift after 
the collision 

. f = 1 + eθ1 + eθ2 + eθ3 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3 + b123eθ1+θ2+θ3 

(221) 
with 

.ai j  =
(

(ki − k j )
(
ki 

2 − ki k j + k j 2
)

(ki + k j )
(
ki 2 + ki k j + k j 2

)
)2 

(222) 

and .b123 = a12a13a23 and substitute it into (214). A lengthy computation shows that 
the equation is only satisfied if the wave numbers are equal or zero. Actually, this 
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agrees with Hietarinta’s earlier studies of equations that have a bilinear form. Indeed, 
for an .N -soliton solution to exist, the condition [ 46, 74] 

.S[P, n]=
∑

σ=±1 

P

(
n∑

i=1 

σi ki , − 
n∑

i=1 

σi ωi

)
(n)∏
i < j 

P(σi ki − σ j k j , −σi ωi + σ j ω j )σi σ j = 0 (223) 

must hold for .n = 2, 3, . . . ,  N . In (223), .P is the polynomial corresponding to the 
bilinear operator . B, .

∑
σ=±1 indicates the summation over all possible combinations 

of .σ1 = ±1, σ2 = ±1,  . . . ,  σn = ±1 and .
∏(n) 

i < j means the product of all possible 
combinations of the . n elements with .i < j, and all .ki , ωi subject to the dispersion 
law .ωi (ki ). Note that (223) is a condition for .P and not for the . ki . Also, all .ωi are 
replaced in terms of the .ki because (223) is evaluated on the dispersion law. 

For (220), .P(Dx , Dt ) = B = Dx Dt + D8 
x and the three-soliton condition 

.S[P, 3] =  0 (see, [ 34, Eq. (28)]) gives 21 

. (k1k2k3)
4
[
(k2 1 − k2 2)(k

2 
1 − k2 3)(k

2 
2 − k2 3)

]2 
(k2 1k

2 
2 + k2 1k

2 
3 + k2 2k

2 
3)(k

4 
1 + k4 2 + k4 3 + k2 1k

2 
2 + k2 1k

2 
3 + k2 2k

2 
3) = 0. (224) 

Thus, the wave numbers must be either equal, each other’s opposites, or zero. In 
conclusion, the non-existence of a three-soliton solution agrees with the claim in 
[ 51]. 

8 Soliton Solutions in Multiple Space Dimensions 

8.1 The Kadomtsev-Petviashvili Equation 

Arguably, the KP equation [ 2, 16, 55], 

.(ut + 6uux + u3x )x + 3σuyy = 0 (225) 

for.u(x, y, t) and.σ = ±1, is one of the most studied soliton equations involving more 
than one space variable. We only consider the so-called KPII equation [ 7, 60] where 
.σ = 1. A Laurent series of its solution suggests the transformation .u = 2 (ln f )xx . 
We therefore integrate (225) twice, 

.∂t

({ x 

u dx

)
+ 3u2 + uxx  + 3∂2 

y

({ x ({ x 

u dx

)
dx

)
= 0, (226) 

21 Based on symmetry considerations, simplified expressions of (223) are  given in [  71, 
Eq. (2.9)] and [ 83, Eqs. (4.3) and (4.4)]. A computer implementation can be found in 
[126, pp. 27–29 and p. 82]. 
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before replacing . u in terms of . f . The resulting equation, 

. f ( fxt  + f4x + 3 fyy) − fx ft + 3 f 2 xx  − 4 fx f3x − 3 f 2 y = 0, (227) 

can be written in bilinear form 

.
(
Dx Dt + D4 

x + 3D2 
y

)
( f · f ) = 0, (228) 

where .Dy is the Hirota operator defined in a similar way as .Dx and .Dt in (21) and 
(22), respectively. 

Continuing with (227), the computation of soliton solutions is similar to the KdV 
case in Sect. 2.2. Indeed, the forms of . f (x, y, t) for multi-soliton solutions remain 

the same except that .θi = ki x + li y − ωi t + δi with .ωi = k
4 
i +3l2 i 
ki 

. Setting . li = ki Pi 
simplifies matters. Then.θi = ki

(
x + Pi y − (k2 i + 3P2 

i )t
) + δi and the phase factors 

are 

.ai j  = 
(ki − k j )2 − (Pi − Pj )

2 

(ki + k j )2 − (Pi − Pj )2 
(229) 

and .b123 = a12 a13 a23. 
Setting .k = 2K and .δ = 2Δ, we obtain the solitary wave solution 

.u(x, y, t) = 2 K 2 sech2
[
K

(
x + Py  − (4 K 2 + 3P2 )t

) + Δ
]

(230) 

which is essentially one-dimensional. 
The lengthy expressions for the two- and three-soliton solutions are not shown for 

brevity. A graph of the two-soliton solution of (225) at  .t = 0.35 for . K1 = 1 2 , K2 = 
1, P1 = − 1 

8 , P2 = 3 
16 and.Δ1 = Δ2 = 0 is shown in Fig. 21. Various types of soliton 

interactions have been reported in the literature and observed at flat beaches [ 1]. 

8.2 A .(3 + 1)-dimensional Evolution Equation 

Consider the .(3 + 1)-dimensional evolution equation [ 21], 

.3Wxz  − 2 (2Wt + W3x − 2 WWx )y + 2
(
Wx ∂

−1 
x Wy

)
x = 0, (231) 

which can be written as 

.3uxxz  − (2uxt  + u4x − 2uxuxx  )y + 2(uxxuy)x = 0 (232) 

after substituting .W = ux . Integrating (232) twice with respect to . x , yields 
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Fig. 21 Snapshot of a two-soliton solution for the KP equation 

.3uz − 2∂t

({ x 

u y dx

)
− uxxy  + 2uxuy = 0. (233) 

A Laurent series solution of (232) suggests the transformation.u = −3 (ln f )x which 
indeed allows one to replace (233) by a homogeneous equation, 

. f (−2 fyt + 3 fxz  − fxxxy) + 2 fy ft − 3( fx fz + fxx  fxy  − fx fxxy) + f3x f y = 0, 
(234) 

of the form. f L f + N ( f, f ) = 0 with 

.L f = −2 fyt + 3 fxz  − fxxxy, (235) 

.N ( f, g) = 2 fygt − 3( fx gz + fxx  gxy  − fx gxxy) + f3x gy . (236) 

To compute a single solitary wave solution we set. f = 1 + eθ, where. θ = kx  + ly  + 
mz − ωt + δ. Then, .Leθ = 0 yields .ω = k(k

2l−3m) 
2l . Since .N (eθ , eθ ) = 0 we readily 

obtain a solitary wave solution 

.u(x, t) = −  
3 

2 
k

(
1 + tanh

[
1 

2

(
kx  + ly  + mz − 

k(k2l − 3 m)t 

2l
+ δ

)])
. (237) 

For a two-soliton solution we take . f = 1 + eθ1 + eθ2 + a12eθ1+θ2 , with . θi = ki x + 
li y + mi z − ωi t + δi and .ωi = ki (k

2 
i li−3mi ) 
2li 

. After some computations 

.a12 = 
k1k2l1l2(k1 − k2)(l1 − l2) − (k1l2 − k2l1)(l1m2 − l2m1) 
k1k2l1l2(k1 + k2)(l1 + l2) − (k1l2 − k2l1)(l1m2 − l2m1) 

. (238) 
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Fig. 22 Plot of a two-soliton solution for (231) at  .t = 0.05 and .z = 1 with . k1 = 2, k2 = 3 2 , 
l1 = − 1 

4 , l2 = 3 4 , m1 = 4, m2 = 9 4 , and. δ1 = δ2 = 0 

Thus, a two-soliton solution exists without having to impose any restrictions on the 
components .(ki , li , mi ) of the wave vector. In [ 21], the authors took .li = ki and 
.mi = k3 i from the outset and therefore only computed a special two-soliton solution 
for which .ωi = −k3 i . Assuming a traveling frame .θi = ki (x + y) + k3 i (t + z) from 
the start is too restrictive. Indeed, by a change of variables.(x, y, z, t) → (ξ, η) with 
.ξ = x + y and.η = t + z, one can readily show that after two integrations with respect 
to . ξ Eq. (231) becomes the integrated KdV equation, that is, (17) with . t replaced by 
. η, . x by . ξ, and .u(x, t) by .u(ξ, η). 

Moving on with our computations, a three-soliton solution does not exist for 
arbitrary wave numbers. Indeed, 

. f = 1 + eθ1 + eθ2 + eθ3 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3 + b123eθ1+θ2+θ3 

(239) 
only yields a three-soliton solution if .li = ki with .mi still arbitrary (and a lengthy 
computation shows that the same holds for a four-soliton solution). The dispersion 
law and coefficients then simplify into .ωi = 1 2 (k

3 
i − 3mi ), . ai j  = ((ki − k j )/(ki + 

k j ))2, and .b123 = a12a13a23, which are the same as for the KdV equation. 
A graph of a two-soliton solution of (231) at.t = 0.05 and.z = 1 with. k1 = 2, k2 =

3 
2 , l1 = − 1 

4 , l2 = 3 4 , m1 = 4, m2 = 9 4 , and .δ1 = δ2 = 0 is shown in Fig. 22. 
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9 Symbolic Software 

Symbolic software for Hirota’s method comes in two flavors: (i) code that aims at 
finding the bilinear form of a nonlinear PDE and (ii) code to compute soliton solutions 
with and without the use of the bilinear form. 

9.1 Early Developments of Soliton Software 

As part of the design of symbolic software for soliton theory, in the early 1990s 
Hereman and Zhuang [ 28, 31– 33] implemented the Hirota method in Macsyma, a  
commercial computer algebra system now superseded by Maxima, 22 a descendant 
of the original DOE Macsyma system. The code HIROTA_SINGLE.MAX is able to 
automatically compute up to three-soliton solutions of well-known nonlinear PDEs 
that can be transformed into a single bilinear equation of KdV-type [ 31, 34], includ-
ing the KdV, Boussinesq, KP, SK, and shallow water wave equations. To compute 
soliton solutions of these mostly .(1 + 1)-dimensional PDEs, the bilinear form must 
be given explicitly. The code can also verify condition (223) for the existence of 
three- or four-soliton solutions (.n = 3 or . 4). To cover bilinear equations of mKdV-
type [ 35], Hereman and Zhuang made HIROTA_SYSTEM.MAX [ 28, 126] which 
was applied to various extensions of the mKdV equation taken from [ 52]. Codes for 
the sine-Gordon equation, NLS equations, and various other types of soliton equa-
tions which have quite complicated bilinear forms [ 37] were not developed. The 
code HIROTA_SINGLE.MAX was converted into Mathematica syntax and released 
under the name hirota.m. Further details about these open source codes 23 can be 
found in [ 32, 126]. 

Although the simplified Hirota method (which does not use the bilinear form) 
was already published in [ 30, 85], its implementation did not start until 2012 and 
is still ongoing. Cook et al. [ 12] made the code Homogenize-And-Solve.m 
to automate the computation of the soliton solutions discussed in Sect. 4 and 
other soliton equations in .(1 + 1)-dimensions. That code is now superseded by 
PDESolitonSolutions.m [ 22]. 

9.2 Implementation and Limitations of 
PDESolitonSolutions.m 

The current version of PDESolitonSolutions.m [ 22] computes up to three-
soliton solutions for a given single PDE in one dependent variable (called . u below) 

22 Maxima is freely available from SourceForge at https://maxima.sourceforge.io/. 
23 The codes are still available at https://people.mines.edu/whereman.. 

https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://people.mines.edu/whereman.
https://people.mines.edu/whereman.
https://people.mines.edu/whereman.
https://people.mines.edu/whereman.
https://people.mines.edu/whereman.
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which is function of up to three space variables.(x, y, z) and time.(t). The PDE must 
have polynomial terms with constant coefficients. Presently, the code can not handle 
systems of PDEs. The algorithm largely follows the steps of Sect. 3.2: 

(i) The PDE is integrated with respect to . x as many times as possible. 
(ii) The code first attempts to find a transformation to homogenize the given PDE 

based on the (truncated) Laurent series expansion of its solution. If unsuccessful, 
the code tries a transformation of type .u = c (ln f )nx  , with integer . 1 ≤ n ≤ 
nmax (with default value .nmax = 4) and constant . c. Starting with .n = 1, the  
code seeks the lowest value of. n and matching. c so that the PDE is transformed 
into an equation that is homogeneous in . f . 

(iii) A solution of type. f (x, y, z, t) = 1 + ∑p 
n=1 ∈n f (n) (x, y, z, t) is sought where 

.1 ≤ p ≤ pmax (with default value .pmax = 8). The bookkeeping parameter . ∈
helps with splitting expressions into single exponentials, products of two expo-
nentials, etc. Substituting the above sum for . f into a homogeneous equation 
for . f (of degree . d) yields an expression of degree .lmax = d pmax in . ∈. 

(iv) Starting with . f (1) = ∑N 
i=1 φi (x, y, z, t), where the natural number .N refers 

to the .N -soliton solution one aims to compute and .φi (x, y, z, t) ≡ eθi . = 
eki x+li y+mi z−ωi t+δi , at order. ∈ the code balances the linear terms in.φi to determine 
the dispersion relation .ωi (ki , li , mi ). 

(v) Next, based on the monomials in the functions .φi that occur at order . ∈2, the  
code builds. f (2) = ∑

i, j ai j  φi φ j and computes the coefficients.ai j  (and possible 
constraints for .ki , li , and .mi ) by balancing like products of two exponentials. 
Note that .i = j is allowed to account for terms in . φ2 

i . 
(vi) At the next orders in . ∈, expressions for . f (3) , f (4), etc., are computed the same 

way. If at some order.n < pmax in. ∈ the function. f (n) becomes identically zero, 
the code verifies that . f (n+1) , . . . ,  f (pmax) can be set to zero. It also verifies 
whether or not the coefficients of .∈n+1, . . . , ∈lmax in the expression mentioned 
in (iii) all vanish. For non-solitonic equations this may lead to (additional) 
constraints on the wave numbers. If both verifications are successful, the code 
returns the solutions after explicitly verifying that the final . f indeed satisfies 
the homogenized PDE. If none of the. f (n) become zero, the code reports that a 
.N -soliton solution could not be computed. The code will return a solitary wave 
solution for.N = 1 and a bi-soliton solution for.N = 2, provided such solutions 
exist. 

Some remarks are warranted: 

(i) The current code only considers integration with respect to . x ignoring the 
possibility to integrate the given PDE with respect to . y or . z. 

(ii) In addition to transformations based on a truncated Laurent series, currently 
only single-term logarithmic derivative transformations with respect to . x up to 
fourth-order are used. At present only transformations involving one new depen-
dent variable.( f ) are considered. Therefore, the current code can not find solu-
tions of, for example, the mKdV equation. 

(iii) With regard to the growing complexity of . f (n) as . n increases, .pmax = 8 has 
been set as default value. 
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(iv) The current code is limited to three space variables and time. To prevent long 
expressions and avoid Mathematica’s conversion of products of exponentials 
into a single exponential, the explicit form of.φi (x, y, z, t) is never used. Instead, 
the code uses rules for derivatives of .φi (x, y, z, t), such as . φi (x, y, z, t)nx  = 
kn i φi (x, y, z, t) and .φi (x, y, z, t)mt = (−ωi )

mφi (x, y, z, t). 
(v) For example for the two-soliton case, . f (2) = a11φ2 

1 + a12φ1φ2 + a22φ2 
2 where 

some of these terms might not be included. Indeed, after substitution of 
. f = 1 + f (1) = 1 + φ1 + φ2 into the homogeneous equation, the code gen-
erates the list of monomials of type .φi φ j (including . φ2 

i ) that occur at order . ∈
2 

and makes a linear combination of those monomials with undetermined coeffi-
cients .ai j  to create. f (2) with the minimal number of terms. The coefficients . ai j  
are then computed by requiring that like terms in .φi φ j vanish. 
The same procedure is used to compute .N -soliton solutions. Starting from 
. f = 1 + f (1) = 1 + φ1 + φ2 + . . .  + φN , the code constructs the minimal 
expressions for all subsequent . f (n) in which each term is a product of . n (not 
necessarily distinct) functions taken from .{φ1, φ2, . . . ,  φN }. The code deter-
mines which of these products are actually needed and combines them with 
undetermined coefficients. 

(vi) For homogeneous equations of high degree, some symbolic verifications can 
be quite slow. To speed things up, the code does no longer symbolically verify 
that coefficients of higher orders in . ∈ in the perturbation scheme vanish as 
soon as two consecutive coefficients of lower orders terms already vanished 
identically. Once two consecutive expressions are determined to be zero, the 
code numerically tests if the expressions at higher order are also zero. This 
applies to both the computation of the. f (n) as well as the coefficients of. ∈ in the 
perturbation scheme. 
Furthermore, verifying that the (lengthy) expressions of . f indeed solve the 
homogeneous equation can be time consuming, especially for cubic and quartic 
equations. Indeed, checking that (107) satisfies (70) is computationally very 
expensive. Therefore, after the solution is substituted into the homogeneous 
equation, all independent variables, wave numbers.(ki , li , mi ), phase constants 
. δi , and parameters in the PDE (if present) are repeatedly replaced by random 
real numbers in .[−2, 2]. In each case it is checked if the resulting expression 
is zero within machine precision. Likewise, the solitary wave and one-soliton 
solutions for.u(x, y, z, t) are tested symbolically but the numerical approach is 
used to verify that the often long expressions of two- and three-soliton solutions 
.u(x, y, z, t) indeed solve the original PDE. 

9.3 Other Software Packages for Hirota’s Method 

As early as 1988, Ito [ 53] designed code in REDUCE to interactively investigate 
nonlinear PDEs with Hirota’s bilinear and Wronskian operators. 
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In [124], Zhou et al. introduced the Maple package Bilinearization to con-
vert (mainly) nonlinear evolution equations of KdV-type into their bilinear form 
using logarithmic-derivative transformations. To cover the mKdV and nonlinear 
Schrödinger equations, they later extended the algorithm to work for.arctan and ratio-
nal transformations. They also added the code Multisoliton to compute up to 
three-soliton solutions for single bilinear equations and simple systems of bilinear 
equations. Ye et al. [120, 121] presented a more efficient method to do the same but 
only with logarithmic-derivative transformations. Their method is also implemented 
in Maple. When successful, these Maple codes return the bilinear form explicitly. 

Yang and Ruan [117–119] have produced the Maple packages HBFTrans, 
HBFTrans2, and HBFGen to transform nonlinear PDEs into their bilinear forms, 
again based on logarithmic derivative transformations. In their newest algorithms, 
they take advantage of the properties of the Hirota operators and the scaling invari-
ance 24 of the original equation. Doing so, makes their codes more efficient and faster. 

Based on the Bell polynomial approach [ 68, 69], Miao et al. [ 75] developed the 
Maple package PDEBellII to compute bilinear forms, bilinear Bäcklund trans-
formations, Lax pairs, and conservation laws of KdV-type equations. In contrast to 
PDEBell, developed earlier by Yang and Chen, PDEBellII does no longer use 
scaling invariance to make it applicable to a broader class of nonlinear PDEs. 

For completeness, we mention the new computational method of Kumar et al. 
[ 62] for the construction of bilinear forms which, as far as we know, has not been 
implemented yet. 

10 Conclusions and Future Work 

Hirota’s bilinear method is an effective method to construct soliton solutions of 
completely integrable nonlinear PDEs. In this paper we discussed a simplified version 
of Hirota’s method (which does not use Hirota’s bilinear operators) and used it to 
construct solitary and soliton solutions of various soliton equations as well as some 
nonlinear polynomial equations that do not have solitons. 

We showed that the Hirota transformation is crucial to obtain a PDE that is homo-
geneous of degree (in the new dependent variable). We focused on logarithmic 
derivative transformations but, as we saw with the mKdV equation, rational and 
.arctan transformations might be required, or combinations thereof. To homogenize, 
e.g., the Davey-Stewartson system, one needs a mixture of rational and logarithmic 
derivative transformations. There is no systematic way for finding these transforma-
tions but the first few terms of a Laurent series solution and scaling invariance of the 
PDE can help determine a suitable candidate thereby reducing the guess work. 

The actual recasting of the transformed PDE into bilinear form in terms of Hirota’s 
operators, which assumes a quadratic equation or a tricky decoupling into quadratic 

24 Dilation or scaling symmetry is a special Lie-point symmetry shared by many integrable PDEs 
[ 29]. 
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equations, is not required to compute solitary wave solutions or solitons. Indeed, 
without bilinear forms, exact solutions of the transformed equation can still be con-
structed straightforwardly by solving a perturbation-like scheme on the computer 
using a symbolic manipulation package. 

The simplified version of Hirota’s method is largely algorithmic and now avail-
able as the Mathematica program PDESolitonSolutions.m. In future releases 
a broader class of transformations (likely involving two functions . f and . g) will be 
considered to make the code applicable to a large set of PDEs including mKdV-type 
equations. A future version of the code might follow the algorithm presented in this 
paper even closer. It will use the perturbation schemes involving the linear and non-
linear operators which will automatically be generated by splitting the homogeneous 
equations into linear and nonlinear pieces. This “divide-and-conquer” strategy is 
expected to make the computations faster. An extension of the algorithm and code 
to systems of PDEs is being investigated. 
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Appendix 

In the derivations below we use that .L( f ) is linear in . f , .N1( f, g) is bilinear (i.e., 
linear in both . f and . g), .N2 is trilinear, and .N3 is quadrilinear. 

Bilinear Scheme 
For the derivation of the perturbation scheme for an equation of type (36) we need 
Cauchy’s product formula (to regroup terms in powers of . ∈), 

. 

⎛ 

⎝ 
∞∑
p=1

∈p ap 

⎞ 

⎠ 

⎛ 

⎝ 
∞∑
q=1

∈q bq 

⎞ 

⎠ = 
∞∑
n=2

∈n 
n−1∑
j=1 

a j bn− j . (240) 
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Then, 

. f L f =
(
1 + 

∞∑
r=p

∈p f ( p)
)

L 

⎛ 

⎝ 
∞∑
q=1

∈q f (q) 

⎞ 

⎠ 

= 

⎛ 

⎝1 + 
∞∑
p=1

∈p f ( p) 

⎞ 

⎠ 
∞∑
q=1

∈q L f (q) 

= 
∞∑
q=1

∈q L f (q) + 

⎛ 

⎝ 
∞∑
p=1

∈p f (p) 

⎞ 

⎠ 

⎛ 

⎝ 
∞∑
q=1

∈q L f (q) 

⎞ 

⎠ 

= 
∞∑
n=1

∈n L f (n) + 
∞∑
n=2

∈n 
n−1∑
j=1 

f ( j)L f (n− j) , (241) 

wherewe have applied (240) with.ap = f (p) and.bq = L f (q) . Similarly, we compute 

. N ( f, f ) = N 

⎛ 

⎝1 + 
∞∑
p=1

∈p f (p) , 1 + 
∞∑
q=1

∈q f (q) 

⎞ 

⎠ 

= N 

⎛ 

⎝ 
∞∑
p=1

∈p f ( p) , 
∞∑
q=1

∈q f (q) 

⎞ 

⎠ 

= 
∞∑
n=2

∈n 
n−1∑
j=1 

N ( f ( j) , f (n− j) ), (242) 

where again we applied (240) and used the bilinearity of.N ( f, g). Adding (241) and 
(242), the coefficient of .∈n is 

.L f (n) + 
n−1∑
j=1

(
f ( j)L f (n− j) + N ( f ( j ) , f (n− j ) )

) = 0, n ≥ 2. (243) 

Trilinear Scheme 
For the derivation of the perturbation scheme for equations of type (58) we need 
Cauchy’s product formula for three sums: 

. 

⎛ 

⎝ 
∞∑
p=1

∈p ap 

⎞ 

⎠ 

⎛ 

⎝ 
∞∑
q=1

∈q bq 

⎞ 

⎠
( ∞∑

r=1

∈r cr

)
= 

∞∑
n=3

∈n 
n−1∑
j=2 

j−1∑
l=1 

al bn− j c j−l. (244) 
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Substituting (28) into (58) and applying (240) and (244) yields the following term 
in . ∈n: 

. L f (n) + 
n−1∑
j=1

(
2 f ( j)L f (n− j) + N1( f ( j) , f (n− j ) )

) + 
n−1∑
j=2 

j−1∑
l=1

(
f (l) f (n− j )L f ( j−l) 

+ f (l)N1( f (n− j ) , f ( j−l) ) + N2( f (l) , f (n− j ) , f ( j−l) )
) = 0, n ≥ 3. (245) 

Quadrilinear Scheme 
Setting up the perturbation scheme for equations of type (73) requires the formula 

. 

⎛ 

⎝ 
∞∑
p=1

∈p ap 

⎞ 

⎠ 

⎛ 

⎝ 
∞∑
q=1

∈q bq 

⎞ 

⎠
( ∞∑

r=1

∈r cr

) ( ∞∑
s=1

∈s ds

)

= 
∞∑
n=4

∈n 
n−1∑
j=3 

j−1∑
l=2

l−1∑
m=1 

am bn− j c j−l dl−m . (246) 

Substituting (28) into (73) and applying (240), (244), and (246) yields the following 
at .O(∈n): 

. L f (n) + 
n−1∑
j=1

(
3 f ( j )L f (n− j ) + N1( f ( j ) , f (n− j ) )

)

+ 
n−1∑
j=2 

j−1∑
l=1

(
3 f (l) f (n− j )L f ( j−l) +2 f (l)N1( f (n− j ) , f ( j−l) ) +N2( f (l) , f (n− j ) , f ( j−l) )

)

+ 
n−1∑
j=3 

j−1∑
l=2

l−1∑
m=1

(
f (m) f (n− j ) f ( j−l)L f (l−m) + f (m) f (n− j )N1( f ( j−l) , f (l−m) ) 

+ f (m)N2( f (n− j ) , f ( j−l) , f (l−m) ) + N3( f (m) , f (n− j ) , f ( j−l) , f (l−m) )
)

= 0, 

n ≥ 4. (247) 
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Propagation of Bright Solitons 
for KdV-Type Equations Involving 
Triplet Dispersion 

Kamyar Hosseini, Evren Hincal, Olivia A. Obi, and Ranjan Das 

Abstract In the present paper, a series of KdV-type equations with triplet disper-
sion, as mathematical models of waves on shallow water surfaces, are explored. 
Bright solitons of the governing equations involving triple-spatial dispersion, spatio-
temporal dispersion, and dualtemporal-spatial dispersion are formally constructed 
using the Kudryashov method. The impact of triplet dispersion as well as the nonlin-
ear parameter on the propagation of bright solitons is investigated in detail. Results 
reveal how the propagation of bright solitons can systematically be controlled. 

Keywords KdV-type equations · Triplet dispersion · Kudryashov method · Bright 
solitons · Propagation 

1 Introduction 

The KdV equation 

. ut + 6uux + uxxx = 0,

is known as a mathematical model of waves on shallow water surfaces. The history of 
the KdV equation [ 1] goes back to Scott’s experiments in 1834 and theoretical studies 
accomplished by Rayleigh and Boussinesq around 1871, and finally, Korteweg and de 
Vries in 1895. Today, researchers deal with many nonlinear partial differential equa-
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tions (NLPDEs) along with their exact solutions, which are referred to as KdV-type 
equations. For example, Wazwaz [ 2] employed Hirota’s bilinear method to derive 
multiple solitons of the perturbed KdV equation. The scholar of [ 3] extracted soli-
tons of the modified KdV (mKdV) equation using the tanh-coth method. Zhang and 
Ma [ 4] applied an ansatz method to construct rational solutions of a KdV-like equa-
tion. Newly, the following KdV-type equations, as mathematical models of waves 
on shallow water surfaces, were introduced 

.ut + αuux + β1uxxx + β2uxxt + β3uxtt = 0, (1) 

.ut + αu2ux + β1uxxx + β2uxxt + β3uxtt = 0, (2) 

by Biswas et al. [ 5] which involve triplet dispersion. Biswas et al. [ 5] derived solitary 
waves of the above KdV-type equations using an ansatz method. It should be pointed 
out that Eqs. (1) and (2) are reduced to KdV and mKdV equations, i.e. 

. ut + αuux + β1uxxx = 0,

ut + αu2ux + β1uxxx = 0,

by considering .β2 = β3 = 0. The principal aim of the current paper is to acquire 
bright solitons of the above KdV-type equations by applying the Kudryashov method 
[ 6– 8]. Among the efficient methods [ 9– 18] to obtain soliton waves of NLPDEs, 
Kudryashev’s method has received considerable attention from academic scholars. 
Onder et al. [ 19] utilized the Kudryashov method to find soliton waves of a coupled 
nonlinear Schrödinger system. Hosseini et al. [ 20] found dark solitons of a nonlinear 
Schrödinger equation with the parabolic law using the Kudryashov method. More 
applications of the Kudryashov method can be found in [ 21– 26]. 

This paper is organized as follows: In Sect. 2, the Kudryashov method is explained 
in short. In Sect. 3, after applying a special hypothesis and deriving the reduced forms 
of the KdV-type equations, their bright solitons are retrieved using the Kudryashov 
method. In Sect. 4, the impact of triplet dispersion as well as the nonlinear parameter 
on the propagation of bright solitons is investigated in detail. By reviewing the results, 
the present paper ends in the last section. 

2 Kudryashov Method 

In the current section, the Kudryashov method is explained in short. The first step of 
this method is taking the following series 

.U (∈) = a0 + a1K (∈) + a2K
2(∈) + · · · + aN K

N (∈), aN /= 0, (3) 

as the solution of 
.P(U (∈),U '(∈),U ''(∈), . . .) = 0. (4)
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For more information, .ai , i = 0, 1, . . . , N are unknowns, .N is the balance num-
ber, and .K (∈) is 

. K (∈) = 1

(A − B) sinh(∈) + (A + B) cosh(∈)
,

satisfying 
.(K '(∈))2 = K 2(∈)(1 − 4ABK 2(∈)). (5) 

The second step is applying (3)–(5) and solving the resulting system to derive 
unknowns. Finally, solitons of Eq. (4) are constructed by inserting unknowns into 
Eq. (3). 

3 KdV-Type Equations and Their Bright Solitons 

In the present section, after applying a special hypothesis and deriving the reduced 
forms of the KdV-type equations, their bright solitons are retrieved using the 
Kudryashov method. To this end, the following hypothesis is employed 

.u(x, t) = U (∈), ∈ = x − ωt, (6) 

where . ω is the soliton velocity. So, the first KdV-type equation becomes 

. − ωU '(∈) + αU (∈)U '(∈) + β1U
'''(∈) − ωβ2U

'''(∈) + ω2β3U
'''(∈) = 0.

Integrating the above equation w.r.t. . ∈ leads to 

. − ωU (∈) + 1

2
αU 2(∈) + (β1 − ωβ2 + ω2β3)U

''(∈) = 0. (7) 

From.U '' and .U 2, we find that .N = 2, and consequently, Eq. (3) takes the form 

.U (∈) = a0 + a1K (∈) + a2K
2(∈), a2 /= 0, (8) 

where .a0, a1, and .a2 are unknowns. Applying (5), (7), and (8) yields the following 
system
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. αa0 − 2ω = 0,

− β3ω
2 + (β2 + 1)ω − αa0 − β1 = 0,

4β3ω
2a2 − 1

2
(8β2 + 2)a2ω + 1

2
αa21 + a2(αa0 + 4β1) = 0,

− Aβ3Bω2 + Aβ2Bω − ABβ1 + 1

8
αa2 = 0,

− Aβ3Bω2 + Aβ2Bω − ABβ1 + 1

48
αa2 = 0,

with the following solutions: 
Case 1: 

. a0 = 0,

a1 = 0,

a2 =
3AB

(
4β2 + 1 ±

/
−64β1β3 + 16β2

2 + 8β2 + 1
)

2β3α
,

ω =
4β2 + 1 ±

/
−64β1β3 + 16β2

2 + 8β2 + 1

8β3
.

Thus, solitons of the first KdV-type equation are derived as 

. u1,2(x, t) =
3AB

(
4β2 + 1 ±

/
−64β1β3 + 16β2

2 + 8β2 + 1
)

2β3α( 1

(A − B) sinh(x − ωt) + (A + B) cosh(x − ωt)

)2
,

where 

. ω =
4β2 + 1 ±

/
−64β1β3 + 16β2

2 + 8β2 + 1

8β3
.

Case 2: 

.a0 =
4β2 − 1 ±

/
−64β3β1 + 16β2

2 − 8β2 + 1

4β3α
,

a1 = 0

a2 =
3
(

− 4β2 + 1 ∓
/

−64β3β1 + 16β2
2 − 8β2 + 1

)
AB

2β3α
,

ω =
4β2 − 1 ±

/
−64β3β1 + 16β2

2 − 8β2 + 1

8β3
.
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Consequently, solitons of the first KdV-type equation are acquired as 

. u3,4(x, t) =
4β2 − 1 ±

/
−64β3β1 + 16β2

2 − 8β2 + 1

4β3α

+
3
(

− 4β2 + 1 ∓
/

−64β3β1 + 16β2
2 − 8β2 + 1

)
AB

2β3α( 1

(A − B) sinh(x − ωt) + (A + B) cosh(x − ωt)

)2
,

where 

. ω =
4β2 − 1 ±

/
−64β3β1 + 16β2

2 − 8β2 + 1

8β3
.

Now, by considering (2) and (6), the second KdV-type equation becomes 

. − ωU '(∈) + αU 2(∈)U '(∈) + β1U
'''(∈) − ωβ2U

'''(∈) + ω2β3U
'''(∈) = 0.

Integrating the above equation w.r.t. . ∈ yields 

. − ωU (∈) + 1

3
αU 3(∈) + (β1 − ωβ2 + ω2β3)U

''(∈) = 0. (9) 

From.U '' and .U 3, it is found that .N = 1, and accordingly, we have 

.U (∈) = a0 + a1K (∈), a1 /= 0, (10) 

where.a0 and.a1 are unknowns. By employing (5), (9), and (10), the following system 
is generated 

. αa20 − 3ω = 0,

− ωβ3 + (β2 + 1)ω − αa20 − β1 = 0,

αa0a
2
1 = 0,

1

3
αa31 − 8AB(ω2β3 − ωβ2 + β1)a1 = 0.

Applying Maple results in 
Case 1: 

.a0 = 0,

a1 = ±2

┌||√−
−3AB

/
−4β3β1 + β2

2 + 2β2 + 1 − 3ABβ2 − 3AB

αβ3
,
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ω = 
β2 + 1 +

/
−4β3β1 + β2 

2 + 2β2 + 1 
2β3 

. 

Thus, solitons of the second KdV-type equation are derived as 

. u1,2(x, t) = ±2

┌||√−
−3AB

/
−4β3β1 + β2

2 + 2β2 + 1 − 3ABβ2 − 3AB

αβ3

1

(A − B) sinh(x − ωt) + (A + B) cosh(x − ωt)
,

where 

. ω =
β2 + 1 +

/
−4β3β1 + β2

2 + 2β2 + 1

2β3
.

Case 2: 

. a0 = 0,

a1 = ±2

┌||√−
−3AB

/
−4β3β1 + β2

2 + 2β2 + 1 − 3ABβ2 − 3AB

αβ3
,

ω =
β2 + 1 −

/
−4β3β1 + β2

2 + 2β2 + 1

2β3
.

Consequently, solitons of the second KdV-type equation are acquired as 

. u3,4(x, t) = ±2

┌||√−
3AB

/
−4β3β1 + β2

2 + 2β2 + 1 − 3ABβ2 − 3AB

αβ3

1

(A − B) sinh(x − ωt) + (A + B) cosh(x − ωt)
,

where 

. ω =
β2 + 1 −

/
−4β3β1 + β2

2 + 2β2 + 1

2β3
.

4 A Comprehensive Analysis 

In the present section, the impact of triplet dispersion as well as the nonlinear param-
eter on the propagation of bright solitons is investigated in detail. First, we portray 
the first bright soliton of Eq. (1) for the following parameter regimes
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Fig. 1 The first bright soliton of Eq. (1) for  a Sets 1 and 2, b Sets 1 and 3, c Sets 1 and 4, and d 
Sets  1 and 5 when. t = 0

. Set 1 : {A = 2, B = 1, α = 1, β1 = 1, β2 = 2, β3 = 1},
Set 2 : {A = 2, B = 1, α = 1.2, β1 = 1, β2 = 2, β3 = 1},
Set 3 : {A = 2, B = 1, α = 1, β1 = 1.25, β2 = 2, β3 = 1},
Set 4 : {A = 2, B = 1, α = 1, β1 = 1, β2 = 2.2, β3 = 1},
Set 5 : {A = 2, B = 1, α = 1, β1 = 1, β2 = 2, β3 = 1.2},

in Fig. 1 when .t = 0. 
From Fig. 1a, b, and d, it is seen that by increasing .α, β1, and . β3, the amplitude 

of the wave profile decreases while it increases by increasing.β2 as shown in Fig. 1c. 
Such information is useful in controlling the propagation of bright solitons in the 
first KdV-type equation. As another case study, we depict the first bright soliton of 
Eq. (2) for the following parameter regimes 

.Set 1 : {A = 2, B = 1, α = 1, β1 = 1, β2 = 2, β3 = 1},
Set 2 : {A = 2, B = 1, α = 1.3, β1 = 1, β2 = 2, β3 = 1},
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Fig. 2 The first bright soliton of Eq. (2) for  a Sets 1 and 2, b Sets 1 and 3, c Sets 1 and 4, and d 
Sets  1 and 5 when. t = 0

Set 3 : {A = 2, B = 1, α  = 1, β1 = 1.7, β2 = 2, β3 = 1}, 
Set 4 : {A = 2, B = 1, α  = 1, β1 = 1, β2 = 2.4, β3 = 1}, 
Set 5 : {A = 2, B = 1, α  = 1, β1 = 1, β2 = 2, β3 = 1.3}, 

in Fig. 2 when .t = 0. 
By looking at Fig. 2a, b, and d, it is observed that by increasing .α, β1, and . β3, 

the amplitude of the wave profile decreases while it increases by increasing .β2 as 
illustrated in Fig. 2c. Using this information, the propagation of bright solitons in the 
second KdV-type equation can be controlled. 

5 Conclusion 

In the present paper, the authors explored a family of mathematical models of waves 
on shallow water surfaces called KdV-type equations with triplet dispersion. Using 
the Kudryashov method, as a pioneering method, bright solitons of the govern-
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ing equations involving triple-spatial dispersion, spatio-temporal dispersion, and 
dualtemporal-spatial dispersion were formally derived. The influence of triplet dis-
persion as well as the nonlinear parameter on the propagation of bright solitons was 
examined by representing a series of 2D plots. As a result, the propagation of bright 
solitons in KdV-type equations can be readily controlled. As the authors could not 
obtain the dark solitons of the KdV-type equations by the Kudryashov method, so, 
other methods [ 27– 30] in the future will be used to do this. 
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A Natural Full-Discretization 
of the Korteweg-de-Vries Equation 

Xingbiao Hu and Yingnan Zhang 

Abstract In this paper, we propose an integrable full-discretization of the Korteweg-
de-Vries (KdV) equation. Our method is based on the compatibility between the inte-
grable equation and its Bäcklund transformation. By using this approach, we derive 
a discrete equation that is a natural discretization of the KdV equation. Specifically, 
in the natural limit, the discrete system approaches the continuous KdV equation. 
We demonstrate that the integrability of the discrete system is confirmed by a Lax 
pair and a Bäcklund transformation. 

Keywords Integrable discretization · Korteweg-de-Vries equation · Bäcklund 
transformation 

1 Introduction 

In this paper, we investigate the full-discretization of the Korteweg-de-Vries (KdV) 
equation, which is a well-known completely integrable equation used to describe 
shallow water waves [ 1]. The KdV equation has attracted significant interest since 
the seminal numerical experiment performed by Zabusky and Kruskal [ 2]. Over the 
years, various approaches have been used to discretize the KdV equation, and several 
discrete analogues have been developed. Taha and Ablowitz discretized the Lax pair 
of the KdV equation to obtain both a space discrete analogue and a fully discrete 
analogue, which they applied to simulate the KdV equation [ 3]. In [ 4], Ohta and 
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Hirota introduced a semi-discrete analogue and left the time variable smooth. The 
Lotka-Volterra equation can also be viewed as an integrable semi-discretization of 
the Korteweg-de-Vries equation [ 5– 7]. As for the full-discrete analogues, the lattice 
KdV developed by Hirota [ 8] and Nijhoff et al. [ 9] is a well-known example, and 
it can be reduced to the continuous KdV equation, though not in a standard limit. 
Schiff also constructed a full-discretization of the KdV equation using a loop group 
approach in [ 10]. Other notable works include those by Suris [ 11], Tempesta [ 12], 
and their respective references. 

The idea of obtaining integrable discretizations through a suitable interpreta-
tion of Bäcklund transformations is well established. The generation of integrable 
differential-difference equations from Bäcklund transformations was first explored 
by Chiu and Ladik in [ 13], and Levi and Benguria in [ 14, 15]. In our previous work 
[ 16], we demonstrated that by introducing a convergence condition, we can obtain 
an integrable discretization of a soliton equation through the compatibility between 
the integrable equation and its Bäcklund transformation. In [ 16, 17], we applied this 
method to discretize the space and time variables of the KdV equation separately. 
In this paper, we extend our approach and show that by using two sets of Bäcklund 
transformations, we can discretize both the space and time variables simultaneously. 

The main procedure we used in obtaining integrable discretizations through Bäck-
lund transformations involves working with bilinear equations and bilinear Bäcklund 
transformations. Compared to the traditional bilinear method [ 8, 18, 19] used to dis-
cretize soliton equations, the procedure presented in [16] is from a different viewpoint 
of the bilinear method and is much more direct. The traditional method, as shown in 
the left chart of Fig. 1, is to discretize the bilinear form of the soliton equation first 
and then confirm the integrability. Due to non-uniqueness, there is some freedom 
in (.eq1) when we discretize the smooth bilinear differential equation. Subsequently 
(.eq2) is obtained from (.eq1) by considering its integrabilities (soliton solutions or 
Bäcklund transformation). Different from the traditional approach, the procedure 
shown on the right of Fig. 1 preserves the integrability first and then discretize the 
equation. Given an integrable bilinear equation and its Bäcklund transformation, an 
expanded system (.eq3) of bilinear equations compatible with the original bilinear 
equation can be obtained. In (.eq3), there are some free parameters inherited from 
the associated Bäcklund transformations. Using properties of the .τ -function or the 
ideas in [ 14], it is natural to introduce some discrete variables in the new integrable 
system. By considering continuum limit, we impose a convergence condition on the 
new integrable system. Then the parameters can be determined and an integrable 
discretization of the original bilinear system can be derived. We will give a brief 
review of this approach with the KdV equation in next section. 

The paper is organized in the following. In Sect. 2, we will review the integrable 
semi-discretizations of the KdV equation obtained in [ 16, 17]. In Sect. 3, we will 
show the full-discretization of the KdV equation and prove its integrability. Section 4 
devotes to conclusions and discussions.
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Fig. 1 Flow charts of bilinear method of integrable discretization—Left chart: traditional approach; 
Right chart: approach based on BT 

2 Semi-discretization of the KdV Equation Based 
on the Bäcklund Transformation 

In this section, we will provide a brief review of two semi-discretized versions of the 
KdV equation presented in [ 16, 17]. One semi-discretization is applied to the space 
variable, while the other is applied to the time variable. Our approach is based on the 
bilinear method and the utilization of Bäcklund transformations. 

The Korteweg-de Vries (KdV) equation can be written as 

.ut + uxxx + 12uux = 0. (1) 

Here,. u,. x , and. t are quantities that can be rescaled to produce any desired coefficients 
in (1). The KdV equation is a completely integrable equation and has a Lax pair and 
infinite conservation quantities. For more details, see [ 1] and references therein.



178 X. Hu and Y. Zhang

The dependent variable transformation .u = (ln f )xx converts (1) to the bilinear 
form 

.Dx(Dt + D3
x ) f · f = 0. (2) 

Here the .D-operator is defined by 

. Dm
t D

n
x a(t, x) · b(t, x) = ∂m

∂sm
∂n

∂yn
a(t + s, x + y)b(t − s, x − y) |s=0,y=0,

m, n = 0, 1, 2, . . . , (3) 

or by the exponential identity 

. exp(δDz)a(z) · b(z) = exp(δ∂y)(a(z + y)b(z − y)) |y=0,

= a(z + δ)b(z − δ). (4) 

The following bilinear Bäcklund transformation (BT) of (2) has been given in 
[ 20]: 

. (D2
x − λDx ) f · g = 0, (5) 

. (Dt + D3
x + μ) f · g = 0, (6) 

where . λ and. μ are arbitrary constants. For details of the .D-operator and the bilinear 
Bäcklund transformation, see [ 20]. 

2.1 Semi-discretization of the Space Variable 

To discretize the space variable, we consider (2) and (5) together as a new system 

. Dx(Dt + D3
x ) f · f = 0, (7) 

. (D2
x − λDx ) f · g = 0. (8) 

Taking . f → fn , .g → fn−h and .λ = 2
h , where . n is a discrete variable and . h is the 

step size, we get a differential-difference system 

. Dx (Dt + D3
x ) fn · fn = 0, (9) 

. (D2
x − 2

h
Dx ) fn · fn−h = 0, (10) 

From properties of the Bäcklund transformation, the above system is also integrable. 
One can rewrite (10) as
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.[D2
x cosh(

h

2
Dn) − 2

h
Dx sinh(

h

2
Dn)] fn · fn = 0. (11) 

Expanding this equation in powers of . h, we get 

.[D2
x − Dx Dn + O(h2)] fn · fn = 0, (12) 

which means that .Dx = Dn + O(h2). Thus the discrete variable . n can be viewed 
as an approximation to . x and . h is just the step size in the .x-direction. We do not 
discretize. x directly but take it as an auxiliary variable. In the bilinear equations, we 
still write it as . x without confusion. 

Applying the dependent variable transformation .vn = (ln fn)x , .un = vn,x , . pn =
un,x , .qn = pn,x , .rn = qn,x to (9)–(10), we get 

. un,t + rn + 12un pn = 0, (13) 

. (un+ h
2
+ un− h

2
) = 2

h
(vn+ h

2
− vn− h

2
) − (vn+ h

2
− vn− h

2
)2, (14) 

. (pn+ h
2
+ pn− h

2
) = 2

h
(un+ h

2
− un− h

2
) − 2(un+ h

2
− un− h

2
)(vn+ h

2
− vn− h

2
), (15) 

. (qn+ h
2
+ qn− h

2
) = 2

h
(pn+ h

2
− pn− h

2
) − 2(pn+ h

2
− pn− h

2
)(vn+ h

2
− vn− h

2
)

−2(un+ h
2
− un− h

2
)2, (16) 

. (rn+ h
2
+ rn− h

2
) = 2

h
(qn+ h

2
− qn− h

2
) − 6(pn+ h

2
− pn− h

2
)(un+ h

2
− un− h

2
)

−2(qn+ h
2
− qn− h

2
)(vn+ h

2
− vn− h

2
). (17) 

Under the natural limit .h → 0, the above system tends to the KdV Eq. (1). The 
discussions above can be summarized as the following theorem. 

Theorem 1 The system (9)–(10) is an integrable discretization of the KdV Eq. (2). 
Using transformations .vn = (ln fn)x , .un = vn,x , .pn = un,x , .qn = pn,x , .rn = qn,x , 
this system can be converted to (13)–(17), which converge to the KdV Eq. (1) as 
.h → 0. 

The bilinear Eqs. (9) and (10) have the Bäcklund transformation (BT) 

. (Dxe
− h

2 Dn ) fn · gn = (−1

h
e− h

2 Dn + βe
h
2 Dn ) fn · gn, (18) 

. D2
x fn · gn = γ fngn, (19) 

. (Dt + D3
x + 3γDx ) fn · gn = 0, (20) 

where . β and . γ are arbitrary constants. Setting .vn = (ln gn)x , .un = vn,x , .pn = un,x , 
.qn = pn,x , . fn = φngn and .ψn = φn,x in (18)–(20), we can get a Lax pair for the 
discrete Eqs. (13)–(17):
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. β

(
φn+1

ψn+1

)
=

( 1
h + vn − vn+1 1
γ − un − un+1

1
h + vn − vn+1

)(
φn

ψn

)
,

. 

(
φn,t

ψn,t

)
=

(
2pn −4(γ + un)

2qn − 4(γ − 2un)(γ + un) −2pn

)(
φn

ψn

)
.

See the details in [ 16]. 

2.2 Semi-discretization of the Time Variable 

To discretize the time variable, we need derive a higher order Bäcklund transforma-
tion. In fact, we have the following proposition [ 17]. 

Proposition 1 If . f and . g are two solutions of (2) and satisfy the BT (5)–(6), they 
also satisfy 

.(Dx Dt − 1

2
D4

x + 3

2
λD3

x + μDx ) f · g = 0. (21) 

Proposition 1 means that (21) is also compatible with the original Eq. (2). Similarly 
as the case of space variable, setting. f → fm+k , .g → fm , .μ = − 3

k and.γ = 0, from  
(2) and (21), we get an integrable differential-difference system 

. Dx (Dt + D3
x ) fm · fm = 0, (22) 

. (Dx Dt − 1

2
D4

x − 3

k
Dx ) fm+k · fm = 0. (23) 

The integrability is inherited from the compatibility between (2) and (21). Here we 
view. t as an auxiliary variable and . k as the step size. 

With.ηm = (ln fm)t , .um = (ln fm)xx , the system (22)–(23) can be transformed to 

. vm,x = um, (24) 

. ηm,x + 6u2m + um,xx = 0, (25) 

. 
3

k
(um+1 − um) + 17(um+1um+1,x + umum,x ) + (um+1um,x + um+1,xum)

+3

2
(um+1,xxx + um,xxx ) + 3(vm+1 − vm)(um+1,xx − um,xx )

+3(vm+1 − vm)2(um+1,x + um,x ) + 12(vm+1 − vm)(u2m+1 − u2m)

−(um+1 − um)(ηm+1 − ηm) + 2(vm+1 − vm)3(um+1 − um) = 0. (26) 

Here we have omitted the detailed derivation process and written subscript.m + k as 
.m + 1. Replacing.um by.u(x, t), .um+1 by.u(x, t + k), and similarly for . v and. η, and
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then taking the limit .k → 0, Eqs. (24)–(26) tends to the KdV Eq. (1). A Lax pair for 
the integrable differential-difference system (24)–(26) is  

. LmΨm = λΨm, (27) 

. Ψm+1 = AmΨm, (28) 

where 

. Lm = ∂2
x + 2um, (29) 

. Am = kam∂3
x + kbm∂2

x + kcm∂x + (kdm + 1). (30) 

.am = −4, (31) 

.bm = 4(vm+1 − vm), (32) 

.cm = −2(vm+1 − vm)2 − 2(5um + um+1), (33) 

. dm = −1

3
(ηm+1 − ηm) + 2

3
um+1,x − 20

3
um,x + 2

3
(vm+1 − vm)3

+2(vm+1 − vm)(3um + um+1) (34) 

and .∂i
x is the quasi differential operator. The compatibility of the above system is 

.Lm+1Am = AmLm, (35) 

which gives the Eq. (24)–(26). 

3 Full Discretization of the KdV Equation 

In this section, we present a fully discrete approximation of the KdV Eq. (1). In 
contrast to the semi-discrete case, where only one discrete variable is introduced, the 
fully discrete case requires the introduction of two discrete variables, necessitating 
the use of two sets of Bäcklund transformations. Specifically, the integrable fully 
discrete approximation of the KdV Eq. (2) is given by: 

. Dx (Dt + D3
x ) fn,m · fn,m = 0, (36) 

. (D2
x exp(

h

2
Dn) − 2

h
Dx exp(

h

2
Dn)) fn+1,m · fn,m = 0, (37) 

. (Dx Dt exp(
k

2
Dm) − 1

2
D4

x exp(
k

2
Dm)

−3

k
Dx exp(

k

2
Dm)) fn,m+1 · fn,m = 0. (38)
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Equation (36) corresponds to the original bilinear KdV Eq. (2), whereas Eqs. (37) 
and (38) are obtained from the Bäcklund transformations (5) and (21), respectively. 
The discrete variables . n and .m correspond to the continuous variables . x and . t . Let  
.ηn,m = (ln fn,m)t , .βn,m = (ln fn,m)xt , .vn,m = (ln fn,m)x , .un,m = (ln fn,m)xx , . pn,m =
(ln fn,m)xxx ,.qn,m = (ln fn,m)xxxx ,.rn,m = (ln fn,m)xxxxx . Then Eqs. (36)–(38) can be 
transformed into a nonlinear system 

. (un+1,m + un,m) = 2

h
(vn+1,m − vn,m) − (vn+1,m − vn,m)2, (39) 

. (pn+1,m + pn,m) = 2

h
(un+1,m − un,m)

−2(un+1,m − un,m)(vn+1,m − vn,m), (40) 

. (qn+1,m + qn,m) = 2

h
(pn+1,m − pn,m) − 2(pn+1,m − pn,m)(vn+1,m − vn,m)

−2(un+1,m − un,m)2, (41) 

. (rn+1,m + rn,m) = 2

h
(qn+1,m − qn,m) − 2(qn+1,m − qn,m)(vn+1,m − vn,m)

−6(pn+1,m − pn,m)(un+1,m − un,m), (42) 

. βn,m + 6u2n,m + qn,m = 0, (43) 

. 
3

k
(vn,m+1 − vn,m) = (βn,m+1 + βn,m) + (ηn,m+1 − ηn,m)(vn,m+1 − vn,m)

−1

2
[(qn,m+1 + qn,m) + 4(vn,m+1 − vn,m)(pn,m+1 − pn,m)

+3(un,m+1 + un,m)2 + 6(vn,m+1 − vn,m)2(un,m+1 + un,m)

+(vn,m+1 − vn,m)4]. (44) 

From Eq. (43), we have 

. (βn+1,m − βn,m) + 6(un+1,m + un,m)(un+1,m − un,m)

+(qn+1,m − qn,m) = 0. (45) 

Inserting Eq. (39) into the above formulae, we obtain 

. (βn+1,m − βn,m) + (qn+1,m − qn,m) + 12

h
(vn+1,m − vn,m)(un+1,m − un,m)

−6(vn+1,m − vn,m)2(un+1,m − un,m) = 0. (46) 

Note that .u = vx , .p = ux , .q = px , .β = ηx . Thus integrating Eq. (46) about . x , we  
have 

. (ηn+1,m − ηn,m) + (pn+1,m − pn,m)

+6

h
(vn+1,m − vn,m)2 − 2(vn+1,m − vn,m)3 = 0. (47)
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Here we have taken all the integral constants as zero. Eliminating . β in Eq. (44) and 
then differentiating it with respect to . x , we obtain 

. 
3

k
(un,m+1 − un,m) + 3

2
(rn,m+1 + rn,m) + (un,m+1 pn,m + un,m pn,m+1)

+17(un,m+1 pn,m+1 + un,m pn,m) + 3(vn,m+1 − vn,m)(qn,m+1 − qn,m)

+12(vn,m+1 − vn,m)(u2n,m+1 − u2n,m) + 3(vn,m+1 − vn,m)2(pn,m+1 + pn,m)

+2(vn,m+1 − vn,m)3(un,m+1 − un,m) − (ηn,m+1 − ηn,m)(un,m+1 − un,m)

= 0. (48) 

It can be observed that the system of Eqs. (39)–(42), (47)–(48) converges to the 
semi-discrete Eqs. (13)–(17) as  .h → 0, and to the semi-discrete Eqs. (24)–(26) as  
.k → 0. 

In the next, we will show the integrability of the full discrete Eqs. (36)–(38). 

Proposition 2 The Bäcklund transformation of the bilinear Eqs. (36)–(38) is 

. Dxe
− h

2 Dn fn,m · gn,m = (γe
h
2 Dn − 1

h
e− h

2 Dn ) fn,m · gn,m, (49) 

. D2
x fn,m · gn,m = λ fn,mgn,m, (50) 

. (Dt + D3
x + 3λDx + μ) fn,m · gn,m = 0, (51) 

. (Dte
k
2 Dm − 2D3

xe
k
2 Dm − 6λDxe

k
2 Dm + (μ − 3

k
)e

k
2 Dm

−θe− k
2 Dm ) fn,m · gn,m = 0, (52) 

where . λ, . μ, . γ and . θ are Bäcklund parameters. 

Proof Assume. fn,m is solutions of Eqs. (36)–(38). All we need to do is to prove that 
the .gn,m given by (49)–(52) is also a solution of the Eqs. (36)–(38), i.e. 

. P1 ≡ Dx (Dt + D3
x )gn,m · gn,m = 0,

P2 ≡ [D2
x cosh(

h

2
Dn) − 2

h
Dx sinh(

h

2
Dn)]gn,m · gn,m = 0,

P3 ≡ [Dx Dt cosh(
k

2
Dm) − 1

2
D4

x cosh(
k

2
Dm)

−3

k
Dx sinh(

k

2
Dm)]gn,m · gn,m = 0

In fact,.P1 = 0,.P2 = 0 can be proved in a same way in [ 16]. In the following, we will 
prove .P3 = 0. Firstly, in a similar way in [ 17], we can prove that . fn,m , .gn,m satisfy 

.(Dx Dt − 1

2
D4

x + μDx + 9

2
λ2) fn,m · gn,m = 0. (53)
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Secondly, we have the following identities, 

. (Dx Dte
1
2 Dma · a)(e

1
2 Dmb · b) − (e

1
2 Dma · a)(Dx Dte

1
2 Dmb · b)

= Dx cosh(
1

2
Dm)(Dta · b) · (ab) + Dx (Dte

1
2 Dma · b) · (e− 1

2 Dma · b)

− sinh(
1

2
Dm)[(Dx Dta · b) · (ab) + (Dxa · b) · (Dta · b)], (54) 

. (D4
xe

1
2 Dma · a)(e

1
2 Dmb · b) − (e

1
2 Dma · a)(D4

xe
1
2 Dmb · b)

= 4Dx (D
3
xe

1
2 Dma · b) · (e− 1

2 Dma · b) − 3D2
x sinh(

1

2
Dm)(D2

xa · b) · (ab)

−2Dx cosh(
1

2
Dm)[(D3

xa · b) · (ab) + 3(D2
xa · b) · (Dxa · b)]

− sinh(
1

2
Dm)[(D4

xa · b) · (ab) + 2(D3
xa · b) · (Dxa · b)]. (55) 

. Dx cosh(
1

2
Dm)(Dxa · b) · (ab)

= Dx(Dxe
1
2 Dma · b) · (e− 1

2 Dma · b) − sinh(
1

2
Dm)(D2

xa · b) · (ab). (56) 

By using (54)–(56) and the relations (49)–(53), we have 

. −(e
k
2 Dm fn,m · fn,m)P3

≡ [(Dx Dte
k
2 Dm − 1

2
D4
x e

k
2 Dm − 3

k
Dxe

k
2 Dm ) fn,m · fn,m ](e k

2 Dm gn,m · gn,m)

−(e
k
2 Dm fn,m · fn,m)[(Dx Dte

k
2 Dm − 1

2
D4
x e

k
2 Dm − 3

k
Dxe

k
2 Dm )gn,m · gn,m ]

= Dx cosh(
k

2
Dm)(Dt fn,m · gn,m) · ( fn,mgn,m)

+Dx (Dte
k
2 Dm fn,m · gn,m) · (e− k

2 Dm fn,m · gn,m)

− sinh(
k

2
Dm)[(Dx Dt fn,m · gn,m) · ( fn,mgn,m) + (Dx fn,m · gn,m) · (Dt fn,m · gn,m)]

−2Dx (D
3
x e

k
2 Dm fn,m · gn,m) · (e− k

2 Dm fn,m · gn,m)

+3

2
D2
x sinh(

k

2
Dm)(D2

x fn,m · gn,m) · ( fn,mgn,m)

+Dx cosh(
k

2
Dm)[(D3

x fn,m · gn,m) · ( fn,mgn,m) + 3(D2
x fn,m · gn,m) · (Dx fn,m · gn,m)]

+1

2
sinh(

k

2
Dm)[(D4

x fn,m · gn,m) · ( fn,mgn,m) + 2(D3
x fn,m · gn,m) · (Dx fn,m · gn,m)]

−6

k
sinh(

k

2
Dm)(Dx fn,m · gn,m) · ( fn,mgn,m)
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= Dx (Dt e 
k 
2 Dm fn,m · gn,m ) · (e− k 

2 Dm fn,m · gn,m ) 

−2Dx (D
3 
x e 

k 
2 Dm fn,m · gn,m ) · (e− k 

2 Dm fn,m · gn,m ) 

+(2μ − 
6 

k 
) sinh( 

k 

2 
Dm )(Dx fn,m · gn,m ) · ( fn,mgn,m ) 

−6λDx cosh( 
k 

2 
Dm )(Dx fn,m · gn,m ) · ( fn,mgn,m ) 

= Dx (Dt e 
k 
2 Dm fn,m · gn,m ) · (e− k 

2 Dm fn,m · gn,m ) 

−2Dx (D
3 
x e 

k 
2 Dm fn,m · gn,m ) · (e− k 

2 Dm fn,m · gn,m ) 

+(μ − 
3 

k 
)Dx (e 

k 
2 Dm fn,m · gn,m ) · (e− k 

2 Dm fn,m · gn,m ) 

−6λDx (Dx e 
k 
2 Dm fn,m · gn,m ) · (e− 1 

2 Dm fn,m · gn,m ) 
= 0 (57) 

Thus we complete the proof. 

Setting .vn,m = (ln gn,m)x , .un,m = vn,m,x , .pn,m = un,m,x , .qn,m = pn,m,x , . fn,m =
φn,mgn,m , .ψn,m = φn,m,x , and.ϕn,m = (φn,m,ψn,m)T , the bilinear Eqs. (49)–(52) can 
be transformed to Lax pair of the discrete system (39)–(42), (47)–(48). 

. γϕn+1,m = An,mϕn,m, (58) 

. Bn,mϕn,m+1 = θϕn,m, (59) 

where . γ, . θ are constants, 

. An,m =
( 1

h + vn,m − vn+1,m 1
λ − un,m − un+1,m

1
h + vn,m − vn+1,m

)
,

. Bn,m =
(

α1 α2

α3 α4

)
,

. α1 = −3

k
+ 2pn,m + 4pn,m+1 + 12λvn,m + 6un,mvn,m − 6un,m+1vn,m

+ 2v3
n,m − 12λvn,m+1 − 6un,mvn,m+1 + 6un,m+1vn,m+1 − 6v2

n,mvn,m+1

+ 6vn,mv2
n,m+1 − 2v3

n,m+1 − ηn,m + ηn,m+1, (60) 

.α2 = −12λ − 6un,m − 6un,m+1 − 6v2
n,m + 12vn,mvn,m+1 − 6v2

n,m+1, (61) 

. α3 = −12λ2 + 3qn,m + 3qn,m+1 + 6λun,m + 12u2n,m + 6λun,m+1 + 12u2n,m+1

+ 6pn,mvn,m − 6pn,m+1vn,m − 6λv2
n,m + 6un,mv2

n,m + 6un,m+1v
2
n,m

− 6pn,mvn,m+1 + 6pn,m+1vn,m+1 + 12λvn,mvn,m+1 − 12un,mvn,mvn,m+1

− 12un,m+1vn,mvn,m+1 − 6λv2
n,m+1 + 6un,mv2

n,m+1 + 6un,m+1v
2
n,m+1, (62)
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. α4 = −3

k
− 4pn,m − 2pn,m+1 + 12λvn,m − 6un,mvn,m + 6un,m+1vn,m + 2v3

n,m

− 12λvn,m+1 + 6un,mvn,m+1 − 6un,m+1vn,m+1 − 6v2
n,mvn,m+1

+ 6vn,mv2
n,m+1 − 2v3

n,m+1 − ηn,m + ηn,m+1. (63) 

We can check that the compatibility conditions 

.Bn+1,m An,m+1 − An,m Bn,m = 0, (64) 

gives the discrete system (39)–(42), (47)–(48). 

Theorem 2 The bilinear system (36)–(38) is an integrable discretization of the bilin-
ear KdV Eq. (2). Through the variable transformation .ηn,m = (ln fn,m)t , . vn,m =
(ln fn,m)x , .un,m = (ln fn,m)xx , .pn,m = (ln fn,m)xxx , .qn,m = (ln fn,m)xxxx , . rn,m =
(ln fn,m)xxxxx , it turns to the full discrete system (39)–(42), (47)–(48) which tends to 
the KdV Eq. (1) under the natural limits .h → 0, .k → 0. 

4 Conclusion and Discussion 

In this paper, we have presented a full discretization of the KdV equation using the 
bilinear method and the compatibility between the integrable differential equation 
and its Bäcklund transformation. Unlike the semi-discretizations in [ 16, 17], the full 
discretization requires two sets of Bäcklund transformations to discretize both the 
space and time variables. 

Our approach has significant potential and warrants further investigation. In the 
future, we plan to discretize the initial boundary value problems of the KdV equation 
to conduct numerical studies. Additionally, we will explore the extension of our 
method to other types of equations, such as the NLS equation. 
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Damped Nonlinear Schrödinger 
Equation with Stark Effect 

Yi Hu, Yongki Lee, and Shijun Zheng 

Abstract The problem of singularity formation for damped NLS (dNLS) has been 
an interesting and meanwhile challenging one in both mathematical and physical lit-
erature. We study the .L2-critical damped NLS with a Stark potential. We prove that 
the threshold for global existence and finite time blow-up of this equation is given 
by .||Q||2, where .Q is the unique positive radial solution of .ΔQ + |Q|4/d Q = Q in 
.H 1(Rd). Moreover, in any small neighborhood of . Q, there exists an initial data . u0
above the ground state such that the solution flow admits the log-log blow-up speed. 
This verifies the structural stability for the “.log-.log law” associated to the NLS mech-
anism under the perturbation by a damping term and a Stark potential. The proof of 
our main theorem is based on the Avron-Herbst formula and the analogous result for 
the unperturbed dNLS. The method of our analysis allows to further prove a general 
blow-up criterion. Moreover, we give a concentration compactness description for 
the limiting behavior of blow-up solutions, which might have independent analytical 
interest. 
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1 Introduction 

Consider the damped nonlinear Schrödinger equation (dNLS) with Stark effect: 

.iut = −Δu + (E · x)u − |u|p−1u − iau, u(0) = u0 ∈ H1. (1.1) 

Here .p ∈ (1, 1 + 4
n−2 ) if .n ≥ 3 and .p ∈ (1,∞) if .n = 1, 2. The solution . u =

u(t, x) : R1+n → C is the wave function, .V (x) = VE (x) := E · x is a Stark poten-
tial with .E ∈ R

n \ {0}, and .−iau is a linear damping to the system with . a > 0
being the coefficient of friction. The initial data .u0 is in the energy space . H1 :={
φ ∈ H 1 : xφ ∈ L2

}
, whose norm is given by .||φ||H1 := (||φ||2H 1 + ||xφ||2L2

)1/2
, 

where .H 1 denotes the usual Sobolev space. 
The problem of studying singular solutions for the dNLS has been known techni-

cally difficult [ 10, 14, 16, 39]. In laser optics, it is desirable to understand the effect 
of small damping on singularity formation (rate of wave collapse, asymptotics of 
the blow-up profile) for the NLS mechanism. The dNLS (1.1) provides a model for 
optical self-focusing phenomenon, where an electromagnetic wave is absorbed by 
the propagation medium. 

The damping term.−iau, .a > 0 contributes to the decrease of the mass and thus 
there does not exists minimal mass blowup solutions, see (2.1) and Remark 3.2. 
In fact, any initial data .u0 with possible large mass can quickly change to small 
mass because of .||u(t)||22 = e−2at ||u0||22. Hence, there are analytical difficulties in 
determining the blow-up behavior and the blow-up time. In the absence of a potential, 
i.e., .V = 0, Darwich [ 12] showed the existence of blow-up solutions in the .log-. log
regime for.L2-critical dNLS based on some modifications of Merle-Raphaël spectral-
hypothesis approach [ 28]. When .V is an unbounded potential, such approach does 
not seem applicable since one would not be able to treat the dNLS (1.1) as a small  
perturbation of the free dNLS. In addition, there is some difficulty verifying the 
appropriate spectral hypothesis. Motivated by the.R-transform method in [ 4] for the  
rotational NLS, we apply the Avron-Herbst transform (3.1) to convert Eq. (1.1) to the  
unperturbed dNLS, which allows to obtain the blow-up solutions above the ground 
state solution.Q0 of (1.7) with exact.log-.log blow-up rate in Theorem 1.1. This result 
on  the dNLS (1.1) is two-fold: 

(i) It shows that .||Q0||2 is the threshold for global existence and blow-up. 
(ii) It informs that in any small neighborhood of .Q0, there exist blow-up solutions 

in the .log-.log regime. Per the authors’ best knowledge, such construction of 
singular solutions of (1.1) is new for Stark potential. 

In the remaining of the introduction section, we elaborate on our results in Theo-
rems 1.1 and 1.2. The associated energy of the dNLS (1.1) is given by 

.EV (u) :=
{

Rn

(
|∇u|2 + VE |u|2 − 2

p + 1
|u|p+1

)
dx . (1.2)
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In physics,. E may represent an electric field or quantum gravity [ 11, 38], and damped 
NLS equations appear in nonlinear optics, plasma physics, and water waves [ 16, 19, 
23, 33]. 

The hamiltonian.H = HE := −Δ + E · x arises in the study of hydrogen model 
in connection with the resonance phenomenon associated with quasi-stationary states 
[ 20, 21]. The operator.HE is essentially selfadjoint in.C∞

0 (R3), which has absolutely 
continuous spectrum .R = (−∞,∞). The presence of a Stark potential has an res-
onance effect such that it shifts the discrete energies of the hydrogen atom into 
resonances (pseudo-eigenvalues) via the hamiltonian .HZ ,E = −Δ − Z

|x | + E · x , 
where .Z ≥ 0 is the atomic number. This distinguishes from the harmonic oscil-
lator.−Δ + |x |2 in that.HZ ,E has weaker decaying “bound state”, and so. VE = E · x
is also called the spatially damped oscillator. 

On the other hand, when .a > 0, the linear term .−iau is present as a temporal 
damping effect for the NLS equation. So it might be of analytical interest to study 
the Schrödinger type system as (1.1). There has been a large body of literature in the 
field of wave dispersion-dissipation in physics and numerics [ 1, 6, 19, 24, 25]. 

If .E = 0 and .a = 0, then Eq. (1.1) becomes the classic NLS 

.iut = −Δu − |u|p−1u , u(0) = u0 ∈ H 1 (1.3) 

and its well-posedness and blowup have been studied extensively in the .H 1-
subcritical and.H 1-critical cases .p ≤ 1 + 4

n−2 , see  [  9, 37]. The following quantities 
are conserved in time for (1.3): 

.(Mass) M(u) := ||u(t)||2L2 (1.4) 

.(Energy) E0(u) := ||∇u(t)||2L2 − 2

p + 1
||u(t)||p+1

L p+1 (1.5) 

.(Momentum) P(u) := Im

({

Rn

u∇u dx

)
. (1.6) 

In the.L2-critical regime.p = 1 + 4
n , if we let.Q = Q0 be the unique positive and 

radial solution in .H 1 to the elliptic equation 

.ΔQ + |Q| 4
n Q = Q , (1.7) 

then Weinstein [ 40] showed that .||Q||L2 is the threshold for global existence and 
finite time blowup of the Cauchy problem (1.3) in.H 1. Namely, if .||u0||L2 < ||Q||L2 , 
then the solution.u(t) of (1.3) is global in .H 1, while for any.c ≥ ||Q||L2 , there exists 
.u0 ∈ H 1 with.||u0||L2 = c such that the solution.u(t) blows up in finite time.T ∗ > 0. 
Further, Merle [ 26] showed that the set of all minimal mass blowup solutions at 
the ground state level .||Q||2 consists of pseudo-conformal transforms of the solitary 
wave .eit Q(x):
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.S(t, x) = eiθ

|T − t |d/2
Q(

x − x0
T − t

)e−i |x−x0 |2
4(T−t) e

i
T−t (1.8) 

where .(θ, T, x0) ∈ R × R × R
n are parameters. 

When the initial data is above the ground state level, under the assumption of 
certain spectral property (see Remark 2.6), Merle and Raphaël ([ 28, 29]) proved the 
sharp blow-up speed for the solutions, i.e., there exists a small universal constant 
.α∗ > 0 such that for all .u0 ∈ Bα∗ with negative energy.E0(u0) < 0, the solution. u(t)
blows up as .t → T ∗ with the speed (called “log-log law”) 

.||∇u(t)||L2 ≈
(
log |log (T ∗ − t)|

T ∗ − t

) 1
2

, (1.9) 

where 

. Bα := {
φ ∈ H 1 : ||Q||L2 < ||φ||L2 < ||Q||L2 + α

}
.

This log-log regime is also known to be stable in .H 1 [ 36]. 
If .E = 0 in Eq. (1.1), then one has the damped NLS 

.iϕt = −Δϕ − |ϕ|p−1ϕ − iaϕ, ϕ(0) = ϕ0 = u0 ∈ H 1 . (1.10) 

The local well-posedness in .H 1 for the dNLS is well-known (see e.g. [ 9, 39]). 
Precisely speaking, for every .u0 ∈ H 1, there exists .T > 0 and a unique solution 
.ϕ ∈ C

([0, T ), H 1
)
of the Cauchy problem (1.10), where .[0, T ) = [0, Tmax ) is the 

maximal time interval of existence. Moreover, if.Tmax is finite, then. ||∇ϕ(t)||2 → ∞
as .t → Tmax . Because of the damping term .−iaϕ, the dynamics of the solution 
may behave differently from that of the classic NLS. For instance, the mass, energy, 
and momentum (1.4)–(1.6) are not conserved. Darwich [ 12] studied the Cauchy 
problem (1.10) in the.L2-critical regime.p = 1 + 4

n when.n ≤ 4, and he proved that 
.||Q||2 is the sharp threshold for the blow-up phenomenon in .H 1. Furthermore, there 
exists.α0 > 0 such that for all.a > 0 and arbitrary.α ∈ (0, α0), there exists a blow-up 
solution in the log-log regime corresponding to some .u0 ∈ Bα , see Theorem 2.4. 

Motivated by the abovementioned work, in this paper we concentrate on the .L2-
critical case .p = 1 + 4/n for the focusing dNLS (1.1) with a Stark potential. We 
shall establish the sharp threshold for global existence and the log-log law for the 
Cauchy problem (1.1) in the weighted Sobolev space .H1. Our main result is stated 
as follows. 

Theorem 1.1 Let .p = 1 + 4
n and .a > 0. Suppose .u0 ∈ H1(Rn) for .1 ≤ n ≤ 4. 

(a) If .||u0||L2 ≤ ||Q||L2 , then the solution of (1.1) is global in time such that . u(t) ∈
C([0,∞),H1). 

(b) There exists a small .α0 > 0 such that for arbitrary .α ∈ (0, α0), there exists 
.u0 ∈ Bα ∩ H1 such that the corresponding solution .u(t) of (1.1) blows up at 
.T ∗ < ∞ with the log-log speed (1.9).
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The proof of Theorem 1.1 (see Sect. 3) relies on the Avron-Herbst transform 
(Proposition 3.1) and Theorem 2.4. An alternative, independent proof of part (a) in 
all dimensions is given as a corollary (Corollary 4.4) of a limiting profile result in 
Theorem 4.3. 

We wish to mention that for the .L2-critical NLS (1.3), there exist minimal mass 
blow-up solutions (1.8) with .||u0||2 = ||Q||2 and pseudo-conformal blow-up speed 
.(T ∗ − t)−1. However, in the presence of damping,.||u0||2 = ||Q||2 will lead to a global 
solution to the Eq. (1.1), so Theorem 1.1 also proves the none existence of minimal 
mass blow-up solutions for (1.1). 

Theorem 1.1 shows the structural stability for the NLS mechanism: The log-log 
law continues to hold when the free NLS .iut = −Δu − |u|4/nu is perturbed with a 
damping term and a linearly growth potential. Similar results have been obtained for 
other Schrödinger type equations rencently [ 4, 15, 34, 35]. However, from the proofs 
in either [ 12] or [  13], it is not evident whether such .log-.log regime is topologically 
stable for the dissipative NLS (1.1) in an electric field. 

Our second main result is concerned with finding a sufficient condition on singular 
(blow-up) solutions for (1.1). By the .A-.H transform in Proposition 3.1, we are able 
to show that, given any .u0 with .E0(u0) < 0, there exists .a∗ = a∗(u0) > 0 such that 
the solution.u(t) blows up for all.0 < a < a0 by an application of [ 14, Theorem 1.2], 
see Theorem 2.8. 

Theorem 1.2 Let .p=1+4/n, .n ≥ 1. Suppose .u0 ∈ H1 and . EV (u0) <
{
E · x |u0|2.

Then, there exists.a∗ = a∗(||u0||H 1) > 0 such that for all.a ∈ (0, a∗), the correspond-
ing solution.u(t) of (1.1) in.C([0, T ∗),H1) blows up finite time on.[0, T ∗) in the sense 
that .||∇u(t)||2 → ∞ as .t → T ∗. 

Note that this theorem, along with part (a) in Theorem 1.1, implies the blow-up 
for any initial data in the open region.{u ∈ Bα' ∩ H∞ : E'(⊓) < '} for any prescribed 
positive . α0. 

On the other hand, the numerical result in [ 16] and also [ 10, 14] suggest that 
increasing the value of .a > a∗ can give rise to the effect that damping arrests self-
focusing so that the solution will survive over infinity time. However, such .a∗ is 
dependent on the initial data. Meanwhile, in the case.VE = 0, a simple scaling argu-
ment informs that given any solution. u of.NLSa in (2.5), then. uλ(t, x) := 1

λn/2 u( t
λ2 ,

x
λ
)

solves .NLSa/λ2 , cf. [  12, Remark 3.2]. Thus, the problem of stability/instability of 
blow-up for the dNLS can be notably subtle and sensitive. 

We would like to comment that the results in this article inform that the Stark 
potential .VE = E · x does not seem to essentially change the blow-up by its interac-
tions with the damping term and the.L2-critical nonlinearity. However, this potential 
may affect the scattering behavior owing to its interaction with a linear potential 
potential like .|x |−γ , as was observed in Ozawa’s work [ 32], cf. also [ 8, Remark, 
p. 727]. It would be of interest to further study the effect of .VE on the long time 
asymptotic behavior for Eq. (1.1) when .p < 1 + 4/n.
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2 Preliminaries 

For the dNLS (1.1) with a Stark potential .VE , the local well-posedness in .H1 holds. 
In fact, following a standard fixed point argument as in [ 9] or [  8, 42], we can easily 
show the following l.w.p. for (1.1). 

Proposition 2.1 Let .p ∈ (1, 1 + 4/(n − 2)). Suppose .u0 ∈ H1. Then there exists 
.T := T ∗ ∈ (0,∞] and a unique solution .u(t) in .C

([0, T ),H1
)
of the Cauchy prob-

lem (1.10), where .[0, T ) is the lifespan for forward time. The blow-up alternative 
holds: If . T is finite, then .||∇u(t)||2 → ∞ as .t → T . 

We omit the detailed proof of the proposition, but instead provide below a descrip-
tion of the “modified conservation laws” on the interval of existence .[0, T ) for the 
mass, energy, and momentum of the system. 

Proposition 2.2 Let . u be a solution of the Cauchy problem (1.1) on .[0, T ). Let 
.M(u), .E0(u), and .P(u) be defined as in (1.4)–(1.6), respectively, and let .EV (u) be 
the associated energy (1.2). Then 

.M(u) = e−2atM(u0) (2.1) 

.
d

dt
E0(u) = −2i

{

Rn

E · u∇udx − 2a||∇u(t)||2L2 + 2a||u(t)||p+1
L p+1 (2.2) 

.
d

dt
EV (u) = −2a

{

Rn

E · x |u|2dx − 2a||∇u(t)||2L2 + 2a||u(t)||p+1
L p+1 (2.3) 

.P(u) = e−2at (−t EM(u0) + P(u0)) . (2.4) 

Proof Equations (2.1) to (2.4) can be verified by straightforward calculations. For 
instance, to verify the identity (2.1), we multiply both sides of Eq. (1.1) by  . u and 
integrate them with respect to . x to obtain 

. 

{

Rn

iutudx =
{

Rn

(−Δu + E · xu − |u|p−1u − iau
)
udx

=
{

Rn

(|∇u|2 + E · x |u|2 − |u|p+1 − ia|u|2) dx .

Since 

. 
d

dt

{

Rn

|u|2dx = 2Re
{

utudx = 2 Im
{

iutudx = −2a
{

Rn

|u|2dx,

we obtain the o.d.e. 

. 
d

dt
||u(t)||2L2 = −2a||u(t)||2L2 , ||u(0)||L2 = ||u0||L2 ,

whose solution yields (2.1).
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Similarly, Eqs. (2.2) and (2.3) follow from a direct calculation, and Eq. (2.4) 
follows via solving the Cauchy problem 

.
d

dt
P(u) = −EM(u0) − 2aP(u), P(u(0)) = P(u0).

□

Remark 2.3 If the system is damping-free, i.e..a = 0, then the quantities.M(u) and 
.EV (u) are conserved. Also, from (2.1)–(2.4), it seems that the Stark potential affects 
the dynamics of all but.M(u). Indeed, Eq. (2.1) also holds when.E = 0 (which will be 
used in the proof of Theorem 1.1 later). Moreover, Eq. (2.1) indicates the nonexistence 
of solitary waves of the form.u(t, x) = eitφ(x), for otherwise.||u(t)||L2 = ||φ||L2 does 
not decay in time. 

The following theorem is the main result in [ 12], and it will be applied in the proof 
of Theorem 1.1. 

Theorem 2.4 (Darwich [ 12]) Let .p = 1 + 4
n and .u0 ∈ H 1(Rn), .n = 1, 2, 3, 4. 

(a) If .||u0||L2 ≤ ||Q||L2 , then the solution to Eq. (1.10) is global in .H 1. 
(b) There exists a .δ0 > 0 such that, for all .a > 0 and .δ ∈ (0, δ0), there exists a 

.u0 ∈ H 1 with .||u0||L2 = ||Q||L2 + δ, such that the solution to Eq. (1.10) blows 
up in finite time in the log-log regime (1.9). 

The proof of Theorem 2.4 is a modification of the approach in [ 27] to [  30]. The 
initial ansatz for the profile near .t → T ∗ is given as 

. ϕ(t, x) = eiθ(t)

λ(t)d/2

(
Qb(t) + η

)
(t,

x − y(t)

λ(t)
)

for some geometrical parameters. (b, λ, y, θ)=(b(t), λ(t), y(t), θ(t)) ∈ R+ × R+ ×
R

n × R with .λ(t) ∼ 1/ ||∇u(t)||2. These profiles .Qb are regularization of the self-
similar solutions of (1.3) that obeys the elliptic equation 

. ΔQb + ib
(n
2

+ x · ∇
)
Qb + |Qb| 4

n Qb = Qb .

Thus.Qb are resultantly suitable deformation of.Q up to some degeneracy of the prob-
lem (1.7). The geometrical parameters here are uniquely defined per some orthogo-
nality conditions in the Spectral Property [ 28, p. 164], or [ 4, 41]. 

Remark 2.5 The limit on the dimension .n ≤ 4 is required in an interpolation 
inequality in the proof of [ 12, Lemma 6.2], see also similar proof for [ 13, Lemma 
4.2]. 

Remark 2.6 The Spectral Property has not been analytically verified for all dimen-
sions. In one dimension it was proved by Merle and Raphaël [ 28] using the explicit
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expression of .Q to (1.7). The recent progress in higher dimensions is attributed to 
[ 18], and [ 41], where is given an improved numerically-assisted proof for . n ≤ 10
and also for .n = 11, 12 in the radial case. See also the discussions on the rotational 
NLS in [ 4, 5], where the spectral property is required. 

Remark 2.7 It is known in the literature that that nonlinear damping arrests blow-
up, while linear damping can arrest blow-up only when the parameter. a is larger than 
a threshold value .athreshold [ 3, 16]. At first glimpse one might think that the result 
in Theorem 2.4 should be valid for a finite range of . a dependent on . u0. However, 
a close read of, e.g., Remark 4.5 suggests that even for large damping value of . a, 
the solution.u(t) can blow up in very short time before the mass going below.||Q||22. 
On the other hand, when .a = 0 and .||u0||2 = ||Q||2, it is easy to construct for the 
undamped NLS with Stark effect a pseudo-conformal type blow-up solution with 
blow-up rate .(T − t)−1 for any prescribed .T > 0. Also, we can construct a global 
solution that has blow-up at infinite time. Nevertheless, when.a > 0, the dNLS (1.1) 
no longer admits similar blow-up solutions, even though the converted nonlinearity 
.−e−at (p−1)|ϕ|p−1ϕ ≈ −|ϕ|p−1ϕ for shorter time under the transform.u = e−atϕ. We  
see here again that even in very short time the role of damping .−iau in arresting 
blow-up is crucial and can be exceptionally subtle. 

For the proof of Theorem 1.2 we need the analogous result in [ 14], where some 
blow-up conditions for (1.10) were obtained. Let.J (t) := { |x |2|ϕ|2 be the variance. 
In the .L2-critical regime .p = 1 + 4

n , the virial identity for the free NLS (1.3) reads 

.
d2

dt2 J (t) = 8E0(u0), which can be used to show that.u0 |→ u(t) is a blow-up solution 
of (1.3) if .E0(u0) < 0. This result was extended for the dNLS (2.5) in the absence of 
.VE in [ 14, Theorem 1.2] 

.iϕt = −Δϕ − |ϕ|4/nϕ − iaϕ, ϕ(0) = ϕ0 . (2.5) 

The proof is based on a localized virial identity for the dNLS. Denote . ∑ := H 1 ∩
{u ∈ L2 : { |x |2|u|2 < ∞}. 
Theorem 2.8 (Dinh [ 14]) Let .p = 1 + 4/n, .n ≥ 1. Suppose .u0 ∈ ∑ and . E0(ϕ0) <

0. Then, there exists a positive .a∗ = a∗(||u0||H 1) such that for all .a ∈ (0, a∗), the  
corresponding solution.u(t) of (2.5) in.C([0, T ∗),∑) blows up finite time on.[0, T ∗). 

The proof of Theorem 1.2 is based on a simple application of the Avron-Herbst 
formula (3.2) and Theorem 2.8. The  .A-.H transform allows us to convert solutions 
.u(t) of (1.1) into solutions . ϕ of (2.5). We leave the proof as an easy exercise for the 
reader.
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3 Avron-Herbst Formula and Proof of Theorem 1.1 

First we introduce the Avron-Herbst formula, as is well-known [ 2, 8, 11]. 

Proposition 3.1 Let .T ∈ (0,∞]. If  . ϕ is the solution to the Cauchy problem (1.10) 
on .[0, T ), then for .E ∈ R

n \ {0}, the function 

.u(t, x) := ϕ
(
t, x + t2E

)
e
−i

(
t E ·x+ |E |2 t3

3

)

(3.1) 

is the solution to the Cauchy problem (1.1) on .[0, T ). 
Conversely, if . u is the solution to the Cauchy problem (1.1) on .[0, T ), then the 

function 

.ϕ(t, x) := u
(
t, x − t2E

)
e
i
(
t E ·x− 2|E |2 t3

3

)

(3.2) 

is the solution to the Cauchy problem (1.10) on .[0, T ). 

Proof Both can be verified by direct computation. For example, to verify that . u in 
(3.1) solves the problem (1.1), obviously we have .u(0) = ϕ(0) = u0, and 

. ut (t, x) = [
ϕt

(
t, x + t2E

) + 2t E · ∇ϕ
(
t, x + t2E

)]
e
−i

(
t E ·x+ |E |2 t3

3

)

+ ϕ
(
t, x + t2E

)
e
−i

(
t E ·x+ |E |2 t3

3

) [−i
(
E · x + |E |2t2)]

= [
ϕt

(
t, x + t2E

) + 2t E · ∇ϕ
(
t, x + t2E

) − i E · xϕ (
t, x + t2E

)

−i |E |2t2ϕ (
t, x + t2E

)]
e
−i

(
t E ·x+ |E |2 t3

3

)

and 

. Δu(t, x) = Δ
[
ϕ

(
t, x + t2E

)]
e
−i

(
t E ·x+ |E |2 t3

3

)

+ 2∇ [
ϕ

(
t, x + t2E

)] · ∇
⎡

⎣e
−i

(
t E ·x+ |E |2 t3

3

)⎤

⎦

+ ϕ
(
t, x + t2E

)
Δ

⎡

⎣e
−i

(
t E ·x+ |E |2 t3

3

)⎤

⎦

= [
Δϕ

(
t, x + t2E

) − 2i t E · ∇ϕ
(
t, x + t2E

) − t2|E |2ϕ (
t, x + t2E

)]
e
−i

(
t E ·x+ |E |2 t3

3

)

.

Then Eq. (1.1) holds if we bring . u, . ut , and .Δu into both sides and use Eq. (1.10) 
for . ϕ. □

Now we prove Theorem 1.1 using the Avron-Herbst transform (3.1)–(3.2). 

Proof of Theorem 1.1 To prove (a), note that if .||u0||L2 ≤ ||Q||L2 , then according 
to Theorem 2.4, there exists a global solution . ϕ to the Cauchy problem (1.10) with
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.ϕ(0) = u0. Applying formula (3.1) to. ϕ, we obtain a global solution. u to the problem 
(1.1). 

To prove (b), let.α0 := δ0 in Theorem 2.4. Then for each.α ∈ (0, α0), there exists an 
initial value.||u0||L2 = ||Q||L2 + α with which the solution. ϕ to the Cauchy problem 
(1.10) blows up in finite time.T ∗ at the log-log speed (1.9). Then we obtain. u in terms 
of . ϕ on .[0, T ∗) through formula (3.1), and .[0, T ∗) is the maximal time interval for 
. u because otherwise we can use formula (3.2) to extend . ϕ beyond .T ∗. To show that 
. u blows up in the log-log regime, we have 

. ∇u(t, x) = ∇ϕ
(
t, x + t2E

)
e
−i

(
t E ·x+ |E |2 t3

3

)

+ ϕ
(
t, x + t2E

)
e
−i

(
t E ·x+ |E |2 t3

3

)

(−i t E)

=: I + II.

It is easy to see that 

. ||I||L2 = ||∇ϕ(t)||L2 ≈
(
log | log(T ∗ − t)|

T ∗ − t

) 1
2

as t → T ∗.

Also, by the identiy (2.1) (and Remark 2.3), we have 

. ||II||L2 = t |E | ||ϕ (t)||L2 = te−at |E | ||u0||L2 ,

which is a bounded function on.[0,∞)with maximum occurring at.t = 1
a . Combining 

both estimates, we have 

.||∇u(t)||L2 ≈ ||I||L2 + ||II||L2 ≈
(
log | log(T ∗ − t)|

T ∗ − t

) 1
2

as t → T ∗.

□

Remark 3.2 We have noted in the introduction section that, in the presence of 
damping, Theorem 1.1 (a) indicates that there always exists a global solution of 
(1.1) when .||u0||2 = ||Q||2. Indeed, we will give another proof of this property in 
the next section as a corollary of a limiting profile result (Theorem 4.3), which 
basically says that the mass of a blowup solution will concentrate and will be no less 
than .||Q||2. This, together with the mass decay (2.1), will explain why there are no 
blow-up solutions at the level .||Q||2, see Corollary 4.4. 

4 A Limiting Profile Result for Eq. (1.1) 

In this section, we will first prove a limiting profile result about the mass concentration 
of blow-up solutions of Eq. (1.1) in Theorem 4.3, and then give an alternative proof of 
Theorem 1.1 (a) for all dimensions. Throughout this section, we assume.p = 1 + 4

n .
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In [ 22], Hmidi and Keraani proved a refined version of compactness lemma 
adapted to the analysis of the blow-up phenomenon for the Cauchy problem (1.3) in  
the .L2-critical case. Their result is as follows. 

Theorem 4.1 ([ 22]) Let .{vk} be a bounded sequence in .H 1(Rn) such that 

. lim sup
k→∞

||∇vk||L2 ≤ M (4.1) 

and 

. lim sup
k→∞

||vk||L2+ 4
n

≥ m. (4.2) 

Then there exists a sequence .{xk} ⊆ R
n such that (up to a subsequence) 

. vk(· + xk) ⇀ V and ||V ||L2 ≥
(

n

n + 2

) n
4 m

n
2 +1 + 1

M
n
2

||Q||L2 .

We will also use the following lemma from [ 31]. 

Lemma 4.2 ([31]) Let .T ∈ (0,∞), and assume that . f : [0, T ) → R
+ is a contin-

uous function. If . lim
t→T

f (t) = ∞, then there exists a sequence .{tk} in .⊆ [0, T ) such 

that 

. tk → T and

{ tk

0
f (τ ) dτ

f (tk)
→ 0 as k → ∞.

Now we present the main result in this section. 

Theorem 4.3 (Concentration of mass) Consider the Cauchy problem (1.1) with 
.p = 1 + 4

n . Suppose that the solution .u of (1.1) blows up at finite time . T ∗ <

∞, i.e. .||∇u(t)||L2 → ∞ as .t → T ∗. Then for any function .w(t) satisfying 
.w(t)||∇u(t)||L2 → ∞ as .t → T ∗, there exists a function .x(t) ∈ R

n such that (up to 
a subsequence) 

. lim inf
t→T ∗ ||u(t)||L2(|x−x(t)|<w(t)) ≥ ||Q||L2 . (4.3) 

Proof Let .G(u) be the r.h.s. of the Eq. (2.2), i.e. 

. G(u) := −2i
{

Rn

E · u∇udx − 2a||∇u(t)||2L2 + 2a||u(t)||2+ 4
n

L2+ 4
n
.

Integrating (2.2) on .[0, t), we have  

.E0(u(t)) = E0(u0) +
{ t

0
G(u(τ ))dτ. (4.4)
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Now we give an estimate of .G(u). By Hölder’s inequality and the mass decay (2.1), 
we have 

. 

||||

{

Rn

E · u∇udx

|||| ≤ ||E · u(t)||L2||∇u(t)||L2

= |E | ||u(t)||L2||∇u(t)||L2 ≤ |E | ||u0||L2||∇u(t)||L2 ,

and by Gagliardo-Nirenberg inequality and (2.1), we have 

. ||u(t)||2+ 4
n

L2+ 4
n

≤ C ||u(t)|| 4
n

L2 ||∇u(t)||2L2 ≤ C ||u0||
4
n

L2 ||∇u(t)||2L2 ,

so 

. |G(u(t))| ≤ 2|E | ||u0||L2||∇u(t)||L2 + 2a ||∇u(t)||2L2 + 2aC ||u0||
4
n

L2 ||∇u(t)||2L2

≾ ||∇u(t)||L2 + ||∇u(t)||2L2 . (4.5) 

Since.||∇u(t)||L2 → ∞ as.t → T ∗, by Lemma 4.2, there exists a sequence. tk → T ∗
such that 

. 

{ tk

0

(||∇u(τ )||L2 + ||∇u(τ )||2L2

)
dτ

||∇u(tk)||L2 + ||∇u(tk)||2L2

→ 0 ,

so by (4.5) we have  

.

{ tk

0
G(u(τ )) dτ

||∇u(tk)||2L2

→ 0. (4.6) 

Let 

. ρ(t) := ||∇Q||L2

||∇u(t)||L2
, v(t, x) := ρ

n
2 u(t, ρx), ρk := ρ(tk), vk(x) := v(tk , x).

Now we check that .{vk} defined above satisfies the assumptions in Theorem 4.1. 
Firstly, by the mass decay (2.1), we have 

. ||vk||L2 = ||u(tk)||L2 ≤ ||u0||L2 ,

showing the boundedness of .{vk}. Secondly, since 

.||∇vk||L2 = ρk||∇u(tk)||L2 = ||∇Q||L2 ,



Damped Nonlinear Schrödinger Equation with Stark Effect 201

we know that inequality (4.1) is satisfied with.M = ||∇Q||L2 . Finally, by (1.5), (4.4), 
and (4.6), we have 

. E0(vk) = ||∇vk||2L2 − n

n + 2
||vk||2+

4
n

L2+ 4
n

= ρ2
k ||∇u(tk)||2L2 − n

n + 2

(
ρ2
k ||u(tk)||2+

4
n

L2+ 4
n

)

= ρ2
k E0(u(tk))

= ρ2
k E0(u0) + ρ2

k

{ tk

0
G(u(τ ))dτ

= ||∇Q||2L2E0(u0)

||∇u(tk)||2L2

+ ||∇Q||2L2

{ tk

0
G(u(τ ))dτ

||∇u(tk)||2L2

→ 0 as k → ∞,

or equivalently, 

. ||vk||2+
4
n

L2+ 4
n

→ n + 2

n
||∇vk||2L2 = n + 2

n
||∇Q||2L2 ,

so inequality (4.2) is also satisfied with .m = (
n+2
n ||∇Q||2L2

) n
2n+4 . Hence by Theo-

rem 4.1, there exists a sequence .{xk} ⊆ R
n such that 

.ρ
n
2
k u(tk, ρk · +xk) ⇀ V (4.7) 

weakly in .H 1, and 

. ||V ||L2 ≥
(

n

n + 2

) n
4 m

n
2 +1 + 1

M
n
2

||Q||L2

=
(

n

n + 2

) n
4

(
n+2
n ||∇Q||2L2

) n
4 + 1

||∇Q|| n
2

L2

||Q||L2 ≥ ||Q||L2 .

By (4.7), for every .R > 0, there is 

. lim inf
k→∞

{

|x |≤R
ρn
k |u(tk, ρk x + xk)|2 dx ≥

{

|x |≤R
|V |2 dx,

or equivalently, 

. lim inf
k→∞

{

|x−xk |≤ρk R
|u(tk, x)|2 dx ≥

{

|x |≤R
|V |2 dx .
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Now let .w(t) be a function satisfying .w(t)||∇u(t)||L2 → ∞ as .t → T ∗. Then 
.
w(tk )
ρk

→ ∞ as .k → ∞, so .
w(tk )
ρk

≥ R for . k large enough. Hence, 

. lim inf
k→∞ sup

y∈Rn

{

|x−y|≤w(tk )
|u(tk, x)|2 dx ≥ lim inf

k→∞ sup
y∈Rn

{

|x−y|≤ρk R
|u(tk, x)|2 dx

≥ lim inf
k→∞

{

|x−xk |≤ρk R
|u(tk, x)|2 dx

≥
{

|x |≤R
|V |2 dx,

and letting .R → ∞, we have  

. lim inf
k→∞ sup

y∈Rn

{

|x−y|≤w(tk )
|u(tk, x)|2 dx ≥

{

Rn

|V |2 dx ≥ ||Q||2L2 .

For every .t ∈ [0, T ∗), the function 

. y |→
{

|x−y|≤w(t)
|u(t, x)|2 dx

is continuous and vanishes as .|y| → ∞, so the supremum is attained at some point 
.x(t) ∈ R

n . Therefore, 

. lim inf
k→∞

{

|x−x(tk )|≤w(tk )
|u(tk , x)|2 dx = lim inf

k→∞ sup
y∈Rn

{

|x−y|≤w(tk )
|u(tk , x)|2 dx ≥ ||Q||2L2 ,

and the proof of Theorem 4.3 is complete. □

Now we give an alternative proof of Theorem 1.1 (a) by virtue of the mass con-
centration property (4.3) in Theorem 4.3. 

Corollary 4.4 Theorem 1.1 (a) holds for all dimensions. 

Proof Since .u0 ∈ H1, according to Proposition 2.1, there exist .0 < T ∗ ≤ ∞ and a 
unique solution .u(t) in .C([0, T ∗),H1). Assume . u blows up at .T ∗ < ∞. Then by 
(4.3) (taking .w(t) ≡ 1), we have (up to a subsequence) 

. lim inf
t→T ∗ ||u(t)||L2(|x−x(t)|<1) ≥ ||Q||L2

for some function .x(t) ∈ R
n . However by (2.1), .||u(t)||L2 decays in . t , so its limit 

inferior will be strictly less than .||Q||L2 , contradictory to the prior inequality. □

Remark 4.5 By Theorem 4.3, if .||u0||L2 > ||Q||L2 and. u blows up at finite time.T ∗, 
then .T ∗ ≤ 1

a log
( ||u0||L2

||Q||L2

)
.



Damped Nonlinear Schrödinger Equation with Stark Effect 203

5 Concluding Remarks 

It is commonly known that, unlike the standard NLS, the damped NLS is non-
hamiltonian, which does not enjoy conservation laws in mass, energy or momentum. 
This can bring in difficulties to the study of singularity formation of dNLS. In this 
article, we consider the linearly damped NLS (1.1) under a (weak) waveguide poten-
tial . V , where.V (x) = E · x represents the Stark effect. In the absence of a potential, 
the existence of blow-up solutions for dNLS has been obtained in e.g. [ 6, 12– 14, 
16]. Our main result, Theorem 1.1, shows the existence of blow-up solutions in the 
.log-.log regime above the ground state level.||Q||2. Furthermore, Theorem 1.2 gives a 
general blow-up criterion for (1.1). These two theorems together suggest that given 
any .u0 in .

{
φ ∈ H1 : ||Q||L2 < ||φ||L2 < ||Q||L2 + α

}
for some .α > 0, there exists 

.a∗ = a∗(||u0||H 1) > 0 such that for all.a ∈ (0, a∗), the solution.u(t) blows up in finite 
time with .log-.log speed. This can be viewed as a remarkable structural stability for 
NLS type systems. Observe that, in view of (2.1), Theorem 1.1 (a), and Corollary 
4.4, the “damping arrests self-focusing” phenomenon occurs in the presence of Stark 
effect too, if one increases the value of .a > 0. 

The advantage of our analysis and transform method is that the work is not over-
whelmed by complex technical details. The line of approach can be applied to treat 
other unbounded perturbations, e.g., a confining harmonic potential. In application, 
the abovementioned results might provide a priori information for observation in 
the lab as well as numerical simulations [ 3, 7, 17, 19]. Following this direction of 
investigation, our work might leave open the question concerning the construction 
of blow-up solutions for a general potential . V . 
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Effect of Electron’s Drift Velocity 
in Nonlinear Ion-Acoustic Solitons 
in a Negative Ion Beam Plasma 

J. Kalita, R. Das, K. Hosseini, E. Hincal, and S. Salahshour 

Abstract In the present paper, the authors have explored the existence of KdV and 
mKdV solitons in a collisionless and unmagnetized plasma model involving positive 
ion and negative ion beams together with thermal electrons. For various selections of 
.Q'(.= mb/mi , negative ion beam to positive ion mass ratio) larger and less than one, 
low amplitude rarefactive and compressive KdV solitons are created in the plasma 
under the effect of the electron’s drift velocity . v'

e. In two intervals of drift velocity 
.v'
e for .0 ≤ v'

e ≤ 26 and.26.5 ≤ v'
e ≤ 28.5 when.Q' is less than one, the existence of 

the mKdV solitons is demonstrated. 
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1 Introduction 

Nonlinear phenomena in different mediums and diverse physical situations have long 
been the subject of inquiry. Over the past three decades, a wide range of acceptable 
approaches has been exerted to extensively explore the nonlinear ion-acoustic soli-
tary waves (NLIASWs) in plasma, both theoretically and empirically. Starting with 
the theoretical studies of [ 1] in a straightforward model of cold plasma, the KdV 
equation has been applied to examine the presence of IASWs in plasma in multi-
component plasmas that incorporate varied physical circumstances. According to 
Watanabe’s [ 2] theoretical work and Ludwig et al. [ 3] experimental observations, 
ion-acoustic solitons (IASs) are formed in a significant part by negative ions. Mod-
ified KdV solitons in plasma including negative ions have been seen by Nakamura 
and Tsukayabashi [ 4]. Negative ion beams have a long history that spans several 
decades, and there are numerous scientific and technological uses for them today, 
ranging from nuclear fusion and industrial applications to sources for accelerators 
and spallation neutron sources [ 5]. Burgess [ 6] has looked at how optical scattering 
methods might be used to determine the .H− concentrations in plasma sources that 
are relevant to the negative ion beam. The observation of the change in the collec-
tive ion characteristic in Thomson scattering in a plasma containing negative ions in 
that experiment offers a more promising possibility. The impact of negative ions in 
the plasma and the excitation of solitary waves and double-layer in the plasma was 
subsequently discussed by various scholars (Watanabe [ 2], Hase et al. [ 7], Tagare 
and Reddy [ 8], Verheest [ 9], and Baboolal et al. [ 10]). Solitons that are compressive 
and rarefactive are seen in a negative-ion plasma. By investigating the effects of the 
electron’s drift motion along the magnetic field’s direction, Kalita et al. [ 11] looked 
into the effect of IASs. The drift velocity’s limiting value is discussed, as well as 
the upper and lower bounds on the existence of solitons with different velocities. 
The existence of modified KdV solitons has only been proven by Kalita and Kalita 
[ 12] for negative to positive ion mass ratios.Q' > 1. In light of the plasma’s electron 
inertia, Khuel and Zhang [ 13] investigated how ion drift affects small amplitude IAS. 
The existence of IASs has been shown to depend on the ion-drift velocity being less 
than the electron thermal velocity. The movement of IASWs in a heated plasma of 
negatively charged ions and its interaction with the drifting motion of electrons were 
explored in [ 14]. For various values of .Q' > 1 or .Q' < 1, it is demonstrated that 
rarefactive and compressive solitons exist depending on the drift velocity . v'

e. It is  
discovered that the compressive soliton for .Q' > 1 and the rarefactive soliton for 
.Q' < 1 but small, are at their highest near .v'

e = 0 when .r < 0.5 demonstrating the 
characteristic change in solitons for the inclusion of . v'

e. The presence of IASs in a 
magnetized ion beam plasma has been explored by Kalita et al. [ 15]. In a heated 
magnetoplasma with the electrons initially drifting in the magnetic field’s direction, 
the study on IASWs by Kalita and Bhatta [ 16] has been completed. They proved 
that the parametric domains contain both compressive and rarefactive solitons. For 
various selections of .v'

e and .Q
', the authors of [ 17] have examined the presence of 

mKdV solitons. In a negative-ion plasma, Chattopadhyaya et al. [ 18] discovered that
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the ions’ drift motion significantly contributes to the stimulation of IASWs and dou-
ble layers. Islam et al. [ 19] have studied IASWs in a magnetized plasma composed 
of non-thermal and isothermal electrons. Sharma et al. [ 20] demonstrated that IAW 
instability can be caused by the passage of an ion beam through a magnetized plasma 
containing negative ions via the Cerenkov type beam-plasma interaction. Rehman 
[ 21] studied the quantum soliton waves, which include cold positive ions, negative 
ions, and Fermi electron gas. He also examined how low-frequency ion-acoustic 
waves spread when negative ions are present in quantum plasma. Using the linear 
kinetic theory, the authors in [ 22] have investigated the impact of negative ions on 
drift ion wave instability in a weakly collisional magnetized plasma. The researchers 
of [ 23] examined the dust IASs with the electron’s drift velocity in an unmagne-
tized plasma using the mkdV equation. They have shown the existence of the mKdV 
solitons in two new drift velocities for .94 ≤ v'

e ≤ 104 and .303.75 ≤ v'
e ≤ 306. In a  

non-magnetized plasma made up of two-temperature electrons that follow a kappa-
type distribution, a positive ion beam, and a positive warm ion fluid, Kaur et al. [ 24] 
looked at the nonlinear propagation of IASWs. The KdV equation was used in a 
plasma system of the ion beam to investigate the influence of magnetically quan-
tized degenerate trapped electron and positron on small amplitude IASWs by Deka 
and Dev [ 25]. They have proven that solitary waves of both compressive and rar-
efactive types exist in this kind of plasma environment. Recently, by adopting the 
method of reductive perturbation, in polarised quantum plasma containing relativistic 
degenerate electrons and positrons, Mohsenpoura et al. [ 26] examined the oblique 
propagation of the ion-acoustic quantum soliton. This equation demonstrated that 
two ion-acoustic modes (slow and fast) exist when a negative ion is present. More 
results are found in [ 27– 36]. The existence of KdV and mKdV solitons is inferred 
using the reductive perturbation method (RPM) in a collisionless and unmagnetized 
plasma model that includes thermal electrons and positive and negative ion beams. 
The RPM is typically used with nonlinear waves of small amplitude [ 37, 38]. In 
order to introduce space and time variables, which are suitable for describing long-
wave length phenomena, this method rescales both space and time in the governing 
equations of the system. 

This study is arranged as follows: The basic equations are provided in the second 
section. The third section represents the construction of KdV and mKdV models. 
The solitary waves are retrieved in the fourth section, and finally, the outcomes are 
analyzed in the fifth section. 

2 Basic Equations of Motion 

In the current analysis, the motion of IAWs in a plasma involving positive ions, 
negative ion beams, and electrons is considered. The one-dimensional collision-free 
plasma equations are:
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For the ions 

.
∂ni
∂t

+ ∂

∂x
(nivi ) = 0 (1) 

.
∂vi

∂t
+ vi

∂vi

∂x
+ ∂φ

∂x
= 0 (2) 

For the negative ion beams 

.
∂nb
∂t

+ ∂

∂x
(nbvb) = 0 (3) 

.
∂vb

∂t
+ vb

∂vb

∂x
= 1

Q'
∂φ

∂x
(4) 

For the electrons 

.
∂ne
∂t

+ ∂

∂x
(neve) = 0 (5) 

.
∂ve

∂t
+ ve

∂ve

∂x
= 1

Q

(∂φ

∂x
− 1

ne

∂ne
∂x

)
(6) 

Poisson equation 

.
∂2φ

∂x2
= ne + α

1 − α
nb − 1

1 − α
ni (7) 

where . i , . b, and . e denote for ions, negative ion beams, and electrons, respectively. 
.Q' = mb/mi , .Q = me/mi and .α = nb0/ni0 represent respectively the ratio of neg-
ative ion beam mass to ion mass, electron mass to ion mass, and ion beam to 
ion density ratio. By normalizing densities to equilibrium plasma density . n0, time 

. t to the ion plasma period .w−1
pi = (

mi/4πn0e2
) 1

2 , distances to the Debye length 

.λD = (
Te/4πn0e2

) 1
2 , velocities to.cs = (

Te/mi
) 1

2 , and potential. φ to.Te/e, the  set of  
Eqs. (1)–(7) is represented in a non-dimensional form. 

3 Derivation of KdV and mKdV Equations 

The stretched variables 
.ξ = ε

1
2 (x −Ut), τ = ε

3
2 t (8) 

are utilized to obtain the KdV equation from (1) to (7). In (8), . ε and .U are respec-
tively the small dimensionless expansion parameter and phase velocity of IAW. The 
derivatives of space and time are thus substituted by
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. 
∂

∂x
= ε

1
2

∂

∂ξ

∂

∂t
= ε

1
2

(
ε

∂

∂τ
−U

∂

∂ξ

)

respectively. We asymptotically expand the flow variables as 

. ni = 1 + εni1 + ε2ni2 + · · ·
nb = 1 + εnb1 + ε2nb2 + · · ·
ne = 1 + εne1 + ε2ne2 + · · ·
vi = εvi1 + ε2vi2 + · · · (9) 

vb = εvb1 + ε2 vb2 +  · · ·  
ve = v'

e + εve1 + ε2 ve2 +  · · ·  
φ = εφ1 + ε2 φ2 +  · · ·  

Using (8) and (9) in (1)–(7) under the conditions .ni1 = ne1 = nb1 = 0, .vi1 = 0, 
.vb1 = 0, .ve1 = v'

e, and .φ1 = 0 at .|ξ | → ∞, we get 

. ni1 = φ1

U2 , ne1 = φ1

1 − Q(U − v'
e)

2 , nb1 = φ1

Q'U2 , vi1 = φ1

U
, ve1 = (U − v'

e)φ1

1 − Q(U − v'
e)

2 ,

vb1 = − 1

Q'U
φ1, ne1 + α

1 − α
nb1 − 1

1 − α
ni1 = 0 (10) 

Owing to the values of.ni1,.ne1, and.nb1 as well as the last equation of (10), we arrive 
at the phase velocity equation as 

.
1

1 − Q(U − v'
e)

2
− α

(1 − α)Q'U 2
− 1

(1 − α)U 2
= 0 (11) 

From the set of .ε2-order equations, the KdV equation can be obtained with the help 
of (10) and (1)-(7) as  

.
∂φ1

∂τ
+ pφ1

∂φ1

∂ξ
+ q

∂3φ1

∂ξ 3
= 0 (12) 

where .p = A

2B
and .q = 1

2B
with 

.A = 3Q(U − v')2 − 1

{1 − Q(U − v'
e)

2}3 − 3α

(1 − α)Q'U 4
+ 3

(1 − α)U 4

B = Q(U − v'
e)

2

{1 − Q(U − v'
e)

2}2 + α

(1 − α)Q'U 3
+ 1

(1 − α)U 3
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We are more concerned with researching the existence of mKdV solitons in plasma 
that is impacted by electron drift velocity; than, we are with proving the existence 
of KdV solitons, which has been extensively researched in the past. As a result, we 
must set .p = 0 in place certain assumptions in order to derive the mKdV equations 
that incorporate higher order nonlinearity in the system (12). This gives 

. αc = X + Z

X + Y

where .X = 3Q(U − v')2 − 1

{1 − Q(U − v'
e)

2}3 , .Y = 3

Q'U 4
and .Z = 3

U 4
. 

The critical density ratio is represented here by the corresponding . αc = nb0/ni0
determined by .p = 0. We focus on finding the mKdV solitons for various values of 
. αc. To acquire the mKdV equation from (1)–(7), we take the new variables 

.ξ = ε(x −Ut), τ = ε3t (13) 

instead of (8). 
Using (13) and (9) in (1)–(7), the mKdV equation can be derived as 

.
∂φ'

1

∂τ
+ p'(φ'

1)
2 ∂φ'

1

∂ξ
+ q ' ∂

3φ'
1

∂ξ 3
= 0, φ'

1 = φ1, (14) 

where .p' = C

4D
and .q ' = 1

2D
with 

. C = 4Q(U − v'
e)

2 − 15Q2(U − v'
e)

4 − 1

{1 − Q(U − v'
e)

2}5 + 15αc

Q3U 6(1 − αc)
+ 15

U 6(1 − αc)

D = Q(U − v'
e)

{1 − Q(U − v'
e)

2}2 + αc

Q'U 3(1 − αc)
+ 1

U 3(1 − αc)

4 Solitary Waves 

With the use of .η = ξ − V τ , the soliton of Eq. (12) can be found as 

.φ1 = 3V

p
sech2

(
1

2

/
V

q
η

)
(15) 

where .V signifies the velocity. The amplitude and the width of the wave are 

.φ0 = 3V

p
, Δ = 2

/
q

V
.
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The soliton of Eq. (14) can be retrieved subject to .φ'
1 = 0 and .∂2φ'

1/∂η2 = 0 as 
.η → ±∞ as 

.φ'
1 =

/
6V

p' sech
(/

V

q ' η
)

(16) 

where .φ'
0 =

/
6V

p' and .Δ' =
/
q '

V
. 

5 Results and Discussion 

It is seen that the drifting influence of the electrons plays a crucial role in the creation 
of KdV or mKdV solitons in the current model containing negative ions in a plasma 
and a negative ion beam. To investigate the characteristics of IASWs for a negative 
ion beam plasma with the impact of electron drift, we create the profile of the solitary 
waves depicted in figures [ 1– 8]. By using the method of reductive perturbation, we 
have presented a study on the existence of KdV soliton and mKdV soliton of small 
amplitude in our plasma model under the impact of electron’s drift velocity .v'

e for 
various selections of.Q' greater or less than one. It is perceived that the KdV soliton’s 
amplitude Fig. 1a increases rapidly at small values of.Q' < 1, and after a certain value 
of .Q' stays nearly constant, reaching its maximum value in each case. With bigger 
. α and higher values of .Q' the saturation value of the amplitude is observed to be 
less. At smaller .Q' and smaller temperature ratio . α, the width Fig. 1b of the  KdV  
soliton rapidly drops. The width, however gradually diminishes as the temperature 

Fig. 1 Compressive KdV soliton’s amplitude .φ0(a) and width .Δ(b) for .v'
s = 40, .V = 0.1, and  

.α = 0.1, 0.15, 0.2 versus.Q' < 1
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Fig. 2 Compressive KdV soliton’s amplitude .φ0(a) and width .Δ(b) for .v'
s = 40, .V = 0.1, and  

.α = 0.1, 0.15, 0.2 versus. Q' > 1

Fig. 3 Compressive KdV soliton’s amplitude .φ0(a) and width .Δ(b) for .α = 0.05 and . V = 0.05
and different values of.Q' < 1 versus the drift velocity. v'

e

ratio increases, reaching a minimum value for higher values of .Q' for a certain 
value of . v'

e. Figure 2a shows that for .v
'
e = 40, .V = 0.1, and .α = 0.1, 0.15, 0.2, the  

amplitude of the KdV soliton decreases with increasing values of .Q' > 1. For  the  
same set of values, the KdV soliton’s width Fig. 2b likewise drops. Furthermore, it 
is vital to point out that the compressive KdV solitons have much higher amplitudes 
at smaller .v'

e Fig. 3a for  .α = 0.05 and .V = 0.05 as well as for various mass ratios 
.Q' = 0.2, 0.4, 0.6. They are seen to be extremely small and tend to zero in. v'

e’s upper 
existence region. Ironically, the widths of KdV solitons demonstrate an ignorable 
difference Fig. 3b for  .Q' = 0.2, 0.4, though they are prominent for . Q' = 0.4, 0.6
It is noteworthy to notice that the growth scenario of the amplitude Fig. 4a and
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Fig. 4 Compressive KdV soliton’s amplitude.φ0(a) and width.Δ(b) for the fixed.Q' < 1,.V = 0.05, 
and different values of. α versus the drift velocity. v'

e

Fig. 5 Compressive KdV soliton’s amplitude.φ0(a) and width.Δ(b) for.v'
e = 3,.V = 0.05, and  and  

different values of.Q' > 1 versus the density ratio. α

width Fig. 4b of KdV solitons are comparable to Fig. 3 for various selections of. The 
amplitude Fig. 5a of the KdV soliton is observed to rise evenly with. α for.V = 0.05, 
and .Q' = 3, 6, 9. Additionally, the KdV soliton’s width Fig. 5b grows linearly. The 
mKdV soliton’s amplitude Fig. 6a grows  as . α rises for a fixed value of .Q' < 1, . V =
0.2, and for various selections of. v'

e. The growth pattern of the width Fig. 6b of mKdV 
soliton is similar to that of the amplitude. The amplitude of mKdV solitons decreases 
very slowly in the lower regime of . v'

e, and then decreases more rapidly in the upper 
regime of .v'

e for .α = 0.01 and .V = 0.15, and .Q' = 0.7, 0.8, 0.9 Fig. 7a. However, 
the widths Fig. 7b of the mKdV soliton are almost constant in the lower regime of. v'

e
and decrease more rapidly in the upper regime of .v'

e for .α = 0.01 and.V = 0.1. For
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Fig. 6 Amplitude.φ'
0(a) and width.Δ'(b) of mKdV solitons for.Q' = 0.25,.V = 0.20, and different 

values of.v'
s versus the density ratio. α

Fig. 7 Amplitude.φ'
0(a) and width.Δ'(b) of mKdV solitons versus.v'

e for.α = 0.01,.V = 0.15, and  
different values of. Q' < 1

.α = 0.02 and.V = 0.2, the amplitude Fig. 8a of mKdV solitons against.v'
e decreases 

rapidly, but linearly for various selections of.Q' = 0.013, 0.014, 0.015. Further, for a 
very tiny range of. v'

e, it is perceived that the corresponding width of the mKdV solitons 
decreases uniformly and then slightly increases parabolically, thereafter decreases in 
a diverging manner higher yet constrained regime of . v'

e. Figure 9 shows the soliton 
solution.φ1 with. η for .α = 0.05(red), .0.10(pink), .0.15(yellow). The investigation of 
nonlinear wave behaviors, mathematical modeling, and the consequences in plasma
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Fig. 8 Amplitude.φ'
0(a) and width.Δ'(b) of mKdV solitons versus.v'

e for.α = 0.02,.V = 0.20, and  
different values of. Q' < 1

Fig. 9 Variation of the 
amplitude for compressive 
KdV solitons with. η for 
.α = 0.05(red), .0.10(pink), 
.0.15(yellow) 

physics is related to the effect of electron drift velocity in nonlinear ion-acoustic 
solitons in a negative ion beam plasma [ 39– 44]. 

6 Conclusion 

The effect of the electron’s drift velocity in a multi-ion plasma system consisting 
positive ions, negative ion beams, and electrons has been discussed in this investiga-
tion. Using the usual reductive perturbation method, the KdV and mKdV equations 
have been obtained. Small amplitude compressive KdV solitons were produced in 
the plasma for various selections of.Q', bigger and less than one, under the influence
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of the electron’s drift velocity . v'
e. It was shown that the mKdV solitons occur in two 

drift velocity .v'
e intervals when .Q' is smaller than one. 
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Darboux Transformation and Exact 
Solution for Novikov Equation 

Hongcai Ma, Xiaoyu Chen, and Aiping Deng 

Abstract In this paper, the lax pair of Novikov equation is given in 3 .× 3 matrices 
form. Based on the spectral problem and the lax pair of Novikov equation, we con-
struct the Darboux transformation and give the theoretical proof. By selecting the 
appropriate seed solution and using the obtained Darboux transformation, we can 
acquire the new exact solution of this equation. Finally, three-dimensional distribu-
tion and density plots of the new solution are shown. Exact solutions are depend on 
the different chosen seed solutions. 

Keywords Novikov equation · Darboux transformation · Lax pair · Exact solution 

1 Introduction 

With the continuous development of science and technology as well as scientific 
research tools, the importance of nonlinear phenomena in nature is gradually increas-
ing [ 1]. Compared with linear phenomena, the nature and structure of nonlinear phe-
nomena are more complex. The solution is the most important step in the study of 
partial differential equations [ 2]. The effective solution methods for linear systems 
are generally not applicable to nonlinear partial differential systems. Some meth-
ods, include inverse scattering transform, Hirota bilinear method, Riemann-Hilbert 
method and the Painlev. é test method are extremely useful method to acquire various 
soliton solutions [ 3– 5]. The Darboux transformation is one of the most important 
approaches to acquire soliton solution for differential equations [ 6– 9]. In this paper, 
we use the Darboux transformation method to study the Novikov equation. 
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The Novikov equation has the following form 

.ut − uxxt + 4u2ux − u2uxxx − 3uuxuxx = 0, (1) 

that is equivalent to 

.mt + u2mx + 3uuxm = 0, m = u − uxx . (2) 

This equation has been discovered by Novikov as a new integrable equation with 
cubic nonlinearities which can be thought as a generalization of the Camassa-Holm 
equation [ 10– 12]. 

For Eq. (2), Adler have searched its B. äcklund transformation [ 13], Wu et al have 
acquired Global weak solutions [ 14], Holliman et al have studied its cauchy problem 
in Sobolev spaces [ 15, 16], Li have obtained a parametric representation for N-soliton 
solutions [ 17], Shi et al have investigated mixed lump-soliton solution [ 18]. 

The structure of the paper is as follows. In Sect. 2, based on the Lax pair, we 
formulate the Darboux transformation matrix of the Novikov equation and give a 
theoretical proof. In Sect. 3, we select the different seed solutions.m = u = 0 and. m =
u = 1, acquire the new exact solutions by the constructed Darboux transformation 
in Sect. 2 and demonstrate three-dimensional distribution plot and their dynamic 
properties. 

2 Lax Pair and Darboux Transformation 

2.1 Lax Pair 

The Eq. (2) has the following 3. ×3 matrix form Lax representation [ 19] 

.Φx = MΦ, Φt = NΦ, Φ =
⎛
⎝

φ1

φ2

φ3

⎞
⎠ , (3) 

with 

.M =
⎛
⎝
0 λm 0
0 0 λm
1 0 0

⎞
⎠ , N =

⎛
⎝
n1 − uux n2 − λmu2 u2x

n3 −2n1 −n2 − λmu2

−u2 n3 n1 + uux

⎞
⎠ , (4) 

where 

.n1 = 1

3λ2
, n2 = ux

λ
, n3 = u

λ
.
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Here. λ is an arbitrary complex number called the spectral parameter, and. φ is called 
the eigenfunction associated with. λ, and.u,m is a potential function of position with 
respect to.x, t which are two independent variables. Equation (2) is equivalent to the 
compatibility condition .Φxt = Φt x , i.e. the zero curvature equation [ 20] 

.Mt − Nx + [M, N ] = 0, (5) 

where .[M, N ] = MN − NM . 

2.2 Darboux Transformation 

Firstly, we introduce a gauge transformation 

.Φ = TΦ. (6) 

It is easy to see that the Lax pair (3) is transformed to 

.Φx = MΦ, M = (Tx + T M)T−1, (7) 

.Φ t = NΦ, N = (Tt + T N )T−1. (8) 

where .T is a Darboux matrix. Our aim now is to find the specific form of .T such 
that .M and .N obtained under transformation (6) have the same forms as .M and . N
respectively. After confirming the specific form of the matrix . T , the original seed 
solution .(u,m) in .M, N is mapped into a new solution .(u,m) in .M, N . 

Without loss of generality, we assume that the Darboux matrix . T in Eq. (6) is of  
form 

. T =
⎛
⎝
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

λN +
N−1∑
i=0

b(i)
11λ

i
N−1∑
i=0

b(i)
12λ

i
N−1∑
i=0

b(i)
13λ

i

N−1∑
i=0

b(i)
21λ

i λN +
N−1∑
i=0

b(i)
22λ

i
N−1∑
i=0

b(i)
23λ

i

N−1∑
i=0

b(i)
31λ

i
N−1∑
i=0

b(i)
32λ

i λN +
N−1∑
i=0

b(i)
11λ

i

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where .b(k)
i j (i, j = 1, 2, 3, k = 1, 2, . . . , N − 1) are functions of .x, t to be deter-

mined, and . b(N−1)
21 = b(N−1)

31 = b(N−1)
32 = 0, b(N−1)

12 = b(N−1)
23 , b(N−1)

11 + b(N−1)
33 =

2b(N−1)
22 (.N ≥ 2). 
Let .ϕ(λ j ),φ(λ j ) and.χ(λ j ) be the three basic solutions of the equation (2) asso-

ciated with .λ j . For the sake of convenience, we introduce
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.

ϕ(λ j ) = (ϕ1(λ j ),ϕ2(λ j ),ϕ3(λ j ))
T ,

φ(λ j ) = (φ1(λ j ),φ2(λ j ),φ3(λ j ))
T ,

χ(λ j ) = (χ1(λ j ),χ2(λ j ),χ3(λ j ))
T .

(9) 

According to the .tr(M) = tr(N ) = 0 and Eq. (6), we get 

.
[det (ϕ,φ,χ)]x = [detT · det (ϕ,φ,χ)]x = 0,

[det (ϕ,φ,χ)]t = [detT · det (ϕ,φ,χ)]t = 0.
(10) 

Let.λ j (λi /= λ j , i /= j;λ j /= 0, j = 1, 2, . . . , 3N ) be roots of the.3N -th order poly-
nomial det. T , these conclusions described above are obtained by direct calculation. 

Thus for .λ = λ j , j = 1, 2, . . . , 3N , there are constants .γ(1)
j , γ(2)

j such that the 
following equation 

. 

⎧⎨
⎩

t11ϕ1 + t12ϕ2 + t13ϕ3 + γ
(1)
j (t11φ1 + t12φ2 + t13φ3) + γ

(2)
j (t11χ1 + t12χ2 + t13χ3) = 0,

t21ϕ1 + t22ϕ2 + t23ϕ3 + γ
(1)
j (t21φ1 + t22φ2 + t23φ3) + γ

(2)
j (t21χ1 + t22χ2 + t23χ3) = 0,

t31ϕ1 + t32ϕ2 + t33ϕ3 + γ
(1)
j (t31φ1 + t32φ2 + t33φ3) + γ

(2)
j (t31χ1 + t32χ2 + t33χ3) = 0.

Also, it can be rewritten in the form of a linear system of equation 

.

⎧⎪⎨
⎪⎩

t11 + σ(1)
j t12 + σ(2)

j t13 = 0,

t21 + σ(1)
j t22 + σ(2)

j t23 = 0,

t31 + σ(1)
j t32 + σ(2)

j t33 = 0,

(11) 

where 

.

σ(1)
j = ϕ2(λ j ) + γ(1)

j φ2(λ j ) + γ(2)
j χ2(λ j )

ϕ1(λ j ) + γ(1)
j φ1(λ j ) + γ(2)

j χ1(λ j )
,

σ(2)
j = ϕ3(λ j ) + γ(1)

j φ3(λ j ) + γ(2)
j χ3(λ j )

ϕ1(λ j ) + γ(1)
j φ1(λ j ) + γ(2)

j χ1(λ j )
.

(12) 

Then, we can obtain the following Riccati equations according to Eqs. (3) and (11), 

.

σ(1)
j x = λm[σ(2)

j − (σ(1)
j )2],

σ(2)
j x = 1 − σ(1)

j σ(2)
j ,

t11x = −σ(1)
j x t12 − σ(1)

j t12x − σ(2)
j x t13 − σ(2)

j t13x ,

t21x = −σ(1)
j x t22 − σ(1)

j t22x − σ(2)
j x t23 − σ(2)

j t23x ,

t31x = −σ(1)
j x t32 − σ(1)

j t32x − σ(2)
j x t33 − σ(2)

j t33x .

(13) 

As a consequent, we have
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Theorem 1. Matrices.M and.N given by Eqs. (7), (8) are respectively have the same 
forms as .M and . N , and relations between the original eigenfunctions .u,m and the 
new gain ones .u,m are 

.

⎧⎪⎨
⎪⎩

m = m + b(N−2)
11 − 2b(N−2)

22 ,

u = u + (m − m)[b(N−1)
33 − b(N−1)

22 ].
(14) 

Equation (6) make up the Darboux transformation of the Eq. (2). Now, we give a 
detailed proof of Theorem 1 with respect to matrix . M . 

Proof. Let 

.(Tx + T M)T ∗ =
⎛
⎝

f11(λ) f12(λ) f13(λ)

f21(λ) f22(λ) f23(λ)

f31(λ) f32(λ) f33(λ)

⎞
⎠ , (15) 

where .T ∗ is the adjoint matrix of . T . We can find that . fsl(λ)(s, l = 1, 2, 3) are both 
.3N or .3N + 1 degree polynomials of . λ. Here, . f12(λ) , . f23(λ) are .3N + 1 degree 
and the rest are .3N degree with respect to . λ. Then . fsl(λ)(s, l = 1, 2, 3) = 0 when 
.λ = λ j , this result is directly calculated by using Eq. (13). 

Since .T−1 = T ∗/detT , Eq. (13) can be written as 

.Tx + T M = P(λ)T =
⎛
⎝

p(0)
11 p(1)

12 λ + p(0)
12 p(0)

13

p(0)
21 p(0)

22 p(1)
23 λ + p(0)

23

p(0)
31 p(0)

32 p(0)
33

⎞
⎠ T, (16) 

where.p(k)
sl (s, l = 1, 2, 3; k = 0, 1) are independent of. λ. Comparing the coefficients 

of .λk, k = N − 1, N , N + 1 at both ends of the Eq. (16), it implies 

.λN+1 : p(1)
12 = p(1)

23 = m, (17) 

with 

.

λN :p(0)
11 = p(0)

13 = p(0)
21 = p(0)

22 = p(0)
32 = p(0)

33 = 0, p(0)
31 = 1,

p(0)
12 = p(0)

23 = b(N−1)
12x + m(b(N−2)

11 − b(N−2)
22 )

b(N−1)
22

,

(18) 

and
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. 

λN−1 :b(N−1)
11x + b(N−1)

13 = p(0)
12 b

(N−1)
21 + mb(N−2)

21 ,

b(N−1)
21x + b(N−1)

23 = mb(N−2)
31 + p(0)

23 b
(N−1)
31 ,

b(N−1)
31x + b(N−1)

33 = b(N−1)
11 , b(N−1)

12x + mb(N−2)
11 = mb(N−2)

22 + p(0)
12 b

(N−1)
22 ,

b(N−1)
22x + mb(N−2)

21 = mb(N−2)
32 + p(0)

23 b
(N−1)
32 , b(N−1)

32x + mb(N−2)
31 = b(N−1)

12 ,

b(N−1)
13x + mb(N−2)

12 = mb(N−2)
23 + p(0)

12 b
(N−1)
23 ,

b(N−1)
23x + mb(N−2)

22 = mb(N−2)
33 + p(0)

23 b
(N−2)
33 , b(N−1)

33x + mb(N−2)
32 = b(N−1)

12 .

Combining Eqs. (2.2) , (14), it is not difficult to acquire .P(λ) = M . 
Here, coefficients.b(k)

i j (i, j = 1, 2, 3, k = 1, 2, . . . , N − 1) can solved by Cramer 

rule in linear system (11). We can also prove .N has the same form as .N by similar 
steps. 

3 New Exact Solution and Dynamical Properties 

As we all known before, different seed solutions of the same equation will yield 
different exact solutions after Darboux transformation. 

3.1 Seed Solution . m = u = 0

Choose seed solution.m = u = 0 and solve the Eq. (4) for.λ = λ j , j = 1, 2, . . . , 3N , 
we deduce that 

.Φ(λ j ) =
⎛
⎝

φ1(λ j )

φ2(λ j )

φ3(λ j )

⎞
⎠ =

⎛
⎝

c1 + k1eρ1(λ j )t

c2 + k2eρ2(λ j )t

c1x + k3eρ3(λ j )t

⎞
⎠ , (19) 

where .c j and .k j , j = 1, 2, 3 are arbitrary constants but .c1 /= 0 and 

.ρ1 = ρ3 = 1

3λ2
, ρ2 = − 2

3λ2
. (20) 

According to Eqs. (11) and (14), we find 

.m = b(N−2)
11 − b(N−2)

22 , u = [b(N−2)
11 − b(N−2)

22 ][b(N−1)
33 − b(N−1)

22 ], (21) 

and 

.b(N−2)
11 = Δ1

Δ
, b(N−2)

22 = Δ2

Δ
, b(N−1)

33 = Δ33

Δ
, b(N−1)

22 = Δ22

Δ
, (22)
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where .Δ,Δk are the determinant of the .3N × 3N coefficient matrix of the linear 
system (11), i.e. 

. 

Δ =

|||||||||||||

1 λ1 · · · λN−1
1 σ(1)

1 σ(1)
1 λ1 · · · σ(1)

1 λN−1
1 σ(2)

1 σ(2)
1 λ1 · · · σ(2)

1 λN−1
1

1 λ2 · · · λN−1
2 σ

(1)
2 σ

(1)
2 λ2 · · · σ

(1)
2 λN−1

2 σ
(2)
2 σ

(2)
2 λ2 · · · σ

(2)
2 λN−1

2· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 λ j · · · λN−1

j σ
(1)
j σ

(1)
j λ j · · · σ

(1)
j λN−1

j σ
(2)
j σ

(2)
j λ j · · · σ

(2)
j λN−1

j
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 λ3N · · · λN−1

3N σ
(1)
3N σ

(1)
3Nλ3N · · · σ

(1)
3NλN−1

3N σ
(2)
3N σ

(2)
3Nλ1 · · · σ

(2)
3NλN−1

3N

|||||||||||||

,

Δ1 =

|||||||||||||

1 · · · −λN
1 λN−1

1 σ
(1)
1 σ

(1)
1 λ1 · · · σ

(1)
1 λN−1

1 σ
(2)
1 σ

(2)
1 λ1 · · · σ

(2)
1 λN−1

1

1 · · · −λN
2 λN−1

2 σ
(1)
2 σ

(1)
2 λ2 · · · σ

(1)
2 λN−1

2 σ
(2)
2 σ

(2)
2 λ2 · · · σ

(2)
2 λN−1

2· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · −λN

j λN−1
j σ

(1)
j σ

(1)
j λ j · · · σ

(1)
j λN−1

j σ
(2)
j σ

(2)
j λ j · · · σ

(2)
j λN−1

j
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · −λN

3N λN−1
3N σ(1)

3N σ(1)
3Nλ3N · · · σ(1)

3NλN−1
3N σ(2)

3N σ(2)
3Nλ1 · · · σ(2)

3NλN−1
3N

|||||||||||||

,

Δ2 =

|||||||||||||

1 · · · λN−1
1 σ

(1)
1 σ

(1)
1 λ1 · · · −σ

(1)
1 λN

1 σ
(1)
1 λN−1

1 σ
(2)
1 σ

(2)
1 λ1 · · · σ

(2)
1 λN−1

1

1 · · · λN−1
2 σ(1)

2 σ(1)
2 λ2 · · · −σ(1)

2 λN
2 σ(1)

2 λN−1
2 σ(2)

2 σ(2)
2 λ2 · · · σ(2)

2 λN−1
2· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 · · · λN−1
j σ(1)

j σ(1)
j λ j · · · −σ(1)

j λN
j σ(1)

j λN−1
j σ(2)

j σ(2)
j λ j · · · σ(2)

j λN−1
j

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · λN−1

3N σ
(1)
3N σ

(1)
3Nλ3N · · · −σ

(1)
3NλN

3N σ
(1)
3NλN−1

3N σ
(2)
3N σ

(2)
3Nλ1 · · · σ

(2)
3NλN−1

3N

|||||||||||||

,

Δ33 =

|||||||||||||

1 λ1 · · · λN−1
1 σ

(1)
1 σ

(1)
1 λ1 · · · σ

(1)
1 λN−1

1 σ
(2)
1 σ

(2)
1 λ1 · · · −σ

(2)
1 λN

1

1 λ2 · · · λN−1
2 σ(1)

2 σ(1)
2 λ2 · · · σ(1)

2 λN−1
2 σ(2)

2 σ(2)
2 λ2 · · · −σ(2)

2 λN
2· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 λ j · · · λN−1
j σ(1)

j σ(1)
j λ j · · · σ(1)

j λN−1
j σ(2)

j σ(2)
j λ j · · · −σ(2)

j λN
j

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 λ3N · · · λN−1

3N σ
(1)
3N σ

(1)
3Nλ3N · · · σ

(1)
3NλN−1

3N σ
(2)
3N σ

(2)
3Nλ1 · · · −σ

(2)
3NλN

3N

|||||||||||||

,

. Δ22 =

|||||||||||||

1 λ1 · · · λN−1
1 σ(1)

1 σ(1)
1 λ1 · · · −σ(1)

1 λN
1 σ(2)

1 σ(2)
1 λ1 · · · σ(2)

1 λN−1
1

1 λ2 · · · λN−1
2 σ(1)

2 σ(1)
2 λ2 · · · −σ(1)

2 λN
2 σ(2)

2 σ(2)
2 λ2 · · · σ(2)

2 λN−1
2· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 λ j · · · λN−1
j σ(1)

j σ(1)
j λ j · · · −σ(1)

j λN
j σ(2)

j σ(2)
j λ j · · · σ(2)

j λN−1
j

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 λ3N · · · λN−1

3N σ(1)
3N σ(1)

3Nλ3N · · · −σ(1)
3NλN

3N σ(2)
3N σ(2)

3Nλ1 · · · σ(2)
3NλN−1

3N

|||||||||||||

.

For .N = 1, we have similar results 

.m = b11 − 2b22, u = (b11 − 2b22)(b22 − b33), (23)
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and 

.b11 = Δ11

Δ
, b22 = Δ22

Δ
, b33 = Δ33

Δ
, (24) 

where 

.

Δ =
||||||
1 σ(1)

1 σ(2)
1

1 σ(1)
2 σ(2)

2

1 σ(1)
3 σ(2)

3

||||||
, Δ11 =

||||||
−λ1 σ(1)

1 σ(2)
1

−λ2 σ(1)
2 σ(2)

2

−λ3 σ(1)
3 σ(2)

3

||||||
,

Δ22 =
||||||
1 −σ(1)

1 λ1 σ(2)
1

1 −σ(1)
2 λ2 σ(2)

2

1 −σ(1)
3 λ3 σ(2)

3

||||||
, Δ33 =

||||||
1 σ(1)

1 −σ(2)
1 λ1

1 σ(1)
2 −σ(2)

2 λ2

1 σ(1)
3 −σ(2)

3 λ3

||||||
.

(25) 

To better analyze the exact solution, we show the three dimensional plots of the 
solution (23) and its density plots in the .x − t − u(m) coordinate in Fig. 1. 

Figure 1 displays the one exact solution .m and . u with seed solution .m = u = 0. 
(a) and (b) shows the peakon solution. m, (c) and (d) shows the peakon solution. u. A  
part of the image of the solution is truncated due to the restriction of the range of . m
and . u. 

3.2 Seed Solution . m = u = 1

Choose seed solution .m = u = 1 and solve the Eq. (4) for  .λ = λ j , j = 1, 2, 3, we  
deduce that 

.Φ(λ j ) =
⎛
⎝

φ1(λ j )

φ2(λ j )

φ3(λ j )

⎞
⎠ =

⎛
⎝

τeρ(λ j )x+ki (λ j )t

τc1(λ j )eρ(λ j )x+ki (λ j )t

τc2(λ j )eρ(λ j )x+ki (λ j )t

⎞
⎠ , i = 1, 2, 3, (26) 

where . τ is arbitrary constants and 

.c1 = λ− 1
3 , c2 = λ− 2

3 , ρ = 2

3
λ (27) 

with 

.

k1 = (−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

18λ3

− 2(18λ6 − 3λ2 + 1)

3λ3(−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

+ 1

3λ2
,
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Fig. 1 Taking the parameters as . λ1 = 1
3 ,λ2 = 1√

3
,λ3 = 1, γ(1)

1 = 0, γ(2)
1 = √

3, γ(1)
2 =

−√
3, γ(2)

2 = 0, γ(1)
3 = 1 + √

3, γ(2)
3 = 1 − √

3

.

k2 = (−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

36λ3

+ 18λ6 − 3λ2 + 1

3λ3(−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

+ i
√
3

(−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

36λ3

+ i(18λ6 − 3λ2 + 1)

3λ3(−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

+ 1

3λ2
,
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. 

k3 = − (−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

36λ3

+ 18λ6 − 3λ2 + 1

3λ3(−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

− i
√
3

(−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

36λ3

− i(18λ6 − 3λ2 + 1)

3λ3(−2916λ9 + 108λ3 + 12
√
3

√
3402λ10 − 1296λ8 + 135λ6 + 54λ4 − 9λ2 + 4 − 108λ)

1
3

+ 1

3λ2
.

For the simple case .(N = 1), we can obtain new exact solutions from. m = u = 1

.m = 1 + b11 − 2b22, u = (1 + b11 − 2b22)(b22 − b33), (28) 

where .bi j , i, j = 1, 2, 3 is defined by Eqs. (24) and (25). 

4 Conclusions 

In this paper, based on a 3 .× 3 matrix spectral problem and the Lax pair of Novikov 
equation, we successfully construct .N -fold Darboux transformation matrix. The 
paper aims to obtain precise solutions with different seed solutions. Results indicated 
that the change of related parameters and seed solutions has a great influence on 
the waveform of the acquired exact solution. By selecting appropriate parameters, 
we acquire the three dimensional plots and density plots of exact solution with 
seed solution .m = u = 0. This solution we found does not appear in the literature 
previously associated with this Eq. (2). Lastly, these soliton solutions deserve further 
study and may have relevance in physics or related disciplines. In the future, we hope 
we can seek the rogue wave solution, breather solution and other forms of solutions 
for Eq. (2) base on the results achieved so far. 
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Construction of Multi-wave Solutions 
of Nonlinear Equations with Variable 
Coefficients Arising in Fluid Mechanics 

Hongcai Ma, Yidan Gao, and Aiping Deng 

Abstract The nonlinear development equations play an important role in describ-
ing natural phenomena, so it is very important to solve the nonlinear development 
equations. In this paper, the (2+1)-dimensional variable coefficient Date-Jimbo-
Kashiwara-Miwa equation, and the variable coefficient shallow water wave equa-
tion are studied by using exp-function method, which can be regarded as a special 
multi-soliton method. The one-wave solution, two-wave solution, three-wave solu-
tion and four-wave solution are solved with the mathematical software Maple, and 
corresponding figures are drawn to better observe the state of the solution. 

Keywords Exp-function method · The (2+1)-dimensional variable coefficient 
Date-Jimbo-Kashiwara-Miwa equation · The (2+1)-dimensional variable 
coefficient shallow water wave equation · Multi-wave solutions 

1 Introduction 

Soliton theory plays an important role in the nonlinear development of science and 
has been applied to almost all natural sciences. Due to their abilities to describe a 
lot of natural phenomena quite accurately, the research on nonlinear equations is 
flourishing. Obtaining exact solutions of nonlinear equations has become one of the 
important research. Through the continuous efforts of scholars, there have been many 
methods to attain the exact solutions of nonlinear equations: homogeneous balance 
method [ 1], sine-cosine method [ 2], jacobi elliptic function [ 3], mapping method [ 4], 
extend F-expansion method [ 5], etc. 
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In this article, we are going to solve two equations with time-dependent variables 
by using the exp-function method. This method was first proposed by Ma et al. in 
2010, they applied this method to study the three wave solutions of (3+1)-dimensional 
potential Yu-Toda-Sasa-Fukuyama Equation [ 6]. Exact solutions of many nonlinear 
equations have been solved by using this method [ 7– 11]. The multiple exp-function 
method can be regarded as a generalization of Hirota’s perturbation scheme, so the 
multi-wave solutions are soliton-type. 

In this article, we will use the exp-function method to explore the multi-wave 
solutions of two equations with variable coefficients depending on time. The first 
equation is the (2+1)-dimensional variable coefficient Date-Jimbo-Kashiwara-Miwa 
equation (vcDJKM) [ 12, 13]: 

. uxxxxy + 4uxxyux + 2uxxxuy + 6uxyuxx − αuyyy − 2βg(t)uxxt + h(t)uxxy = 0,
(1) 

where.g(t) and.h(t) are variable coefficients, which depending on time. The variable 
coefficients .g(t) and .h(t) may be caused by the geometrical and physical inho-
mogeneities, such as varying radius, material density, and so on. When . g(t) = 1
and .h(t) = 0, the  Eq. (1) is reduced to the famous (2+1)-dimensional DJKM equa-
tion. Khalid et al. obtained the analytical soliton solutions of (1) [  14]. Adem et al. 
acquired the complexiton solutions of (1) [  15]. Yuan et al. gave N-soliton solutions 
in the Wronskian and Grammian [ 16]. Kang and Xia constructed abundant solutions 
of (1) [  17]. 

The second equation is the (2+1)-dimensional variable coefficients shallow water 
wave equation (vcSWW) [ 18– 20]: 

.uxt + 2α(t)uxuxy + α(t)uyuxx + β(t)uxy + 1

2
ρα(t)uxxxy = 0. (2) 

When.α(t) = −2, β(t) = α, ρ = −1, we obtain the (2+1)-dimensional extended 
shallow water wave equation [ 21]: 

.uxt − 4uxuxy − 2uyuxx + αuxy + uxxxy = 0, (3) 

where famous Korteweg-de Vries equation is obtained by assuming.x = y and. β(t) =
0 in (2) [  22, 23]: 

.uxt − 6uxuxx + uxxxx = 0. (4) 

The (2) is reduced to the (2+1)-dimensional breaking soliton equation [ 24], when 
.α(t) = −2, β(t) = 0, ρ = −1: 

.uxt − 4uxuxy − 2uyuxx + uxxxy = 0. (5) 

This article is arranged as follows: in Sect. 2, we use the exp-function method 
to solve the four types wave solutions of the (2+1)-dimensional vcDJKM equation
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and draw corresponding figures. Similarly, in Sect. 3, we also use exp-function to 
solve four types wave solutions of the (2+1)-dimensional vcSWW equation, and 
draw corresponding figures. In Sect. 4, we make a brief summary of the previous 
research, and put forward some problems for future considerations. 

2 Multi-wave Solutions of the (2+1)-Dimensional vcDJKM 
Equation 

In this part, we will use exp-function method introduced in [ 6] to explore multi-wave 
solutions of the (2+1)-dimensional vcDJKM equation. For each wave solution, we 
take two different sets of parameters and plot corresponding 3D figures, density plots, 
and values of . x or . y for the given parameters. 

2.1 One-Wave Solution 

We take the linear conditions, 

.η1,x = k1η1, η1,y = l1η1, η1,t = −ω1(t)η1, (6) 

with 
.η1 = c1e

k1x+l1 y−ω1(t), (7) 

where .c1 is an arbitrary constant. 
In order to gain one-wave solution of (1), we assume that the form of. p and. q are 

as follows: 
.p = a0 + a1η1, q = b0 + b1η1, (8) 

and the solution is a rational function, 

.u = p

q
, (9) 

where .a0, a1, b0 and .b1 are constants. By applying Eq. (9) into Eq. (1), we obtain 

.a1 = b1(2k1b0 + a0)

b0
, ω1 = −

{
l1(k41 + k21h(t) − l21α)

2βk21g(t)
dt. (10)
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We take the parameter and the wave frequencies determined by (10) into (9), we 
get the one-wave solution of (1): 

.u = a0 + b1(2k1b0+a0)
b0

c1e
k1x+l1 y+

{ l1(k41+k21 h(t)−l21α)

2βk21 g(t)
dt

b0 + b1c1e
k1x+l1 y+

{ l1(k41+k21 h(t)−l21α)

2βk21 g(t)
dt

. (11) 

2.2 Two-Wave Solution 

Similarly, we take the linear conditions, 

.ηi,x = kiηi , ηi,y = liηi , ηi,t = −ωi (t)ηi , (1 ≤ i ≤ 2), (12) 

with 
.ηi = ci e

ki x+li y−ωi (t), (1 ≤ i ≤ 2), (13) 

where .ci .(1 ≤ i ≤ 2) are arbitrary constants. 
In order to gain two-wave solution of (1), we assume that the form of. p and. q are 

as follows: 

.p = 2(k1η1 + k2η2 + a12(k1 + k2)η1η2), q = 1 + η1 + η2 + a12η1η2, (14) 

and 
.u = p

q
, (15) 

where the .a12 is a constant will be determined later. We take (15) into (1), then we 
solve the algebraic system with Maple, and obtain the result 

.a12 = k21k
2
2(k1 − k2)2 + α(k1l2 − k2l1)2

k21k
2
2(k1 + k2)2 + α(k1l2 − k2l1)2

, (16) 

and 

.ω1 = −
{

l1(k41 + k21h(t) − l21α)

2βk21g(t)
dt, ω2 = −

{
l2(k42 + k22h(t) − l22α)

2βk22g(t)
dt. (17) 

Then we gain the two-wave solution of (1) as:  

.u = 2(k1η1 + k2η2 + a12(k1 + k2)η1η2)

1 + η1 + η2 + a12η1η2
, (18) 

where .a12 is determined by (16), and .ω1, ω2 are determined by (17).
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Fig. 1 The two-wave solution of (1) with the parameters as . α = β = c1 = l2 = k1 = g(t) =
1, c2 = l1 = 2, k2 = 3, h(t) = 6. a 3D figure, b density plot at .t = 0 and c density plot at . t = 3

Fig. 2 The two-wave solution of (1) with the parameters as . −α = c1 = l1 = 1, β = c2 = k1 =
2, l2 = −k2 = −3, h(t) = tanh(t), g(t) = 6. a 3D figure, b density plot at .t = 0 and c density 
plot at . t = 3

When taking the parameters as . α = β = c1 = l2 = k1 = g(t) = 1, c2 = l1 =
2, k2 = 3, h(t) = 6, the 3D figure and density plots of (18) are shown in Fig. 1. 
And Fig. 2 shows the 3D figure and density plots of (18) with the parameters as 
.−α = c1 = l1 = 1, β = c2 = k1 = 2, l2 = −k2 = −3, h(t) = tanh(t), g(t) = 6. 

2.3 Three-Wave Solution 

Similarly, we choose the linear conditions, 

.ηi,x = kiηi , ηi,y = liηi , ηi,t = −ωi (t)ηi , (1 ≤ i ≤ 3), (19) 

with 
.ηi = ci e

ki x+li y−ωi (t), (1 ≤ i ≤ 3), (20) 

where .ci .(1 ≤ i ≤ 3) are arbitrary constants.
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In order to describe the three-wave solution of (1), we assume that 

.
p = 2(k1η1 + k2η2 + k3η3 + a12(k1 + k2)η1η2 + a13(k1 + k3)η1η3

+a23(k2 + k3)η2η3 + a12a13a23(k1 + k2 + k3)η1η2η3),
(21) 

and 

.q = 1 + η1 + η2 + η3 + a12η1η2 + a13η1η3 + a23η2η3 + a12a13a23η1η2η3, (22) 

in addition to this, we have three-wave solution, 

.u = p

q
. (23) 

Just like before, we take (23) into (1), then we solve the algebraic system with 
Maple, and we obtain 

.ai j = k2i k
2
j (ki − k j )

2 + α(ki l j − k j li )2

k2i k
2
j (ki + k j )2 + α(ki l j − k j li )2

, (1 ≤ i < j ≤ 3), (24) 

with the wave frequencies 

.ωi = −
{

li (k4i + k2i h(t) − l2i α)

2βk2i g(t)
dt, (1 ≤ i ≤ 3). (25) 

In the form of (24) and (25), it is easy to get three-wave solution to (1). We provide 
two examples where.h(t) and.g(t) go to special functions. We also obtain 3D figures 
and corresponding density maps of the two states of (1) with different parameters. At 
the same time, we also draw the value graph of . x with different values of . y to study 
the trend of . x . Figure 3 shows the pictures of (23) with the parameters as . α = β =

Fig. 3 The pictures of (23) with the parameters as. α = β = c1 = l1 = k1 = k3 = g(t) = 1, c2 =
l2 = c3 = 2, l3 = k2 = 3, h(t) = 6. a 3D figure, b density plot at.t = 0, c the value graph of. x with 
different values of.y
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Fig. 4 The pictures of (23) with the parameters as . α = β = −l1 = k1 = c1 = 1, c2 = l2 = c3 =
−k3 = 2, l3 = k2 = g(t) = 3, h(t) = cos(t). a 3D figure, b density plot at.t = 0, c the value graph 
of. x with different values of. y

c1 = l1 = k1 = k3 = g(t) = 1, c2 = l2 = c3 = 2, l3 = k2 = 3, h(t) = 6. And Fig. 4 
shows the pictures of (23) with the parameters as. α = β = −l1 = k1 = c1 = 1, c2 =
l2 = c3 = −k3 = 2, l3 = k2 = g(t) = 3, h(t) = cos(t). 

2.4 Four-Wave Solution 

Again, we choose the linear conditions, 

.ηi,x = kiηi , ηi,y = liηi , ηi,t = −ωi (t)ηi , (1 ≤ i ≤ 4), (26) 

with 
.ηi = ci e

ki x+li y−ωi (t), (1 ≤ i ≤ 4), (27) 

where .ci .(1 ≤ i ≤ 4) are arbitrary constants. 
Let us try the polynomial form of the four-wave solution, 

. 

p = 2(k1η1 + k2η2 + k3η3 + k4η4 + a12(k1 + k2)η1η2 + a13(k1 + k3)η1η3
+ a14(k1 + k4)η1η4 + a23(k2 + k3)η2η3 + a24(k2 + k4)η2η4 + a34(k3 + k4)η3η4
+ a12a13a23(k1 + k2 + k3)η1η2η3 + a13a14a34(k1 + k3 + k4)η1η3η4
+ a12a14a24(k1 + k2 + k4)η1η2η4 + a23a24a34(k2 + k3 + k4)η2η3η4),

(28) 
and 

.

q = 1 + η1 + η2 + η3 + η4 + a12η1η2 + a13η1η3 + a14η1η4 + a23η2η3
+ a24η2η4 + a34η3η4 + a12a13a23η1η2η3 + a13a14a34η1η3η4
+ a12a14a24η1η2η4 + a23a24a34η2η3η4,

(29)
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Fig. 5 The pictures of (30) with the parameters as . α = β = −l1 = l2 = l4 = k4 = c1 = c3 =
1, c2 = c4 = k2 = −k3 = l3 = 2, k1 = 3, g(t) = 1

t2
, h(t) = sin(t). a 3D figure, b density plot at 

.t = 0, c the value graph of. x with different values of. y

in addition to this, we have four-wave solution, 

.u = p

q
. (30) 

By the multiple exp-function method and using the linear conditions, we acquire 
the solution with Maple, 

.ai j = k2i k
2
j (ki − k j )

2 + α(ki l j − k j li )2

k2i k
2
j (ki + k j )2 + α(ki l j − k j li )2

, (1 ≤ i < j ≤ 4), (31) 

and the wave frequencies, 

.ωi = −
{

li (k4i + k2i h(t) − l2i α)

2βk2i g(t)
dt, (1 ≤ i ≤ 4). (32) 

Two specific solutions of the four-wave solution are plotted in Figs. 5 and 6. In each 
figure, the first plot is three-dimensional diagram, and the other plots demonstrate 
the .y-curves with different .x-values at .t = 0. The results show that when time is 
constant, the peak value of . y increases with the increase of . x . 

3 Multi-wave Solutions of the (2+1)-Dimensional vcSWW 
Equation 

In this part, we will also use exp-function method introduced in [ 6] to study the 
(2+1)-dimensional vcSWW equation. When .ρ = 1, (2) becomes 

.uxt + 2α(t)uxuxy + α(t)uyuxx + β(t)uxy + 1

2
α(t)uxxxy = 0, (33)
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Fig. 6 The pictures of (30) with the parameters as. α = k1 = k3 = c1 = c3 = 1,−β = c2 = c4 =
−k2 = l3 = l4 = g(t) = 2, l1 = −l2 = −3, h(t) = t . a 3D figure, b density plot at .t = 0, c the 
value graph of. x with different values of. y

we call (33) as the new (2+1)-dimensional variable coefficient shallow water wave 
equation (vcsww). 

Next, in this section, we will use the exp-function to explore the multi-wave 
solutions of (33). For each wave solution we also take two different sets of parameters 
and plot corresponding figures. 

3.1 One-Wave Solution 

We obtain the linear conditions, 

.η1,x = k1η1, η1,y = l1η1, η1,t = −ω1(t)η1, (34) 

with 
.η1 = c1e

k1x+l1 y−ω1(t), (35) 

where .c1 is arbitrary constant. 
In order to obtain one-wave solution of (33), we assume that the form of . p and. q

are as follow: 
.p = a0 + a1η1, q = b0 + b1η1, (36) 

and the solution is the rational function, 

.u = p

q
, (37) 

where .a0, a1, b0, and .b1 are constants. By applying Eq. (37) into Eq. (2), we obtain
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.a1 = b1(2k1b0 + a0)

b0
, ω1 =

{
l1α(t)k21

2
+ l1β(t)dt. (38) 

We take the parameter and the wave frequencies determined by (38) into (37), the 
one-wave solution of (33) is  

.u = a0 + b1(2k1b0+a0)
b0

c1e
k1x+l1 y− b1(2k1b0+a0)

b0

b0 + b1c1e
k1x+l1 y− b1(2k1b0+a0)

b0

. (39) 

3.2 Two-Wave Solution 

Similarly, we take the linear conditions, 

.ηi,x = kiηi , ηi,y = liηi , ηi,t = −ωi (t)ηi , (1 ≤ i ≤ 2), (40) 

with 
.ηi = ci e

ki x+li y−ωi (t), (1 ≤ i ≤ 2), (41) 

where .ci .(1 ≤ i ≤ 2) are arbitrary constants. 
In order to gain two-wave solution of (33), we assume that the form of . p and . q

are as follow: 

.p = 2(k1η1 + k2η2 + a12(k1 + k2)η1η2), q = 1 + η1 + η2 + a12η1η2, (42) 

and 
.u = p

q
, (43) 

where the .a12 is constant will be determined later. We take (43) into (33), then we 
solve the algebraic system with Maple, and obtain the result, 

.a12 = (k1 − k2)2

(k1 + k2)2
, (44) 

and 

.ω1 =
{

l1α(t)k21
2

+ l1β(t)dt, ω2 =
{

l2α(t)k22
2

+ l2β(t)dt. (45) 

Then we gain the two-wave solution of (1) as:  

.u = 2(k1η1 + k2η2 + a12(k1 + k2)η1η2)

1 + η1 + η2 + a12η1η2
, (46) 

where .a12 is determined by (44), and .ω1, ω2 is determined by (45).
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Fig. 7 The two-wave solution of (33) with the parameters as . l1 = 2, k1 = 3
4 , l2 = −3, k2 =

7
5 , α(t) = sinh(t), β(t) = 6, c1 = 1, c2 = 1.5. a 3D figure, b density plot at .t = 0 and c density 
plot at . t = 3

Fig. 8 The two-wave solution of (33) with the parameters as. l1 = −3, k1 = −1.5, l2 = −2, k2 =
1.2, α(t) = sin(t), β(t) = cos(t), c1 = 1, c2 = 1.5. a 3D figure, b density plot at.t = 0 and c den-
sity plot at . t = 3

When taking the parameters as . l1 = 2, k1 = 3
4 , l2 = −3, k2 = 7

5 , α(t) =
sinh(t), β(t) = 6, c1 = 1, c2 = 1.5, the 3D figure and density plots of (46) are shown 
in Fig. 7. And Fig. 8 shows the 3D figure and density plots of (46) with the parame-
ters as . l1 = −3, k1 = −1.5, l2 = −2, k2 = 1.2, α(t) = sin(t), β(t) = cos(t), c1 =
1, c2 = 1.5. 

3.3 Three-Wave Solution 

Similarly, we choose the linear conditions, 

.ηi,x = kiηi , ηi,y = liηi , ηi,t = −ωi (t)ηi , (1 ≤ i ≤ 3), (47)
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with 
.ηi = ci e

ki x+li y−ωi (t), (1 ≤ i ≤ 3), (48) 

where .ci .(1 ≤ i ≤ 3) are arbitrary constants. 
In order to describe the three-wave solution of (33), we assume that 

.
p = 2(k1η1 + k2η2 + k3η3 + a12(k1 + k2)η1η2 + a13(k1 + k3)η1η3
+ a23(k2 + k3)η2η3 + a12a13a23(k1 + k2 + k3)η1η2η3),

(49) 

and 

.q = 1 + η1 + η2 + η3 + a12η1η2 + a13η1η3 + a23η2η3 + a12a13a23η1η2η3, (50) 

in addition to this, we have three-wave solution, 

.u = p

q
. (51) 

Just like before, we take (51) into (33), then we solve the algebraic system with 
Maple, and we obtain, 

.ai j = (ki − k j )
2

(ki + k j )2
, (1 ≤ i < j ≤ 3), (52) 

with the wave frequencies, 

.ωi =
{

liα(t)k2i
2

+ liβ(t)dt, (1 ≤ i ≤ 3). (53) 

In the form of (52) and (53), it is easy to get three-wave solution of (33). We 
provide two examples where .α(t) and .β(t) go to special functions. We also obtain 
3D figures and corresponding density maps of the two states of (33) with different 
parameters. At the same time, we also draw the value graph of. x with different values 
of . y to study the trend of . x . Figure 9 shows the pictures of (51) with the parame-
ters as . l1 = − 3

√
2

8 , k1 = 3
4 , l2 = − 3

√
2

4 , k2 = 5, l3 = − 5
6 , k3 = 5

12 , α(t) = 1, β(t) =
4
√
2, c1 = 0.5, c2 = 0.8, c3 = 1.2. And Fig. 10 shows the pictures of (51) with 

the parameters as . l1 = − 5
8 , k1 = 7

4 , l2 = − 3
4 , k2 = − 3

5 , l3 = − 11
6 , k3 = 7

12 , α(t) =
t, β(t) = sin(t), c1 = 0.5, c2 = 0.8, c3 = 1.2.
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Fig. 9 The pictures of (51) with the parameters as . l1 = − 3
√
2

8 , k1 = 3
4 , l2 = − 3

√
2

4 , k2 = 5, l3 =
− 5

6 , k3 = 5
12 , α(t) = 1, β(t) = 4

√
2, c1 = 0.5, c2 = 0.8, c3 = 1.2. a 3D figure, b density plot at 

.t = 0, c the value graph of. x with different values of. y

Fig. 10 The pictures of (51) with the parameters as . l1 = − 5
8 , k1 = 7

4 , l2 = − 3
4 , k2 = − 3

5 , l3 =
− 11

6 , k3 = 7
12 , α(t) = t, β(t) = sin(t), c1 = 0.5, c2 = 0.8, c3 = 1.2. a 3D figure, b density plot 

at .t = 0, c the value graph of. x with different values of. y

3.4 Four-Wave Solution 

Again, we choose the linear conditions, 

.ηi,x = kiηi , ηi,y = liηi , ηi,t = −ωi (t)ηi , (1 ≤ i ≤ 4), (54) 

with 
.ηi = ci e

ki x+li y−ωi (t), (1 ≤ i ≤ 4), (55) 

where .ci .(1 ≤ i ≤ 4) are arbitrary constants. 
Let us try the polynomial form of the four-wave solution,
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. 

p = 2(k1η1 + k2η2 + k3η3 + k4η4 + a12(k1 + k2)η1η2 + a13(k1 + k3)η1η3
+ a14(k1 + k4)η1η4 + a23(k2 + k3)η2η3 + a24(k2 + k4)η2η4 + a34(k3 + k4)η3η4
+ a12a13a23(k1 + k2 + k3)η1η2η3 + a13a14a34(k1 + k3 + k4)η1η3η4
+ a12a14a24(k1 + k2 + k4)η1η2η4 + a23a24a34(k2 + k3 + k4)η2η3η4),

(56) 
and 

.

q = 1 + η1 + η2 + η3 + η4 + a12η1η2 + a13η1η3 + a14η1η4 + a23η2η3
+ a24η2η4 + a34η3η4 + a12a13a23η1η2η3 + a13a14a34η1η3η4
+ a12a14a24η1η2η4 + a23a24a34η2η3η4,

(57) 

in addition to this, we have four-wave solution, 

.u = p

q
. (58) 

By the exp-function method and using the linear conditions, we acquire the solu-
tion with Maple, 

.ai j = (ki − k j )
2

(ki + k j )2
, (1 ≤ i < j ≤ 4), (59) 

with the wave frequencies 

.ωi =
{

liα(t)k2i
2

+ liβ(t)dt, (1 ≤ i ≤ 4). (60) 

Two specific solutions of those four-wave solution are plotted in Figs. 11 and 12. 
In each figure, the first plot is three-dimensional diagram, the second plot is density 
plot, and the third plot exhibits the .x-curves at .t = 0. Figure 11 shows the pictures 

Fig. 11 The pictures of (58) with the parameters as. −l2 = k4 = c2 = c4 = 1, l1 = −k3 = β(t) =
2, k1 = l3 = −l4 = 3, α(t) = 4, k2 = 5, c1 = c3 = 0.8. a 3D figure, b density plot at .t = 0, c the 
value graph of. x with.y = 5 at.t = 0
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Fig. 12 The pictures of (58) with the parameters as . l2 = −k4 = 1,−k1 = −l4 = β(t) = c2 =
c4 = 2, k2 = −l3 = 3, k3 = 4, l1 = 5, c1 = c3 = −0.5, α(t) = sinh(t). a 3D figure, b density plot 
at .t = 0, c the value graph of. x with.y = 5 at. t = 0

of (58) with the parameters as. −l2 = k4 = c2 = c4 = 1, l1 = −k3 = β(t) = 2, k1 =
l3 = −l4 = 3, α(t) = 4, k2 = 5, c1 = c3 = 0.8. And Fig. 12 shows the pictures of 
(58) with the parameters as . l2 = −k4 = 1,−k1 = −l4 = β(t) = c2 = c4 = 2, k2 =
−l3 = 3, k3 = 4, l1 = 5, c1 = c3 = −0.5, α(t) = sinh(t). 

4 Conclusions 

In this paper, we study the (2+1)-dimensional vcDJKM equation and the (2+1)-
dimensional vcsww equation. According to the exp-function method, we obtain the 
one-wave solution, two-wave solution, three-wave solution and four-wave solution of 
the two equations respectively, and we take two sets of different values for the variable 
coefficients to enrich their various states. The results show that both equations have 
multi-wave solution determined by . p and . q. 

The nonlinear equations with variable coefficients can describe the physical lin-
earity more accurately than the general equations, so they have more research value. 
As far as we know, the content of using this method to study variable coefficient 
equation is not very much. Since we have given the forms of . p and . q, the obtained 
solutions are solitonic, so the forms of the solutions are very limited. Therefore, it 
is worth studying the different forms of . p and . q. The solutions obtained here are 
soliton-type, and we can introduce a very powerful formula for soliton solutions in 
[ 25– 34]: 

. f =
∑

μ=0,1

exp(
N∑
j=1

μ jη j +
N∑

1≤i< j≤N

μiμ jθi j ). (61)
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In addition, we only have four types of wave solutions for the two equations, and 
perhaps there are other types of wave solutions for these equations, which we have 
yet to solve. We hope that our conclusions can enrich the literature which study the 
behavior of nonlinear evolution equations. 
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Nonlocal Integrable Equations in Soliton 
Theory 
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Abstract This article is to provide a brief overview of the study of nonlocal inte-
grable equations in soliton theory. The concept of nonlocality is explained, a little 
history of nonlocal dynamics is given, and basic problems of nonlocal differential 
equations are discussed. With the AKNS matrix spectral problems being taken as 
examples, a classification of the corresponding nonlocal integrable NLS equations 
and mKdV equations is presented. The identification of those nonlocal integrable 
equations is made within the zero curvature formulation, where local and nonlo-
cal group reductions of matrix spectral problems are carefully conducted in pairs. 
Illustrative integrable models include six couples of scalar nonlocal integrable NLS 
equations and five couples of scalar nonlocal integrable mKdV equations. 
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1 What About? 

In mathematics, local and nonlocal concepts are balanced, particularly in calculus. 
For a local operator .A acting on functions, it is possible, in principle, to compute 
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neighborhood of a point . x . For a nonlocal operator, this is not possible. In calculus, 
two basic operations are differentiation and integration. The first is local and the 
second is nonlocal. 

In the theory of differential equations, a nonlocal differential equation is a kind 
of mathematical equation that describes the evolution of a system with a nonlocal 
interaction. Unlike local equations, which describe the evolution of a system at a 
specific point in space and time, nonlocal equations take into account the interaction 
of the system with its big environment. The ordinary differential equation (ODE) 
.y' = y is local, but the ODE .y' = y(−t) is nonlocal, since its motion at time . t
depends on two times, . t and .−t . It remains open how to solve such general linear 
nonlocal ODEs, even with constant coefficients. The partial differential equation 
(PDE) .ut = uxx is local, and similarly, the PDE.ut = uxx (−x,−t) is nonlocal. The 
first is the heat equation, a prototypical equation in mathematical physics. The second 
one provides solutions to the linearized Boussinesq equation.utt + uxxxx = 0, which 
describes a vibrating elastic beam; but yet, its well-posedness theory has not been 
established. 

In a nonlinear world, by integrable equations, we mean a kind of nonlinear ODEs 
and PDEs. An integrable ODE is a Hamiltonian equation defined on a.2n-dimensional 
symplectic manifold, which possesses. n independent constants of motion commuting 
under the corresponding Poisson bracket [ 1]. A PDE is called to be integrable, if its 
eigenfunctions of associated linear problems, known as Lax pairs [ 2], provide a com-
plete set of functions in a normed infinite-dimensional vector space of functions, so 
that any solution can be represented by its corresponding generalized Fourier series 
with respect to that set of eigenfunctions. Lax pairs, generating infinitely many con-
servation laws and symmetries, play an essential role in establishing such complete 
integrability. Moreover, by virtue of Lax pairs, the inverse scattering transform is 
often used to solve Cauchy problems of integrable PDEs [ 3]. This method involves 
decomposing the initial wave profile into a set of elementary waves that satisfy a Lax 
pair of linear spectral problems, and then using these waves to construct the solution 
of a Cauchy problem of an integrable PDE. 

In this article, by integrable equations, we mean integerable PDEs. It is known that 
group reductions of Lax pairs lead to constrained integrable equations, not only local 
but also nonlocal. This motivates us to study nonlocal integrable equations, based on 
matrix spectral problems. Primary characteristics of nonlocalities are time reverse, 
space reverse and spacetime reverse utilities [ 4]. By checking invariance of Lax 
pairs under similarity transformations, a certain classification of nonlocal integrable 
equations associated with a given spectral problem can be achieved [ 5]. However, 
nonlocal equations are almost impossible to solve using conventional techniques. 
We just started studying nonlocal PDEs, particularly integrable ones, and many of 
their mathematical theories need to be developed from scratch. 

In what follows, we will provide a little history of nonlocal dynamics and high-
light the study of nonlocal integrable equations. By conducting group reductions 
of the (1+1)-dimensional AKNS matrix spectral problems in pairs, the correspond-
ing nonlocal integrable NLS equations and mKdV equations are constructed and 
classified into six classes and five classes, respectively, three NLS classes of which
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possess a mixed type nonlocality involving all three reflection coordinates. Conclud-
ing remarks are given in the final section. 

2 Little History and Driving Force 

One popular example of nonlocal dynamics is pantograph modeling [ 6], which has 
a long history in pantograph mechanics and pantograph transport [ 7]. Particularly, 
in 1821, the eidograph was invented to improve upon the practical utility of the pan-
tograph [ 8]. In theoretical physics, two-place physics [ 9] is an inspiring example of 
nonlocal theories, which aims to explain the correlated natural phenomena happened 
at two different spaces and/or times [ 10]. 

Furthermore, cryptographic theories, for example, the RSA cryptographic system, 
involve public keys and private keys, applying data mining algorithms, which are 
essentially nonlocal problems [ 11]. The notion of non-locality in quantum mechan-
ics, a property of the universe that is independent of our description of nature, was 
introduced in the context of the EPR controversy on the phenomenon of entangle-
ment between quantum systems [ 12]. Unsupervised machine learning in artificial 
intelligence actually deal with a nonlocal superposition concept as well [ 13]. 

Recently, it has been found that PT symmetric potentials in quantum mechanics 
can guarantee that the energy spectrum is real and that time evolution is unitary 
[ 14]. The importance of nonlocal integrable equations stems from an observation 
that a nonlocal integrable nonlinear Schrödinger equation can be viewed as a linear 
Schrödinger equation, in quantum mechanics, with a PT symmetric nonlocal poten-
tial [ 15]. The classical nonlinear Schrödinger equation describes waves in nonlinear 
dispersive media under the first-order perturbation with respect to wave number, one 
principal application of which is to the propagation of light in nonlinear optical fibers. 
The modified Korteweg-de Vries equation corresponds to the second-order pertur-
bation theory of water waves, waveguides, etc., and it is also generalized to nonlocal 
situations [ 4], being PT symmetric. The study of nonlocal integrable equations [ 16] 
is primarily driven by these two kinds of integrable equations. 

3 What to Do? 

One fundamental problem in mathematical theories of nonlocal differential equations 
is: how can we determine solutions to nonlocal ODEs, for example, to an . nth-order 
nonlocal homogeneous linear ODE: 

. y(n)(t) + c1y
(n−1)(α1t) + · · · + cn−1y

'(αn−1t) + y(−t) = 0, αi = ±1, 1 ≤ i ≤ n − 1,
(1) 

with constant coefficients.ci , 1 ≤ i ≤ n − 1? It is clear, however, that the first-order 
nonlocal equation
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.y' = cy(−t), c = const. /= 0, (2) 

has an elementary function solution: 

. y(t) = cos(ct − π

4
) or sin(−ct − π

4
),

and the second-order nonlocal equation 

.y'' = cy(−t), c = const. /= 0, (3) 

has two linearly independent elementary function solutions: 

. y(t) = sinωt, coshωt, when c = ω2,

and 
. y(t) = cosωt, sinhωt, when c = −ω2.

A more general example is 

.y'' + y'(−t) + y(2t) = 0, (4) 

for which any good idea to solve should be of great importance. Nonlocal ODEs may 
define novel special functions that could have important applications in many areas 
of mathematics and physics. 

A second interesting problem is: what can we say about the well-posedness of 
initial-value and/or boundary-value problems for nonlocal PDEs? For example, how 
about the Cauchy problem for the spacetime reverse heat equation 

.ut = uxx (−x,−t)? (5) 

Does its Cauchy problem have a unique solution? The maximum principle does not 
hold for this nonlocal equation, which is used to show the uniqueness of a solution to 
the Cauchy problem of the local heat equation. Interestingly, this nonlocal problem 
can be solved by separation of variables and Fourier series. The solution to a Cauchy 
problem of this nonlocal equation (5) for .−π ≤ x ≤ π is given by 

.u(x, t) = a0
2

+ √
2

∞∑

n=1

[−an sin(n
2t − π

4
) cos nx + bn cos(n

2t − π

4
) sin nx], (6) 

where .an and .bn are the Fourier coefficients of an initial displacement: 

.an = 1

π

{ π

−π

f (x) cos nx dx, n ≥ 0, bn = 1

π

{ π

−π

f (x) sin nx dx, n ≥ 1.
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There exists the same well-posedness problem for nonlocal integrable equations. It 
is known that the inverse scattering transform has been used to formulate the solution 
to the Cauchy problem for the space reverse integrable nonlinear Schrödinger equa-
tion [ 17], and Dabrboux transformation, the Hirota bilinear method and Riemann-
Hilbert problems are also successfully applied to construction of soliton solutions 
to a few other nonlocal integrable equations (see, e.g., [ 16, 18– 21]). Nevertheless, 
the existence and the uniqueness of solutions to initial value problems and/or bound-
ary value problems still remain open. The questions are even harder to answer for 
mixed type nonlocal integrable nonlinear Schrödinger equations, some paradigmatic 
examples of which are 

.iut = uxx + [uu(x,−t) + u(−x, t)u(−x,−t)]u, (7) 

.iut = uxx ± [uu∗(−x, t) + u(−x,−t)u∗(x,−t)]u, (8) 

and 
.iut = uxx ± [uu∗(−x, t) + u(x,−t)u∗(−x,−t)]u, (9) 

where .u∗ is the complex conjugate of . u (see the next section for details). 
Mathematical theories of nonlocal differential equations provide a powerful tool 

for modeling and analyzing complex physical phenomena and have the potential to 
lead to new discoveries and insights in mathematical physics. Related research is 
ongoing. We are committed to continual innovation to better understand and finally 
know how to solve nonlocal differential equations, including nonlocal integrable 
ones. 

4 Classification Under Pairs of Group Reductions 

We would like to present a classification of nonlolcal integrable NLS equations 
and mKdV equations, associated with the (1+1)-dimensional AKNS matrix spectral 
problems, by taking group reductions in pairs. 

A common general scheme for constructing integrable equations is the zero curva-
ture formulation (see, e.g, [ 22, 23]). Let. u and. λ denote the potential and the spectral 
parameter, respectively. Consider a Lax pair of matrix spectral problems: 

. − iφx = Uφ, −iφt = Vφ, (10) 

where.U = U (u,λ) and.V = V (u,λ) are given spatial and temporal spectral matri-
ces, respectively, and . φ is a matrix eigenfunction. An integrable equation is deter-
mined by the associated zero curvature equation 

.Ut − Vx + i[U, V ] = 0, (11)
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which is the compatibility condition of (10). Let .m, n be two arbitrary natural num-
bers, and assume that 

.u = u(p, q), p = (p jk)1≤ j≤m, 1≤k≤n, q = (qkj )1≤k≤n, 1≤ j≤m . (12) 

For each.r ∈ N and two pairs of arbitrary constants,.α1,α2 and.β1,β2, where. α1 /= α2

and .β1 /= β2, we formulate a pair of spectral matrices as follows: 

.U = λɅ + P(u), Ʌ = diag(α1 Im,α2 In), P =
[
0 p

q 0

]
, (13) 

and 
.V [r ] = λrΩ + Q[r ](u,λ), Ω = diag(β1 Im,β2 In), (14) 

where.Ik is the identity matrix of order. k, and.Q[r ] is traceless and deg.λQ[r ] ≤ r − 1. 
Let.α = α1 − α2,.β = β1 − β2 and.Im,n = diag(Im,−In). Particularly, upon tak-

ing 

.Q[2] = β

α
λP − β

α2
Im,n(P

2 + i Px ), (15) 

the corresponding zero curvature equation gives the matrix integrable NLS equations: 

.pt = − β

α2
i(pxx + 2pqp), qt = β

α2
i(qxx + 2qpq), (16) 

and upon taking 

.Q[3] = β

α
λ2P − β

α2
λIm,n(P

2 + i Px ) − β

α3
(i[P, Px ] + Pxx + 2P3), (17) 

the corresponding zero curvature equation presents the matrix integrable mKdV 
equations: 

.pt = − β

α3
(pxxx + 3pqpx + 3pxqp), qt = − β

α3
i(qxxx + 3qx pq + 3qpqx ). (18) 

For the spatial spectral matrix . U , determined by (13), we can conduct possible 
group reductions generated from using a constant invertible matrix . C of the form: 

.C =
[
C1 0
0 C2

]
, (19) 

where .C1 and .C2 are invertible square matrices of order .m and . n, respectively, and 
Hermitian when the conjugate transpose is involved or symmetric when only the 
transpose is involved. The key is to keep the corresponding zero curvature equation 
to hold after a group reduction.
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For the matrix integrable NLS equations (16), local reductions come with the case 
of replacing . λ: .λ → λ∗. The complex local group reduction is 

.U †(x, t,λ∗) = CU (x, t,λ)C−1, (20) 

and the corresponding local potential reduction reads 

.q(x, t) = C−1
2 p†(x, t)C1. (21) 

Nonlocal reductions come with the cases of replacing . λ: .λ → −λ∗,−λ,λ. The  
reverse-space, reverse-time and reverse-spacetime group reductions are 

.U †(−x, t,−λ∗) = −CU (x, t,λ)C−1, (22) 

.UT (x,−t,−λ) = −CU (x, t,λ)C−1, (23) 

.UT (−x,−t,λ) = CU (x, t,λ)C−1, (24) 

respectively, and the corresponding nonlocal potential reductions read 

.q(x, t) = −C−1
2 p†(−x, t)C1, (25) 

.q(x, t) = −C−1
2 pT (x,−t)C1, (26) 

.q(x, t) = C−1
2 pT (−x,−t)C1. (27) 

For the matrix integrable mKdV equations (18), local reductions are associated 
with the cases of replacing . λ: .λ → λ∗,−λ (see, e.g., [ 24, 25]). The complex and 
real local group reductions are 

.U †(x, t,λ∗) = CU (x, t,λ)C−1, (28) 

.UT (x, t,−λ) = −CU (x, t,λ)C−1, (29) 

and the corresponding local potential reductions read 

.q(x, t) = C−1
2 p†(x, t)C1, (30) 

.q(x, t) = C−1
2 pT (x, t)C1. (31) 

Nonlocal group reductions are associated with the cases of replacing. λ:.λ → −λ∗,λ. 
The complex and real reverse-spacetime group reductions are 

.U †(−x,−t,−λ∗) = −C2U (x, t,λ)C−1, (32)
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.UT (−x,−t,λ) = C2U (x, t,λ)C−1, (33) 

and the corresponding nonlocal potential reductions read 

.q(x, t) = −C−1
2 p†(−x,−t)C1, (34) 

.q(x, t) = C−1
2 pT (−x,−t)C1. (35) 

We will discuss about how to reduce the matrix integrable NLS and mKdV equa-
tions and classify the reduced nonlocal integrable counterparts, by conducting pairs 
of group reductions of the associated matrix spectral problems. 

4.1 Pairs of Group Reductions Yielding Nonlocal Integrabe 
Equations 

Let us conduct a pair of group reductions as follows: 

.U †(x̃, t̃,±λ∗) or UT (x̃, t̃,±λ) = ±∑U (x, t,λ)∑−1, (36) 

and 
.U †(x̃, t̃,±λ∗) or UT (x̃, t̃,±λ) = ±ΔU (x, t,λ)Δ−1, (37) 

where .(x̃, t̃) could be any of the three reflection coordinates, .(−x, t), .(x,−t) and 
.(−x,−t), and 

.∑ =
[

∑1 0

0 ∑2

]
, Δ =

[
Δ1 0

0 Δ2

]
, (38) 

with .∑1,Δ1 and.∑2,Δ2 being invertible square matrices of orders .m and. n, respec-
tively, and Hermitian when the conjugate transpose is involved or symmetric when 
only the transpose is involved (see, e.g., [ 26– 33]). 

For the matrix integrable NLS equations (16), we can have six pairs of group 
reductions, which yield nonlocal integrable NLS equations. Those six pairs of local 
and nonlocal reductions correspond to types (.λ∗,−λ∗), (.λ∗,−λ), (.λ∗,λ), (.−λ∗,−λ), 
(.−λ∗,λ) and (.−λ,λ). All six pairs of group reductions lead to the nonlocal potential 
reductions: 

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q(x, t) = ∑−1
2 p†(x, t)∑1, q(x, t) = −Δ−1

2 p†(−x, t)Δ1,

q(x, t) = ∑−1
2 p†(x, t)∑1, q(x, t) = −Δ−1

2 pT (x,−t)Δ1,

q(x, t) = ∑−1
2 p†(x, t)∑1, q(x, t) = Δ−1

2 pT (−x,−t)Δ1,

q(x, t) = −∑−1
2 p†(−x, t)∑1, q(x, t) = −Δ−1

2 pT (x,−t)Δ1,

q(x, t) = −∑−1
2 p†(−x, t)∑1, q(x, t) = Δ−1

2 pT (−x,−t)Δ1,

q(x, t) = −∑−1
2 pT (x,−t)∑1, q(x, t) = Δ−1

2 pT (−x,−t)Δ1,

(39)
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respectively, and the associated temporal spectral matrices satisfy 

. 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(V [2])†(x, t,λ∗) = ∑V [2](x, t,λ)∑−1, (V [2])†(−x, t,−λ∗) = ΔV [2](x, t,λ)Δ−1,

(V [2])†(x, t,λ∗) = ∑V [2](x, t,λ)∑−1, (V [2])T (x,−t,−λ) = ΔV [2](x, t,λ)Δ−1,

(V [2])†(x, t,λ∗) = ∑V [2](x, t,λ)∑−1, (V [2])T (−x,−t,λ) = ΔV [2](x, t,λ)Δ−1,

(V [2])†(−x, t,−λ∗) = ∑V [2](x, t,λ)∑−1, (V [2])T (x,−t,−λ) = ΔV [2](x, t,λ)Δ−1,

(V [2])†(−x, t,−λ∗) = ∑V [2](x, t,λ)∑−1, (V [2])T (−x,−t,λ) = ΔV [2](x, t,λ)Δ−1,

(V [2])T (x,−t,−λ) = ∑V [2](x, t,λ)∑−1, (V [2])T (−x,−t,λ) = ΔV [2](x, t,λ)Δ−1,

(40) 
respectively, so that the corresponding zero curvature equation holds true under each 
of the six pairs of group reductions. 

For the matrix integrable mKdV equations (18), we have one pair of local group 
reductions, corresponding to type (.λ∗,−λ), which leads to Sasa-Satsuma type equa-
tions [ 34], and five pairs of local and nonlocal group reductions, corresponding to 
types (.λ∗,−λ∗), (.λ∗,λ), (.−λ,−λ∗), (.−λ,λ) and (.−λ∗,λ). All five pairs of local 
and nonlocal group reductions yield the nonlocal potential reductions: 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q(x, t) = ∑−1
2 p†(x, t)∑1, q(x, t) = −Δ−1

2 p†(−x,−t)Δ1,

q(x, t) = ∑−1
2 p†(x, t)∑1, q(x, t) = Δ−1

2 pT (−x,−t)Δ1,

q(x, t) = −∑−1
2 pT (x, t)∑1, q(x, t) = −Δ−1

2 p†(−x,−t)Δ1,

q(x, t) = −∑−1
2 pT (x, t)∑1, q(x, t) = Δ−1

2 pT (−x,−t)Δ1,

q(x, t) = −∑−1
2 p†(−x,−t)∑1, q(x, t) = Δ−1

2 pT (−x,−t)Δ1,

(41) 

respectively, and the associated temporal spectral matrices satisfy 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(V [3])†(x, t,λ∗) = ∑V [3](x, t,λ)∑−1, (V [3])†(−x,−t,−λ∗) = −ΔV [3](x, t,λ)Δ−1,

(V [3])†(x, t,λ∗) = ∑V [3](x, t,λ)∑−1, (V [3])T (−x,−t,λ) = ΔV [3](x, t,λ)Δ−1,

(V [3])T (x, t,−λ) = −∑V [3](x, t,λ)∑−1, (V [3])†(−x,−t,−λ∗) = −ΔV [3](x, t,λ)Δ−1,

(V [3])T (x, t,−λ) = ∑V [3](x, t,λ)∑−1, (V [3])T (−x,−t,λ) = ΔV [3](x, t,λ)Δ−1,

(V [3])†(−x,−t,−λ∗) = −∑V [3](x, t,λ)∑−1, (V [3])T (−x,−t,λ) = ΔV [3](x, t,λ)Δ−1,

(42) 
respectively, so that the corresponding zero curvature equation holds true under each 
of the five pairs of group reductions. 

4.2 Examples in the Case of .m = 1 and . n = 2

Let us set .m = 1 and .n = 2 and consider two choices of pairs of group reductions 
with 

.∑1 = 1, ∑−1
2 =

[
σ 0
0 σ

]
, Δ1 = 1, Δ−1

2 =
[
0 δ
δ 0

]
; (43) 

and 

.∑1 = 1, ∑−1
2 =

[
0 σ
σ 0

]
, Δ1 = 1, Δ−1

2 =
[

δ 0
0 δ

]
, (44)
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where .σ and .δ are real constants satisfying .σ2 = δ2 = 1, i.e., . (σ, δ) =
(1, 1), (1,−1), (−1, 1) or .(−1,−1). 

4.2.1 Reduced Spatial Spectral Matrices 

We point out that if the first choice leads to a reduced spatial spectral matrix 

.U =
⎡

⎣
α1λ p1 f (p1)
g(p1) α2λ 0
h(p1) 0 α2λ

⎤

⎦ , (45) 

then the second choice gives another reduced spatial spectral matrix 

.U =
⎡

⎣
α1λ p1 f (p1)
h(p1) α2λ 0
g(p1) 0 α2λ

⎤

⎦ , (46) 

where the (2,1)th and (3,1)th entries are exchanged with the (3,1)th and (2,1)th entries 
of the previous spatial spectral matrix, respectively. Therefore, we will only list the 
reduced spatial spectral matrices under the first choice (43). 

Considering the matrix integrable NLS equations (16), we have the following six 
reduced spatial spectral matrices. 
(a) Type (. λ∗,.−λ∗): 

.U =
⎡

⎣
α1λ p1 −σδ p1(−x, t)
σ p∗

1 α2λ 0
−δ p∗

1(−x, t) 0 α2λ

⎤

⎦ . (47) 

(b) Type (. λ∗,.−λ): 

.U =
⎡

⎣
α1λ p1 −σδ p∗

1(x,−t)
σ p∗

1 α2λ 0
−δ p1(x,−t) 0 α2λ

⎤

⎦ . (48) 

(c) Type (. λ∗,. λ): 

.U =
⎡

⎣
α1λ p1 σδ p∗

1(−x,−t)
σ p∗

1 α2λ 0
δ p1(−x,−t) 0 α2λ

⎤

⎦ . (49) 

(d) Type (.−λ∗,.−λ):
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.U =
⎡

⎣
α1λ p1 σδ p∗

1(−x,−t)
−σ p∗

1(−x, t) α2λ 0
−δ p1(x,−t) 0 α2λ

⎤

⎦ . (50) 

(e) Type (.−λ∗,. λ): 

.U =
⎡

⎣
α1λ p1 −σδ p∗

1(x,−t)
−σ p∗

1(−x, t) α2λ 0
δ p1(−x,−t) 0 α2λ

⎤

⎦ . (51) 

(f) Type (.−λ,. λ): 

.U =
⎡

⎣
α1λ p1 −σδ p1(−x,−t)

−σ p1(x,−t) α2λ 0
δ p1(−x, t) 0 α2λ

⎤

⎦ . (52) 

Considering the matrix integrable mKdV equations (18), we have the following 
five reduced spatial spectral matrices. 
(a) Type (. λ∗,.−λ∗): 

.U =
⎡

⎣
α1λ p1 −σδ p1(−x,−t)
σ p∗

1 α2λ 0
−δ p∗

1(−x,−t) 0 α2λ

⎤

⎦ . (53) 

(b) Type (. λ∗,. λ): 

.U =
⎡

⎣
α1λ p1 σδ p∗

1(−x,−t)
σ p∗

1 α2λ 0
δ p1(−x,−t) 0 α2λ

⎤

⎦ . (54) 

(c) Type (.−λ,.−λ∗): 

.U =
⎡

⎣
α1λ p1 σδ p∗

1(−x,−t)
−σ p1 α2λ 0

−δ p∗
1(−x,−t) 0 α2λ

⎤

⎦ . (55) 

(d) Type (.−λ,. λ): 

.U =
⎡

⎣
α1λ p1 −σδ p1(−x,−t)

−σ p1 α2λ 0
δ p1(−x,−t) 0 α2λ

⎤

⎦ . (56) 

(e) Type (.−λ∗,. λ):
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.U =
⎡

⎣
α1λ p1 −σδ p∗

1−σ p∗
1(−x,−t) α2λ 0

δ p1(−x,−t) 0 α2λ

⎤

⎦ . (57) 

Note that the reduced spatial spectral matrices of type.(λ∗,λ) in both cases of the 
matrix NLS and mKdV equations are the same. Therefore, the resulting type. (λ∗,λ)

nonlocal integrable NLS equations and mKdV equations come from one integrable 
hierarchy, associated with that reduced spatial spectral matrix. 

4.2.2 Scalar Nonlocal Integrable NLS and mKdV Equations 

The six classes of pairs of local and nonlocal group reductions in two choices generate 
the following six couples of scalar nonlocal integrable NLS equations. 
(a) Type (.λ∗,−λ∗) scalar nonlocal integrable NLS equations are 

.p1,t = − β

α2
i[p1,xx + 2σ(p1 p

∗
1 + p1(−x, t)p∗

1(−x, t))p1], (58) 

.p1,t = − β

α2
i[p1,xx − 2δ(p1 p

∗
1(−x, t) + p∗

1 p1(−x, t))p1]. (59) 

(b) Type (.λ∗,−λ) scalar nonlocal integrable NLS equations are 

.p1,t = − β

α2
i[p1,xx + 2σ(p1 p

∗
1 + p1(x,−t)p∗

1(x,−t))p1], (60) 

.p1,t = − β

α2
i[p1,xx − 2δ(p1 p1(x,−t) + p∗

1 p
∗
1(x,−t))p1]. (61) 

(c) Type (.λ∗,λ) scalar nonlocal integrable NLS equations are 

.p1,t = − β

α2
i[p1,xx + 2σ(p1 p

∗
1 + p1(−x,−t)p∗

1(−x,−t))p1], (62) 

.p1,t = − β

α2
i[p1,xx + 2δ(p1 p1(−x,−t) + p∗

1 p
∗
1(−x,−t))p1]. (63) 

(d) Type (.−λ∗,−λ) scalar nonlocal integrable NLS equations are 

.p1,t = − β

α2
i[p1,xx − 2σ(p1 p

∗
1(−x, t) + p1(x,−t)p∗

1(−x,−t))p1], (64) 

.p1,t = − β

α2
i[p1,xx − 2δ(p1 p1(x,−t) + p∗

1(−x, t)p∗
1(−x,−t))p1]. (65) 

(e) Type (.−λ∗,λ) scalar nonlocal integrable NLS equations are
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.p1,t = − β

α2
i[p1,xx − 2σ(p1 p

∗
1(−x, t) + p1(−x,−t)p∗

1(x,−t))p1], (66) 

.p1,t = − β

α2
i[p1,xx + 2δ(p1 p1(−x,−t) + p∗

1(−x, t)p∗
1(x,−t))p1]. (67) 

(f) Type (.−λ,λ) scalar nonlocal integrable NLS equations are 

.p1,t = − β

α2
i[p1,xx − 2σ(p1 p1(x,−t) + p1(−x, t)p1(−x,−t))p1], (68) 

.p1,t = − β

α2
i[p1,xx + 2δ(p1 p1(−x, t) + p1(x,−t)p1(−x,−t))p1]. (69) 

The last three couples of nonlocal integrable NLS equations have the mixed type 
nonlocality involving all reflection coordinates, .(−x, t), (x,−t) and .(−x,−t), in  
(1+1)-dimensions, which is a completely new phenomenon. 

The five classes of pairs of local and nonlocal group reductions in two choices 
generate the following five couples of scalar nonlocal integrable mKdV equations. 
(a) Type (.λ∗,−λ∗) scalar nonlocal integrable mKdV equations are 

.p1,t = − β

α3
[p1,xxx + 6σ|p1|2 p1,x + 3σ p∗

1(−x,−t)(p1 p1(−x,−t))x ], (70) 

.p1,t = − β

α3
[p1,xxx − 6δ p1 p

∗
1(−x,−t)p1,x − 3δ p∗

1(p1 p1(−x,−t))x ]. (71) 

(b) Type (.λ∗,λ) scalar nonlocal integrable mKdV equations are 

.p1,t = − β

α3
[p1,xxx + 6σ|p1|2 p1,x + 3σ p1(−x,−t)(p1 p

∗
1(−x,−t))x ], (72) 

.p1,t = − β

α3
[p1,xxx + 6δ p1 p1(−x,−t)p1,x + 3δ p∗

1(p1 p
∗
1(−x,−t))x ]. (73) 

(c) Type (.−λ,−λ∗) scalar nonlocal integrable mKdV equations are 

.p1,t = − β

α3
[p1,xxx − 6σ p21 p1,x − 3σ p∗

1(−x,−t)(p1 p
∗
1(−x,−t))x ], (74) 

.p1,t = − β

α3
[p1,xxx − 6δ p1 p

∗
1(−x,−t)p1,x − 3δ p1(p1 p

∗
1(−x,−t))x ]. (75) 

(d) Type (.−λ,λ) scalar nonlocal integrable mKdV equations are 

.p1,t = − β

α3
[p1,xxx − 6σ p21 p1,x − 3σ p1(−x,−t)(p1 p1(−x,−t))x ], (76)
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.p1,t = − β

α3
[p1,xxx + 6δ p1 p1(−x,−t)p1,x + 3δ(p1 p1(−x,−t))x p1]. (77) 

(e) Type (.−λ∗,λ) scalar nonlocal integrable mKdV equations are 

.p1,t = − β

α3
[p1,xxx − 6σ p1 p

∗
1(−x,−t)p1,x − 3σ p1(−x,−t)(|p1|2)x ], (78) 

.p1,t = − β

α3
[p1,xxx + 6δ p1 p1(−x,−t)p1,x + 3δ p∗

1(−x,−t)(|p1|2)x ]. (79) 

All those nonlocal integrable equations of lower orders come from the ten non-
local integrable hierarchies associated with the ten reduced spatial spectral matrices 
generated from the ten pairs of group reductions (see, e.g., [ 26– 33]). They provide 
significant integrable models for analyzing complex physical phenomena that involve 
nonlocal effects and nonlocal interactions, and have the potential to lead to new dis-
coveries and insights in various areas of science and technology, and are an active 
area of research in mathematical physics. 

5 Concluding Remarks 

This article provided a little history of nonlinear dynamics and discussed about prob-
lems of nonlocal differential equations, particularly nonlocal integrable equations, in 
soliton theory. A thorough classification of nonlocal integrable NLS equations and 
mKdV equations, associated with the AKNS matrix spectral problems, was achieved 
via conducting group reductions in pairs. All resulting nonlocal integrable equations 
consist of six classes of NLS equations and five classes of mKdV equations. Three 
classes are mixed-type nonlocal integrable NLS equations, each of which involves 
all three reverse-space, reverse-time and reverse-spacetime nonlocalities. Illustra-
tive examples of scalar nonlocal integrable models were explicitly computed in a 
particular case with four potential components. 

The theory of solitons to nonlocal integrable equations, generated from taking one 
group reduction, has been carefully formulated via Riemann-Hilbert problems very 
recently [ 5]. A large task in nonlocal theories, however, still needs to be done. It is of 
particular importance to explore soliton solutions systematically by combining dif-
ferent approaches, including the Darboux transformation, the Hirota direct method 
and the Wronskian technique (see, e.g., [ 18– 21, 35– 40]). Breathers and algebro-
geometric solutions, being other interesting and important solutions, are worth further 
studies, too. Two-place (or multiple-place) nonlocalities bring difficulty for estab-
lishing global existence of solutions or more generally, the well-posedness theory. 

It should also be an extremely rewarding experience to look for novel nonlocal 
integrable equations, associated with other interesting or significant matrix Lie alge-
bras [ 41]. In the non-semisimple case, group reductions of matrix spectral problems
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yield nonlocal integrable couplings (see, e.g., [ 42]), about which very little is known. 
We just started the job. There is a long way to go. Definitely, we need new ideas, new 
research and new tools that will enable us to address problems on nonlocal differ-
ential equations in mathematics and their applications in physical and engineering 
sciences. 

Overall, nonlocal integrable equations are a fascinating research area in mathe-
matical physics that has led to important mathematical discoveries and continue to 
be a rich source of inspiration for new mathematical research. 
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Multiple Lump and Rogue Wave 
Solutions of a Modified Benjamin-Ono 
Equation 

Solomon Manukure and Yuan Zhou 

Abstract In this chapter, a (2+1)-dimensional modified Benjamin-Ono (MBO) 
equation is introduced. Multiple lump (M-lump) and rogue wave solutions are 
obtained for the equation with the aid of the Hirota bilinear method. The equation 
is first studied in two parts: an integrable and a nonintegrable part. The noninte-
grable part is found to possess 1-lump and line rogue wave solutions whereas the 
integrable part has only 1-lump solutions. Furthermore, the MBO equation is found 
to posses both multiple lump and rogue wave solutions. By fixing parameter values, 
the dynamics of the solutions are studied with 3D and density plots. 

Keywords M-lump solutions · Rogue waves · Hirota bilinear form · Benjamin 
Ono equation 

MSC codes 37K05 · 35Q53 
PACS 02.30.Ik · 04.20.Fy · 05.45.Yv 

1 Introduction 

Nonlinear partial differential equations (NLPDEs) and their solutions play an impor-
tant role in the study of nonlinear interactions between physical processes. Evi-
dently, the search for exact solutions to NLPDEs has, in recent times, become a 
very important exercise in nonlinear science, especially in the area of mathemati-
cal physics. The importance of NLPDEs transcends theoretical boundaries. In areas 
such as physics, engineering, economics, chemistry, biology, finance and many oth-
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ers, NLPDEs have been used to study many practical problems [ 1]. For example, the 
nonlinear Schrödinger equation (NLSE), which possesses solitary wave solutions, 
are used to describe wave propagation in fluids and nonlinear media, such as optical 
fibers [ 2]. 

It is well known that many NLPDEs possess soliton solutions, which have been 
a major focus of research in mathematical physics for many years. Their discov-
ery which dates back to the 19th century has led to many new research areas and 
directions. In addition to solitons, several other solutions such as lump solutions 
have also attracted a lot of attention in recent times. Lump solutions are rational 
function solutions that are analytic and localized in all directions in space [ 3– 5]. 
Like solitons, they also have many important applications such as the description of 
nonlinear patterns in plasma and nonlinear optic media [ 6]. They were first derived 
from multi-soliton solutions of the KPI equation by Mankov et al. [ 7, 8], but have 
recently been observed for many other NLPDEs in higher dimensions such as the 
higher dimensional counterparts and extensions of the BKP equation [ 9, 10], the Ito 
equation [ 11], the Hirota-Satsuma-Ito equation [ 12], the Sawada-Kotera equation 
[ 13], the Davey-Stewartson II equation [ 14], the Ishimori equations [ 15, 16], and the 
Hietarinta equation [ 17, 18]. There are also multiple lump waves which have been 
observed for many equations [ 10, 19, 20]. 

Another interesting class of solutions that have also attracted enormous research 
attention in recent times are rogue waves. These are often lump-type waves [ 21], that 
are localized not only in space but also in time [ 22]. Such waves have been used to 
describe nonlinear wave phenomena in the ocean [ 23, 24] and in nonlinear optics [ 25, 
26] and have also been observed in optical fibers [ 27– 29] and plasma [ 30]. A unique 
feature of rogue waves is that they appear from nowhere and disappear without a trace 
[ 31]. Thus, they arise from constant (or uniform) backgrounds, grow significantly 
in height or amplitude and recede back into the constant background [ 32]. Many 
NLPDEs such as the NLS equation, the Davey-Stewartson equations, the Boussinesq 
equation and many others have been found to possess rogue wave solutions. It is also 
important to remark that rogue waves that arise from non-uniform backgrounds have 
also been reported in literature [ 33, 34]. In this article, we investigate the existence 
of M-lump and rogue wave solutions to a novel (2+1)-dimensional extension of the 
Benjamin-Ono equation by means of the Hirota bilinear method [ 35]. We will first 
find 1-lump and line rogue wave solutions to two reductions of this equation. 

The Benjamin-Ono equation is the (1+1)-dimensional integrable system: 

.utt + 3(u2)xx + uxxx = 0 (1) 

with a bilinear form given by 

.(D2
t + D4

x) f · f = 0. (2) 

The equation arises in the study of long internal gravity waves in deep stratified fluids 
[ 36, 37]. It is a completely integrable equation which passes the Painléve test and 
possesses multi-soliton solutions and other integrability-related properties such as
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the Bäckland transformation, infinitely many conserved quantities and symmetries 
(see, [ 38, 39]). 

In this project, we study the following extended MBO equation 

.αutt + 3(u2)xx + uxxx + βuxx + utx + γ uty − uyy = 0 (3) 

whose bilinear form under the transformation 

.u = 2(ln f )x , (4) 

is given by 

.(αD2
t + D4

x + βD2
x + Dt Dx + γ Dt Dy − D2

y) f · f = 0, (5) 

where .Dx , Dy, and .Dt are Hirota bilinar derivatives. and .α, β, γ , are arbitrary con-
stants. 

For any nonnegative integers.n,m and differentiable functions. f, g, we define the 
Hirota bilinear operator as 

.Dx ( f · g) =
(

∂

∂x
− ∂

∂x '

)
f (x) · g(x ')

||||
x '=x

(6) 

or more generally, 

.Dm
x D

n
t ( f · g) =

(
∂

∂x
− ∂

∂x '

)m (
∂

∂t
− ∂

∂t '

)n

f (x, t) · g(x ', t ')
||||
x '=x,t '=t

. (7) 

When . f = g, we have the bilinear partial derivative expression, 

. Dm
x Dn

t f · f =
m∑
j=0

n∑
k=0

(−1)m+n− j−k
(
m

j

)(
n

k

) (
∂

∂x

)m− j (
∂

∂t

)n−k

f

(
∂

∂x

) j (
∂

∂t

)k

f,

where .

(
n

k

)
= n!

k!(n − k)! , 0 ≤ k ≤ n, is the binomial coefficient. 

We remark that Eq. (3) is generally not integrable (It is integrable for some fixed 
parameters). To find lump and rogue wave solutions, we will consider two reductions 
of the MBO equation. First, for the case where .β = 0, we have;  

.αutt + 3(u2)xx + uxxxx + utx + γ uty − uyy = 0 (8) 

which is also nonintegrable. The starting point in constructing lump solutions is to 
find positive quadratic function solutions to Hirota bilinear equations. According 
to [ 3], any positive quadratic function solution to a Hirota bilinear equation in the 
variables .t, x, y can be expressed in the form
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.

⎧⎪⎨
⎪⎩

f = f 21 + f 22 + a7,

f1 = a1x + a2y + a3t,

f2 = a4x + a5y + a6t.

(9) 

where .ai , 1 ≤ i ≤ 7 are real constants and .a7 > 0. When . f1 and . f2 are linearly 
dependent, the function . f can be simplified to 

. f = c1 f
2
1 + a7 (10) 

for some real constant .c1 > 0. Then, we have 

.u = 2(ln f )x = 4a1c1 f1
f

. (11) 

The above solutions satisfy the conditions that, 

. lim
x2+y2→∞

u /= 0 (12) 

for any fixed . t , and 
. lim
t→∞ u /= 0. (13) 

These solutions are degenerate. We will consider the case where. f1 and. f2 are linearly 
independent. 

2 Lump Solutions 

We now find lump solutions to Eq. (8). Suppose . f1 and . f2 are linearly independent 
and 

.rank

(
a1 a2
a4 a5

)
= 2. (14) 

This is equivalent to the determinant condition 

.Δ := a1a5 − a2a4 =
||||a1 a2a4 a5

|||| /= 0. (15) 

Then, substituting . f in (9) into (5), a direct computation determines the solutions
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.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1 = −αa33 + αa3a26 + γ a2a23 + γ a2a26 − a22a3 − 2a2a5a6 + a3a25
a23 + a26

,

a4 = −αa23a6 + αa36 + γ a23a5 + γ a5a26 + a22a6 − 2a2a3a5 − a25a6
a23 + a26

,

a7 = 3ζ 2

(a2a6 − a3a5)2(a23 + a26)
,

(16) 

where 

. 

ζ = α2a43 + 2α2a23a
2
6 + α2a46 + 2αγ a2a

3
3 + 2αγ a2a3a

2
6 + 2αγ a23a5a6 + 2αγ a5a

3
6 + γ 2a22a

2
3 + γ 2a22a

2
6

+ γ 2a23a
2
5 + γ 2a25a

2
6 − 2αa22a

2
3 + 2αa22a

2
6 − 8αa2a3a5a6 + 2αa23a

2
5 − 2αa25a

2
6 − 2γ a32a3 − 2γ a22a5a6

− 2γ a2a3a
2
5 − 2γ a35a6 + a42 + 2a22a

2
5 + a45 ,

and .ai for .i = {2, 3, 5, 6} are free parameters. For the function in (4) to be analytic, 
we require 

.a7 > 0, a2a6 − a3a5 /= 0. (17) 

From (16) we know that,.a7 > 0 if and only if.ζ /= 0 and.a2a6 − a3a5 /= 0. Condition 
(15) is a necessary condition for the second condition in (17) since 

.a1a5 − a2a4 = (a2a6 − a3a5)(αa23 + αa26 + a22 + a25)

a23 + a26
. (18) 

We need free parameters to satisfy.ζ /= 0, a2a6 − a3a5 /= 0, and. α(a23 + a26) + a22 +
a25 /= 0. Consequently, through the transformation (4), we obtain the following class 
of solutions 

.u = 4a4 f2 + 4a1 f1
f

, (19) 

where . f1 and . f2 are are given by, 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1 = −x
αa33 + αa3a26 + γ a2a23 + γ a2a26 − a22a3 − 2a2a5a6 + a3a25)

a23 + a26
+ ta3 + ya2,

f2 = −x
αa23a6 + αa36 + γ a23a5 + γ a5a26 + a22a6 − 2a2a3a5 − a25a6

a23 + a26
+ ta6 + ya5.

(20) 

These solutions satisfy 
. lim
x2+y2→∞

u(x, y, t) = 0 (21) 

for any fixed . t , and are therefore localized in all directions in space. They form a 
class of lump solutions to Eq. (8).
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2.1 Illustrative Example 

Choosing the parameters, 

. a2 = 1, a3 = 2, a5 = −2, a6 = −1, α = −1, γ = 1,

we obtain 

. f =
(
2t − 17

5
x + y

)2

+
(

−t + 4

5
x − 2y

)2

+ 3721

15
, (22) 

and 

.u = 12(38t − 61x + 25y)

75t2 − 228t x + 120t y + 183x2 − 150xy + 75y2 + 3721
. (23) 

It could be easily verified that . u decays in all spacial directions, i.e., for any fixed . t , 

. lim
x2+y2→∞

u(x, y, t) = 0. (24) 

For .t = −2, 0 and . 2, we have,  

.u = − 12(−76 − 61x + 25y)

183x2 − 150xy + 75y2 + 456x − 240y + 4021
, (25) 

.u = − 12(−61x + 25y)

183x2 − 150xy + 75y2 + 3721
(26) 

and 

.u = − 12(76 − 61x + 25y)

183x2 − 150xy + 75y2 − 456x + 240y + 4021
(27) 

respectively, which are depicted by 3D and contour plots below (Figs. 1, 2 and 3). 

3 Rogue Waves 

We now find rogue wave solutions to Eq. (8). Suppose again that. f1 and. f2 are linearly 
independent and 

.rank

(
a1 a2
a4 a5

)
< 2. (28) 

Let .ξ = a1x + a2y. Then, we have 

. f1 = ξ + a3t, f2 = cξ + a6t,

for some .c ∈ R. Then, we can rewrite . f in the form
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Fig. 1 Wave profile of 
solution (25) 

. f = (c1ξ + c2t)
2 + c3t

2 + a7,

where.c1, c3 are nonzero constants. The corresponding solutions.u = 2(ln f )x satisfy 

. lim|t |→∞ u(t, x, y) = 0, (29) 

for .(x, y) ∈ R
2 uniformly and are called line rogue waves. 

The above rank condition (28) is equivalent to the condition
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Fig. 2 Wave profile of 
solution (26) 

.a1a5 − a2a4 = (a2a6 − a3a5)(αa23 + αa26 + a22 + a25)

a23 + a26
= 0. (30) 

This implies that 
.αa23 + αa26 + a22 + a25 = 0, (31) 

due to condition (17). Consequently, 

.α = −a22 + a25
a23 + a26

. (32)
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Fig. 3 Wave profile of 
solution (27) 

Since .a22 + a25 > 0, a23 + a26 > 0, we must have .α < 0. In other words, when . α ≥ 0
we cannot expect rogue waves. Consequently, we obtain a class of analytic solutions 
that satisfy condition (29).
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3.1 Illustrative Example 

If we choose parameters 

. a2 = 1, a3 = 2, a5 = −2, a6 = −1, γ = 1,

then, .α = −1, and we obtain we obtain 

. f =
(
2t + 3

5
x + y

)2

+
(

−t − 6

5
x − 2y

)2

+ 27

5
, (33) 

and 

.u = 12(4t + 3x + 5y)

25t2 + 24t x + 40t y + 9x2 + 30xy + 25y2 + 27
. (34) 

The above solution satisfies condition (29) and 

. lim
x2+y2+t2→∞

u(t, x, y) = 0, (35) 

unless .3x + 5y = c for any fixed .c ∈ R. For  .t = −10, .t = 0, .t = 10 and .20, we  
have, 

.u = 12(−40 + 3x + 5y)

9x2 + 30xy + 25y2 − 240x − 400y + 2527
(36) 

.u = 12(3x + 5y)

9x2 + 30xy + 25y2 + 27
(37) 

.u = 12(40 + 3x + 5y)

9x2 + 30xy + 25y2 + 240x + 400y + 2527
(38) 

and 

.u = 12(80 + 3x + 5y)

9x2 + 30xy + 25y2 + 480x + 800y + 10027
(39) 

respectively, which are depicted by 3D and contour plots below (Figs. 4, 5, 6 and 7). 

4 Integrable Case 

Now, let us consider another reduction of (3). When .α = γ = 0, we obtain the 
integrable equation; 

.3(u2)xx + uxxx + βuxx + utx − uyy = 0. (40)
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Fig. 4 Wave profile of 
solution (36) 

Fig. 5 Wave profile of 
solution (37) 

This equation has been shown to be Painlevé integrable [ 40]. 
Again, substituting (9) into (5), the corresponding solutions under the condition 

.α = γ = 0, is given by 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a3 = −βa31 + βa1a24 − a1a22 + a1a25 − 2a2a4a5
a21 + a24

,

a6 = −βa21a4 + βa34 − 2a1a2a5 + a22a4 − a4a25
a21 + a24

,

a7 = 3(a21 + a24)
3

(a1a5 − a2a4)2
,

(41)
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Fig. 6 Wave profile of 
solution (38) 

Fig. 7 Wave profile of 
solution (39) 

where .ai for .i = {1, 2, 4, 5} are free parameters. To guarantee the analyticity of the 
function (4), we require 

.a7 > 0, a1a5 − a2a4 /= 0 (42) 

which is a direct consequence of the rank condition. We illustrate some solutions 
below. 

If we choose parameters 

. a1 = −2, a2 = −2, a4 = −1, a5 = 1, β = 2,

we obtain 

. f =
(
18

5
t − 2x − 2y

)2

+
(
21

5
t − x + y

)2

+ 375

16
, (43)



Multiple Lump and Rogue Wave Solutions … 279

and 

.u = 64(57t − 25x − 15y)

2448t2 − 1824t x − 480t y + 400x2 + 480xy + 400y2 + 1875
. (44) 

It could be easily verified that . u decays in all spacial directions, i.e., for any fixed . t , 

. lim
x2+y2→∞

u(x, y, t) = 0. (45) 

For .t = −2, 0 and . 2, we have,  

.u = − 64(−114 − 25x − 15y)

400x2 + 480xy + 400y2 + 3648x + 960y + 11667
, (46) 

.u = − 64(−25x − 15y)

400x2 + 480xy + 400y2 + 1875
(47) 

and 

.u = − 64(114 − 25x − 15y)

400x2 + 480xy + 400y2 − 3648x − 960y + 11667
(48) 

respectively, which are depicted by 3D and contour plots below (Figs. 8, 9, 10). 

We remark that no line rogue waves were found for the integrable version of the 
MBO equation. 

5 M-lump Solutions 

Now, we consider multiple lump solutions of the MBO Eq. (3). Inspired by [ 41], we 
define 

. M = n(n + 1)

2
, n = 1, 2, . . . .

We expect multiple lumps for .M = 1, 3, 6, 10, 15, · · · . We consider two cases. 

5.1 In the Case of . X = x + a1 t

Let .X = x + a1t , and consider 

. f (x, y, t) = F(X, y) =
M∑
k=0

M−k∑
j=0

ak, j X
2k y2 j . (49)
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Fig. 8 Wave profile of 
solution (46) 

When .n = 1, we have .M = 1. This is exactly 1-lump solutions. 
Let . f1(x, y, t) = X2 + a3y2 + a2 be a solution of (5). By symbolic computation 

we get one class of solutions with 

. a1 = 0, a2 = − 3

β
, a3 = −β.

Therefore 

. f1(x, y, t) = x2 − βy2 − 3

β
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Fig. 9 Wave profile of 
solution (47) 

When .β < 0, we have . f1 > 0 and 

.u(x, y, t) = 2(ln f1)x = 4x

x2 − βy2 − 3
β

. (50) 

Obviously, the above function . u is a static lump solution with the property 

. lim
x2+y2→∞

u(x, y, t) = 0.
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Fig. 10 Wave profile of 
solution (48) 

Setting .β = −1, we depict the wave profile in Figs. 11, 12 and 13. 

When .n = 2, we have .M = 3. Let  

. f2(x, y, t) = X6 + (a2 + a3y
2)X4 + (a4 + a5y

2 + a6y
4)X2 + a7 + a8y

2 + a9y
4 + a10y

6

be a solution of (5). By symbolic computation we get a solution with
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Fig. 11 Wave profile of solution in Eq. (50) with Î²=-1 

Fig. 12 Wave profile of solution in Eq. (50) with Î²=-1
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Fig. 13 Wave profile of solution in Eq. (50) with Î²=-1 

. a1 = 0, a2 = −25

β
, a3 = −3β, a4 = −125

β2
, a5 = 90,

a6 = 3β2, a7 = −1875

β3
, a8 = −475

β
, a9 = −17β, a10 = −β3. (51) 

As a result, we have 

. f2(x, y, t) = x6 + (−3βy2 − 25

β
)x4 + (3β2y4 + 90y2 − 125

β2 )x2 − 1875

β3 − 475

β
y2 − 17βy4 − β3y6.

It is easy to see that . f2 > 0 when .β < 0, for all .x, y. The corresponding solution 

.u(x, y, t) = 2(ln f2(x, y, t))x =
2[6x5 + 4x3(−3βy2 − 25

β
) + 2x(3β2 y4 + 90y2 − 125

β2 )]
f (x, y, t)

(52) 

is a 3-lump solution. We depict the solution for .β = −1 in Figs. 14, 15 and 16.
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Fig. 14 Wave profile of solution in Eq. (52) with Î²=-1 

Fig. 15 Wave profile of solution in Eq. (52) with Î²=-1
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Fig. 16 Wave profile of solution in Eq. (52) with Î²=-1 

When .n = 3, we have .M = 6. Let  

. f3(x, y, t) = X12 + (a2 + a3y
2)X10 + (a4 + a5y

2 + a6y
4)X8 + (a7 + a8y

2 + a9y
4 + a10y

6)X6

+ (a11 + a12y
2 + a13y

4 + a14y
6 + a15y

8)X4 + (a16 + a17y
2 + a18y

4 + a19y
6 + a20y

8

+ a21y
10)X2 + a22 + a23y

2 + a24y
4 + a25y

6 + a26y
8 + a27y

10 + a28y
12

be a solution of (5). By symbolic computation we get a solution with 

. a1 = 0, a2 = −98

β
, a3 = −6β, a4 = 735

β2 , a5 = 690, a6 = 15β2, a7 = −75460

3β3 ,

a8 = −18620

β
, a9 = −1540β, a10 = −20β3, a11 = −5187875

3β4 , a12 = 220500

β2 ,

a13 = 37450, a14 = 1460β2, a15 = 15β4, a16 = −159786550

3β5
, a17 = −565950

β3 ,

a18 = 14700

β
, a19 = −35420β, a20 = −570β3, a21 = −6β5, a22 = 878826025

9β6 ,

a23 = 300896750

3β4 , a24 = 16391725

3β2 , a25 = 798980

3
, a26 = 4335β2, a27 = 58β4, a28 = β6.

Consequently, we obtain
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Fig. 17 Wave profile of 
solution in Eq. (53) with  
Î²=-1 

. f3(x, y, t) = x12 + (− 98

β
− 6βy2)x10 + (15β2y4 + 690y2 + 735

β2 )x8 + (−20β3y6 − 1540βy4

− 18620

β
y2 − 75460

3β3 )x6 + (15β4y8 + 1460β2y6 + 37450y4 + 220500

β2 y2 − 5187875

3β4 )x4

+ (−6β5y10 − 570β3y8 − 35420βy6 + 14700

β
y4 − 565950

β3 y2 − 159786550

3β5
)x2

+ β6y12 + 58β4y10 + 4335β2y8 + 798980

3
y6 + 16391725

3β2y4
+ 300896750

3β4 y2 + 878826025

9β6 .

It is easy to check that . f3 > 0 when.β < 0, for all .x, y. The corresponding solution 
is given by 

.u(x, y, t) = 2(ln f3(x, y, t))x = 2 f3x (x, y, t)

f3(x, y, t)
, (53) 

where 

. f3x (x, y, t) = 12x11 + 10x9(− 98

β
− 6βy2) + 8x7(15β2y4 + 690y2 + 735

β2 ) + 6x5(−20β3y6 − 1540βy4

− 18620

β
y2 − 75460

3β3 ) + 4x3(15β4y8 + 1460β2y6 + 37450y4 + 220500

β2 y2 − 5187875

3β4 )

+ 2x(−6β5y10 − 570β3y8 − 35420βy6 + 14700

β
y4 − 565950

β3 y2 − 159786550

3β5
).

This is a 6-lump solution. We depict the solution for .β = −1 in Figs. 17 and 18 
(Fig. 19).
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Fig. 18 Wave profile of solution in Eq. (53) with Î²=-1 

Fig. 19 Wave profile of solution in Eq. (53) with Î²=-1
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5.2 In the Case of . X = x + a1 y

Now we assume.X = x + a1y and consider 

. f (x, y, t) = F(X, t) =
M∑
k=0

M−k∑
j=0

ak, j X
2k t2 j . (54) 

Let . f1(x, y, t) = X2 + a3t2 + a2 be a solution of (5). By symbolic computation 
we get a solution with 

. a1 = − 1

γ
, a2 = − 3γ 2

βγ 2 − 1
, a3 = βγ 2 − 1

γ 2α
.

It follows that 

. f (x, y, t) = (x − y

γ
)2 − 1 − βγ 2

γ 2α
t2 + 3γ 2

1 − βγ 2
.

We need .a2 > 0, a3 > 0 for . f > 0. So we have  

.γ /= 0, 1 − βγ 2 > 0, α < 0. (55) 

A lump solution can, thus, be constructed: 

.u(x, y, t) = 2(ln f )x = 4(x − y
γ
)

(x − y
γ
)2 − 1−βγ 2

γ 2α
t2 + 3γ 2

1−βγ 2

. (56) 

Evidently, the function . u possesses the property 

. lim
x2+y2→∞

u(x, y, t) = 0.

We depict the solution in Figs. 20, 21, 22 and 23, for .α = −1, β = −1, γ = 1. 
When .n = 2, we have .M = 3. Let  

. f2(x, y, t) = X6 + (a2 + a3t
2)X4 + (a4 + a5t

2 + a6t
4)X2 + a7 + a8t

2 + a9t
4 + a10t

6

be a solution of (5). By symbolic computation we get a solution with
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Fig. 20 Wave profile of 
solution in Eq. (56) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

Fig. 21 Wave profile of 
solution in Eq. (56) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1
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Fig. 22 Wave profile of 
solution in Eq. (56) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

Fig. 23 Wave profile of 
solution in Eq. (56) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

. a1 = − 1

γ
, a2 = 25γ 2

1 − βγ 2
, a3 = 3(βγ 2 − 1)

γ 2α
, a4 = − 125γ 4

(βγ 2 − 1)2
, a5 = −90

α
,

a6 = 3(βγ 2 − 1)2

α2γ 4
, a7 = 1875γ 6

(1 − βγ 2)3
, a8 = 475γ 2

α(βγ 2 − 1)
, a9 = 17(1 − βγ 2)

α2γ 2
,

a10 = (βγ 2 − 1)3

α3γ 6
.

Consequently, we obtain
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Fig. 24 Wave profile of 
solution in Eq. (57) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

. f2(x, y, t) =(x − y

γ
)6 +

[
3(βγ 2 − 1)t2

γ 2α
+ 25γ 2

1 − βγ 2

]
(x − y

γ
)4

+
[
3(βγ 2 − 1)2t4

α2γ 4
− 90

α
t2 − 125γ 4

(βγ 2 − 1)2

]
(x − y

γ
)2

+ (βγ 2 − 1)3t6

α3γ 6
+ 17(1 − βγ 2)t4

α2γ 2
+ 475γ 2t2

α(βγ 2 − 1)
+ 1875γ 6

(1 − βγ 2)3
.

We denote 

. f2x (x, y, t) =6(x − x

y
γ )5 + 4(x − y

γ
)3

[
3(βγ 2 − 1)t2

γ 2α
+ 25γ 2

1 − βγ 2

]
(57) 

+ 2(x − 
y 

γ 
)

[
3(βγ 2 − 1)2t4 

α2γ 4
− 

90 

α 
t2 − 125γ 4 

(βγ 2 − 1)2

]
. (58) 

Again, it is easy to see that. f2 > 0,when (55) is satisfied. The corresponding solution 

. u(x, y, t) = 2(ln f2(x, y, t))x = 2[ f2x(x, y, t)]
f2(x, y, t)

is a 3-lump solution. The wave profile is shown in Figs. 24, 25, 26 and 27, for  
.α = −1, β = −1, γ = 1. 

When .n = 3, we have .M = 6. Let
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Fig. 25 Wave profile of 
solution in Eq. (57) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

Fig. 26 Wave profile of 
solution in Eq. (57) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1
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Fig. 27 Wave profile of 
solution in Eq. (57) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

. f3(x, y, t) = X12 + (a2 + a3t
2)X10 + (a4 + a5t

2 + a6t
4)X8 + (a7 + a8t

2 + a9t
4 + a10t

6)X6

+ (a11 + a12t
2 + a13t

4 + a14t
6 + a15t

8)X4 + (a16 + a17t
2 + a18t

4 + a19t
6 + a20t

8

+ a21t
10)X2 + a22 + a23t

2 + a24t
4 + a25t

6 + a26t
8 + a27yt

10 + a28t
12

be a solution of (5). By symbolic computation we get a solution with 

. a1 = − 1

γ
, a2 = 98γ 2

1 − βγ 2 , a3 = 6(βγ 2 − 1)

αγ 2 , a4 = − 735γ 4

(βγ 2 − 1)2
, a5 = −690

α
,

a6 = 15(βγ 2 − 1)2

α2γ 4 , a7 = 75460γ 6

3(1 − βγ 2)3
, a8 = 18620γ 2

α(βγ 2 − 1)
, a9 = 1540(1 − βγ 2)

α2γ 2 ,

a10 = 20(βγ 2 − 1)3

α3γ 6 , a11 = − 5187875γ 8

3(1 − βγ 2)4
, a12 = − 220500γ 4

α(βγ 2 − 1)2
, a13 = 37450

α2 ,

a14 = −1460(1 − βγ 2)2

α3γ 4 , a15 = 15(1 − βγ 2)4

α4γ 8 , a16 = 159786550γ 10

3(1 − βγ 2)5
, a17 = 565950γ 6

α(βγ 2 − 1)3
,

a18 = 14700γ 2

α2(βγ 2 − 1)
, a19 = 35420(βγ 2 − 1)

α3γ 2 , a20 = 570(1 − βγ 2)3

α4γ 6 , a21 = 6(βγ 2 − 1)5

α5γ 10
,

a22 = 878826025γ 12

9(1 − βγ 2)6
, a23 = − 300896750γ 8

3α(βγ 2 − 1)4
, a24 = 16391725γ 4

3α2(βγ 2 − 1)2
,

a25 = −798980

3α3 , a26 = 4335(βγ 2 − 1)2

α4γ 4 , a27 = −58(βγ 2 − 1)4

α5γ 8
, a28 = (βγ 2 − 1)6

α6γ 12 .

With .X = x − y
γ
, we obtain
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. f3(x, y, t) = X12 +
[
6(βγ 2 − 1)t2

αγ 2 + 98γ 2

1 − βγ 2

]
X10 +

[
15(βγ 2 − 1)2t4

α2γ 4 − 690t2

α
− 735γ 4

(βγ 2 − 1)2

]
X8

+
[
20(βγ 2 − 1)3t6

α3γ 6 + 1540(1 − βγ 2)t4

α2γ 2 + 18620γ 2t2

α(βγ 2 − 1)
+ 75460γ 6

3(1 − βγ 2)3

]
X6

+
[
15(1 − βγ 2)4t8

α4γ 8 − 1460(1 − βγ 2)2t6

α3γ 4 + 37450t4

α2 − 220500γ 4t2

α(βγ 2 − 1)2
− 5187875γ 8

3(1 − βγ 2)4

]
X4

+
[
6(βγ 2 − 1)5t10

α5γ 10
+ 570(1 − βγ 2)3t8

α4γ 6 + 35420(βγ 2 − 1)t6

α3γ 2 + 14700γ 2t4

α2(βγ 2 − 1)

+ 565950γ 6t2

α(βγ 2 − 1)3
+ 159786550γ 10

3(1 − βγ 2)5

]
X2

+ (βγ 2 − 1)6t12

α6γ 12 − 58(βγ 2 − 1)4t10

α5γ 8
+ 4335(βγ 2 − 1)2t8

α4γ 4 − 798980t6

3α3 + 16391725γ 4t4

3α2(βγ 2 − 1)2

− 300896750γ 8t2

3α(βγ 2 − 1)4
+ 878826025γ 12

9(1 − βγ 2)6
.

After some computation, we can verify that. f3 > 0 when (55) is satisfied. The result-
ing solution is given by 

.u(x, y, t) = 2[ln f3(x, y, t)]x = 2 f3x (x, y, t)

f3(x, y, t)
, (59) 

where 

. f3x (x, y, t) = 12X11 + 10X9
[
6(βγ 2 − 1)t2

αγ 2 + 98γ 2

1 − βγ 2

]

+ 8X7
[
15(βγ 2 − 1)2t4

α2γ 4 − 690t2

α
− 735γ 4

(βγ 2 − 1)2

]

+ 6X5
[
20(βγ 2 − 1)3t6

α3γ 6 + 1540(1 − βγ 2)t4

α2γ 2 + 18620γ 2t2

α(βγ 2 − 1)
+ 15(βγ 2 − 1)2

α2γ 4

]

+ 4X3
[
15(1 − βγ 2)4t8

α4γ 8 − 1460(1 − βγ 2)2t6

α3γ 4 + 37450t4

α2 − 220500γ 4t2

α(βγ 2 − 1)2
− 5187875γ 8

3(1 − βγ 2)4

]

+ 2X

[
6(βγ 2 − 1)5t10

α5γ 10
+ 570(1 − βγ 2)3t8

α4γ 6 + 35420(βγ 2 − 1)t6

α3γ 2 + 14700γ 2t4

α2(βγ 2 − 1)

+ 565950γ 6t2

α(βγ 2 − 1)3
+ 159786550γ 10

3(1 − βγ 2)5

]
.

This is a 6-lump solution. We depict the solution in Figs. 28, 29, 30 and 31, for  
.α = −1, β = −1, γ = 1.
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Fig. 28 Wave profile of 
solution in Eq. (59) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

Fig. 29 Wave profile of 
solution in Eq. (59) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1
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Fig. 30 Wave profile of 
solution in Eq. (59) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

Fig. 31 Wave profile of 
solution in Eq. (59) with Î± = 
âˆ’1, Î² = âˆ’1, Î³ = 1 

6 Concluding Remarks 

In this chapter, we have introduced a new (2+1)-dimensional equation from the 
well-known Benjamin-Ono equation and studied its multiple lump and rogue wave 
solutions by means of the Hirota bilinear method. Two reductions were particularly 
considered: an integrable equation and a nonintegrable one. The nonintegrable equa-
tion was found to possess both lump and line rogue wave solutions, whereas the 
integrable equation was found to posses only lump solutions.
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Furthermore, we also found multiple lump solutions to the new equation. For 
this type of solutions, we considered two cases: .X = x + a1t and .X = x + a1y. In  
the first case, we observe multiple lump solutions with multiple peaks and troughs 

corresponding to the order .M of the solution, where .M = n(n + 1)

2
, n = 1, 2, . . . . 

The second case yields multiple lump solutions that are actually rogue waves with 
multiple line profiles. 
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On the Inclination of a Parameterized 
Curve 

John McCuan 

Abstract Given a plane curve . ┌ parameterized by arclength . s on an open interval 
.I ⊂ R by a function .γ : I → R

2 with twice continuously differentiable component 
functions and an initial inclination angle .θ0 ∈ R satisfying . γ̇(s0) = (cos θ0, sin θ0)
for some .s0 ∈ I , we show there exists a unique function .ψ ∈ C1(I ) with . γ̇(s) =
(cosψ(s), sinψ(s)) for all.s ∈ I and.ψ(s0) = θ0. Similar results holding for a param-
eterized curve defined on a compact interval are stated in many differential geometry 
texts. These results are usually based on a path lifting result for continuous maps 
into the circle . S1. Our result differs from these treatments both in that the interval 
. I is taken to be open and that the techniques used to obtain the result are via a 
direct treatment of a system of ordinary differential equations. The system of ordi-
nary differential equations differs from those usually considered in that it contains 
first order equations of singular type. Such systems seem to have independent inter-
est and the approach presented should have broader application. We give one other 
related example of a similar singular system of ordinary differential equations, and 
we strongly suspect the development of a general axiomatic theory of such singu-
lar systems should be possible, though we are unaware of such a development. We 
also discuss the topological approach and offer a version of the path lifting lemma 
for paths defined on open interval (or any interval). Finally, we discuss applications 
of our result to the construction, classification, and analysis of plane curves and in 
relation to structure theorems for plane curves. 

Keywords Inclination · Universal cover · Plane curve 
Let. I be an open interval in. Rwith.s0 ∈ I . Let.γ : I → R

2 have coordinate functions 
.γ = (γ1, γ2)with.γ j ∈ C2(I ) for. j = 1, 2 satisfying.γ̇2

1 + γ̇2
2 = 1 (parameterization 

by arclength) where 

. γ̇ j = dγ j

ds
for j = 1, 2.
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We will prove the following: 

Theorem 1 (global solution of singular system of ordinary differential equations) 
If .θ0 ∈ R satisfies 

.

{
cos θ0 = γ̇1(s0)
sin θ0 = γ̇2(s0),

(1) 

there exists a unique function.ψ ∈ C1(I ) satisfying the system of ordinary differential 
equations 

.

⎧⎨
⎩

− sinψ ψ̇ = γ̈1, s ∈ I
cosψ ψ̇ = γ̈2, s ∈ I

ψ(s0) = θ0.

(2) 

Theorem 2 (globally defined differentiable inclination) If .θ0 ∈ R satisfies (1) then 
there exists a unique function.ψ ∈ C1(I ) satisfying the system of algebraic equations 

.

⎧⎨
⎩
cosψ = γ̇1, s ∈ I
sinψ = γ̇2, s ∈ I
ψ(s0) = θ0.

(3) 

We obtain Theorem 2 first as a corollary of Theorem 1 and the following assertion 
of equivalence: 

Theorem 3 (equivalence) Given .γ : I → R
2 as above: 

(a) If .ψ ∈ C1(I ) satisfies the transcendental system of algebraic equations (3) then 
. ψ is the unique solution of the singular system of ordinary differential equations 
(2). 

(b) If .ψ ∈ C1(I ) satisfies the singular system of ordinary differential equations (2) 
then. ψ is the unique solution of the transcendental system of algebraic equations 
(3). 

We also obtain Theorem 2 as a corollary of the following topological lifting result: 

Theorem 4 (topological lifting) If. I is any interval in. R and.v : I → S
1 has coordi-

nate functions.v = (v1, v2)with.v j ∈ C0(I ) for. j = 1, 2 and. v(s0) = (cos θ0, sin θ0)
for some .θ0 ∈ R and some .s0 ∈ I , then there exists a unique function .ψ ∈ C0(I ) for 
which 

.

⎧⎨
⎩
cosψ = v1, s ∈ I
sinψ = v2, s ∈ I
ψ(s0) = θ0.

(4) 

The lifting condition (4) is usually formulated as .p ◦ ψ = v where .p : R → S
1 by 

.p(θ) = (cos θ, sin θ) is the universal covering map of . S1. 

The organization of the paper is as follows: We begin with a discussion of the 
construction of plane curves of prescribed curvature. We then prove Theorems 1, 2, 
and 3 in Sect. 1. Section 2 contains a proof of Theorem 4 and some related discussion
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of topological lifting. In Sect. 3 we state two structure theorems for plane curves 
directly in terms of inclination angle, and in Sect. 4 we give two examples of curves 
to which the above discussion applies and finally another example of a singular 
system of ordinary differential equations (ODEs). 

Remarks on the Construction of Plane Curves 

The assertion of Theorem 2 is useful in the construction, classification, and analysis 
of plane curves having prescribed curvature. Say, for example, we wish to classify 
all.C2 curves in the.x, y-plane with signed curvature. k satisfying.k = y at each point 
.(x, y) on the curve. The usual formulation for .γ : I → R

2 defined on an interval . I
is given by an initial value problem 

.γ̈ · γ̇⊥ = −γ̇2γ̈1 + γ̇1γ̈2 = γ2, γ(s0) = (x0, y0), γ̇(s0) = v0 (5) 

where .s0 ∈ I and .v0 ∈ S
1 = {v ∈ R

2 : ||v|| = 1}. These curves are called elastic 
curves. They were first (and famously) classified by Euler [ 5], and the usual procedure 
for their classification is to trade in the complicated second order equation in (5) for  
the simple first order system of equations in the initial value problem 

.

⎧⎨
⎩

γ̇1 = cosψ, γ1(0) = x0
γ̇2 = sinψ, γ2(0) = y0
ψ̇ = γ2, ψ(0) = θ0

(6) 

where it is observed that specification of the initial unit tangent .v0 determines some 
initial angle .θ0 up to an additive multiple of .2π by 

.

{
cos θ0 = γ̇1(s0)
sin θ0 = γ̇2(s0).

(7) 

The introduction of the inclination angle . ψ in (6) is based also on the observation 
that the signed curvature . k is given by the formula 

.k = dψ

ds
. (8) 

Both this observation and the formulation of (6) rely on some result like Theorem 2. 
Of course, this would be a much more interesting paper if there existed some solutions 
of (5) which were somehow singular with respect to the inclination angle so that they 
were missed by a classification of solutions of (6). As it is, Theorem 2 guarantees no 
such singular elastic curves exist and thus Theorem 2 and all discussion associated 
with it may be viewed as a technical detail.
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On the other hand, it is convenient to have a global result like Theorem 2. A careful 
look at doCarmo’s classical text on differential geometry [ 3, pp. 23, 36–39] reveals 
that the formula (8) is only introduced and considered locally and basically with the 
assumption that . ψ is differentiable. Similarly Stoker [ 14, pp. 21–22] addresses the 
question by considering the version 

.

{
cosψ = γ̇1(s)
sinψ = γ̇2(s)

(9) 

of (7) locally. Theorem 2 provides a foundation for the treatments of both doCarmo 
and Stoker, and this is especially important for Stoker who uses (8) to define curvature. 

It is interesting that Stoker returns to the topic [ 14, p. 27] in the context of a 
structure theorem for plane curves and offers a kind of global definition with differ-
entiability built in: 

.ψ(s) = θ0 +
{ s

s0

k(σ) dσ. (10) 

The function. ψ defined in (10) is a clearly globally defined continuously differentiable 
function depending of course on the definition of curvature (which can be done 
without . ψ as given for example in (5)), but most importantly the formula (10) lacks 
the original connection (3) with the tangent vector to the curve. 1

In summary, one may find the assumption, but not the justification for the asser-
tion, that the inclination angle is a globally well-defined differentiable function of 
arclength. It seems to me that one natural global formulation for the existence of . ψ
is in terms of the singular first order system of ODEs (2). There is a good existence 
and uniqueness theory for regular first order systems, and there is extensive analy-
sis associated with singular linear ODEs with isolated singular points like Bessel’s 
equation, which can be cast in terms of linear systems. This is the approach taken in 
Sect. 1 below. 

Returning to the construction of curves of prescribed curvature, one may consider 

. 

⎧⎨
⎩

γ̇1 = cosψ, γ1(0) = x0
γ̇2 = sinψ, γ2(0) = y0
ψ̇ = f, ψ(0) = θ0

in a variety of contexts where the function . f = f (γ,ψ, s) prescribes the curva-
ture. All such constructions again assume the curve one wishes to parameterize 
admits/determines a differentiable inclination angle. The Euler elastica mentioned 
above for which the signed curvature is proportional to the height .y = γ2 are 
approached in this way in [ 11, (2.2) p. 48], [ 8, p. 387], [ 9, p. 7],  [  1, 10]. The approach 
is used to classify and analyze the meridians of axially symmetric surfaces of

1 A very similar development is given by Spivak [ 13, pp. 21–24] obtaining a specifically continuous 
inclination angle. ψ and then freely differentiating. ψ without further comment to obtain (10). In [ 3] 
doCarmo gives (10) in his treatment of the four vertex theorem. 



On the Inclination of a Parameterized Curve 305

Fig. 1 The inclination angle of a planar curve 

prescribed mean curvature. For constant mean curvature (Delaunay surfaces) see 
[ 2] or [  4]. For capillary surfaces with mean curvature an affine function of height, 
see [ 6, (2.2) p. 17] or [ 15, (2.2) p. 425]. For more exotic axially symmetric surfaces 
with prescribed mean curvature see [ 4, 7, 16]. In view of the structure theorem for 
planar curves which states that every such curve is essentially determined by the 
value .k(s) = f of the signed curvature as a function of arclength along the curve, 
it can be said that every regular .C2 plane curve is an example. The curve in Fig. 1 
was numerically computed with the signed curvature equal to the arclength along 
the curve with . f (s) = s. 

I have used this approach for constructing and classifying various special curves 
numerous times without reflecting either on the fact that the existence of a smooth 
inclination angle was being assumed or the fact that I did not know a reference where 
that existence was justified. 

Preliminary Remarks Concerning Theorems 2 and 4 

Associated with an arclength parameterization.γ : I → R
2 as introduced above, the 

function.γ̇ : I → S
1 illustrated in Fig. 1 is familiar from differential geometry. In this 

context, the inclination angle is usually defined informally as the angle between 
the tangent vector . γ̇ and the positive horizontal direction. The following heuristic 
discussion is explained in detail in Sect. 2 below. 

Having assumed . γ is an arclength parameterization, we have for each .s ∈ I that 
.γ̇(s) ∈ S

1. Each such point .γ̇(s) in a circle determines a family of angles by the 
algebraic relations 

.

{
cos θ = γ̇1(s)
sin θ = γ̇2(s).

(11)
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Fig. 2 Covering map of the circle. S1. 

If . θ is one solution of (11), then all the other solutions are given by .θ + 2π j for 
. j ∈ {0,±1,±2,±3, . . .} so that each differs from the others by an integer multiple 
of.2π. Exactly one of these angles lies in any given interval of length.2π. For example, 
if.a ∈ R then there is a unique angle. θ in the interval.[a, a + 2π) for which (11) holds. 
Given a curve as in the theorems stated above, the relations (11) restrict the possible 
choices of the initial angle .θ0 appearing in (1). 

On the other hand, if . p is the universal covering map of the circle mentioned in 
Theorem 4, the restriction.pa : [a, a + 2π) → S

1 of that map is one-to-one and onto, 
and the inverse.p−1

a : S1 → [a, a + 2π) is well-defined, continuous, and intrinsically 
differentiable except at.pa(a) = (cos(a), sin(a)) ∈ S

1. See Fig. 2. Thus, given any. θ0
satisfying (1) we can take.a = θ0 − π to obtain some.sA, sB ∈ R with. sA < s0 < sB
and a function .ψ ∈ C0(sA, sB) given by 

.ψ(s) = p−1
a (γ̇(s)) (12) 

satisfying.p ◦ ψ(s) = (cosψ, sinψ) = γ̇(s) and.ψ(s0) = θ0. The relation. p ◦ ψ(s) =
γ̇(s) may be assumed to hold and determine. ψ uniquely for .sA < s0 < sB as long as 
.γ̇(s) ∈ {(cos θ, sin θ) ∈ S

1 : |θ − θ0| < π} for each arclength . s in the same interval 
.(sA, sB). Under this assumption, the interval .(sA, sB) may be written as a union of 
subsets 

. N1 = {s ∈ (sA, sB) : γ̇(s) /= (±1, 0)}
N2 = {s ∈ (sA, sB) : γ̇(s) /= (0,±1)}

with disjoint complements. At least one of these open sets will contain . s0, and on 
some subinterval one can obtain a unique analytic expression for. ψ in terms of some
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branch of an inverse trigonometric function applied to one of the functions .γ̇1 or . γ̇2. 
We will obtain such expressions below. 

In principle the formulas we will obtain (and the existence/applicability of one of 
them) do not depend on the twice differentiability of. γ, but if the appropriate function 
of.γ j for. j = 1 or. j = 2 is differentiable and.γ j ∈ C2(I ), then the applicable formula 
can be differentiated to obtain an analytic formula for . ψ̇ and one can conclude . ψ is 
locally continuously differentiable. We will return to the consideration of situations 
in which. γ̇ is only assumed to be continuous and the structure of.C1 curves in Sects. 2 
and 3 respectively. 

1 Direct Proof of Theorem 2 

We begin with a local version of Theorem 1 with arbitrary initial condition at a point 
.s∗ ∈ I . This result and its proof are important because they represent an extension of 
the standard local existence and uniqueness techniques from ODEs to the singular 
system (2). 

Lemma 1 If .θ∗ ∈ R satisfies 

.

{
cos θ∗ = γ̇1(s∗)
sin θ∗ = γ̇2(s∗), (13) 

there exists some .∈∗ > 0 and a unique function .ψ ∈ C1(I ∗) where . I ∗ = (s∗ −
∈∗, s∗ + ∈∗) such that 

.

⎧⎨
⎩

− sinψ ψ̇ = γ̈1, s ∈ I ∗

cosψ ψ̇ = γ̈2, s ∈ I ∗
ψ(s∗) = θ∗.

(14) 

Moreover, we may also assume the solution . ψ satisfies 

.

{
cosψ = γ̇1, s ∈ I ∗
sinψ = γ̇2, s ∈ I ∗. (15) 

Proof We know.sin2 θ∗ + cos2 θ∗ = 1, so either 

(i) .sin θ∗ /= 0 or 
(ii) .cos θ∗ /= 0. 

Overall then, we consider these two cases, but we will consider the first case in detail. 
If .sin θ∗ /= 0, there is some .∈ > 0 for which 

. sin θ /= 0 for θ∗ − ∈ ≤ θ ≤ θ∗ + ∈. (16)
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In this case we focus on the first ODE in (14). Specifically the initial value problem 

.

{− sinψ ψ̇ = γ̈1
ψ(s∗) = θ∗ (17) 

is nonsingular at.(s∗, θ∗) ∈ (s∗ − ∈, s∗ + ∈) × (θ∗ − ∈, θ∗ + ∈). By the existence and 
uniqueness theorem for ODEs, there is some .∈∗ > 0 for which (17) has a unique 
solution .ψ ∈ C1(I ∗) defined for .s ∈ I ∗ = (s∗ − ∈∗, s∗ + ∈∗) ⊂ I . Without loss of 
generality, we may assume 

.θ∗ − ∈ < ψ(s) < θ∗ + ∈ for s ∈ I ∗ (18) 

so that according to (16) 

. sinψ(s) /= 0 for s ∈ I ∗. (19) 

The function . ψ also happens to satisfy the first relation in (15) because 

. cosψ(s) = cosψ(s∗) +
{ s

s∗
[− sinψ(σ) ψ̇(σ)] dσ

= cos θ∗ +
{ s

s∗
γ̈1(σ) dσ

= cos θ∗ + γ̇1(s) − γ̇1(s
∗)

= γ̇1(s). (20) 

It remains to show the consistency of the second ODE in (14), i.e., that the function 
. ψ satisfies .cosψ ψ̇ = γ̈2 for .s ∈ I ∗. 

This will follow immediately if the second relation in (15) holds. We can show this 
in different ways, but the following way uses techniques from ODEs. The function 
.y = γ̇2 − sinψ satisfies.y ∈ C1(I ∗) and the initial condition.y(s∗) = 0. We proceed 
to find a first order ODE satisfied by . y. Differentiating we find 

.
dy

ds
= ẏ = γ̈2 − cosψ ψ̇. (21) 

Since. γ is parameterized by arclength, we can differentiate the relation. γ̇2
1 + γ̇2

2 ≡ 1
to obtain 

.γ̇1 γ̈1 + γ̇2 γ̈2 ≡ 0. (22) 

This relation may be used to replace .γ̈2 in (21) as long as we know.γ̇2 /= 0. Since 

.γ̇2(s
∗) = sin θ∗ /= 0, (23)
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we know there is some.η > 0 for which.γ̇2(s) /= 0 for.s ∈ J = (s∗ − η, s∗ + η). Let  

.η∗ = sup{η ∈ (0, ∈∗] : γ̇2(s) /= 0, s∗ − η < s < s∗ + η} (24) 

and .J ∗ = (s∗ − η∗, s∗ + η∗). 
Returning to (21) this means 

. ẏ = − γ̇1

γ̇2
γ̈1 − cosψ ψ̇ = cosψ

γ̇2
sinψ ψ̇ − cosψ ψ̇ = −cosψ

γ̇2
(γ̇2 − sinψ) ψ̇

for .s ∈ J ∗. Thus, the function .y = γ̇2 − sinψ ∈ C1(I ∗) satisfies 

. 

⎧⎪⎪⎨
⎪⎪⎩

ẏ = −cosψ

γ̇2
y ψ̇ for s ∈ J ∗

y(s∗) = 0.

The unique solution of this problem is.y = γ̇2 − sinψ ≡ 0. In particular,. γ̇2 ≡ sinψ
for .s ∈ J ∗. We claim finally that .η∗ = ∈∗, so that .J ∗ = I ∗ and our discussion of the 
first case is complete. In fact, if we assume.η∗ < ∈∗, then by continuity 

. γ̇2(s
∗ ± η∗) = sinψ(s∗ ± η∗) /= 0.

This gives an immediate contradiction of the definition (24) of. η∗. Thus we have (15) 
and consequently (14). 

The second case is very similar and leads to the same conclusion(s). □
We next turn our attention to the proof of the equivalence result Theorem 3. 

Proof of Theorem 3 part (a) Here we assume .ψ ∈ C1(I ) satisfies (3). Given that 
. γ is twice differentiable, it clearly follows that . ψ is a solution of (2). Thus, it only 
remains to show uniqueness. 

Let .ψ̃ ∈ C1(I ) be any other solution of (2). Setting .y = ψ̃ − ψ ∈ C1(I ) we see 

.A = {s ∈ I : ψ̃(s) = ψ(s)} (25) 

is a nonempty closed set. Given any .s∗ ∈ A, we may apply Lemma 1 with . θ∗ =
ψ̃(s∗) = ψ(s∗) to obtain some .∈∗ > 0 for which (14) has a unique solution on . I ∗ =
(s∗ − ∈∗, s∗ + ∈∗). It follows  that  .ψ̃(s) = ψ(s) for .s ∈ I ∗ and that . A is open. Since 
the only nonempty subset of the open interval. I which is both closed and open is the 
interval . I itself, we conclude .A = I and . ψ is unique. □

Proof of Theorem 3 part (b) Here we assume .ψ ∈ C1(I ) satisfies (2). Applying 
Lemma 1 at .s∗ = s0 with .θ∗ = θ0, we obtain some.∈0 > 0 for which 

.ψ0 = ψ||
I0
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is the unique solution of 

.

⎧⎨
⎩

− sinψ ψ̇ = γ̈1, s ∈ I0
cosψ ψ̇ = γ̈2, s ∈ I0

ψ(s0) = θ0

(26) 

where .I0 = (s0 − ∈0, s0 + ∈0), and we know 

.

{
cosψ0 = γ̇1, s ∈ I0
sinψ0 = γ̇2, s ∈ I0.

(27) 

Setting 
. B = {s ∈ I : cosψ(s) = γ̇1(s) and sinψ(s) = γ̇2(s)},

we have by continuity that .B is a closed subset of . I containing . I0. For any .s∗ ∈ B, 
we can apply Lemma 1 with.θ∗ = ψ(s∗) to obtain some.∈∗ > 0 for which (15) holds 
on .I ∗ = (s∗ − ∈∗, s∗ + ∈∗). In particular, .I ∗ ⊂ B, and .B is open. Again since any 
nonempty subset of . I that is both closed and open is the interval . I itself, we know 
.B = I , and we have shown existence of a solution of the algebraic system (3). 

If .ψ̃ ∈ C1(I ) is any other solution of (3), then noting that any solution of (3) is a  
solution of (2), the uniqueness shown using the set . A from (25) in the proof of part 
(a) above applies here directly. □

The following corollary is an immediate consequence of Theorem 3. 

Corollary 2 (existence implies uniqueness) If . J is any open interval with . s0 ∈ J ⊂
I , and .ψ ∈ C1(J ) satisfies 

.

⎧⎨
⎩
cosψ = γ̇1, s ∈ J
sinψ = γ̇2, s ∈ J
ψ(s0) = θ0,

(28) 

then. ψ is the unique function in.C1(J ) satisfying (28). Similarly, if.ψ ∈ C1(J ) satisfies 

.

⎧⎨
⎩

− sinψ ψ̇ = γ̈1, s ∈ J
cosψ ψ̇ = γ̈2, s ∈ J

ψ(s0) = θ0,

(29) 

then . ψ is the unique function in .C1(J ) satisfying (29). 

Proof If . ψ solves (28), then differentiation gives that . ψ solves (29). But then part 
(b) of Theorem 3 implies. ψ is the unique solution of (28). Similarly, if. ψ solves (29), 
then part (b) of Theorem 3 implies . ψ is the unique solution of (28) and is a solution 
of (28) in particular. But then part (a) of Theorem 3 implies . ψ is the unique solution 
of (29). □

Proof of Theorem 1 We can apply Lemma 1 with .s∗ = s0 and .θ∗ = θ0 to obtain 
some interval .I0 = (s0 − ∈0, s0 + ∈0) and some .ψ0 ∈ C1(I0) for which .ψ0 is the
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unique solution in .C1(I0) for the problem (26) above and for which we also know 
(27) holds. 

Consider the family .F of intervals .J = (inf J, sup J ) for which 

. inf I ≤ inf J ≤ s0 − ∈0 < s0 + ∈0 ≤ sup J ≤ sup I (30) 

and there exists a unique .ψ ∈ C1(J ) for which (28) above holds. Notice (30) is  
equivalent to the condition .I0 ⊂ J ⊂ I . We consider 

. U =
U
J∈F

J.

Since .U is a union of intervals each containing the interval . I0, we know 
.U = (inf U, supU ) is a nonempty open interval. We make two claims: 

Claim 1: There exists a unique function .ψ = ψ ∈ C1(U ) for which 

.

⎧⎨
⎩
cosψ = γ̇1, s ∈ U
sinψ = γ̇2, s ∈ U
ψ(s0) = θ0,

(31) 

and consequently .U ∈ F . 

Claim 2: There holds .inf U = inf I and .supU = sup I so that 

. U = I ∈ F ,

and since.C1 solutions of (3) are solutions of (2) the assertion of Theorem 1 follows. 

Proof of Claim 1 We attempt to define a function .Ψ ∈ C1(U ) by the formula 

.Ψ(s) = ψ(s) whenever s ∈ J ∈ F (32) 

and . ψ is the unique solution of (28) associated with . J . 
For each.σ ∈ U , there is at least one.J ∈ F for which.σ ∈ J , so we can assign some 

value to .Ψ(σ). On the other hand, if .J1, J2 ∈ F with.σ ∈ J1 ∩ J2, then. J = J1 ∩ J2
is an open interval with .I0 ⊂ J ⊂ I , and by Corollary 2 we see 

. ψ1
||
J

≡ ψ2
||
J

is the unique solution of (28) where .ψ j is the solution associated with .Jj ∈ F for 
. j = 1, 2. In particular, .ψ1(σ) = ψ2(σ). This shows .Ψ is well-defined by (32), and 
it follows immediately that .Ψ ∈ C1(U ) and we have shown existence for a solution 
of (31). Again, we know by Corollary 2 that existence implies uniqueness, so this 
completes the proof of Claim 1.
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Proof of Claim 2 Set.sA = inf U and.sB = supU . Let.Ψ ∈ C1(U ) continue to denote 
the unique solution of (31) from Claim 1. 

Let us assume by way of contradiction that.sA > inf I . It follows that.sA ∈ I with 
.inf I < sA ≤ s0 − ∈0. 

Since . γ is defined on all of . I and (31) holds, we know the limits 

. lim
s↘sA

cosΨ(s) = γ̇1(sA) and lim
s↘sA

sinΨ(s) = γ̇2(sA) (33) 

exist as well-defined real numbers in.[−1, 1]. It cannot be the case, furthermore, that 
both of these numbers are zero or that both of these numbers have absolute value . 1. 

We now apply another result familiar from the theory of ODEs (or calculus): 

Lemma 3 Given 

(i) .a, b ∈ R with .a < b, 
(ii) .y ∈ C1(J ) where .J = (a, b), and 
(iii) . f ∈ C0(y(J ) × J ), 

if . y is a solution of 

. 

{
ẏ = f (y, t) for t ∈ J
y(t0) = y0

for some .t0 ∈ J then the following hold: 

(a) If 
. lim
t↘a

f (y(t), t) = L exists as a well-defined real number L ∈ R,

then 
. lim
t↘a

y(t) = ya exists as a well-defined real number ya ∈ R.

(b) If 
. lim
t↗b

f (y(t), t) = M exists as a well-defined real number M ∈ R,

then 
. lim
t↗b

y(t) = yb exists as a well-defined real number yb ∈ R.

If.γ̇1(sA) /= 0, then we can take some.∈ > 0 for which.cosΨ(s) /= 0 for. sA < s <

sA + ∈ and consider the ODE in Lemma 3 to be 

. ẏ = γ̈2

cos y

with solution .y = Ψ on the interval .(a, b) = (sA, sA + ∈). We conclude from part 
(a) of Lemma 3 in this case that



On the Inclination of a Parameterized Curve 313

.θA = lim
s↘sA

Ψ(s) exists as a well-defined real number. (34) 

The ODE is different, but the conclusion (34) is the  same  if .γ̇1(sA) = 0. 
Consequently, we may apply Lemma 1 at .s∗ = sA with .θ∗ = θA to obtain some 

.∈∗ and a unique solution .ψA ∈ C1(I ∗) of the problem (15), that is 

.

⎧⎨
⎩
cosψ = γ̇1, s ∈ I ∗
sinψ = γ̇2, s ∈ I ∗
ψ(sA) = θA

(35) 

where .I ∗ = (sA − ∈∗, sA + ∈∗) ⊂ (inf I, s0 + ∈0) ⊂ I . 
We wish next to show.Ψ(s) = ψA(s) for. s in the intersection interval.(sA, sA + ∈∗). 

We start by defining .ΨA : I ∗ = (sA − ∈∗, sA + ∈∗) → R by 

. ΨA(s) =
{

ψA(s), s ≤ sA
Ψ(s), s > sA.

Observe that .ΨA(sA) = θA and in view of (34) we know.ΨA ∈ C0(I ∗). Furthermore 
.ΨA is differentiable on .I ∗\{sA} and (35) holds for .ψ = ΨA at every .s ∈ I ∗. 

If .γ̇(sA) /= (±1, 0), then there is some .δ > 0 for which 

. sinΨ(s) /= 0 for sA < s < s∗ + δ.

In particular, .sin θA = sinΨA(sA) /= 0, and for .sA < s < s∗ + δ we can write 

. 
ΨA(s) − ΨA(sA)

s − sA
= Ψ(s) − θA

s − sA
= Ψ̇A(σ) = − γ̈1(σ)

sinΨA(σ)

for some . σ with .sA < σ < s. Since 

. lim
σ↘sA

γ̈1(σ)

sinΨ(σ)
= γ̈1(sA)

sin θA
,

we see .ΨA has a right derivative at .sA with value 

.Ψ̇A(s
+
A ) = − γ̈1(sA)

sin θA
. (36) 

Taking the derivative from the left in this case, we find 

.Ψ̇A(s
−
A ) = lim

σ↗sA
ψ̇A(σ) = − γ̈1(sA)

sin θA
. (37) 

In view of (36) and (37) we conclude that when.γ̇(sA) /= (±1, 0),.ΨA ∈ C1(I ∗)with 
derivative at .sA the common value
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. Ψ̇A(sA) = − γ̈1(sA)

sin θA
.

Similarly, If .γ̇(sA) /= (0,±1), then .cos(θA) /= 0, and 

. Ψ̇A(sA) = γ̈(sA)

cos(θA)
.

We have shown that in all cases .Ψ̇A(sA) exists and.ΨA ∈ C1(I ∗). By uniqueness we 
conclude .ΨA ≡ ψA as desired. Thus, setting 

. ψ(s) =
{

ΨA(s), s ∈ I ∗
Ψ(s), sA < s < sB,

we obtain a function .ΨA ∈ C1(J ) for .J = (sA − ∈∗, sB) satisfying (28). By Corol-
lary 2 we know .ΨA is the unique function satisfying (28) and hence .J ∈ F contra-
dicting the definition of . sA. Therefore, .sA = inf I . 

We find similarly that .sB = sup I , so that .U = (sA, sB) = I and the proof of 
Theorem 1 is complete. □

Theorem 2 is now immediate. 

Proof of Theorem 2 The hypotheses of Theorem 2 are the same as those of Theorem 1, 
so by Theorem 1 there exists a solution .ψ ∈ C1(I ) of the singular system (2). By 
part (b) of Theorem 3, the function .ψ is the unique solution of (3), and this is the 
conclusion of Theorem 2. □

2 Topological Lifting 

The existence of the topological lifting asserted in Theorem 4 above  may be viewed  
as fairly standard. Technically, however, it is normally assumed that the domain of 
. v is a compact interval, and compactness is used in the proof. A standard reference 
for such a version of the result is given in Lemma 4.1 (p. 337, Chap. 8) of [ 12]. 
Proposition 5 on page 22 of [ 13] also assumes the domain of . v is a compact interval 
though the proof does not use compactness explicitly, and it may be possible to adapt 
Spivak’s argument to prove Theorem 4. I am going to present a different approach 
which I think expresses more clearly the underlying structure of Theorem 4 and the 
special structure of the universal covering map .p : R → S

1 in particular. It should 
be emphasized that in many of the constructions of curves of prescribed curvature 
mentioned above, the domain of definition is, or turns out to be, the entire real line 
.I = R which is decidedly noncompact.
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Circle Covering and Branches of the Inverse 

Our proof of the topological lifting result Theorem 4 depends on a unified or stan-
dardized view of the branches of .p−1 where .p : R → S

1 by .p(θ) = (cos θ, sin θ) is 
the universal covering map of the circle. S

1. We identify four standard nonsingular 
branches of .p−1 denoted .p−1

0 , q−1
0 , p−1

1 , q−1
1 from which a family 

. {p−1
2k }k∈Z ∪ {q−1

2k }k∈Z ∪ {p−1
2k+1}k∈Z ∪ {q−1

2k+1}k∈Z
of nonsingular branches is derived. These depend in turn on four standard nonsingular 
branches of arccosine and arcsine. Thus, we begin with the familiar real principal 
branches of arccosine and arcsine as illustrated in Fig. 3. The principal branch of 
arccosine here is the inverse of 

. cos||
[0,π]

: [0,π] → [−1, 1]

which we will denote .arccos : [−1, 1] → [0,π] and satisfies . arccos ∈ C1(−1, 1) ∩
C0[−1, 1]. Similarly, the restriction 

. sin||
[−π/2,π/2]

: [−π/2,π/2] → [−1, 1]

has an inverse .arcsin ∈ C1(−1, 1) ∩ C0[−1, 1] as indicated in Fig. 3. 

Fig. 3 Real principal branches of arccosine and arcsine
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2.1 Decompositions 

It will be useful to have appropriate decompositions of the domain. R and codomain 
.S

1 of the covering map .p : R → S
1. For the real line we start with open intervals 

. Vj =
(
j
π

2
− π

2
, j

π

2
+ π

2

)
=

(
( j − 1)

π

2
, ( j + 1)

π

2

)
for j ∈ Z

as indicated in Fig. 4. It is readily seen that 

. 

U
j∈Z

Vj = R, V2k =
(
kπ − π

2
, kπ + π

2

)
, k ∈ Z

and 

. 

U
k∈Z

V2k = R\
{
(2k + 1)

π

2

}
k∈Z

with V2m ∩ V2n = φ, m /= n.

For reasons that should become clear below, we give the intervals .Vj for . j ∈ Z

alternate names setting .Uj = Vj+1 as indicated in Fig. 5. The intervals .{Uj } j∈Z are 
of course still an open cover of . R. In this instance we observe 

. U2k = V2k+1 = (kπ, (k + 1)π) ,

Fig. 4 Overlapping decomposition of the real line into intervals of length. π. 

Fig. 5 Renamed overlapping decomposition of the real line by open intervals
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Fig. 6 Overlapping decomposition of the circle.S1 into compass semicircles 

and 
. 

U
k∈Z

U2k = R\ {kπ}k∈Z with U2m ∩U2n = φ, m /= n.

We next consider an overlapping decomposition of.S1 by open compass semicir-
cles 

. E = {(x, y) ∈ S
1 : x > 0}

N = {(x, y) ∈ S
1 : y > 0}

W = {(x, y) ∈ S
1 : x < 0}

S = {(x, y) ∈ S
1 : y < 0}

as indicated in Fig. 6. Finally, we decompose the complement of the compass points 
.{(1, 0), (0, 1), (−1, 0), (0,−1)} in the circle.S1 into open quarter circles in the quad-
rants in the usual manner setting 

.I = {(x, y) ∈ S
1 : x, y > 0} = E ∩ N

II = {(x, y) ∈ S
1 : x < 0 < y} = N ∩ W

III = {(x, y) ∈ S
1 : x, y < 0} = W ∩ S

IV = {(x, y) ∈ S
1 : y < 0 < x} = S ∩ E .
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2.2 Restrictions and Inverses 

For .l ∈ Z, consider the following restrictions of sine and cosine to the intervals in 
the decomposition sets defined in the previous section: 

. sin2l = sin||
V4l

: V4l → (−1, 1), (38) 

. cos2l = cos||
U4l

: U4l → (−1, 1), (39) 

. sin2l+1 = sin||
V4l+2

: V4l+2 → (−1, 1), (40) 

. cos2l+1 = cos||
V4l+2

: U4l+2 → (−1, 1). (41) 

It will be noted that .sin2l and .cos2l+1 are increasing while .cos2l and . sin2l+1

are decreasing. In particular, the inverse of .sin0 is the restriction of the princi-
pal branch of arcsine mentioned above to the open interval .(−1, 1). When we 
have written .arcsin ∈ C1(−1, 1) above, it is technically the nonsingular restriction 
.sin−1

0 ∈ C1(−1, 1) to which we refer. We denote the particular nonsingular principal 
branch .sin−1

0 : (−1, 1) → (−π/2,π/2) = V0 by 

. sin−1
0 = sin−1 .

More generally if the index . j of the open interval .Vj in Fig. 4 satisfies . j = 4l for 
some.l ∈ Z, then 

. sin−1
2l : (−1, 1) → V4l =

(
2lπ − π

2
, 2lπ + π

2

)
by sin−1

2l y = 2lπ + sin−1 y (42) 

as indicated in Fig. 7. We emphasize.sin−1
0 = sin−1 with graph near the middle of the 

illustration is the principal nonsingular branch of arcsine, and all of the functions 
.sin−1

j satisfy 

. sin−1
j ∈ C1(−1, 1).

Before briefly discussing some details of the other nonsingular branches of arcsine 
and arccosine, we pause to record the formulas in one place for easy reference as we 
recorded the restrictions in (38)–(41). Including (42) we have for . l ∈ Z

. sin−1
2l : (−1, 1) → V4l by sin−1

2l y = 2lπ + sin−1 y (43) 

. cos−1
2l : (−1, 1) → U4l by cos−1

2l x = 2lπ + cos−1 x (44) 

. sin−1
2l+1 : (−1, 1) → V4l+2 by sin−1

2l+1 y = (2l + 1)π − sin−1 y (45) 

. cos−1
2l+1 : (−1, 1) → U4l+2 by cos−1

2l+1 x = 2(l + 1)π − cos−1 x (46)
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Fig. 7 Real branches of inverse sine and cosine 

with 

.V4l =
(
2lπ − π

2
, 2lπ + π

2

)
(47) 

.U4l = (2lπ, (2l + 1)π) (48) 

.V4l+2 =
(
2lπ + π

2
, 2lπ + 3π

2

)
(49) 

.U4l+2 = ((2l + 1)π, (2l + 2)π) . (50) 

We denote by .cos−1
0 , or simply .cos−1, the inverse of the restriction 

. cos0 = cos||
(0,π)

.

We have then .cos−1
0 = cos−1 ∈ C1(−1, 1) and we call this the principal nonsin-

gular branch of arccosine. Similarly we obtain decreasing nonsingular branches of 
arccosine .cos−1

2l ∈ C1(−1, 1) for .l ∈ Z given by (44). 
Taking the principal nonsingular branches.sin−1 and.cos−1 as the first two standard 

nonsingular branches of arcsine and arccosine respectively, we consider two more 
standard nonsingular branches 

. sin−1
1 : (−1, 1) → V2 =

(
π

2
,
3π

2

)
and cos−1

1 : (−1, 1) → U2 = (π, 2π)

which are the inverses of the restrictions .sin1 and .cos1 defined in (40) and (41) and 
are given by



320 J. McCuan

. sin−1
1 y = π − sin−1 y and cos−1

1 x = 2π − cos−1 x

respectively. These also fall into a family of nonsingular branches given in general 
by the formulas in (45) and (46) above. 

It is also natural to consider at this point certain restrictions of the covering map 
.p : R → S

1 with their inverses. For example consider 

. p0 = p||
V0

: V0 =
(
−π

2
,
π

2

)
→ E

where .V0 is illustrated in Fig. 4 and .E is the eastern compass semicircle in .S
1 illus-

trated in Fig. 6. The function .p0 is a bijection with inverse .p−1
0 : E → V0 given 

by 
. p−1

0 (x, y) = p−1||
V0

(x, y) = sin−1 x .

We record the general restrictions and inverses in one place for easy reference: 

.p2l = p||
V4l

: V4l → E (51) 

.p2l+1 = p||
V4l+2

: V4l+2 → W (52) 

.q2l = p||
U4l

: U4l → N (53) 

.q2l+1 = p||
U4l+2

: U4l+2 → S (54) 

with 

.p−1||
V4l

: E → V4l by p−1
2l (x, y) = sin−1

2l y = 2lπ + sin−1 y (55) 

. p−1||
V4l+2

: W → V4l+2 by p−1
2l+1(x, y) = sin−1

2l+1 y = (2l + 1)π − sin−1 y

(56) 

.p−1||
U4l

: N → U4l by q−1
2l (x, y) = cos−1

2l x = 2lπ + cos−1 x (57) 

. p−1||
U4l+2

: S → U4l+2 by q−1
2l+1(x, y) = cos−1

2l+1 x = (2l + 1)π − cos−1 x

(58) 

We are also now in a position to prove the following result giving a family of com-
pass inverses of the covering map. pwhose useful formulas depend on the nonsingular 
.C1 inverse trigonometric formulas given above:
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Proposition 1 (compass inverse branches of .p−1) For each .l ∈ Z, the restrictions 

. P2l = p||
((2l−1)π,(2l+1)π)

: ((2l − 1)π, (2l + 1)π) → S
1\{(−1, 0)},

Q2l = p||
((2l−1)π+ π

2 ,(2l+1)π+ π
2 )

:
(
2lπ − π

2
, 2lπ + 3π

2

)
→ S

1\{(0,−1)},

P2l+1 = p||
(2lπ,(2l+2)π)

: (2lπ, (2l + 2)π) → S
1\{(1, 0)}, and

Q2l+1 = p||
(2lπ+ π

2 ,(2l+2)π+ π
2 )

:
(
2lπ + π

2
, (2l + 2)π + π

2

)
→ S

1\{(0, 1)}

are bijections with unique well-defined continuous inverses given as follows: 

(E) .P−1
2l : S1\{(−1, 0)} → ((2l − 1)π, (2l + 1)π) by 

. P−1
2l (x, y) =

⎧⎨
⎩
sin−1

2l y = 2lπ + sin−1 y, (x, y) ∈ E
cos−1

2l x = 2lπ + cos−1 x, (x, y) ∈ N
cos−1

2l−1 x = 2lπ − cos−1 x, (x, y) ∈ S.

(N) 

. Q−1
2l : S1\{(0,−1)} →

(
2lπ − π

2
, 2lπ + 3π

2

)

by 

. Q−1
2l (x, y) =

⎧⎨
⎩
sin−1

2l y = 2lπ + sin−1 y, (x, y) ∈ E
cos−1

2l x = 2lπ + cos−1 x, (x, y) ∈ N
sin−1

2l+1 y = (2l + 1)π − sin−1 y, (x, y) ∈ W.

(W) .P−1
2l+1 : S1\{(1, 0)} → (2lπ, (2l + 2)π) by 

. P−1
2l+1(x, y) =

⎧⎨
⎩
cos−1

2l x = 2lπ + cos−1 x, (x, y) ∈ N
sin−1

2l+1 y = (2l + 1)π − sin−1 y, (x, y) ∈ W
cos−1

2l+1 x = 2(l + 1)π − cos−1 x, (x, y) ∈ S.

(S) 

. Q−1
2l+1 : S1\{(0, 1)} →

(
2lπ + π

2
, (2l + 2)π + π

2

)

by 

.Q−1
2l+1(x, y) =

⎧⎨
⎩
sin−1

2l+1 y = (2l + 1)π − sin−1 y, (x, y) ∈ E
sin−1

2l+2 y = (2l + 2)π + sin−1 y, (x, y) ∈ W
cos−1

2l+1 x = 2(l + 1)π − cos−1 x, (x, y) ∈ S.
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In particular, the functions .P2l, .Q2l, .P2l+1, and .Q2l+1 for .l ∈ Z are homeomor-
phisms of their respective domains onto compass semicircles in . S

1. 

Remark(s) on the proof: Since each of the expressions above is continuous and 
in fact .C1 with respect to the independent variable appearing in the formula for a 
particular compass semicircle, the most important part of the proof is showing the 
given formulas agree on overlapping semicircles so that the inverse functions are 
well-defined. 

Consider for example the formula for.Q−1
2l (x, y) and a point.(x, y) ∈ E ∩ N = I. 

The fact that .(x, y) ∈ I tells us .x, y > 0 and 

. x =
√
1 − y2.

We also know, 

. sin−1
2l y ∈

(
2lπ, 2lπ + π

2

)
⊂ (2lπ, (2l + 1)π) = U4l,

the last set being the domain of the restriction 

. cos2l = cos||
U4l

.

Therefore, 

. cos(sin−1
2l y) = cos(sin−1 y)

=
/
1 − sin2(sin−1 y)

=
√
1 − y2

= x .

This means .cos−1
2l x = sin−1

2l y as required in the first two formulas defining . Q−1
2l

when applied on the intersection .E ∩ N = I. 
If .(x, y) ∈ N ∩ W = II, then .x < 0 < y and 

. x = −
√
1 − y2.

In this case we have 

. sin−1
2l+1 y ∈

(
2lπ + π

2
, (2l + 1)π

)
⊂ (2lπ, (2l + 1)π) = U4l.

Then 

. cos(sin−1
2l+1 y) = cos(π − sin−1 y)

= − cos(sin−1 y)
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= −
/
1 − sin2 (sin−1 y) 

= −
√
1 − y2 

= x . 

Again this means .cos−1
2l x = sin−1

2l+1 y as required in the second and third formulas 
defining .Q−1

2l when applied on the intersection .N ∩ W = II. 
The many verifications of the formulas in the proposition follow from similar cal-

culations using the definitions of the overlapping partition intervals and the standard 
nonsingular inverse trigonometric functions defined above. □

Proposition 2 (general maximal inverse branches of.p−1) Given.θ∗ ∈ R, the restric-
tion 

. p∗ = p||
(θ∗−π,θ∗+π)

: (θ∗ − π, θ∗ + π) → S
1\{(cos θ∗, sin θ∗)}

is a bijection admitting a well-defined continuous inverse 

. (p∗)−1 : S1\{(cos θ∗, sin θ∗)} → (θ∗ − π, θ∗ + π).

In particular, .p∗ is a homeomorphism. 

I omit the proof of this result, though it may be useful in some applications to write 
down explicit formulas for .(p∗)−1 in terms of the standard trigonometric inverses 
depending on the location of .p(θ∗) ∈ S

1 or alternatively the location of .θ∗ among 
the overlapping partition intervals .Uj and .Vj in . R. 

2.3 Proof of Theorem 4 

As in the proof of Theorem 1, we begin again with a local version of Theorem 4 
with arbitrary initial condition at a point .s∗ ∈ I . This result also generalizes the 
introductory discussion above and an attempt is made to capture in this result and its 
proof the essential structure of the universal covering map of the circle as mentioned 
in the introduction. 

Lemma 4 If .v : I → S
1 and .s∗ ∈ I satisfy .v(s∗) = p(θ∗), that is, 

.

{
cos θ∗ = v1(s∗)
sin θ∗ = v2(s∗) (59) 

for some .θ∗ ∈ R, then there exists some .∈∗ > 0 such that setting . I ∗ = (s∗ − ∈∗, s∗ +
∈∗) there exists a unique function .ψ ∈ C0(I ∗) for which
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Fig. 8 Continuous mapping into a semicircle 

.

⎧⎨
⎩
cosψ = v1, s ∈ I ∗
sinψ = v2, s ∈ I ∗
ψ(s∗) = θ∗.

(60) 

Proof By continuity, there exists some.∈∗ > 0 for which 

. v(I ∗) ⊂ B1(v(s∗)) = {x ∈ S
1 : ||x − v(s∗)|| < 1} ⊂ S

1\{(− cos θ∗,− sin θ∗)}
(61) 

where .I ∗ = (s∗ − ∈∗, s∗ + ∈∗) as in the statement of the lemma. See Fig. 8. 
We recall the universal covering map .p : R → S

1 with 

. p(θ) = (cos θ, sin θ)

for which the restriction 

. p∗ = p||
(θ∗−π,θ∗+π)

: (θ∗ − π, θ∗ + π) → S
1\{(− cos θ∗,− sin θ∗)}

is a homeomorphism, i.e., continuous bijection with continuous inverse. 
Thus, setting .ψ : I ∗ → R by 

. ψ ≡ (p∗)−1 ◦ v

we have .ψ ∈ C0(I ∗) and .p ◦ ψ = v. Also, .ψ(s∗) = θ∗ so that (60) holds. 
To see uniqueness, consider .ψ̃ ∈ C0(I ∗) for which (60) holds. The set 

. A = {s ∈ I ∗ : ψ̃(s) = ψ(s)}

is nonempty and closed by the continuity of . ψ̃ and . ψ. If .σ ∈ A, then 

.ψ̃(σ) = ψ(σ) = (p∗)−1 ◦ v(σ) ∈ (θ∗ − π, θ∗ + π).
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By the continuity of . ψ̃, there is some .δ > 0 for which .ψ̃(s) ∈ (θ∗ − π, θ∗ + π) for 
.σ − δ < s < σ + δ. Therefore, we have 

. ψ̃(s) = (p∗)−1 ◦ p ◦ ψ̃(s) = (p∗)−1 ◦ v(s) = ψ(s)

for .σ − δ < s < σ + δ. This shows .(σ − δ,σ + δ) ⊂ A, and .A is open. Since the 
only nonempty subsets of .I ∗ which are both open and closed are the open interval 
.I ∗ itself, we have shown.A = I ∗, and .ψ̃ ≡ ψ. □

Note: An alternative proof of Lemma 4 may be given avoiding the direct use of 
Proposition 2 along the following lines: We start with the observation that 

. R =
U
j∈Z

Vj ,

so there is some. j ∈ Z for which.θ∗ ∈ Vj . At this point, one considers various cases. 
If . j is even, then either . j = 4l or . j = 4l + 2 for some .l ∈ Z, and the value . l is 
unique because .V2m ∩ V2n = φ for .m /= n. If . j = 4l, then 

. v(s∗) = p||
V4l

(s∗) ∈ E .

Since the compass semicircle .E is open in . S1, there exists some .∈∗ > 0 for which 
.v(s) ∈ E and 

. p ◦ p−1||
V4l

◦ v(s) = p ◦ P−1
2l ◦ v(s) = v(s) for s∗ − ∈∗ < s < s∗ + ∈∗.

In particular, setting 

. ψ(s) = P−1
2l ◦ v(s) for s∗ − ∈∗ < s < s∗ + ∈∗,

we have.ψ ∈ C0(I ∗) and.p ◦ ψ(s) = v(s) for.s ∈ I ∗. There also holds.ψ(s∗) = θ∗, so  
the existence claim of the proposition is established. As for uniqueness, if. ψ̃ ∈ C0(I ∗)
and 

. p ◦ ψ̃(s) = v(s) for s ∈ I ∗,

then since .v(s) ∈ E , we have  

. ψ̃(s) = P−1
2l ◦ p ◦ ψ̃(s) = P−1

2l ◦ v(s) = ψ(s) for s ∈ I ∗.

Thus, the case .θ∗ ∈ V4l leads to the conclusion of the lemma. The cases . θ∗ ∈ V4l+2

and .θ∗ ∈ V2k+1 = U2k for some .k ∈ Z are handled similarly. 

Proof of Theorem 4 Applying Lemma 4 at .s∗ = s0 with .θ∗ = θ0 we obtain . ∈0 > 0
and a unique function .ψ0 ∈ C0(I0) for which .ψ0(s0) = θ0 and
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. v(s) = p ◦ ψ0(s) for s ∈ I0

where .I0 = (s0 − ∈0, s0 + ∈0). 
Let .F be the family of open intervals .J = (inf J, sup J ) for which 

. inf I ≤ inf J ≤ s0 − ∈0 < s0 + ∈0 ≤ sup J ≤ sup I

and for which there exists a unique .ψ = ψJ ∈ C0(J ) with 

. v(s) = p ◦ ψ(s), s ∈ J,

that is, there exists a well-defined, unique continuous lifting of the restriction 

. v||
J

.

Setting 
. sA = inf

J∈F
(inf J ) and sB = sup

J∈F
(sup J ),

as usual, we make two claims: 

Claim 1: There exists a unique function .ψ = Ψ ∈ C0(sA, sB) with .ψ(s0) = θ0 and 

. v(s) = p ◦ ψ(s), s ∈ (sA, sB),

that is, .Ψ is a unique continuous lifting, and .(sA, sB) ∈ F . 

Claim 2: There holds .sA = inf I and .sB = sup I so that 

. (sA, sB) = I ∈ F .

The second claim gives the assertion of the theorem. 

Proof of Claim 1 We define .Ψ : (sA, sB) → R by 

. Ψ(s) = ψ(s) whenever s ∈ J ∈ F and ψ = ψJ .

We need to show.Ψ is a well-defined, unique continuous lifting of. v. Since continuity 
is local and .(sA, sB) is open, continuity follows if .Ψ is well-defined. 

Since it is clear by definition that 

. 

U
J∈F

J = (sA, sB),

we have for each .σ ∈ (sA, sB) at least one .J ∈ F with .σ ∈ J and at least one value 
.ψJ (σ) which may be assigned to .Ψ(σ). Assume .σ ∈ J1 ∩ J2 for some .Jj ∈ F , and
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let .ψ j denote the continuous lifting on . Jj , for . j = 1, 2. Note that .J1 ∩ J2 is an open 
interval and 

. I0 ⊂ C = {s ∈ J1 ∩ J2 : ψ1(s) = ψ2(s)}.

Since .ψ1 and .ψ2 are continuous, .C is a closed set. If .s∗ ∈ C , then we can apply 
Lemma 4 at .s∗ with .θ∗ = ψ1(s∗) = ψ2(s∗) to obtain some .∈∗ > 0 for which . I ∗ =
(s∗ − ∈∗, s∗ + ∈∗) ⊂ J1 ∩ J2, and there is a unique continuous lifting.ψ : I ∗ → R of 

.v||
I∗

(62) 

with .ψ(s∗) = θ∗. Since 
. (ψ1)

||
I∗

and (ψ2)
||
I∗

are both continuous liftings of the restriction (62) satisfying.ψ j (s∗) = θ∗ for. j = 1, 2, 
we conclude 

. (ψ1)
||
I∗

≡ (ψ2)
||
I∗
,

and .s∗ ∈ I ∗ ⊂ C . This means .C is open as well. Since the only nonempty subset 
of the open interval .J1 ∩ J2 which is both closed and open is the interval . J1 ∩ J2
itself, we conclude .C = J1 ∩ J2 and .ψ1(σ) = ψ2(σ) in particular. This establishes 
existence of the continuous lifting .Ψ : (sA, sB) → R with .Ψ(s0) = ψ0(s0) = θ0. It  
remains to show uniqueness. 

If .ψ̃ ∈ C0(sA, sB) is a lifting of 
.v||

(sA ,sB )

(63) 

with .ψ̃(s0) = θ0, then for each .σ ∈ (sA, sB), there is some.J ∈ F with .σ ∈ J . If . ψJ

is the lifting associated with the interval .J ∈ F , then since 

. ψ̃||
J

is a continuous lifting with .ψ̃(s0) = θ0, we know by the uniqueness of .ψJ that 

. ψ̃(σ) = ψJ (σ) = Ψ(σ).

Thus, .Ψ is unique and Claim 1 is established. 

Proof of Claim 2 Let .Ψ ∈ C0(U ) denote the unique continuous lifting on 
.U = (sA, sB) obtained in the proof of Claim 1 above. If we assume .sB < sup I , 
then .sB ∈ I and .v(sB) is a well-defined point in . S1. In fact, .v(sB) is an element of 
(at least) one of the open compass semicircles, . E , . N , . W , or . S. Consider the case 

.v(sB) ∈ E =
{
(cos θ, sin θ) : −π

2
< θ <

π

2

}
⊂ S

1.
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Because . v is continuous and .Ψ is a lifting, 

. lim
s↗sB

p ◦ Ψ(s) = lim
s↗sB

v(s) = v(sB).

In particular, for some .∈ > 0, there holds 

.p ◦ Ψ(s) ∈ E for sB − ∈ < s < sB . (64) 

From this we know 
. Ψ(s) ∈ p−1E =

U
l∈Z

V4l.

Let.σ ∈ (sB − ∈, sB) be fixed. Since.V4m ∩ V4n = φ for.m /= n, there exists a unique 
.l ∈ Z for which .Ψ(σ) ∈ V4l. For any other .s ∈ (sB − ∈, sB) we know similarly that 
.Ψ(s) ∈ V4m for some .m ∈ Z. If .m < l, then 

. 4m < 4m + 2 ≤ 4l − 2 < 4l,

and it follows from the continuity of .Ψ that there is some.s∗ ∈ (sB − ∈, sB) between 
. s and . σ for which 

. Ψ(s∗) ∈ V4l−2.

Consequently, .v(s∗) = p ◦ Ψ(s∗) ∈ W which contradicts (64). If .l < m we obtain 
a similar contradiction. From this we conclude 

. Ψ(s) ∈ V4l =
(
2lπ − π

2
, 2lπ + π

2

)
⊂⊂((2l − 1)π, (2l + 1)π) for s ∈ (sB − ∈, sB).

Therefore, 

. Ψ(s) = P−1
2l ◦ p ◦ Ψ(s) = P−1

2l ◦ v(s) for s ∈ (sB − ∈, sB),

and there exists a well-defined value 

. θB = lim
s↗sB

Ψ(s) = P−1
2l ◦ v(sB) ∈

[
2lπ − π

2
, 2lπ + π

2

]
.

Note that .ΨB : (sA, sB] → R by 

. ΨB(s) =
{

Ψ(s), s ∈ (sA, sB)

θB, s = sB

satisfies.ΨB ∈ C0(sA, sB]. Furthermore, we can now apply Lemma 4 at.s∗ = sB with 
.θ∗ = θB to obtain some.∈∗ > 0 and a unique continuous lifting.ψ ∈ C0(I ∗) on. I ∗ =
(sB − ∈∗, sB + ∈∗) ⊂ (sB − ∈, sB + ∈) ⊂ I . Thus, we consider. Ψ∗ : (sA, sB + ∈∗) →
R by
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. Ψ∗(s) =
{

Ψ(s), s ∈ (sA, sB)

ψ(s), s ∈ [sB, sB + ∈∗).

Since.ψ(s∗) = θB = ΨB(s∗), we know.Ψ∗ ∈ C0(sA, sB + ∈∗). Also,.Ψ∗ satisfies. p ◦
Ψ∗(s) = v(s) for .s ∈ (sA, sB + ∈∗), so .Ψ∗ is a lifting of . v. It remains to show.Ψ∗ is 
the unique such lifting. 

If .ψ̃ ∈ C0(sA, sB + ∈∗) with .ψ̃(s0) = θ0 and .p ◦ ψ̃(s) = v(s) for . s ∈ (sA, sB +
∈∗), then first of all, 

. ψ̃||
(sA ,sB )

≡ Ψ

due to the uniqueness of . Ψ. This implies 

. ψ̃(sB) = lim
s↗sB

Ψ(s) = ΨB(sB) = θB .

And this implies 
. ψ̃||

(sB−∈∗,sB+∈∗)

≡ ψ

due to the uniqueness of the local lifting .ψ at .s∗ = sB . This shows .ψ̃ ≡ Ψ∗, and 
.Ψ∗ is unique. This contradicts the definition of . sB , and we conclude .sB = sup I as 
claimed. 

There are various other cases to consider. First of all, we are still working under the 
assumption that.v(sB) ∈ E . The cases.v(sB) ∈ N ,.v(sB) ∈ W , and.v(sB) ∈ S all lead 
to similar contradictions and the conclusion .sB = sup I . Then the assumption . sA >

inf I leads to similar cases and similar contradictions. We conclude. U = (sA, sB) = I
and the theorem holds. □

Remark: It is also straightforward to allow certain more general possibilities in the 
argument(s) above. For example, if . I is assumed to be a half-closed interval of the 
form .[min I, sup I ) where .min I ∈ R with .s0 ∈ I∗ = (min I, sup I ) and .θ0 given as 
in Theorem 4, then it can be shown that 

. lim
s↘sA

ψ(s) = θA

exists where .sA = min I and . ψ is the continuous lifting of 

. v||
I∗
.

It follows that .ψ can be extended to a unique continuous lifting of .v : I → S
1. 

The situation when .v(s0) = p(θ0) is specified at an endpoint .s0 = min I can also 
be considered separately in this case using a variant of the argument above. As a 
consequence, we can state the following general version of Theorem 4.
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Lemma 5 Let .I ⊂ R be any interval, open, closed, or half-open/closed. If 
.v = (v1, v2) : I → S

1 is continuous and there are values .s0 ∈ I and .θ0 ∈ R with 

.

{
cos θ0 = v1(s0)
sin θ0 = v2(s0),

(65) 

then there exists a unique function .ψ ∈ C0(I ) such that 

.p ◦ ψ = v and ψ(s0) = θ0. (66) 

2.4 Second Proof of Theorem 1 

We can apply Theorem 4 with .v = γ̇ to obtain a continuous lifting .ψc ∈ C0(I ) with 

. γ̇ = p ◦ ψc and ψc(s0) = θ0.

Since the condition .ψ = ψc ∈ C1(I ) can be verified locally. We observe that all 
the local expressions for .ψc are given in terms of standard nonsingular (.C1) inverse 
trigonometric functions of the coordinate functions.v1 and/or. v2. Furthermore, if we 
know .γ1, γ2 ∈ C2(I ), then we know the coordinate functions .v1 = γ̇1 and . v2 = γ̇2
are in .C1(I ). Thus, the local compositions are in .C1(I ) and Theorem 1 follows. □

3 Structure of Plane Curves 

Theorem 1 may be applied to the construction of plane curves of prescribed curvature 
to obtain the following structure theorem for plane curves: 

Theorem 5 (structure theorem for .C2 curves) If . I is an open interval with 

(i) .s0 ∈ I , 
(ii) .x0 ∈ R

2, 
(iii) .v0 ∈ S

1, and 

.k ∈ C0(I ), then there exists a unique curve .γ : I → R
2 parameterized by arclength 

and satisfying .γ(s0) = x0, .γ̇(s0) = v0 and 

. γ̈ · (−γ̇2, γ̇1) = dψ

ds
= k

is the signed curvature associated with . γ and where .ψ ∈ C1(I ) is the inclination 
angle determined by . γ and any value .θ0 ∈ R with .(cos θ0, sin θ0) = v0. 

Theorem 4 may be applied to obtain the following structure theorem for.C1 plane 
curves:
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Theorem 6 (structure theorem for .C1 curves) If . I is an open interval with 

(i) .s0 ∈ I , 
(ii) .x0 ∈ R

2, and 

.v = (v1, v2) : I → S
1 with .v j ∈ C0(I ) for . j = 1, 2, then there exists a unique curve 

.γ : I → R
2 parameterized by arclength and satisfying .γ(s0) = x0, and 

. γ̇ = (cosψ, sinψ) = v

where.ψ ∈ C0(I ) is the inclination angle determined by. γ and any value.θ0 ∈ Rwith 
.(cos θ0, sin θ0) = v(s0). 

4 Examples 

Here we give examples of two plane curves to which the main result Theorem 1 
applies and another example of a singular system of ODEs to which the techniques 
of the first proof of Theorem 1 apply. 

4.1 Example Curves 

The examples of curves are both counterclockwise spirals. Consider . α : (0,∞) →
R

2 by 

. α(t) = 1

t
(cos t, sin t).

When parameterized by arclength, a natural arclength interval is. Rwith. γ(0) = α(1)
and signed curvature given by 

. k = − 2

|γ|2(|γ|2 + 1)3/2
.

The curve has infinite length as it spirals for .t > 1 and also for .0 < t < 1 where it 
is asymptotic to the line .y = 1 as indicated on the left in Fig. 9. 

As a second example, consider .α : R → R
2 by 

. α(t) = 1

et
(cos t, sin t).

Here 

.k = − 1

|γ|√2
.
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Fig. 9 Curves with prescribed curvature and natural arclength domains given by open intervals: 
.γ : R → R

2 (left) and.γ : (−∞,
√
2) → R

2 (right) 

This curve also spirals around the origin infinitely many times but has length in the 
spirals starting from.(1, 0) given by.

√
2 < ∞. Thus, the natural arclength domain is 

.(−∞,
√
2) as indicated in Fig. 9. 

4.2 Another Singular System 

Given.γ ∈ C2(I → R
2) as above, a technically different singular system of ordinary 

differential equations sharing the same singular/nonsingular character displayed by 
(2) and indeed an alternative for analytically defining the inclination . ψ ∈ C1(I )
determined by . γ is 

.

⎧⎨
⎩

−γ̇2 ψ̇ = γ̈1, s ∈ I
γ̇1 ψ̇ = γ̈2, s ∈ I

ψ(s0) = θ0.

(67) 

We make two simple observations about the system (67). 
First, in view of the condition 

.γ̇2
1 + γ̇2

2 = 1 (68) 

at least one of the ordinary differential equations in (67) is nonsingular at each.s ∈ I . 
It will be recalled that this is a feature shared with the singular system (2). Proceeding 
as with the system (2) we may consider the case.γ̇2(s0) /= 0 so that on some interval 
the first equation in (67) determines a unique function . ψ locally. 

Letting.ψ0 denote the solution of (2) given by Theorem 1, we can then write locally 

.
d

ds
(ψ − ψ0) = − γ̈1

γ̇2
+ γ̈1

sinψ0
≡ 0,
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since it was established that the second equation in (3) namely .γ̇2 = sinψ0 holds 
for .ψ0. This implies the solution of (67) is locally identical to the solution of (2) as  
expected, and this reasoning can clearly be extended to the global assertion.ψ = ψ0. 
As implied, the global existence of the solution .ψ ∈ C1(I ) and the fact that this 
solution satisfies (3) may also be established along these lines. 

Finally, we note the question of “consistency” for the system (67), that is for 
example showing the second relation .γ̇1 ψ̇ = γ̈2 of (67) holds on an interval where 
the first relation .−γ̇2 ψ̇ = γ̈1 holds and is nonsingular, is straightforward. This is 
in contrast to the slightly delicate argument arising in the proof of Lemma 1 in 
connection with the second equation in (15) for the system (2). To see this, for 
example, we can differentiate the relation (68) and use.−γ̇2 ψ̇ = γ̈1 to obtain directly 

. 0 = γ̇1 γ̈1 + γ̇2 γ̈2 = −γ̇1 γ̇2 ψ̇ + γ̇2 γ̈2

which implies .γ̈2 = γ̇1 ψ̇. 
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Localized Waves on the Periodic 
Background for the Derivative Nonlinear 
Schrödinger Equation 

Lifei Wu, Yi Zhang, Rusuo Ye, and Jie Jin 

Abstract The localized waves based on the plane, periodic and double-periodic 
backgrounds for the derivative nonlinear Schrödinger equation are constructed in 
this paper. Especially, we give a determinant representation of the semi-degenerate 
Darboux transformation by using the Taylor expansion technique. Additionally, by 
changing the amplitude of seed solution and the value of the spectral parameters, 
energy conversion occurs between the localized waves and different backgrounds, 
resulting in different dynamic behaviors. 

Keywords Periodic background · Rogue wave · Darboux transformation · Taylor 
expansion 

1 Introduction 

As far as we know, rogue wave and the breather are two kinds of nonlinear localized 
waves, which have attracted great attention in Bose–Einstein condensates, capillary 
wave, hydrodynamics and other fields [ 1– 5]. Breathers, which are localized in time or 
space, produced by instability of small amplitude disturbances, [ 6– 8]. The Peregrine 
soliton as the prototype of the rogue wave appears while the period of the breather 
tends to infinity [ 9– 11]. On the one hand, compared with the breather, rogue wave 
is localized in time and space. On the other hand, compared with the strong stability 
of soliton, rogue wave is unstable and unpredictable. Based on the above facts, it is 
valuable to research the interaction solutions among the breathers, rogue waves and 
solitons [ 12– 14]. 

Because of the strict integrability of the nonlinear Schrödinger (NLS) type equa-
tion, the interaction solutions for the NLS-type equation can be studied by some 
specific methods. Such as, the dark-bright semi-rational solitons for the higher-order 
coupled NLS equation have been derived by using Darboux transformation (DT) 
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[ 15]. Based on the extended generalized DT, the hybrid rogue wave and breather for 
the NLS equation have been studied [ 16]. In addition, the variety of nonautonomous 
complex wave solutions for the .(2 + 1)-dimensional NLS equation and the bright 
and dark solitons for the fifth-order NLS equation with variable coefficients have 
been studied by the .(G '/G)-expansion method and the new optical solitons to the 
time-fractional integrable generalized.(2 + 1)-dimensional NLS equation have been 
obtained by three different methods [ 17– 19]. 

The purpose of the current research is to study the interaction solutions between 
different nonlinear localized waves for the derivative NLS equation (DNLS) which 
has been widely applied in nonlinear optics, finance and plasma physics [ 20– 22], as 
follows 

.iqt − qxx + i
(
q|q|2)

x = 0. (1) 

In recent years, the interaction solutions and several interesting results for (1) have  
been extensively studied by using DT [23– 26]. The Peregrine soliton can be generated 
by the interaction between the phase solution and the breather solution. In addition, 
through numerical verification, when the modulation of the periodic wave is unstable, 
rogue wave can maintain the space-time localization. On the contrary, the rogue wave 
degenerates into the soliton and periodic wave [ 27]. 

Different parameters also have important influence on the interaction between 
localized waves. By adjusting shift parameters, higher-order rogue waves with differ-
ent structures and the formation process of higher-order rogue waves can be obtained 
[ 28, 29]. It should be noted that the effect of spectral parameters on the interaction 
solutions among the breathers, rogue waves and periodic backgrounds for (1) have  
not been reported before. 

Furthermore, by improving the interaction and degeneracy of breathers and rouge 
waves solutions, the semi-degenerate DT is constructed. Thus, the breather and rogue 
wave on the periodic background [ 30], the interaction solutions between different 
types of breathers and rogue waves can be found by using semi-degenerate DT 
[ 31]. In our present work, in order to further study the interaction solution between 
the rogue wave and the breather, one use Taylor expansion technique to obtain a 
determinant representation of the semi-degenerate DT for (1). Localized waves on 
different backgrounds for (1) have been given by the semi-degenerate DT. In addition, 
we make a detailed dynamic analysis of the important influence of spectral parameters 
on the interaction solution between rogue waves and the breather. It is worth noting 
that by changing the conditions satisfied by the spectral parameters . λ, we obtain 
the interaction solutions of rogue waves, periodic backgrounds and breathers. As far 
as we know, the process of the first-order rogue wave evolving into the interaction 
solution of the breather solution and the rogue wave for (1) has not been obtained. 

This paper is structured as follows. In Sect. 2, the semi-degenerate DT for (1) 
can be given by using the modified Taylor expansion technique. In Sect. 3, based 
on the explicit expression and the influence of different parameters, we can get the 
dynamics of interaction among the breather, rogue waves, and periodic backgrounds. 
Our conclusions are given in Sect. 4.
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2 The DT for the DNLS Equation 

Starting from KN system 
.rt − irxx − (

r2q
)
x = 0, (2) 

.qt + iqxx − (
rq2

)
x = 0. (3) 

Equation 1 can be obtained under reduced condition .r = −q∗ and the Lax pair can 
be derived by 

.
Φx = UΦ = (

Jλ2 + Qλ
)
Φ,

Φt = VΦ = (
2Jλ4 + 2Qλ3 + V2λ

2 + V1λ
)
Φ,

(4) 

where .Φ = (φ,ϕ)T is a column vector, . λ is the spectral parameter and 

. J =
(
i 0
0 −i

)
, Q =

(
0 q
r 0

)
, V1 =

(
0 −iqx + q2r

irx + r2q 0

)
, V2 = Jqr.

Under the compatibility condition.Ut − Vx + [U, V ] = 0 of Lax pair (4), (2) and (3) 
are equivalent. According to the gauge transformation 

.Φ[1] = TΦ, (5) 

the Lax pair (4) can be converted to 

.Φ[1]
x = U [1]Φ[1],U [1] = (Tx + TU ) T−1, (6) 

.Φ[1]
t = V [1]Φ[1], V [1] = (Tx + T V ) T−1. (7) 

After detailed calculation, it can be found that once the matrix. T is found,.U [1], . V [1]

and. U , .V will have the same form. In this way, (6) and (7) can be invariant under the 
gauge transformation (5). 

In fact, the .N -fold Darboux matrix . T of (1) have been given in [ 23], as follows, 

. Tn =
n∑

l=0

Flλ
l,

with 

. Fn =
(

f11,n 0
0 f22,n

)
∈ D, Fn−1 =

(
0 f12,n−1

f21,n−1 0

)
∈ A,

where 

.Fl ∈ D =
(

f11 0
0 f22

)
(if l − n is even),
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. Fl ∈ A =
(

0 f12
f21 0

)
(if l − n is odd).

Here . f11, . f12, . f21, . f22 are complex functions with . x and . t . 
Let .Φ j = (

φ j ,ϕ j
)T

be the solutions of system (4) with the spectral parameters 
.λ j , . j = 1, 2, · · · , n. Then, .q [n] can be derived by 

.q [n] = Θ2
11

Θ2
21

q + 2i
Θ11Θ12

Θ2
21

, (8) 

with 
.(1) when . n = 2k

. Θ11 =

|
||
|
|
||
|
|
|

λn−1
1 ϕ1 λn−2

1 φ1 λn−3
1 ϕ1 · · · λ1ϕ1 φ1

λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 · · · λ2ϕ2 φ2

...
...

...
...

...
...

λn−1
n ϕn λn−2

n φn λn−3
n ϕn · · · λnϕn φn

|
||
|
|
||
|
|
|

,

Θ12 =

|
|
||
|
|
||
|
|

λn1φ1 λn−2
1 φ1 λn−3

1 ϕ1 · · · λ1ϕ1 φ1
λn2φ2 λn−2

2 φ2 λn−3
2 ϕ2 · · · λ2ϕ2 φ2

...
...

...
...

...
...

λnnφn λn−2
n φn λn−3

n ϕn · · · λnϕn φn

|
|
||
|
|
||
|
|

,

Θ21 =

|
|
||
|
|
||
|
|

λn−1
1 φ1 λn−2

1 ϕ1 λn−3
1 φ1 · · · λ1φ1 ϕ1

λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 · · · λ2φ2 ϕ2

...
...

...
...

...
...

λn−1
n φn λn−2

n ϕn λn−3
n φn · · · λnφn ϕn

|
|
||
|
|
||
|
|

,

.(2) when . n = 2k + 1

.Θ11 =

|
||
|
|
||
|
|
|

λn−1
1 ϕ1 λn−2

1 φ1 λn−3
1 ϕ1 · · · λ1φ1 ϕ1

λn−1
2 ϕ2 λn−2

2 φ2 λn−3
2 ϕ2 · · · λ2φ2 ϕ2

...
...

...
...

...
...

λn−1
n ϕn λn−2

n φn λn−3
n ϕn · · · λnφn ϕn

|
||
|
|
||
|
|
|

,

Θ12 =

|
|
||
|
|
||
|
|

λn1φ1 λn−2
1 φ1 λn−3

1 ϕ1 · · · λ1φ1 ϕ1

λn2φ2 λn−2
2 φ2 λn−3

2 ϕ2 · · · λ2φ2 ϕ2
...

...
...

...
...

...

λnnφn λn−2
n φn λn−3

n ϕn · · · λnφn ϕn

|
|
||
|
|
||
|
|

,

Θ21 =

|
|
||
|
|
||
|
|

λn−1
1 φ1 λn−2

1 ϕ1 λn−3
1 φ1 · · · λ1ϕ1 φ1

λn−1
2 φ2 λn−2

2 ϕ2 λn−3
2 φ2 · · · λ2ϕ2 φ2

...
...

...
...

...
...

λn−1
n φn λn−2

n ϕn λn−3
n φn · · · λnϕn φn

|
|
||
|
|
||
|
|

.
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In order to construct the determinant representation of semi-degenerate DT, we 
adjust the specific process of Taylor expansion. In what follows, we choose the seed 
solution .q = dei(ωx+kt), .k = −ωd2 + ω2, and . ω, . d are two real constants. 

Theorem 1 Assuming .λ0 = 1
2

(√−d2 + 2ω − id
)
, the spectral parameters satisfy 

the conditions .λ2 j−1 = λ0 + ε2
(
λ2 j = −λ∗

0 + ε2
)
, .ε → 0, for . j = 1, 2, · · · , l and 

.λm = αm + iβm, for  .2l + 1 ≤ m ≤ n, where .αm and .βm are real numbers. The 
B. äcklund transformation for (1) can be given by the following formula: 

.qn = δ211
δ221

q + 2i
δ11δ12

δ221
, (9) 

where .δi j .(i, j = 1, 2) will be presented below. 

Proof When .n = 2k, take determinant .Θ11 for example, give the concrete process 
below: 

(i) Set .λ1 = λ0 + ε2 (.λ2 = −λ∗
0 + ε2), elements which in the first and second 

rows of determinant .Θ11 are expanded by Taylor series of order . 4 around 
.ε = 0, and then the coefficients of .ε2 are extracted. 

(ii) Set .λ3 = λ0 + ε2 (.λ4 = −λ∗
0 + ε2), elements which in the third and fourth 

rows of determinant .Θ11 are expanded by Taylor series of order . 6 around 
.ε = 0, and then the coefficients of .ε4 are extracted. 

(iii) Set .λ2l−1 = λ0 + ε2 (.λ2l = −λ∗
0 + ε2), elements which in the .(2l − 1)th 

and . 2lth rows of determinant .Θ11 are expanded by Taylor series of order 
.2l + 2 around .ε = 0, and the coefficients of .ε2l are extracted. 

(iv) The .(2 j + 1)th and .(2 j + 2)th rows of determinant .Θ11 is unchanged 
.(l ≤ j ≤ k − 1). 

Thus, .Θ11 can be written as 

. δ11 =

||||
|||||
||||||
||||||
|||||

ϕ[1, n − 1, 1] φ[1, n − 2, 1] ϕ[1, n − 3, 1] · · · ϕ[1, 1, 1] φ[1, 0, 1]
ϕ[2, n − 1, 1] φ[2, n − 2, 1] ϕ[2, n − 3, 1] · · · ϕ[2, 1, 1] φ[2, 0, 1]
ϕ[1, n − 1, 2] φ[1, n − 2, 2] ϕ[1, n − 3, 2] · · · ϕ[1, 1, 2] φ[1, 0, 2]
ϕ[2, n − 1, 2] φ[2, n − 2, 2] ϕ[2, n − 3, 2] · · · ϕ[2, 1, 2] φ[2, 0, 2]

...
...

...
...

...
...

ϕ[1, n − 1, l] φ[1, n − 2, l] ϕ[1, n − 3, l] · · · ϕ[1, 1, l] φ[1, 0, l]
ϕ[2, n − 1, l] φ[2, n − 2, l] ϕ[2, n − 3, l] · · · ϕ[2, 1, l] φ[2, 0, l]
λn−1
2l+1ϕ2l+1 λn−2

2l+1φ2l+1 λn−3
2l+1ϕ2l+1 · · · λ2l+1ϕ2l+1 φ2l+1

λn−1
2l+2ϕ2l+2 λn−2

2l+2φ2l+2 λn−3
2l+2ϕ2l+2 · · · λ2l+2ϕ2l+2 φ2l+2

...
...

...
...

...
...

λn−1
2k−1ϕ2k−1 λn−2

2k−1φ2k−1 λn−3
2k−1ϕ2k−1 · · · λ2k−1ϕ2k−1 φ2k−1

λn−1
2k ϕ2k λn−2

2k φ2k λn−3
2k ϕ2k · · · λ2kϕ2k φ2k

||||
|||||
||||||
||||||
|||||

,

where the first.2l rows of the determinant.δ11, constructed in steps (i–iii), are rational 
functions, and the remaining elements are still exponential functions. For .Θ12 and
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Fig. 1 The first-order rogue wave on the periodic background by choosing:.ω = 1,.d = 1,. β3 = 1
5

.Θ21, similar steps lead to new determinant representations of.δ12 and.δ21, which have 
similar forms to .δ11. 

Taking the similar procedure as above, one can obtain the new determinant form 
of .δ11, .δ12 and .δ21 when .n = 2k + 1. □

3 Interaction Behaviours of the Localized Waves 

We obtain localized waves on different backgrounds and discuss the influence on 
them for different parameters in this section. 

3.1 Localized Waves on the Periodic Background 

When.n = 3,.λ1 =
√−d2+2ω−id

2 ,.λ2 = −λ∗
1, and.λ3 = iβ3. It shows that the values of 

. d, .β3 affect the interaction solution between rogue waves and periodic background. 
Setting .ω = 1, and taking .d = 1, .β3 = 1

5 , the first-order rogue wave on the periodic 
background can be derived, see Fig. 1. Since the value of. ω has no significant influence 
on the solution, here we only discuss the values of . d and . β3. Take it as the control 
group, the values of . d and.β3 are adjusted respectively, and other parameters remain 
unchanged. Thus from the following two cases to consider: 

Case 1. Adjust the value of d 
Firstly, we can see in Fig. 2a that when .d = 1

1000 , it is a periodic wave, and the 
amplitude is . 201500 . The middle of the periodic wave begins to swell when the value of 
. d increases. When.d = 1

100 , the amplitude of periodic wave at uplift position reaches 
. 
21
50 , while the other part drops to. 

2
5 in Fig. 2b. When.d = 1

20 , the amplitude of uplifted
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Fig. 2 Solution for interaction among the the breather, periodic background and rogue wave by 
choosing:.ω = 1,.β3 = 1

5 , a .d = 1
1000 ; b .d = 1

100 ; c .d = 1
20 ; d .d = 1

10 ; e .d = 1
4 ; f . d = 1

2

periodic wave reaches. 920 , and the uplift area becomes narrower than that of.d = 1
100 , 

see Fig. 2c. This is a process of periodic wave energy conversion. As the value of . d
continues to increase, the energy of the periodic wave converges, making the breather 
appear on the periodic background in Fig. 2d. With the value of . d increases from. 

1
10

to . 12 , the period and amplitude of the breather have been changed, see Fig. 2d–f. 
The above description shows that with the increase of . d, the periodic wave energy 
converges and gradually forms the breather, which is a process of breather formation. 
When .d = 1, the breather interact with the periodic wave, and the energy converge 
into a rogue wave, see Fig. 1. 

Case 2. Adjust the value of . β3

With the decrease of the value of. β3, the period of the periodic background becomes 
larger, the amplitude changes, and wave surface fluctuation of periodic background 
tends to be gentle from intense. Meanwhile, the amplitude of the rogue wave also 
changes. It means that the value of .β3 affects the energy conversion of periodic 
background. As the value of .β3 increases, the energy of the periodic background is 
converted into a rogue wave, see Fig. 3.
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Fig. 3 Solution for interaction between the periodic background and rogue wave by choosing: 
.ω = 1,.d = 1, a .β3 = 1

2 ; b .β3 = 1
4 , c . β3 = 1

10

Fig. 4 Two rogue waves on the double-periodic background: .ω = 1, .d = 1, .α3 = 0, .β3 = 1
5 , 

.α4 = 0,. β4 = 5
7

3.2 Localized Waves on the Double-Periodic Background 

When.n = 4, .λ1 =
√−d2+2ω−id

2 , .λ2 = −λ∗
1, and.λ3 = iβ3, .λ4 = iβ4. Different from 

.n = 3, set .ω = 1, and take .d = 1, .β3 = 1
5 , .β4 = 5

7 , one can obtain two rogue waves 
on the double-periodic background, see Fig. 4. Take it as the control group, the values 
of . d, .β3 and .β4 are adjusted respectively, and other parameters remain unchanged. 
We also consider the following two cases: 

Case 1. Adjust the value of d 
Firstly, when the value of . d is very small, it is a double-periodic wave. As the 
parameter . d increases, the double-periodic wave energy converges. After that, the 
breather appears. The period, size and width of the breather increase with the increase 
of the value of. d, and the amplitude of the double-periodic background increases, see 
Fig. 5. Finally, when.d = 1, the energy, which is the interaction of the breather with 
the double-periodic wave, converges to form two rogue waves on the double-periodic 
background, see Fig. 4.
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Fig. 5 Solution for interaction among the double-periodic background, the breather and rogue 
waves with the parameters: .ω = 1, .α3 = 0, .β3 = 1

5 , .α4 = 0, .β4 = 1
5 , a .d = 1

1000 ; b .d = 1
50 ; c 

.d = 1
20 ; d .d = 1

10 ; e .d = 1
4 ; f . d = 1

2

Fig. 6 Two rogue waves on the double-periodic background by choosing: .ω = 1, .d = 1, .α3 = 0, 
.α4 = 0,.β4 = 5

7 a .β3 = 1
2 ; b .β3 = 1

4 ; c . β3 = 1
10

Case 2. Adjust the value of . β3

When the value of .β3 decreases, two rogue waves interact with the double-periodic 
wave, simultaneous variation of amplitude of rogue wave and double-periodic wave, 
see Fig. 6. 

3.3 Localized Waves on the Plane Wave Background 

For .n = 4, .λ1 =
√−d2+2ω−id

2 , .λ2 = −λ∗
1, and .λ3 = α3 + iβ3, .λ4 = −λ∗

3. We can 
derive three types of second-order semi-rational solution by setting different spectral
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Fig. 7 The semi-rational solutions by choosing: a .ω = 1, .d = 1, .λ1 = 1
2 − 1

2 i , .λ2 = − 1
2 − 1

2 i , 
.λ3 = 3

5 − 3
5 i ,.λ4 = − 3

5 − 3
5 i ; b .ω = 1,.d = 1,.λ1 = 3

4 − 3
4 i ,.λ2 = − 3

4 − 3
4 i ,.λ3 = 1

2 − 1
2 i ,. λ4 =

− 1
2 − 1

2 i ; c .ω = 3
2 , .d = 3

2 , .λ1 = 2
5 − 3

4 i , .λ2 = − 2
5 − 3

4 i , .λ3 = 1
2 − 3

5 i , . λ4 = − 1
2 − 3

5 i

parameter values in Fig. 7. Here, we should remark that, the recent paper [ 29] also  
reported the three types of second-order semi-rational solution and proposed that if 
.Im (λ3) > 0, one cannot derive the second-order rogue wave. 

However, in our present work, one can find that the first-order rogue wave trans-
forms to two rogue waves and a breather as the value of .Im (λ3) increases. Firstly, 
when.Im (λ3) = 0, it is the first-order rogue wave. When.Im (λ3) = 1

10 , the periodic 
solution appears and the peak of rogue wave becomes smooth. With the increase 
of .Im (λ3), the energy of periodic solution increases. When .Im (λ3) = 1

5 , there is a 
small amplitude of breather, and the rogue wave changes from single peak to double 
peak, but it is not completely separated. As the value of .Im (λ3) increases from . 310
to . 25 , the rogue wave gradually separates with the increase of the amplitude of the 
breather. Until .Im (λ3) = 1/2, the two peaks of the rogue wave are completely sep-
arated, generating two first-order rogue waves. At the same time, the period of the 
breather decreases and the amplitude increases. Obviously, .Im (λ3) also affects the 
propagation direction of the breather, as shown in Fig. 8. 

4 Conclusion 

This paper presents the dynamic behavior of different types of solutions, including the 
first-order rogue wave on the periodic background, two rogue waves on the double-
periodic background and the interaction solution between the second-order rogue 
wave and the breather for Eq. (1) in detail. In addition, we conclude that different 
parameters have different effects on the dynamic behavior of solutions. On the one 
hand, parameter . d affects the energy conversion of periodic waves. The periodic 
solution is generated by the energy convergence of periodic waves. With the increase 
of the value of. d, the energy continues to gather, and the periodic solution is gradually 
transformed into the breather. The period and amplitude of breather increase with 
the value of . d, and finally form the rogue wave. On the other hand, the interaction 
solution between the periodic wave and rogue waves is affected by the imaginary part
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Fig. 8 Solution for interaction between rogue waves and the breather by choosing: .ω = 1, . d =
1, .λ1 = 1

2 − 1
2 i,λ2 = − 1

2 − 1
2 i , a .λ3 = 3

5 ,λ4 = − 3
5 ; b .λ3 = 3

5 + 1
10 i,λ4 = − 3

5 + 1
10 i ; c . λ3 =

3
5 + 1

5 i,λ4 = − 3
5 + 1

5 i ; d.λ3 = 3
5 + 3

10 i,λ4 = − 3
5 + 3

10 i ; e.λ3 = 3
5 + 2

5 i,λ4 = − 3
5 + 2

5 i ; f . λ3 =
3
5 + 1

2 i,λ4 = − 3
5 + 1

2 i

of . λ. Besides that, spectral parameters also affect the interaction solution between 
rogue waves and the breather. For instance, when.n = 4, if the spectral parameters. λ3

and.λ4 satisfy the relation.λ3 = −λ∗
3 and.λ4 = −λ∗

4, two rogue waves are generated 
on the double-periodic background. If they satisfy.λ4 = −λ∗

3, the second-order rogue 
wave with the breather will be generated on the plane wave background. Particularly, 
if.Im (λ3) > 0, the first-order rogue wave will interact with the plane wave to form the 
breather, and the rogue wave will be separated into two rogue waves as the value of 
.Im (λ3) increases. Meanwhile, it also changes the direction of breather propagation. 
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. l p Solution to the Initial Value Problem 
of the Discrete Nonlinear Schrödinger 
Equation with Complex Potential 

Guoping Zhang and Ghder Aburamyah 

Abstract In this paper we study the time-dependent discrete nonlinear Schrödinger 
equation with complex, not necessarily bounded potential and sufficiently general 
nonlinearity on a multidimensional lattice with a weighted .l p initial value. Under 
natural assumptions, we prove the global well-posedness in weighted .l p spaces. 

Keywords Discrete nonlinear Schrödinger equation · Semigroup · Initial value 
problem · Lipschitz continuous · Complex potential · .l p solution 
2010 Mathematics Subject Classification 37L60 · 35B41 · 35Q55 

1 Introduction 

The discrete nonlinear Schrödinger equation (DNLS) is a mathematical model that 
describes the dynamics of wave propagation in discrete systems, where the wave’s 
behavior is governed by nonlinear effects. It is a discrete analog of the famous 
nonlinear Schrödinger equation, which describes the behavior of wave packets in 
continuous media. 

The DNLS equation is commonly used to study various physical phenomena 
in a wide range of fields, including condensed matter physics, optics, and Bose-
Einstein condensates. It arises in systems such as nonlinear optical waveguides, 
coupled oscillators, and discrete lattices. 

In general the one-dimensional DNLS equation is written in the following form: 

. i
dψn

dt
+ αψn + β|ψn|2ψn + γ(ψn+1 + ψn−1) = 0,
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where .ψn represents the complex-valued amplitude of the wave at site . n, and . t is 
time. The coefficients. α, . β, and. γ determine the properties of the system, such as the 
dispersion and nonlinearity. The first term on the left-hand side represents the tem-
poral evolution of the wave, while the second term accounts for any linear potential 
acting on the system. The third term describes the nonlinear self-interaction of the 
wave, which depends on the amplitude squared.|ψn|2. The fourth term represents the 
coupling between neighboring sites, with.ψn+1 and.ψn−1 denoting the amplitudes at 
the adjacent sites. 

Solutions of the DNLS equation can exhibit a wide range of interesting phenom-
ena, including soliton formation, nonlinear wave propagation, and energy localiza-
tion. These phenomena are a consequence of the interplay between the linear and 
nonlinear terms in the equation. 

The DNLS equation is usually studied numerically due to its nonlinear nature. 
Various numerical techniques, such as finite difference methods, spectral methods, 
or split-step methods, are employed to simulate and analyze the dynamics of wave 
packets governed by the DNLS equation. 

Understanding the properties and dynamics of the DNLS equation is crucial for 
gaining insights into the behavior of discrete wave systems and exploring nonlinear 
effects in different physical systems. For instance, we mention nonlinear wave trans-
mission in discrete media, propagation of localized pulses in coupled waveguides 
and optical fibers, and modeling Bose-Einstein condensates (see, e.g., [ 6, 9, 10] and 
references therein). 

Research activity in this area mainly focuses on the so-called “breathers,” which 
are standing waves. The profile function of such a wave solves an appropriate sta-
tionary DNLS equation. Most works in this direction deal with (discrete) translation-
invariant DNLS on a one-dimensional lattice and employ perturbation techniques, 
two-dimensional discrete-time dynamical systems, and numerical simulation (see, 
e.g., [ 4– 6] and references therein). 

On the other hand, the series of papers [ 2, 13– 17, 20– 24] applies the theory of 
critical points of smooth functionals to the study of breathers for DNLS with various 
types of nontrivial potentials. In this context, we also mention the remarkable paper 
[ 19]. 

In [ 25] we investigated the weighted. l2 solution of the following initial value prob-
lem for the time-dependent .d-dimensional discrete nonlinear Schrödinger equation 

.i u̇ = −Δu + Wu − f (n, u) + b(t, n), (1) 

.u(0, n) = u0(n) , (2) 

where the potential .W = V + iδ is a complex function of 

. n = (n1, n2, . . . , nd) ∈ Z
d ,

. u̇ stands for the time derivative and .−Δ is the .d-dimensional discrete Laplacian 
defined by
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. 

Δu(n) = u(n1 − 1, n2, . . . , nm) + u(n1, n2 − 1, . . . , nd ) + · · · + u(n1, n2, . . . , nd − 1)

− 2du(n1, n2, . . . , nd )

+ u(n1 + 1, n2, . . . , nd ) + u(n1, n2 + 1, . . . , nd ) + · · · + u(n1, n2, . . . , nd + 1),

Note that if .δ(n) is negative for all .n ∈ Z
d , the part . δ of the potential represents 

dissipation effects. Additionally, our Assumption .(i i i) below allows the nonlinear-
ity to contain a dissipative term. This DNLS (1) is the space discretization of the 
nonlinear Schrödinger equation in continuous media. 

Only a few papers [ 7, 8, 11, 12] are devoted to equations of the form (1). The 
paper [ 12] focuses on the initial value problem for the DNLS with a zero potential 
and power nonlinearity on a one-dimensional lattice with weighted .l2 initial value. 
The main result provides global well-posedness in weighted .l2 spaces with power 
weights. In [ 7, 8], the authors consider the DNLS with .V = 0 and .δ = const. The  
main results are global well-posedness in the conservative (.δ = 0) and dissipative 
(.δ < 0) cases, as well as the existence of attractors in weighted .l2 spaces in the 
conservative case, on one-dimensional and multidimensional lattices, respectively. 
In the paper [ 11], the well-posedness in weighted spaces is studied for the DNLS 
on a one-dimensional lattice in the case when.W = V is a general real potential and 
.b = 0. 

In [ 25], we extended those results to the multidimensional case, allowing a suffi-
ciently general, not necessarily bounded potential .W with weighted . l2 initial value. 
In this paper, we will investigate the initial value problem for the DNLS with a 
weighted .l p initial value. 

To the best of our knowledge, no other mathematician has investigated the initial 
value problem for the DNLS with a weighted .l p initial value. Since .l p is no longer 
a Hilbert space like . l2 when .p /= 2, we cannot use the features of a Hilbert space to 
prove our main results on .l p global solutions. Instead, we use the integral equation 
defining the mild solution of the DNLS in [ 25] to prove our major results on.l p global 
solutions by leveraging the existing . l2 global solutions obtained in [ 25]. 

The organization of this paper is as follows: For readers’ convenience, we provide 
a reminder of some preliminaries on the semigroup theory of abstract differential 
equations in Sect. 2. The local weighted.l p well-posedness result is proved in Sect. 3. 
Section 4 is devoted to the existence of weighted .l p global solutions. 

2 Semigroup Theory and Abstract Initial Value Problem 

We treat (1) as an abstract differential equation of the form 

.u̇ = Au + N (t, u) (3)
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in a complex Banach space. We always assume that .A is a closed operator in a 
Banach space .E with the domain .D(A), and .N : [0,∞) × E → E is continuous. 
Let us provide a reminder of some elementary facts related to such equations. 

A family .U (t), t ∈ [0,∞), of bounded linear operators in .E is a strongly con-
tinuous semigroup of operators if 

(1) .U (t)v is a continuous function on .[0,∞) with values in .E for every .v ∈ E ; 
(2) .U (0) = I is the identity operator in . E ; 
(3) .U (t + s) = U (t)U (s) for all .t, s ∈ [0,∞). 

If the family.U (t) is defined for all.t ∈ R and satisfies (1)–(3) above on the whole 
real line, we say that .U (t) is a strongly continuous group of operators. 

If .U (t) is a strongly continuous semigroup of operators, then its generator .A is 
defined by 

.Av = lim
t→0+

t−1(U (t) − I )v, (4) 

where the domain .D(A) consists of those .v ∈ E for which the limit in (4) exists. 
The following result is well known (see, e.g., [ 3, 18]). 

Proposition 2.1 If . A is a generator of a strongly continuous semigroup in a Banach 
space .E and B is a bounded linear operator in . E, then .A + B is a generator of a 
strongly continuous semigroup. 

If . A is a bounded linear operator, then it generates a one-parameter group.et A. In  
general, if. A is a generator of a strongly continuous semigroup, we still use the same 
exponential notation .et A for the semigroup generated by . A. 

Now we discuss the abstract initial value problem for Eq. (3), with initial data 

.u(0) = u0 ∈ E . (5) 

If .A is a bounded operator, then it is sufficient to consider classical solutions, i.e. 
continuously differentiable functions with values in .E that satisfy (3) and (5). In 
general, when the operator .A is unbounded, we consider mild solutions to (3) and 
(5). 

A continuous function. u on.[0, T ] with values in. E is a mild solution of the initial 
value problem (3) and (5) if it satisfies the following integral equation 

.u(t) = et Au0 +
{ t

0
e(t−s)AN (s, u(s))ds. (6) 

In the case when the operator . A is bounded, these are classical solutions. 
We need the following well-known result (see. e.g., [ 1, 18]). 

Proposition 2.2 Let .A be a generator of a strongly continuous semigroup in a 
Banach space . E, and .N (t, u) : [0,∞) × E → E be continuous in . t and locally 
Lipschitz continuous in . u with Lipschitz constant being bounded on bounded inter-
vals of . t . That is, for any .T > 0 and .R > 0, there exists .C = C(T, R) > 0 such 
that
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. max
0≤t≤T

||N (t, w) − N (t, w')|| ≤ C||w − w'|| (7) 

whenever .||w|| ≤ R and .||w'|| ≤ R. 

(a) For every .u0 ∈ E, there exists a unique local mild solution of the initial value 
problem (3) and (5) defined on the maximal interval .[0, τmax ). 

(b) If .τmax < ∞, then .limt↗τmax ||u(t)|| = ∞. 
(c) The solution .u(t) depends continuously on .u0 in the topology of uniform con-

vergence on bounded closed subintervals of .[0, τmax ). 
(d) Assume, in addition, that the map .N : [0,∞) × E → E is locally Lipschitz 

continuous, i.e., for any .T > 0 and .R > 0, there exists .C = C(T, R) > 0 such 
that 

.||N (t, w) − N (t ', w')|| ≤ C(|t − t '| + ||w − w'||) (8) 

whenever .t ∈ [0, T ], .t ' ∈ [0, T ], .||w|| ≤ R and .||w'|| ≤ R. If  .u0 ∈ D(A), then 
the mild solution of the initial value problem (3) and (5) is a classical solution. 

Remark 2.1 Assumption (7) implies automatically that .N is bounded on bounded 
sets. 

Remark 2.2 If .N (t, u) is globally Lipschitz continuous in . u, i.e. there exists a 
constant .C = C(T ) > 0 such that 

. max
0≤t≤T

||N (t, w) − N (t, w')|| ≤ C||w − w'||, ∀w,w' ∈ E, (9) 

then the initial value problem (3) and (5) possesses a unique global mild solution 
defined on .[0,∞). Moreover, the solution .u(t) depends continuously on .u0 in the 
topology of uniform convergence on bounded closed subintervals of .[0,∞). 

Remark 2.3 Let .N (t, u) be of the form 

. N (t, u) = N (u) + f (t) .

Then assumption (8) holds if and only if .N and . f are locally Lipschitz continuous 
on .E and .[0,∞), respectively. 

3 Local Solution to the Initial Value Problem of the DNLS 
Equation 

In this section, we consider Eq. (1) under the following assumptions: 

(i) The complex potential .W = V + iδ is such that both .V and . δ are real-valued 
functions on .Z

d , and 
.δ = sup{δ(n)|n ∈ Z

d} < ∞ .
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(ii) The nonlinearity . f : Zd × C → C satisfies the following conditions: 

(1) . f (n, 0) = 0, 
(2) . f (n, z) = o(z) as .z → 0 uniformly with respect to .n ∈ Z

d , 
(3) . f is uniformly locally Lipschitz continuous, that is, for every .R > 0, there 

exists a constant .C = C(R) independent of .n ∈ Z
d such that 

. | f (n, z) − f (n, z')| ≤ C |z − z'|

for all .n ∈ Z
d whenever .|z| ≤ R and .|z'| ≤ R. 

(iii) The nonlinearity . f (n, z) is of the form . f (n, z) = g(n, |z|)z, where .g(n, r) is a 
function and its imaginary part is nonnegative. Examples of nonlinearities that 
satisfy Assumptions .(i i) and .(i i i) are as follows. 

• Power nonlinearity 

. f (n, z) = γn|z|p−1z, p > 1,

• Saturable nonlinearities such as 

. f (n, z) = γn
|z|p−1z

1 + |z|p−1
, p > 1,

and 
. f (n, z) = γn(1 − e(−an |z|2))z, an > 0,

where .Imγn ≥ 0 for all .n ∈ Z
d . 

We are interested in finding solutions to Eq. (1) in weighted .l p-spaces. Let 
.Θ = (θn)n∈Zd be a sequence of positive numbers (weights). The space . l pΘ(Zd)

consists of all two-sided sequences of complex numbers such that the norm 

. ||u||l pΘ = (
∑
n∈Zd

|u(n)θn|p)1/p

is finite. We notice that .u ∈ l pΘ(Zd) if and only if .uΘ ∈ l p(Zd) and 

. ||u||l pΘ = ||uΘ||l p .

Therefore for .1 ≤ p < q ≤ ∞ we have 

. ||u||lqΘ ≤ ||u||l pΘ
and 

.l pΘ(Zd) ⊂ lqΘ(Zd).
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Remark: The weighted . l2 space with weight sequence .Θ in [ 25] is the same as 
the space .l2

Θ1/2(Z
d) defined above with the same weight sequence . Θ. 

We always assume that the weight .Θ is regular in the sense that: 
(iv) The sequence .Θ is bounded below by a positive constant, and there exists a 

constant .c0 ≥ 1 such that 

. c−1
0 ≤ θn+ei

θn
≤ c0

for all .n ∈ Z
d and.i = 1, . . . , d , where .ei ∈ Z

d has 1 at the .i-th component and 
0 elsewhere. 

From Assumption .(iv), we obtain 

.||u||l p(Zd ) ≤ C0||u||Θ, (10) 

which implies that.l pΘ(Zd) is densely and continuously embedded into.l p(Zd). Setting 
.Θ0 as the constant weight with unit components, we have that 

. l pΘ0
(Zd) = l p(Zd)

From the perspective of functional analysis, Assumption .(iv) means that the space 
.l pΘ(Zd) is translation invariant. More precisely, let .Si and.Ti be the operators defined 
by 

. (Siw)(n) = w(n − ei ), (Tiw)(n) = w(n + ei ), i = 1, · · · , d.

Indeed, Assumption .(iv) holds if and only if for all .i = 1, . . . , d, both .Si and . Ti
are linear bounded operators in .l pΘ(Zd). It’s worth noting that .Si and.Ti are mutually 
inverse operators. However, the translation invariance of the space .l pΘ(Zd) doesn’t 
imply that the norm.|| · ||Θ is translation invariant. 

The most important examples of regular weights satisfying Assumption.(iv) are 

• Power weight: 
. θn = (1 + |n|)λ, λ > 0;

• Exponential weight: 
. θn = eα|n|, α > 0.

More generally, the weight.θn = eα|n|β , α > 0 satisfies Assumption.(iv) if and only 
if . 0 < β ≤ 1.

To understand the Eq. (1) in the framework of evolution equations, we can interpret 
it as an evolution equation of the form (3), where.A = −i H and.H is the Schrödinger 
operator defined as 

.H = −Δ + W (11) 

and the operator .N is given by
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.N (t, u)(n) = i f (n, u(t, n)) − i b(t, n). (12) 

To establish a precise interpretation, we need to analyze certain properties of the 
Schrödinger operator .H in the space .l pΘ(Zd). First, we observe that the operator 
(of multiplication by) .−iW = −iV + δ is a diagonal operator. Since .V is real and 
.δ(n) ≤ δ for all.n ∈ Z

d , the operator.−iW generates a strongly continuous semigroup 
in .l pΘ(Zd) given by 

. (e−i tW u)(n) = e−iV (n)t eδ(n)t u(n), n ∈ Z
d .

The domain of this operator in .l pΘ(Zd) is defined as 

.DΘ = {u ∈ l pΘ(Zd) : Wu ∈ l pΘ(Zd)}. (13) 

where we use the notation.D to represent the domain of the operator .W in.l p(Zd). It  
is clear that .DΘ ⊂ D. 

Next, we consider the discrete Laplacian operator .−Δ, which is a bounded oper-
ator in .l pΘ(Zd). The Laplacian can be represented as 

. − Δ = −
d∑

i=1

∇−
i ∇+

i = −
d∑

i=1

∇+
i ∇−

i =
d∑

i=1

(∇−
i − ∇+

i ),

where 

. ∇−
i u(n) = u(n) − Siu(n), ∇+

i u(n) = Tiu(n) − u(n) , i = 1, . . . , d ,

and .Si and .Ti are the shift operators defined previously. 
By Assumption .(iv), we can establish the boundedness of the shift operators . Si

and .Ti in .l pΘ(Zd). 

. ||Siu||l pΘ = (
∑
n∈Zd

|u(n − ei )θn|p)1/p = (
∑
n∈Zd

|u(n)|pθ p
n+ei )

1/p ≤ c0||u||l pΘ,

and 

. ||Tiu||l pΘ = (
∑
n∈Zd

|u(n + ei )θn|p)1/p = (
∑
n∈Zd

|u(n)|pθ p
n−ei )

1/p ≤ c0||u||l pΘ,

which imply 

. ||∇+
i u||l pΘ ≤ (c0 + 1)||u||l pΘ, ||∇−

i u||l pΘ ≤ (c0 + 1)||u||l pΘ.

Thus, both.∇+
i and.∇−

i are bounded operators in.l pΘ(Zd), hence so is.−Δ. Therefore, 
we have the inequality:
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.|| − Δu||l pΘ ≤ 2d(c0 + 1)||u||l pΘ. (14) 

Based on Proposition 2.1, we can derive the following lemma. 

Lemma 3.1 The operator .A = −i H is a generator of strongly continuous group 
.et A in the space .l pΘ(Zd). Moreover, there exist two constants .M ≥ 1 and . ω such that 
for all . t ≥ 0

.||et A|| ≤ Meωt . (15) 

This lemma establishes the generator property of . A and provides an estimate on 
the growth of the group .et A in the space .l pΘ(Zd). 

We define the operator .N (t, u) as follows 

. N (t, u)(n) = i f (n, u(n)) − ib(t, n).

Then the Eq. (1) can be expressed in the form of Eq. (3). Our well-posedness result 
is the following. 

Theorem 3.1 (1) Under Assumptions .(i), .(i i) and .(iv), if .b ∈ C([0,∞), l pΘ(Zd)), 
then for every .u0 ∈ l pΘ(Zd), problem (1) and (2) has a unique local mild solution 
.u ∈ C([0, T ], l pΘ(Zd)) for some .T > 0. 

(2) The mild solution .u(t) ∈ C([0, T ], l pΘ(Zd)) of problem (1) and (2) obtained in 
part .(1) is a classical solution if one of the following conditions holds 
.(a) .u0 ∈ l pΘ(Zd) and .W is bounded; 
.(b) .u0 ∈ D(A) = DΘ and .b : [0,∞) → l pΘ(Zd) is locally Lipschitz continuous. 

The basic property of the operator .N is given in the following lemma. 

Lemma 3.2 Assume that assumptions (i), (ii) and (iv) are satisfied and . b ∈
C([0,∞), l pΘ(Zd)). Then the operator .N (t, u) : [0,∞) × l pΘ(Zd)) → l pΘ(Zd)) is 
continuous in . t and locally Lipschitz continuous in . u with Lipschitz constant being 
independent of. t . Moreover, if the nonlinearity. f (n, z) is uniformly globally Lipschitz 
continuous, i.e. there is a constant .C > 0, independent of . n, such that 

.| f (n, z) − f (n, z')| ≤ C |z − z'|, ∀z, z' ∈ C, (16) 

then for all . t ≥ 0

. ||N (t, w) − N (t, w')||l pΘ ≤ C||w − w'||l pΘ, ∀w,w' ∈ l pΘ(Zd).

Proof Suppose that .||w||l pΘ ≤ R and.||w'||l pΘ ≤ R. Due to the continuous embedding 
.l pΘ(Zd) ⊂ l p(Zd), we see that.||w||l p(Zd ) ≤ R' and.||w'||l p(Zd ) ≤ R', with some.R' > 0. 
By the property of .l p(Zd) we have 

.||w||l∞(Zd ) ≤ ||w||l p(Zd ), (17)
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which implies .||w||l∞(Zd ) ≤ R' and .||w'||l∞(Zd ) ≤ R'. Now assumptions (i) and (ii) 
imply that for all . t ≥ 0

. ||N (t, w) − N (t, w')||p
l pΘ

=
∑
n∈Zd

| f (n, w(n)) − f (n, w'(n))|pθ p
n

≤ C(R')
∑
n∈Zd

|w(n) − w'(n)|pθ p
n = C(R')||w − w'||p

l pΘ
.

The second statement of the lemma is trivial. □

Remark 3.1 It is easily seen that any mild solution of (1) in.l pΘ(Zd) is a mild solution 
in .l p(Zd). 

Proof of Theorem 3.1. .(1) The existence of a unique local mild solution in 
.C([0, T ], l pΘ(Zd)) for some.T > 0 just follows from Lemmas 3.1 and 3.2 and Propo-
sition 2.2. 

.(2) If .W is bounded, then the generator .A is bounded in .l pΘ(Zd) which implies 
that each mild solution is actually a classical solution. 

Part .(b) follows from Proposition 2.2 .(d) and Remark 2.3. 

4 Existence of Global Solutions 

To investigate the existence of global.l p solutions, we consider two cases:. 1 ≤ p < 2
and .2 < p < ∞. 

4.1 Case 1: . 1 ≤ p < 2

In this case, since we have the inclusion .l pΘ(Zd) ⊂ l2Θ(Zd), we can establish the 
existence of a global .l2 solution by applying Theorem 3.1 in [ 25]. Utilizing this 
result, we can prove the following theorem. 

Theorem 4.1 (1) Under assumptions .(i), .(i i), .(i i i), and .(iv), if  .δ ≤ 0 and . b ∈
C([0,∞), l pΘ(Zd))

⊓
L1([0,∞), l2(Zd)), then for every .u0 ∈ l pΘ(Zd), problem 

(1) and (2) has a unique global mild solution .u ∈ C([0,∞), l pΘ(Zd)) which 
continuously depends on .u0 in the topology of uniform convergence on bounded 
closed subintervals of .[0,∞). Moreover, for any . t ≥ 0

.||u(t)||l pΘ ≤ (||u0||l pΘ + B(ω + CM, t))e(ω+CM)t , (18) 

where
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. B(ω + CM, t) =
{ t

0
e−(ω+CM)s ||b(s)||l pΘ ds,

. C is the Lipschitz contant independent of. t ,. ω and.M are the constants in Lemma 
3.1. 

(2) The global mild solution .u(t) ∈ C([0,∞), l pΘ(Zd)) of problem (1) and (2) 
obtained in .(1) is a classical solution if one of the following conditions holds 
.(a) .u0 ∈ l pΘ(Zd) and .W is bounded; 
.(b) .u0 ∈ D(A) = DΘ and .b : [0,∞) → l pΘ(Zd) is locally Lipschitz continuous. 

In order to prove Theorem 4.1 we need the following lemmas. 

Lemma 4.1 Assume that assumptions (i), (ii) and (iii) are satisfied and . b ∈
C([0,∞), l2(Zd)). If  .u0 ∈ l2(Zd)), then by Theorem 3.1 in [25], the global solu-
tion .u(t) ∈ C([0,∞), l2(Zd)) satisfies 

.||u(t)||l2 ≤ ||u0||l2 + B(t))eδ̄t (19) 

where 

. B(t) =
{ t

0
e−δ̄s||b(s)||l2ds.

Furthermore if .δ̄ ≤ 0 and .b ∈ L1([0,∞), l2(Zd)), then 

.||u(t)||l2 ≤ ||u0||l2 + b ≡ R (20) 

where 

. b =
{ ∞

0
||b(s)||l2ds.

Proof Firstly we consider .u0 ∈ D(A), by Theorem 3.1 in [ 25] .u(t) is a classical 
solution and satisfies 

. 

i u̇(t) = (−Δ + W )u(t) − f (n, u(t)) + b(t, n)

u̇(t) = −i(−Δ + W )u + i f (n, u) − ib

(u̇(t), u(t)) = (−i(−Δ + W ))u, u) + (i f (n, u), u) − (ib, u)

.W = V + iδ, .−Δ + V is self-adjoint on . l2, therefore .((−Δ + V )u, u) is real 

.
RHS = −i((−Δ + V )u, u) + (δu, u) + i(Re(g)u, u) − (Im(g)u, u) − i(b, u)

Re(RHS) = (δu, u) − (Im(g)u, u) + Im(b, u)
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By assumption (i) and (iii) we obtain 

. 
1

2

d

dt
||u(t)||2l2 ≤ δ̄||u(t)||2l2 + ||b(t)||l2||u(t)||l2

Since .u(t) is a classical solution, by chain rule we have 

. ||u(t)||l2 ddt ||u(t)||l2 ≤ δ̄||u(t)||2l2 + ||b(t)||l2||u(t)||l2

We set 

. w(t) = ||u(t)||l2

then we have 

. 
dw

dt
≤ δ̄w + ||b(t)||l2

By Gronwall’s inequality, we obtain 

. ||u(t)||l2 ≤ (||u0||l2 + B(t))eδ̄t

. B(t) =
{ t

0
e−δ̄s||b(s)||l2ds

If .b ∈ L1([0,∞), l2(Zd)), we denote 

. b̄ =
{ ∞

0
||b(s)||l2ds < ∞

. ||u(t)||l2 ≤ ||u0||l2 + b̄ ≡ R.

For .u0 ∈ l2, we can choose a sequence .{u0(k)} ∈ D(A) which converges to .u0 in . l2. 
We have 

.||u(k)(t)||l2 ≤ (||u0(k)||l2 + B(t))eδ̄t

□

Let .k → ∞ we obtain the estimate (19). 
From the assumption (ii) we can define the optimal Lipschitz constant 

.C(r) = sup
n

sup
|z−z' |≤r

| f (n, z) − f (n, z')|
|z − z'| .



.l p Solution to the Initial Value Problem … 361 

Notice that.C(r) is a nondecreasing function of. r and. f (n, 0) = 0 implies for any 
.n ∈ Z

d and . |z| ≤ r
. | f (n, z)| ≤ C(r)|z|.

Lemma 4.2 Assume that assumptions (i), (ii), (iii) and (iv) are satisfied and 
.b ∈ C([0,∞), l pΘ(Zd))

⊓
L1([0,∞), l2(Zd)). If .δ ≤ 0, then for any . u0 ∈ l pΘ(Zd) ⊂

l2(Zd), the global . l2 solution satisfies the following estimate: for all . t ≥ 0

. ||N (t, u(t))||l pΘ ≤ C(R)||u(t)||l pΘ + ||b(t)||l pΘ.

Proof .N (t, u(t, n)) = i f (n, u(t, n)) − ib(t, n). By Lemma 4.1 

. |u(t, n)| ≤ ||u(t)||l∞ ≤ ||u(t)||l2 ≤ R, ∀t, n.

which implies that 
. | f (n, u(t, n))| ≤ C(R)|u(t, n)|

and 
. || f (n, u(t, n)||l pΘ ≤ C(R)||u(t)||l pΘ.

Therefore we have 

.||N (t, u(t))||l pΘ ≤ C(R)||u(t)||l pΘ + ||b(t)||l pΘ.

□

Proof of Theorem 4.1. .(1) We define 

. B(ω, t) =
{ t

0
e−ωs ||b(s)||l pΘ ds

From the integral equation (6) and using Lemma 3.1 we obtain 

. ||u(t)||l pΘ ≤ Meωt||u0||l pΘ + M
{ t

0
eω(t−s)||N (s, u)||l pΘds

Then by Lemma 4.2 we have 

. ||N (s, u(s))||l pΘ ≤ C(R)||u(s)||l pΘ + ||b(s)||l pΘ.

We denote . C as .C(R) in the following calculations. 

. e−ωt||u(t)||l pΘ ≤ M||u0||l pΘ + M
{ t

0
e−ωs||b(s)||l pΘ ds + CM

{ t

0
e−ωs||u(s)||l pΘ ds
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We set 
. w(t) = e−ωt ||u(t)||l pΘ,

then 

. w(t) ≤ M (||u0||l pΘ + B(ω, t)) + CM
{ t

0
w(s)ds

By Gronwall’s inequality, we obtain 

. 

w(t) ≤ M
(||u0||l pΘ + B(ω, t)

) + CM2
{ t

o
eCM(t−s)(||u0||l pΘ + B(ω, s))ds

= M
(||u0||l pΘ + B(ω, t)

) + CM2||u0||l pΘ
eCM(t−s)

−CM

|||t
0
+ CM2eCMt

{ t

0
e−CMs B(ω, s)ds

= M
(||u0||l pΘ + B(ω, t)

) + M ||u0||l pΘ (eCMt − 1) + CM2eCMt
{ t

0
e−CMs B(ω, s)ds

= M
(
eCMt||u0||l pΘ + B(ω, t)

) + CM2eCMt
{ t

0
e−CMs B(ω, s)ds

. 

{ t

0
e−CMs B(ω, s) ds =

{ t

0
e−CMs

{ s

0
e−ωτ || b(τ ) ||l pΘ dτ ds

=
{ t

0
e−ωτ || b(τ ) ||l pΘ

{ t

τ
e−CMs ds

= 1

CM

{ t

0
||b(τ )||l pΘ e−ωτ ( e−CMτ − e−CMt ) dτ

= 1

CM
[
{ t

0
e−(ω+CM)τ ||b(τ )||l pΘ − e−CMt

{ t

0
e−ωt ||b(τ )||l pΘ dτ ]

= 1

CM
[B(ω + CM, t) − e−CMt B(ω, t) ]

. e−ωt ||u(t)||l pΘ = w(t) ≤ MeCMt [ ||u0||l pΘ + B(ω + CM, t)]
||u(t)||l pΘ ≤ M e(ω+CM)t [ ||u0||l pΘ + B(ω + CM, t) ]

Therefore we proved the estimate (22) from which we can conclude the existence of 
global weighted .l p solution by a standard argument by contradiction. 

.(2) If .W is bounded, then the generator .A is bounded in .l pΘ(Zd) which implies 
that each mild solution is actually a classical solution. 

Part .(b) follows from Proposition 2.2 .(d) and Remark 2.3. 

Remark 4.1 When we take .Θ = Θ0 we obtain the regular global .l p solution. u and 
moreover we have
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. u ∈ C([0,∞), l p(Zd))
⊓

L∞([0,∞), l2(Zd))

4.2 Case 2: . 2 < p < ∞

In this case, the relationship .l pΘ(Zd) ⊂ l2Θ(Zd) fails, and we cannot obtain a global 
.l2 solution using Theorem 3.1 in [ 25]. However, for some special weight functions 
such as power weights and exponential weights, we can still prove the existence of 
global weighted .l p solutions. 

The following lemma supports our additional assumption on weight functions in 
the theorem. 

Lemma 4.3 .(1) The power weight .Ψλ = {(1 + |n|)λ : n ∈ Z
d} is regular if and 

only if .λ ≥ 0, and .Ψ−λ ∈ lq if and only if .λq > d. 
.(2) The exponential weight.ϕα = {eα|n| : n ∈ Z

d} is regular if and only if.α ≥ 0, 
and .ϕ−α ∈ lq for any .1 ≤ q ≤ ∞ if .α > 0. 

Theorem 4.2 (1) Under assumptions .(i), .(i i), .(i i i), and .(iv), if  .δ ≤ 0, . b ∈
C([0,∞), l pΘ(Zd))

⊓
L1([0,∞), l2(Zd)), and in addition 

.Θ−1 ∈ lq , q = 2 + 4

p − 2
, (21) 

then for every.u0 ∈ l pΘ(Zd), problem (1) and (2) has a unique global mild solution 
.u ∈ C([0,∞), l pΘ(Zd)) which continuously depends on .u0 in the topology of 
uniform convergence on bounded closed subintervals of .[0,∞). Moreover, for 
any . t ≥ 0

.||u(t)||l pΘ ≤ (||u0||l pΘ + B(ω + CM, t))e(ω+CM)t , (22) 

where 

. B(ω + CM, t) =
{ t

0
e−(ω+CM)s ||b(s)||l pΘ ds,

.C is the Lipschitz contant independent of . t , .ω and .M are the constants in 
Lemma 3.1. 

.(2) The global mild solution .u(t) ∈ C([0,∞), l pΘ(Zd)) of problem (1) and (2) 
obtained in .(1) is a classical solution if one of the following conditions holds 
.(a) .u0 ∈ l pΘ(Zd) and .W is bounded; 
.(b) .u0 ∈ D(A) = DΘ and .b : [0,∞) → l pΘ(Zd) is locally Lipschitz continuous. 

Proof Combining the condition (21) and Hölder inequality we obtain 

.

||u0||l2 ≤ ||u0Θ||l p||Θ−1||lq , q = 2 + 4

p − 2

= ||u0||l pΘ||Θ−1||lq < ∞
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which implies .u0 ∈ l2 and Lemmas 4.1 and 4.2 hold. □

By a similar argument as in the proof of Theorem 4.1 we can prove Theorem 4.2. 

Remark 4.2 (1) When we take.Θ = Ψλ, by Lemma 4.3 the condition (21) becomes 

. λ > d(
1

2
− 1

p
).

(2) When we take .Θ = ϕα, by Lemma 4.3 the condition (21) is automatically true 
if .α > 0 and no additional assumption is needed. 
(3) We cannot obtain the regular global.l p solution as a special case of Theorem 4.2. 
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Darboux Transformations for 
Bi-integrable Couplings of the AKNS 
System 

Yu-Juan Zhang and Wen-Xiu Ma 

Abstract We construct Darboux transformations for bi-integrable couplings of soli-
ton equations. Then we apply the resulting theory to a kind of bi-integrable couplings 
of the AKNS systems. Particularly, we present exact one-soliton-like solutions for 
the bi-integrable couplings of the nonlinear Schrödinger equations. 

Keywords Non-semisimple Lie algebra · AKNS bi-integrable couplings ·
Nonlinear Schrödinger equation · Soliton-like solutions 

1 Introduction 

Integrable systems usually possess linear representations, e.g., Lax representations 
associated with matrix loop algebras. Simple matrix loop algebras generate inte-
grable systems, and semisimple matrix loop algebras generate separated integrable 
systems. Integrable couplings [ 1, 2] are a kind of integrable systems which are 
associated with non-semisimple matrix loop algebras [ 3]. Particularly, by enlarging 
semisimple matrix loop algebras to non-semisimple matrix loop algebras, we obtain 
Lax pairs for integrable couplings. This is based on a fact that every non-semisimple 
Lie algebra possesses a semi-direct sum decomposition of a semisimple Lie algebra 
and a solvable Lie algebra [ 4], i.e., let . g denote a non-semisimple Lie algebra. 

.ḡ = g ∈ gc, g - semisimple, gc - solvable, (1) 

where the subscript. c indicates a contribution to the construction of coupling systems. 
The notion of semi-direct sum means that the two Lie subalgebras . g and .gc satisfy 
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.[g, gc] ⊆ gc, (2) 

where .[g, gc] = {[A, B] | A ∈ g, B ∈ gc}, with .[·, ·] denoting the Lie bracket of . ḡ. 
Obviously, .gc is an ideal Lie sub-algebra of . ḡ. 

An integrable coupling of a given integrable system 

.ut = K (u) (3) 

is a triangular integrable system of the following form [ 1, 5, 6]: 

.

{
ut = K (u),

u1,t = T (u, u1).
(4) 

Let .A1 and.A2 be square matrices of the same order. Then the .2 × 2 block matrices 

.M1(A1, A2) =
[
A1 A2

0 A1

]
, (5) 

define an enlarged Lie algebra . ḡ with the following semidirect sum decomposition: 

.ḡ = g ∈ gc, g = {M1(A1, 0)}, gc = {M1(0, A2)}, (6) 

which can be used to generate integrable couplings. Moreover, the variational identity 
is applied to construct the Hamiltonian structures of integrable couplings [ 5, 7]. 

A bi-integrable coupling [ 8] of a given integrable system (3) is an enlarged trian-
gular integrable system of the following form: 

.

⎧⎪⎨
⎪⎩
ut = K (u),

u1,t = T1(u, u1),

u2,t = T2(u, u1, u2).

(7) 

Similarly, let .A1, A2 and .A3 be square matrices of the same order. Then the . 3 × 3
block matrices of the following type: 

.M2(A1, A2, A3) =
⎡
⎣ A1 A2 A3

0 A1 A2

0 0 A1

⎤
⎦ , (8) 

define an enlarged Lie algebra .ḡ = g ∈ gc with 

.g = {M2(A1, 0, 0)}, gc = {M2(0, A2, A3)}, (9) 

which can be used to generate bi-integrable couplings.
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Furthermore, a tri-integrable coupling [ 6, 9] is of the  form:  

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = K (u),

u1,t = T1(u, u1),

u2,t = T2(u, u1, u2),

u3,t = T2(u, u1, u2, u3).

(10) 

The .4 × 4 block matrices 

.M3(A1, A2, A3, A4) =

⎡
⎢⎢⎣
A1 A2 A3 A4

0 A1 A2 A3

0 0 A1 A2

0 0 0 A1

⎤
⎥⎥⎦ , (11) 

defining an enlarged Lie algebra .ḡ = g ∈ gc with 

. g = {M3(A1, 0, 0, 0)}, gc = {M3(0, A2, A3, A4)},

produce Lax pair matrices for tri-integrable couplings. 
There are many approaches for solving integrable systems, for example, the homo-

geneous balance method [ 10], the Hirota bilinear method [ 11], the bilinear neural 
network method [ 12– 15], the transformed rational function method [16], the Darboux 
transformation [ 17– 19] and the inverse scattering transformation [ 20]. The Darboux 
transformation is a pretty systematic and direct approach, and it relies on Lax pairs 
involving a spectral parameter. 

Darboux transformations for integrable couplings have been solved in [ 21]. In 
this paper, we construct Darboux transformations for bi-integrable couplings. This 
paper is organized as follows: In Sect. 2, we present a procedure for constructing Dar-
boux transformations for spectral problems associated with bi-integrable couplings, 
thereby giving a formula of Darboux transformations of bi-integrable couplings. In 
Sect. 3, we apply this formula to a kind of bi-integrable couplings of the AKNS 
hierarchy, and compute exact solutions for the bi-integrable coupling system of the 
nonlinear Schrödinger equations. At the end, we will give a concluding remark. 

2 Darboux Transformations of Bi-integrable Couplings 

To define the spectral problems of bi-integrable couplings, we denote . ū =
(uT , uT

1 , uT
2 )T as the potential functions, where .u, u1, u2 being .N dimensional 

column vectors. Set .Ū and .V̄ [m] being elements in a non-semisimple matrix loop 
algebra defined by
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. Ū (ū,λ) =
⎡
⎣U (u,λ) U1(u1,λ) U2(u2,λ)

0 U (u,λ) U1(u1,λ)

0 0 U (u,λ)

⎤
⎦ , (12) 

. V̄ [m](ū,λ) =
⎡
⎣V [m](u,λ) V [m]

1 (u, u1,λ) V [m]
2 (u, u1, u2,λ)

0 V [m](u,λ) V [m]
1 (u, u1,λ)

0 0 V [m](u,λ)

⎤
⎦ , (13) 

in which .U,U1,U2 are .N × N matrices depending on the spectral parameter . λ. Set 
.φ̄ = (χT ,ψT ,φT )T as the enlarged eigenfunction, with.χ,ψ,φ being.N dimensional 
column vectors. Then the spectral problems of bi-integrable couplings (7) are defined 
as: 

.

{
φ̄x = Ū (ū,λ)φ̄,

φ̄tm = V̄ [m](ū,λ)φ̄,
(14) 

where .m is a positive integer, indicating the hierarchy. Furthermore, we assume 

. U = λJ + P, Ui = λJi + Pi , i = 1, 2,

where. J and. Ji being.N × N diagonal matrices,. P and.Pi being.N × N matrices con-
sisting of dependent variables, which have zero diagonal elements, . V [m], V [m]

1 , V [m]
2

being .N × N polynomial matrices of . λ: 

. V [m] =
m∑
j=0

Vjλ
m− j , V [m]

i =
m∑
j=0

Vi, jλ
m− j , i = 1, 2.

To construct a Darboux transformation for (14), we rewrite the spectral problems 
(14) as follows:  

.

{
φ̄x = Ū φ̄ = (

λ J̄ + P̄
)
φ̄,

φ̄tm = V̄ [m]φ̄ = ∑m
j=0 V̄ jλ

m− j φ̄.
(15) 

where 

. J̄ =
⎡
⎣ J J1 J2
0 J J1
0 0 J

⎤
⎦ , P̄ =

⎡
⎣ P P1 P2

0 P P1
0 0 P

⎤
⎦ , V̄ j =

⎡
⎣Vj V1, j V2, j

0 Vj V1, j

0 0 Vj

⎤
⎦ . (16) 

Assume that .D̄ = D̄(x, t,λ) is a Darboux matrix, that is to say, .φ̄
' = D̄φ̄ satisfies 

the same form as the spectral problems (15), i.e., 

.

{
φ̄

'
x = Ū

'
φ̄

' = (
λ J̄ + P̄

')
φ̄

'
,

φ̄
'
tm = V̄ [m]' φ̄' = ∑m

j=0 V̄
'
jλ

m− j φ̄
'
,

(17)
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where .P̄
'
is the new potential matrix. Therefore .φ̄ → φ̄

'
, P̄ → P̄

'
form a Darboux 

transformation of the spectral problems (14). 
In particular, we consider a Darboux matrix of the form .D̄(λ) = λ Ī − S̄, where 

. Ī = diag(I, I, I ), with . I being the .N × N identity matrix. A similar calculation as 
in [ 21] shows that.λ Ī − S̄ is a Darboux matrix of the enlarged spectral problems (14) 
if and only if . S̄ satisfies 

. S̄x = [ J̄ S̄ + P̄, S̄], (18) 

. S̄tm = [
m∑
j=0

V̄ j S̄
m− j , S̄]. (19) 

Moreover, the potentials satisfy 

.P̄
' = P̄ + [ J̄ , S̄], (20) 

where 

.S̄ =
⎡
⎣ S S1 S2
0 S S1
0 0 S

⎤
⎦ , P̄

' =
⎡
⎣ P

'
P

'
1 P

'
2

0 P
'
P

'
1

0 0 P
'

⎤
⎦ . (21) 

Introduce.S̄ = H̄Λ̄H̄−1 as in the general Darboux transformation theory [ 17], where 

.H̄ =
⎡
⎣ H H1 H2

0 H H1

0 0 H

⎤
⎦ , Λ̄ =

⎡
⎣Λ 0 0

0 Λ 0
0 0 Λ

⎤
⎦ , (22) 

with.Λ, H, H1, H2 being all .N × N matrices. Then substitute these choices into the 
expression of . S̄ in (21), we obtain 

.

⎧⎪⎨
⎪⎩
S = HΛH−1,

S1 = −HΛH−1H1H−1 + H1ΛH−1,

S2 = HΛH−1H1H−1H1H−1 − H1ΛH−1H1H−1 − HΛH−1H2H−1 + H2ΛH−1,

(23) 

i.e., 

.

⎧⎪⎨
⎪⎩
S = HΛH−1,

S1 = −SH1H−1 + H1ΛH−1,

S2 = −S1H1H−1 − SH2H−1 + H2ΛH−1.

(24) 

Now let us introduce .N eigenvalues .λ1, · · · ,λN , and set .Λ = diag(λ1, · · · ,λN ). 
Denote the corresponding eigenfunctions by .(φ̄(1), · · · , φ̄(N )), where . φ̄(i) = (χ(i)T ,

.ψ(i)T ,φ(i)T )T , i = 1, · · · , N . .φ̄(i) satisfies the spectral problems (14), and thus
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. 

⎧⎪⎨
⎪⎩

χ(i)
x = (λJ + P)χ(i) + (λJ1 + P1)ψ(i) + (λJ2 + P2)φ(i),

ψ(i)
x = (λJ + P)ψ(i) + (λJ1 + P1)φ(i),

φ(i)
x = (λJ + P)φ(i),⎧⎪⎨

⎪⎩
χ(i)
tm = ∑m

j=0 Vjλ
m− jχ(i) + ∑m

j=0 V1, jλ
m− jψ(i) + ∑m

j=0 V2, jλ
m− jφ(i),

ψ(i)
tm = ∑m

j=0 Vjλ
m− jψ(i) + ∑m

j=0 V1, jλ
m− jφ(i),

φ(i)
tm = ∑m

j=0 Vjλ
m− jφ(i),

where .i = 1, · · · , N . Now  set  

.H = [φ(1), · · · ,φ(N )], H1 = [ψ(1), · · · ,ψ(N )], H2 = [χ(1), · · · ,χ(N )], (25) 

where .H, H1, H2 satisfy 

.

⎧⎪⎨
⎪⎩
Hx = J HΛ + PH,

H1x = J H1Λ + PH1 + J1HΛ + P1H,

H2x = J H2Λ + PH2 + J1H1Λ + P1H1 + J2HΛ + P2H ;
(26) 

.

⎧⎪⎨
⎪⎩
Htm = ∑m

j=0 Vj HΛm− j ,

H1tm = ∑m
j=0 Vj H1Λ

m− j + ∑m
j=0 V1 j HΛm− j ,

H2tm = ∑m
j=0 Vj H2Λ

m− j + ∑m
j=0 V1 j H1Λ

m− j + ∑m
j=0 V2 j HΛm− j .

(27) 

Sum up the above discussions, we obtain the following theorem: 

Theorem 1 Let .H̄ and .Λ̄ be defined by (22). Then .H̄ is invertible if and only if 
.H is invertible. When .H is invertible, then .S̄ = H̄Λ̄H̄−1 can be represented as in 
(21) with .S, S1, S2 defined in (23), then .D̄ = λ Ī − S̄ is a Darboux matrix of the 
enlarged spectral problems (14), which leads to the Bäcklund transformation for the 
bi-integrable coupling (7): 

.

⎧⎪⎨
⎪⎩
P [1] = P [0] + [J, S],
P [1]
1 = P [0]

1 + [J, S1] + [J1, S],
P [1]
2 = P [0]

2 + [J, S2] + [J1, S1] + [J2, S],
(28) 

where .P [0], P [0]
1 and .P [0]

2 are a giving seed solution. 

Proof As we did in the Darboux transformation for the integrable coupling case in 
Ref. [ 21], we need to prove that for this choice of . H̄ , the two conditions (18) and 
(19) are satisfied. 

First, let us prove the Eq. (18). It is equivalent to prove 

.

⎧⎪⎨
⎪⎩
Sx = [J S + P, S],
S1x = [J S1 + J1S + P1, S] + [J S + P, S1],
S2x = [J S2 + J1S1 + J2S + P2, S] + [J S1 + J1S + P1, S1] + [J S + P, S2].

(29)
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From Eq. (24), we obtain 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sx = HxΛH−1 − HΛH−1Hx H−1,

S1x = −Sx H1H
−1 − SH1x H

−1 + SH1H
−1Hx H−1 + H1xΛH−1

−H1ΛH−1Hx H−1,

S2x = −S1x H1H
−1 − S1H1x H

−1 + S1H1H
−1Hx H−1 − Sx H2H

−1 − SH2x H
−1

+SH2H
−1Hx H−1 + H2xΛH−1 − H2ΛH−1Hx H−1,

(30) 

by using (26). Then a tedious calculation can show that the right hand sides of (30) 
are equal to the right hand sides of (29), respectively. Thus we proved Eq. (18). 

Second, let us prove Eq. (19). We compute that 

.S̄n =
⎡
⎣ Sn Tn Mn

0 Sn Tn
0 0 Sn

⎤
⎦ , (31) 

where 

. Mn = T (2)
n +

n−1∑
k=1

Tk S1S
n−1−k , Tn = T (1)

n =
n∑

k=1

T (1)
nk , T (2)

n =
n∑

k=1

T (2)
nk , (32) 

. T (1)
nk = Sn−k S1S

k−1, T (2)
nk = Sn−k S2S

k−1, (33) 

which tell 

.T (1)
11 = S1, T (2)

11 = S2. (34) 

Equation (19) is equivalent to 

.S̄tm =
m∑
j=0

[V̄ j S̄
m− j , S̄], (35) 

and thus, we need to prove 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Stm = ∑m
j=0[Vj Sm− j , S],

S1tm = ∑m
j=0([Vj Sm− j , S1] + [V1 j Sm− j , S]

+[VjTm− j , S]),
S2tm = ∑m

j=0([Vj Sm− j , S2] + [VjTm− j , S1] + [V1 j Sm− j , S1]
+[VjMm− j , S] + [V1 j Tm− j , S] + [V2 j Sm− j , S]).

(36)
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From Eq. (24), we obtain 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Stm = HtmΛH−1 − HΛH−1Htm H
−1,

S1tm = −Stm H1H−1 − SH1tm H
−1 + SH1H−1Htm H

−1 + H1tmΛH−1

−H1ΛH−1Htm H
−1,

S2tm = −S1tm H1H−1 − S1H1tm H
−1 + S1H1H−1Htm H

−1 − Stm H2H−1

−SH2tm H
−1 + SH2H−1Htm H

−1 + H2tmΛH−1 − H2ΛH−1Htm H
−1,

(37) 

by using (27). Then a tedious calculation can show that the right hand sides of (37) 
are equal to the right hand sides of (36), respectively. Thus we proved Eq. (19). 

Finally, a simple computation 

. [ J̄ , S̄] =

⎡
⎢⎢⎣

[J, S] [J, S1] + [J1, S] [J, S2] + [J1, S1] + [J2, S]
0 [J, S] [J, S1] + [J1, S]
0 0 [J, S]

⎤
⎥⎥⎦ .

Therefore,.P̄ ' and.P̄ + [ J̄ , S̄] have the same matrix form, which tells the transforma-
tion (20), i.e.,.P̄ ' = P̄ + [ J̄ , S̄]. The proved transformation (20) generates Bäcklund 
transformation presented in (28). This completes the proof. □

Specially, for the AKNS systems, we have .N = 2, so that all the sub-matrix in 
(12) and (13), as well as.J, J1, J2 and. P are.2 × 2matrices. We assume.J1 = J2 = J , 
and 

. J =
[−1 0

0 1

]
, P =

[
0 q
r 0

]
, P1 =

[
0 q1
r1 0

]
, P2 =

[
0 q2
r2 0

]
, (38) 

. χ = (χ1,χ2)
T , ψ = (ψ1,ψ2)

T , φ = (φ1,φ2)
T , (39) 

. u = (q, r)T , u1 = (q1, r1)
T , u2 = (q2, r2)

T . (40) 

Take two arbitrary constants .λ1 and . λ2, and denote . φ jk = φ j (λk),ψ jk =
ψ j (λk),χ jk = χ j (λk), j, k = 1, 2, and set 

.Λ =
[

λ1 0
0 λ2

]
, H =

[
φ11 φ12

φ21 φ22

]
, H1 =

[
ψ11 ψ12

ψ21 ψ22

]
, H2 =

[
χ11 χ12

χ21 χ22

]
. (41) 

Then we obtain the associated Bäcklund transformation 

.

⎧⎪⎨
⎪⎩
q [1] = P [1][1, 2], r [1] = P [1][2, 1],
q [1]
1 = P [1]

1 [1, 2], r [1]
1 = P [1]

1 [2, 1],
q [1]
2 = P [1]

2 [1, 2], r [1]
2 = P [1]

2 [2, 1];
(42)
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concretely, 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q[1] = q[0] + 2 φ11φ12(λ1−λ2)
φ11φ22−φ12φ21

, r [1] = r [0] + 2 φ21φ22(λ1−λ2)
φ11φ22−φ12φ21

,

q[1]
1 = q[0]

1 + 2(λ1−λ2)
(
φ11

2φ12φ22−φ11
2φ12ψ22+φ11

2φ22ψ12−φ11φ12
2φ21+φ11φ12

2ψ21−φ12
2φ21ψ11

)
(φ11φ22−φ12φ21)

2 ,

r [1]
1 = r [0]

1 + 2(λ1−λ2)
(
φ11φ21φ22

2+φ11φ22
2ψ21−φ12φ21

2φ22−φ12φ21
2ψ22+φ21

2φ22ψ12−φ21φ22
2ψ11

)
(φ11φ22−φ12φ21)

2 ,

q[1]
2 = q[0]

2 + 2(λ1−λ2)ζ1
(φ11φ22−φ12φ21)

3 , r [1]
2 = r [0]

2 + 2(λ1−λ2)ζ2
(φ11φ22−φ12φ21)

3 ,

(43) 

with 

. ζ1 = χ11φ11φ12
2φ21φ22 − χ11φ12

3φ21
2 − χ12φ11

3φ22
2 + χ12φ11

2φ12φ21φ22 − χ21φ11
2φ12

2φ22

+χ21φ11φ12
3φ21 + χ22φ11

3φ12φ22 − χ22φ11
2φ12

2φ21 − φ11
3φ12φ22

2 + φ11
3φ12φ22ψ22

−φ11
3φ12ψ22

2 − φ11
3φ22

2ψ12 + φ11
3φ22ψ12ψ22 + 2φ11

2φ12
2φ21φ22 − φ11

2φ12
2φ21ψ22

−φ11
2φ12

2φ22ψ21 + 2φ11
2φ12

2ψ21ψ22 + φ11
2φ12φ21φ22ψ12 + φ11

2φ12φ21ψ12ψ22

−2φ11
2φ12φ22ψ12ψ21 − φ11

2φ21φ22ψ12
2 − φ11φ12

3φ21
2 + φ11φ12

3φ21ψ21

−φ11φ12
3ψ21

2 + φ11φ12
2φ21φ22ψ11 − 2φ11φ12

2φ21ψ11ψ22 + φ11φ12
2φ22ψ11ψ21

+2φ11φ12φ21φ22ψ11ψ12 − φ12
3φ21

2ψ11 + φ12
3φ21ψ11ψ21 − φ12

2φ21φ22ψ11
2,

ζ2 = χ11φ11φ21φ22
3 − χ11φ12φ21

2φ22
2 − χ12φ11φ21

2φ22
2 + χ12φ12φ21

3φ22 − χ21φ11
2φ22

3

+χ21φ11φ12φ21φ22
2 + χ22φ11φ12φ21

2φ22 − χ22φ12
2φ21

3 − φ11
2φ21φ22

3 − φ11
2φ22

3ψ21

+2φ11φ12φ21
2φ22

2 + φ11φ12φ21
2φ22ψ22 − φ11φ12φ21

2ψ22
2 + φ11φ12φ21φ22

2ψ21

+2φ11φ12φ21φ22ψ21ψ22 − φ11φ12φ22
2ψ21

2 − φ11φ21
2φ22

2ψ12 + φ11φ21
2φ22ψ12ψ22

+φ11φ21φ22
3ψ11 − 2φ11φ21φ22

2ψ12ψ21 + φ11φ22
3ψ11ψ21 − φ12

2φ21
3φ22 − φ12

2φ21
3ψ22

+φ12φ21
3φ22ψ12 + φ12φ21

3ψ12ψ22 − φ12φ21
2φ22

2ψ11 − 2φ12φ21
2φ22ψ11ψ22

+φ12φ21φ22
2ψ11ψ21 − φ21

3φ22ψ12
2 + 2φ21

2φ22
2ψ11ψ12 − φ21φ22

3ψ11
2.

i.e., 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q [1] = q [0] + 2(λ1−λ2)

|H | φ11φ12, r [1] = r [0] + 2(λ1−λ2)

|H | φ21φ22,

q [1]
1 = q [0]

1 + 2(λ1−λ2)

|H |2 (ζ11 − ζ12) , r [1]
1 = r [0]

1 + 2(λ1−λ2)

|H |2 (ζ13 − ζ14) ,

q [1]
2 = q [0]

2 − 2(λ1−λ2)

|H |3 (ζ21 + ζ22 + ζ23 + ζ24) ,

r [1]
2 = r [0]

2 − 2(λ1−λ2)

|H |3 (ζ25 + ζ26 + ζ27 + ζ28) ,

(44) 

with 

. ζ11 =

||||||||
φ11 0 0 0
0 φ11 φ11 0
0 −ψ12 φ12 φ12

0 0 ψ22 φ22

||||||||
, ζ12 =

||||||||
φ12 0 0 0
0 φ12 φ12 0
0 −ψ11 φ11 φ11

0 0 ψ21 φ21

||||||||
,
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ζ13 =

||||||||
φ22 0 0 0  
0 φ22 φ22 0 
0 −ψ21 φ21 φ21 

0 0 ψ11 φ11

||||||||
, ζ14 =

||||||||
φ21 0 0 0  
0 φ21 φ21 0 
0 −ψ22 φ22 φ22 

0 0 ψ12 φ12

||||||||
, 

ζ21 =

||||||||||||

φ11 0 0 0 0 0  
0 φ11 0 ψ21 φ21 φ21 

0 0 φ11 φ11 0 0  
0 0  −ψ12 φ12 φ12 0 
0 φ12 0 ψ22 φ22 φ22 

0 0 0 χ22 φ22 ψ22

||||||||||||
, ζ22 =

||||||||||||

φ11 0 0 0 0 0  
0 φ11 ψ11 0 0 0  
0 0  φ12 0 0 φ22 

0 0  χ12 ψ12 0 0  
0 0 0  φ11 φ21 2ψ21 

0 φ12 ψ12 φ12 φ22 2ψ22

||||||||||||
, 

ζ23 =

||||||||||||

φ12 0 0 0 0 0  
0 φ12 0 ψ22 φ22 φ22 

0 0 φ12 φ12 0 0  
0 0  −ψ11 φ11 φ11 0 
0 φ11 0 ψ21 φ21 φ21 

0 0 0 χ21 φ21 ψ21

||||||||||||
, ζ24 =

||||||||||||

φ12 0 0 0 0 0  
0 φ12 φ11 0 0 0  
0 0  φ11 0 0 φ21 

0 0  χ11 ψ11 0 0  
0 0 0  φ12 φ22 2ψ22 

0 ψ12 ψ11 φ11 φ21 2ψ21

||||||||||||
, 

ζ25 =

||||||||||||

φ22 0 0 0 0 0  
0 φ22 0 ψ12 φ12 φ12 

0 0 φ22 φ22 0 0  
0 0  −ψ21 φ21 φ21 0 
0 φ21 0 ψ11 φ11 φ11 

0 0 0 χ11 φ11 ψ11

||||||||||||
, ζ26 =

||||||||||||

φ22 0 0 0 0 0  
0 φ22 ψ22 0 0 0  
0 0  φ21 0 0 φ11 

0 0  χ21 ψ21 0 0  
0 0 0  φ22 φ12 2ψ12 

0 φ21 ψ21 φ21 φ11 2ψ11

||||||||||||
, 

ζ27 =

||||||||||||

φ21 0 0 0 0 0  
0 φ21 0 ψ11 φ11 φ11 

0 0 φ21 φ21 0 0  
0 0  −ψ22 φ22 φ22 0 
0 φ22 0 ψ12 φ12 φ12 

0 0 0 χ12 φ12 ψ12

||||||||||||
, ζ28 =

||||||||||||

φ21 0 0 0 0 0  
0 φ21 φ22 0 0 0  
0 0  φ22 0 0 φ12 

0 0  χ22 ψ22 0 0  
0 0 0  φ21 φ11 2ψ11 

0 ψ21 ψ22 φ22 φ12 2ψ12

||||||||||||
. 

To obtain the second Darboux transformation, we do this procedure again. Precisely, 
we derive new eigenfunctions from the first Darboux transformation: 

. φ̄[1] = φ̄
' = D̄φ̄ = (λ Ī − S̄)φ̄ =

⎡
⎣λI − S S1 S2

0 λI − S S1
0 0 λI − S

⎤
⎦

⎡
⎣ χ

ψ
φ

⎤
⎦

=
⎡
⎣ (λI − S)χ + S1ψ + S2φ

(λI − S)ψ + S1φ
(λI − S)φ

⎤
⎦ =

⎡
⎣ χ[1]

ψ[1]
φ[1]

⎤
⎦ , (45) 

which is the new eigenfunction we need to use in the second Darboux transformation. 
Similarly, .χ[1],ψ[1],φ[1] are two component vectors which we denoted by . χ[1] =
(χ[1]

1 ,χ[1]
2 )T ,ψ[1] = (ψ[1]

1 ,ψ[1]
2 )T ,φ[1] = (φ[1]

1 ,φ[1]
2 )T . Assume.λ3 and.λ4 are another 

two arbitrary constants which are different from.λ1 and . λ2, and denote
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. φ(λk) =
(

φ1k

φ2k

)
=

(
φ1(λk)

φ2(λk)

)
, ψ(λk) =

(
ψ1k

ψ2k

)
=

(
ψ1(λk)

ψ2(λk)

)
, (46) 

. χ(λk) =
(

χ1k

χ2k

)
=

(
χ1(λk)

χ2(λk)

)
, k = 3, 4. (47) 

Set 

.Λ̃ =
[

λ3 0
0 λ4

]
, (48) 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H̃ =
(
φ[1](λ3), φ[1](λ4)

)
= ((λ3 I − S)φ(λ3), (λ4 I − S)φ(λ4)) ,

H̃1 =
(
ψ[1](λ3),ψ[1](λ4)

)
= ((λ3 I − S)ψ(λ3) + S1φ(λ3), (λ4 I − S)ψ(λ4) + S1φ(λ4)) ,

H̃2 =
(
χ[1](λ3),χ[1](λ4)

)
= ((λ3 I − S)χ(λ3) + S1ψ(λ3) + S2φ(λ3), (λ4 I − S)χ(λ4) + S1ψ(λ4) + S2φ(λ4)) .

Then 

.

⎧⎪⎨
⎪⎩
S̃ = H̃Λ̃H̃−1,

S̃1 = −H̃Λ̃H̃−1 H̃1 H̃−1 + H̃1Λ̃H̃−1,

S̃2 = H̃Λ̃H̃−1 H̃1 H̃−1 H̃1 H̃−1 − H̃1Λ̃H̃−1 H̃1 H̃−1 − H̃Λ̃H̃−1 H̃2 H̃−1 + H̃2Λ̃H̃−1,

(49) 

Such that .λ Ī − ˜̄S is the second Darboux matrix, where 

.
˜̄S =

⎡
⎣ S̃ S̃1 S̃2
0 S̃ S̃1
0 0 S̃

⎤
⎦ . (50) 

Starting from the first DT solutions.P [1], P [1]
1 and.P [1]

2 , we obtain the second Darboux 
transformation solutions: 

. P [2] = P [1] + [J, S̃], P [2]
1 = P [1]

1 + [J, S̃1] + [J1, S̃], (51) 

. P [2]
2 = P [1]

2 + [J, S̃2] + [J1, S̃1] + [J2, S̃]. (52)
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3 Applications to Bi-integrable Couplings of the AKNS 
System 

In this section, we construct a hierarchy of AKNS bi-integrable couplings and then 
apply the resulting Darboux transformation theory to the construction of the one-
soliton-like solutions of the AKNS bi-integrable coupling system, particularly, we 
present the one-soliton-like solution of the bi-integrable couplings of the nonlinear 
Schrödinger equation. 

3.1 A Hierarchy of the Bi-integrable Couplings of the AKNS 
System 

First, we construct a hierarchy of AKNS bi-integrable couplings. We assume 
that .φ̄ = (χT ,ψT ,φT )T = (χ1,χ2,ψ1,ψ2,φ1,φ2)

T is the eigenfunction, and . ū =
(q, r, q1, r1, q2, r2)T is the potential. The spatial spectral problem is defined in the 
first equation of (14) and the Eq. (12), with .J2 = J1 = J , and 

.U (u,λ) =
[−λ q

r λ

]
, U1(u1,λ) =

[−λ q1
r1 λ

]
, U2(u2,λ) =

[−λ q2
r2 λ

]
, (53) 

where we denote .u = (q, r)T , u1 = (q1, r1)T , u2 = (q2, r2)T . In addition, we intro-
duce 

.W̄ (ū,λ) =
⎡
⎣W (u,λ) W1(u, u1,λ) W2(u, u1, u2,λ)

0 W (u,λ) W1(u, u1,λ)

0 0 W (u,λ)

⎤
⎦ , (54) 

.W (u,λ) =
[
a b
c −a

]
, W1(u, u1,λ) =

[
e f
g −e

]
, W2(ū,λ) =

[
e

'
f

'

g
' −e

'

]
.(55) 

Then the stationary zero curvature equation .W̄x = [Ū , W̄ ] results in 

. Wx = [U,W ], (56) 

. W1x = [U,W1] + [U1,W ], (57) 

. W2x = [U,W2] + [U1,W1] + [U2,W ]. (58) 

i.e.,
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.

⎧⎪⎨
⎪⎩
ax = qc − rb,

bx = −2λb − 2qa,

cx = 2λc + 2ra;
(59) 

.

⎧⎪⎨
⎪⎩
ex = qg − r f + q1c − r1b,

fx = −2λ f − 2qe − 2λb − 2q1a,

gx = 2λg + 2re + 2λc + 2r1a;
(60) 

.

⎧⎪⎨
⎪⎩
e

'
x = qg

' − r f
' + q1g − r1 f + q2c − r2b,

f
'
x = −2λ f

' − 2qe
' − 2λ f − 2q1e − 2λb − 2q2a,

g
'
x = 2λg

' + 2re
' + 2λg + 2r1e + 2λc + 2r2a.

(61) 

Assume that .m is a positive integer, and set 

. W =
∑
i≥0

Wiλ
−i =

∑
i≥0

[
ai bi
ci −ai

]
λ−i , (62) 

. W1 =
∑
i≥0

W1,iλ
−i =

∑
i≥0

[
ei fi
gi −ei

]
λ−i , (63) 

. W2 =
∑
i≥0

W2,iλ
−i =

∑
i≥0

[
e

'
i f

'
i

g
'
i −e

'
i

]
λ−i . (64) 

Substituting them into the Eqs. (56), (57) and (58), and comparing the coefficients 
of . λ, we obtain the recursion relations: 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a0 = α, b0 = 0, c0 = 0,

ai,x = qci − rbi ,

bi+1 = − 1
2bi,x − qai ,

ci+1 = 1
2ci,x − rai ,

i ≥ 0; (65) 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e0 = β, f0 = 0, g0 = 0,

ei,x = qgi − r fi + q1ci − r1bi ,

fi+1 = − 1
2 fi,x − qei − q1ai − bi+1,

gi+1 = 1
2gi,x − rei − r1ai − ci+1,

i ≥ 0; (66) 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e

'
0 = γ, f

'
0 = 0, g

'
0 = 0,

e
'
i,x = qg

'
i − r f

'
i + q1gi − r1 fi + q2ci − r2bi ,

f
'
i+1 = − 1

2 f
'
i,x − qe

'
i − q1ei − q2ai − fi+1 − bi+1,

g
'
i+1 = 1

2g
'
i,x − re

'
i − r1ei − r2ai − gi+1 − ci+1,

i ≥ 0. (67) 

where .α,β and . γ are arbitrary constants, real or complex numbers. In addition, 
choose the constants of integration to be zero:
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.ai |u=0 = 0, ei |(u,u1)=0 = 0, e
'
i |(u,u1,u2)=0 = 0, i ≥ 1. (68) 

This way we can define .bi , ci , fi , gi , f
'
i , g

'
i , and .ai , ei , e

'
i from (65), (66) and (67) 

uniquely. 
Now, take into account the temporal spectral problem defined in the second equa-

tion of (14) and the Eq. (13), with 

. V [m] =
[
a[m] b[m]

c[m] −a[m]

]
= (λmW )+ =

m∑
i=0

Wiλ
m−i , m ≥ 0,

V [m]
1 =

[
e[m] f [m]

g[m] −e[m]

]
= (λmW1)+ =

m∑
i=0

W1,iλ
m−i , m ≥ 0,

V [m]
2 =

[
e[m]' f [m]'

g[m]' −e[m]'

]
= (λmW2)+ =

m∑
i=0

W2,iλ
m−i , m ≥ 0.

Then the enlarged zero curvature equations: .Ūtm − V̄ [m]
x + [Ū , V̄ [m]] = 0, i.e., 

. Utm − V [m]
x + [U, V [m]] = 0, (69) 

. U1tm − V [m]
1x + [U, V [m]

1 ] + [U1, V
[m]] = 0, (70) 

. U2tm − V [m]
2x + [U, V [m]

2 ] + [U1, V
[m]
1 ] + [U2, V

[m]] = 0, (71) 

together with the recursion relations (65), (66) and (67), generate the enlarged hier-
archy of AKNS bi-integrable couplings: 

.ūtm =

⎡
⎢⎢⎢⎢⎢⎢⎣

q
r
q1
r1
q2
r2

⎤
⎥⎥⎥⎥⎥⎥⎦

tm

= K̄m(ū) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2bm+1

2cm+1

−2( fm+1 + bm+1)

2(gm+1 + cm+1)

−2( f
'
m+1 + fm+1 + bm+1)

2(g
'
m+1 + gm+1 + cm+1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(72) 

. = Φ̄m

⎡
⎢⎢⎢⎢⎢⎢⎣

−2b1
2c1

−2( f1 + b1)
2(g1 + c1)

−2( f
'
1 + f1 + b1)

2(g
'
1 + g1 + c1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= Φ̄m

⎡
⎢⎢⎢⎢⎢⎢⎣

2αq
−2αr

2(βq + αq1)
−2(βr + αr1)

2(γq + βq1 + αq2)
−2(γr + βr1 + αr2)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (73) 

where the enlarged hereditary recursion operator .Φ̄ reads 

. Φ̄ =
⎡
⎣ Φ 0 0

Φ1 − Φ Φ 0
Φ2 − Φ1 Φ1 − Φ Φ

⎤
⎦ , (74)
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with .Φ,Φ1 and .Φ2 being defined by 

. Φ =
[− 1

2∂ + q∂−1r q∂−1q
−r∂−1r 1

2∂ − r∂−1q

]
,

Φ1 =
[

q1∂−1r + q∂−1r1 q1∂−1q + q∂−1q1
−(r1∂−1r + r∂−1r1) −(r1∂−1q + r∂−1q1)

]
,

Φ2 =
[

q2∂−1r + q1∂−1r1 + q∂−1r2 q2∂−1q + q1∂−1q1 + q∂−1q2
−(r2∂−1r + r1∂−1r1 + r∂−1r2) −(r2∂−1q + r1∂−1q1 + r∂−1q2)

]
.

The first few equations are computed as follows: 

.ūt1 = K̄1(ū) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−αqx
−αrx

−βqx − α(q1x − qx )
−βrx − α(r1x − rx )

−γqx − β(q1x − qx ) − α(q2x − q1x )
−γrx − β(r1x − rx) − α(r2x − r1x )

⎤
⎥⎥⎥⎥⎥⎥⎦

, (75) 

.ūt2 = K̄2(ū) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αK2,1

−αK̃2,1

βK2,1 + α
(
K2,2 − 2K2,1

)
−β K̃2,1 − α

(
K̃2,2 − 2K̃2,1

)
γK2,1 + β

(
K2,2 − 2K2,1

) + α
(
K2,3 − 2K2,2 + K2,1

)
−γ K̃2,1 − β

(
K̃2,2 − 2K̃2,1

)
− α

(
K̃2,3 − 2K̃2,2 + K̃2,1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (76) 

with 

. K2,1 = 1

2
qxx − q2r, K2,2 = 1

2
q1xx − q2r1 − 2qrq1,

K2,3 = 1

2
q2xx − q2r2 − 2qrq2 − q2

1r − 2q1r1q;

K̃2,1 = 1

2
rxx − qr2, K̃2,2 = 1

2
r1xx − r2q1 − 2qrr1,

K̃2,3 = 1

2
r2xx − r2q2 − 2qrr2 − r21q − 2q1r1r;
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. ūt3 = K̄3(ū)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αK3,1

αK̃3,1

βK3,1 + α
(
K3,2 − 3K3,1

)
β K̃3,1 + α

(
K̃3,2 − 3K̃3,1

)
γK3,1 + β

(
K3,2 − 3K3,1

) + α
(
K3,3 − 3K3,2 + 3K3,1

)
γ K̃3,1 + β

(
K̃3,2 − 3K̃3,1

)
+ α

(
K̃3,3 − 3K̃3,2 + 3K̃3,1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (77) 

with 

. K3,1 = −1

4
qxxx + 3

2
qrqx , K3,2 = −1

4
q1xxx + 3

2
qrq1x + 3

2
(q1r + qr1)qx ,

K3,3 = −1

4
q2xxx + 3

2
qrq2x + 3

2
(q2r + qr2 + q1r1)qx + 3

2
(q1r + qr1)q1x ,

K̃3,1 = −1

4
rxxx + 3

2
qrrx , K̃3,2 = −1

4
r1xxx + 3

2
qrr1x + 3

2
(q1r + qr1)rx ,

K̃3,3 = −1

4
r2xxx + 3

2
qrr2x + 3

2
(q2r + qr2 + q1r1)rx + 3

2
(q1r + qr1)r1x .

3.2 One-Soliton-Like Solutions to the Bi-integrable 
Couplings of the Nonlinear Schrödinger Equation 

Let us consider the.K̄2 system, i.e., we set.m = 2 in the AKNS bi-integrable coupling 
hierarchy (73). The corresponding integrable coupling system (73) of the nonlinear 
Schrödingier (NLS) equations reads as follows: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qt = α
(
1
2qxx − q2r

)
,

rt = −α
(
1
2 rxx − r2q

)
,

q1t = α
(
1
2q1xx − q2r1 − 2qrq1 − qxx + 2q2r

)
+ β

(
1
2qxx − q2r

)
,

r1t = −α
(
1
2 r1xx − r2q1 − 2qrr1 − rxx + 2qr2

)
− β

(
1
2 rxx − qr2

)
,

q2t = α
(
1
2q2xx − q2r2 − 2qrq2 − q21r − 2q1r1q − q1xx + 2q2r1 + 4qrq1 + 1

2qxx − q2r
)

+β
(
1
2q1xx − q2r1 − 2qrq1 − qxx + 2q2r

)
+ γ

(
1
2qxx − q2r

)
.

r2t = −α
(
1
2 r2xx − r2q2 − 2qrr2 − r21q − 2q1r1r − r1xx + 2r2q1 + 4qrr1 + 1

2 rxx − qr2
)

−β
(
1
2 r1xx − r2q1 − 2qrr1 − rxx + 2qr2

)
− γ

(
1
2 rxx − qr2

)
.

(78)
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Starting from the zero seed solution, by solving the corresponding linear systems in 
(14), we obtain the eigenfunctions: 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χ1 = 1
2 λ

(
β2λ3t2 − 2β λ2t x + 2γ λ t + λ x2 − 2 x

)
eλ (αλt−x),

χ2 = 1
2 λ

(
β2λ3t2 − 2βλ2t x − 2γ λ t + λ x2 + 2 x

)
e−λ (αλt−x),

ψ1 = λ (βλt − x) eλ(αλt−x), ψ2 = −λ (βλt − x) e−λ(αλt−x),

φ1 = eλ(αλt−x), φ2 = e−λ(αλt−x).

(79) 

Substituting (79) into the associated Bäcklund transformation (43), we obtain the 
one-soliton-like solution of the integrable coupling system defined by (78): 

. q = −(λ1 − λ2)e
α(λ1

2+λ2
2)t−(λ1+λ2)xsechξ,

r = (λ1 − λ2)e
−α(λ1

2+λ2
2)t+(λ1+λ2)xsechξ,

q1 = −1

2
(λ1 − λ2)ρ1 sech

2ξ,

r1 = −1

2
(λ1 − λ2)ρ2 sech

2ξ,

q2 = −1

4
(λ1 − λ2)ρ3 sech

3ξ,

r2 = 1

4
(λ1 − λ2)ρ4 sech

3ξ,

where 

. ξ = (λ1 − λ2)[α(λ1 + λ2)t − x],
ρ1 = (2βλ2

2t − 2λ2x + 1)e2λ1(αλ1t−x) + (2βλ1
2t − 2λ1x + 1)e2λ2(αλ2t−x),

ρ2 = (2βλ2
2t − 2λ2x − 1)e−2λ1(αλ1t−x) + (2βλ1

2t − 2λ1x − 1)e−2λ2(αλ2t−x),

ρ3 = (μ1 + δ1) e
3 ∈2−∈1 + (μ2 + δ2) e

3 ∈1−∈2 + (δ1 − μ1 + δ2 − μ2 + 4 + 8 ν) e∈1+∈2 ,

ρ4 = (μ1 − δ1) e
−3 ∈2+∈1 + (μ2 − δ2) e

−(3 ∈1−∈2) + (−δ1 − μ1 − δ2 − μ2 + 4 + 8 ν)

e−(∈1+∈2),

with 

. μi = 2 β2λi
4t2 − 4βλi

3xt + 2λi
2x2 + 1, δi = 2 βλi

2t + 2 γλi
2t − 4λi x,

∈i = αλi
2t − λi x, i = 1, 2,

ν = β2λ1
2λ2

2t2 − βλ1
2λ2xt − βλ1λ2

2xt + λ1λ2x
2.
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4 Conclusion and Comments 

We have successfully constructed a kind of Darboux transformation for bi-integrable 
couplings. An application was made to the presented bi-integrable couplings of the 
AKNS system of integrable models. In particular, exact solutions were generated 
for the bi-integrable couplings of the nonlinear Schrödinger equations. The Darboux 
transformation for tri-integrable couplings can be similarly constructed. It is expected 
that physical applications could be presented to these integrable couplings of soliton 
equations in the future. 

The work was supported in part by National Natural Science Foundation of China 
under Grant No. 61807025, and the Fundamental Research Funds for the Central 
Universities ZYTS23049. 
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