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Preface

The 6th International Virtual Workshop on Nonlinear and Modern Mathematical
Physics (NMMP2022) took place virtually from June 17 to 19, 2022, hosted by
Florida Agricultural and Mechanical University. This workshop is part of a series
of conferences organized periodically, starting with the inaugural workshop held
in China from July 15 to 21, 2009. Subsequent events took place in Tampa at the
University of South Florida from March 9 to 11, 2013, at the African Institute for
Mathematical Sciences in Cape Town, South Africa from April 9 to 11, 2015, in
Kuala Lumpur, Malaysia, from May 4 to 8, 2017, and the 5th edition, which was
successfully conducted in Honolulu, Hawaii, from May 20 to 24, 2019.

The 6th edition of the NMMP workshop served as a dynamic forum, bringing
together scholars and researchers from various institutions worldwide. Florida A&M
University led the organization, with support from the University of South Florida,
Florida State University, Embry-Riddle Aeronautical University, Savannah State
University, Prairie View A&M University, and Beijing Jiaotong University. The
focus of the workshop was on recent advances and prevailing trends in nonlinear
science, with a specific emphasis on nonlinear partial differential equations and their
applications. Featuring 42 distinguished speakers, the three day event attracted over
300 participants globally, fostering collaboration and knowledge exchange in the
field.

This book, a compilation of papers from both speakers and participants of
NMMP2022, aims to showcase new ideas and discoveries in the field of partial
differential equations (PDEs), integrable systems, and related areas in mathemat-
ical physics. In the dynamic landscape of mathematical physics, the exploration of
nonlinear phenomena takes center stage, and this compendium, titled “Nonlinear and
Modern Mathematical Physics,” endeavors to encapsulate the forefront of research
and discourse in this field. As customary, each contribution in the book has undergone
standard double-blind refereeing.

Nonlinearity, with its intriguing and often unpredictable nature, has emerged as
a central theme in contemporary mathematical physics. From the theoretical realms
of chaos theory to the practical applications in fluid dynamics, the study of nonlinear
phenomena has opened up new avenues of exploration and understanding. One
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remarkable example of this is the discovery of solitons, which has had a profound
impact on mathematical physics, reshaping our understanding of nonlinear dynamics
and leaving a lasting imprint on various scientific disciplines. The introduction of
solitons has not only revolutionized our conceptual framework but has also brought
forth powerful mathematical methods. Techniques such as the inverse scattering
transform and Hirota’s method have been developed, offering sophisticated tools to
solve a wide range of nonlinear equations across diverse fields. These methods have
not only expanded our analytical capabilities but have also facilitated deeper insights
into the behavior of nonlinear systems.

This compilation of works boldly explores the forefront of advancements in
nonlinear theories, offering a comprehensive examination of the richness and diver-
sity inherent in this dynamic field. The contributors, by delving into the intricacies
of nonlinear dynamics, illuminate the multifaceted nature of nonlinear phenomena.
Their collective efforts shed light on the profound implications and versatile applica-
tions of nonlinear theories across various scientific domains. This volume serves as a
testament to the far-reaching impact and ongoing exploration within the captivating
realm of nonlinear mathematical physics.

As editors, our aim is to curate a collection that not only reflects the current state
of nonlinear mathematical physics but also serves as an intellectual catalyst for future
explorations. The breadth and depth of topics covered herein cater to both seasoned
researchers navigating the cutting edge and aspiring scholars embarking on their
journey into this captivating realm. May this compilation serve as both a testament
to the vibrant state of nonlinear mathematical physics and an inspiration for those
who embark on the quest to unravel the mysteries that lie beyond the linear veil.

Tallahassee, USA Solomon Manukure
Tampa, USA Wen-Xiu Ma
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A Hamiltonian Set-Up for 4-Layer )
Density Stratified Euler Fluids oo

R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and T. T. Vu Ho

Abstract By means of the Hamiltonian approach to two-dimensional wave motions
in heterogeneous fluids proposed by Benjamin [1] we derive a natural Hamiltonian
structure for ideal fluids, density stratified in four homogenous layers, constrained
in a channel of fixed total height and infinite lateral length. We derive the Hamilto-
nian and the equations of motion in the dispersionless long-wave limit, restricting
ourselves to the so-called Boussinesq approximation. The existence of special sym-
metric solutions, which generalise to the four-layer case the ones obtained in [11]
for the three-layer case, is examined.
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1 Introduction

Density stratification in incompressible fluids is an important aspect of fluid dynam-
ics, and plays an important role in variety of phenomena occurring in both the ocean
and the atmosphere. In particular, displacement of fluid parcels from their neutral
buoyancy position within a density stratified flow can result in internal wave motion.
Effective one-dimensional models (in particular, their quasi-linear limit) were intro-
duced to study these phenomena, and were the subject of a number of investigations
(see,e.g.,[6-10, 13, 14, 16] and references therein). Although most of the theoretical
and numerical results that can be found in the literature are focussed on the 2-layer
case, multiply-layered fluid configurations appear as effective models of physical
phenomena, e.g., in the atmosphere or in mountain lakes. The extension to the n > 2
layers case can also be seen as a refined approximation to the real-world continuous
stratification of incompressible fluids.

The focus of the present paper is on the dynamics of an ideal (incompressible,
inviscid) stably stratified fluid consisting of 4 layers of constant density p; < p; <
03 < pa, confined in a channel of fixed height & (see Fig. 1 for a schematic of our
setup), and, in particular, on its Hamiltonian setting. This will be obtained by a
suitable reduction of the Hamiltonian structure introduced by Benjamin [1] in the
study of general density stratifications for Euler fluids in 2 dimensions.

We shall follow the approach set forth in our recent paper [4], where the 3-layer
case was considered by extending to the multiple layer case a technique introduced
in [3]. In particular, after having discussed in details the construction of the Hamilto-
nian operator for an effective 1D model, we shall consider the so-called Boussinesq
limit of the system, and explicitly determine its Hamiltonian structure and Hamilto-
nian functional, as well as point out the existence of special symmetric solutions.

Our mathematical model is based on some simplifying hypotheses. At first, we
assume that an inviscid model suffices to capture the essential features of the dynam-
ics since the scales associated with internal waves are large, and consequently the
Reynolds number is typically high (>10°). Although in the ocean and the atmo-
sphere (as well as in laboratory experiments) the density stratification arises as a
consequence of diffusing quantities such as temperature and salinity, we can neglect
diffusion and mixing since the time scales associated with diffusion processes are
far larger than the time scale of internal wave propagation. Finally, we use the rigid
lid assumption for the upper surface since the scales associated with internal wave-
motion are greatly exceeding the scales of the surface waves (see, e.g., [17] for further
details on these assumptions).

The Hamiltonian 4-layer model herewith discussed is a natural extension of the
2 and 3-layer model. Indeed, when two adjacent densities are equal (and as a conse-
quence the relative interface becomes meaningless) we fully recover the dynamics
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of the 3 layer model (see, e.g., [4, 11]). Similarly, the 3-layer model reduces to the
ordinary 2-layer model when two mass densities coincide.

The layout of the paper is the following. In Sect. 2 we briefly review the Hamilto-
nian representation for 2-dimensional incompressible Euler fluids of [1]. Section 3
is devoted to a detailed presentation of our Hamiltonian reduction scheme, which
endows the dynamics of the set of 4-layer stratified fluids with a natural Hamiltonian
structure. In Sect. 4 we compute the reduced Hamiltonian and the ensuing equations
of motion, confining ourselves to the case of the so-called Boussinesq approximation.
In Sect. 5 a class of special evolutions, selected by a symmetry of the Hamiltonian,
is found and briefly examined.

2 The 2D Benjamin Model for Heterogeneous Fluids
in a Channel

Benjamin [1] proposed and discussed a set-up for the Hamiltonian formulation of an
incompressible stratified Euler system in 2 spatial dimensions, which we hereafter
summarize for the reader’s convenience.

The Euler equations for a perfect inviscid and incompressible but heterogeneous
fluid in 2D, subject to gravity —gk, are usually written for the the density p(x, z)
and the velocity field u = (u, w) as

D,o_
Dt

Du

0. V-.u=0,
u i

+Vp+pgk=0 (1)

together with appropriate boundary conditions, where, as usual, D/Dt = d/dt +u -
V is the material derivative.

h
7,(x,1) ’)
wes| ] p:
0 n4(x,0)=3(x,8) O(xt) Py

X

Fig. 1 Four-layer rigid lid setup and relevant notation: ¢; are the surface heights and »; are the
layer thicknesses



4 R. Camassa et al.

Benjamin’s contribution was to consider, as basic variables for the evolution of
such a fluid, the density p together with the “weighted vorticity” ¥ defined by

X =V x(pu) = (pw)x — (pu).. @)

The equations of motion for these two fields, ensuing from the Euler equations for
incompressible fluids, are

o +upy +wp, =0

T+ ul +wE 4 pe(gz — 3 + wz))Z + 30:(u* + w?) =0. 3)
They can be written in the form
. SH 5 SH 5 SH @
pl‘_ pv 82 9 t — /Ov (S)O 582 )
where, by definition, the bracket is [A, B] = A, B, — A, By, and the functional
I,
H=| p|=u”+gz)dxdz )
D 2

is simply given by the sum of the kinetic and potential energy, D being the fluid
domain. The most relevant feature of this coordinate choice is that (p, ) are physical,
directly measurable, variables. Their use, though confined to the 2D case with the
above definitions, allows one to avoid the introduction of Clebsch variables (and
the corresponding subtleties associated with gauge invariance and limitations of the
Clebsch potentials) which are often used in the Hamiltonian formulation of both 2D
and the general 3D case (see, e.g., [18]).

As shown by Benjamin, Eq. (4) are a Hamiltonian system with respect to a Lie-
theoretic Hamiltonian structure, that is, they can be written as

lolz{va}a EIZ{E?H}a
for the Poisson bracket defined by the Hamiltonian operator

0 pxaz _pzax )

LA (pxaz - pzax Exaz - Zzax (6)

3 The Hamiltonian Reduction Process

As mentioned in the Introduction, we shall consider special stratified fluid configura-
tions, consisting of a fluid with n = 4 layers of constant density p; < p» < p3 < p4
and respective thicknesses 7, 72, 13, 14, confined in a channel of fixed height /. We
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define, as in Fig. 1, the locations of the interfaces at z = &, k = 1, 2, 3, related to
the thickness n; by

3=mns, LH=ns+n3, {1 =ns+n3+n. @)

The velocity components in each layer are denoted by (u;(x, z), w;(x,2)), i =
1, ..., 4. By means of the Heaviside € and Dirac § generalized functions, a four-layer
fluid configuration can be described within Benjamin’s setting as follows. First, the
2D density and velocity variables can be written as

p(x,2) = pg+ (03 — p4)0(z — 3) + (o2 — p3)0(z — &2) + (o1 — P2)0(z — §1)
u(x,z) =ug+ W3 —ua)0(z —23) + (w2 —u3)0(z — £2) + (ug — uz)0(z — ¢1) (8
w(x, z) = wyq + (w3 — wyg)0(z — §3) + (w2 — w3)0(z — &) + (W) —w2)0(z —&1).

Thus, the density-weighted vorticity £ = (pw), — (pu), can be computed as

[}

=Y (0j+19241 — 0 2) 0z = &) + paQs

Jj=1

3 )
+ Z ((Pj1ujp1 = pju) + (pjpwj — pjw;)E; ) 8z — &),
j=1
where ©; = w;, —u;, fori =1, ..., 4 are the bulk vorticities.
Next, we assume the bulk motion in each layer to be irrotational, so that 2; =0
foralli =1,...,4. Thus the density weighted vorticity is explicitly given by

T = ((paus — p3uz) + (paws — p3w3)¢3,) 8(z — £3)
+ ((p3u3 — pouz) + (p3w3 — Prw2)2,) 8(z — &2) (10)
+ ((p2u2 — p1ur) + (p2w2 — prw1)¢1x) 8(z — ¢1) -

A further assumption we make right from the outset is that of the long-wave asymp-
totics, with small parameter € = h/L < 1, L being a typical horizontal scale of the
motion such as wavelength. This assumption implies (see, e.g., [8] for further details)
that at the leading order as ¢ — 0 we have

u; ~u;, w; ~0,

i.e., we can neglect the vertical velocities w; and trade the horizontal velocities u;
with their layer-averaged counterparts,

1 i1
u, = — u(x,z)dz, where (o =h, ¢ =0. (11
Ni Jg
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Hence, from (10) and recalling the first of (8), we obtain

3
px,z) =p(x,2) = ps+ Z(Pi —Pi+1) 0z — &)

i=1

. (12)
T =) 0idz—4),
i=1

where, hereafter,
O; = Pit1Uiy1 — Pil; (13)

is the horizontal averaged momentum shear. We remark that field configurations of
the form (12) can be regarded as defining a submanifold, which will be denoted by Z,
of Benjamin’s Poisson manifold M described in Sect. 2.

The x and z-derivative of the Benjamin’s variables given by Eq. (12) are gener-
alized functions supported at the interfaces {z = ¢;} U {z = &} U {z = 3}, and are
computed as

3
e = — 2 i — Pi 8(z — i)Six
P 3 i1 (i = pis1)8(z — §)§ (14)
pz =X (pi — pi+1)8(z —&i) s
and 5 , 3
Ex = — Eizlaig‘iXS (Z_é‘i)'i‘zf:laix(s(z_gi) (15)

% =% ,08' - &).

To invert the map (12) we choose to integrate along the vertical direction z. To
this end, we define the two intermediate isopycnals

12 2 ’ 23 2 .

z =§1+C2 z L+ 8 (16)

z
h
Gix0
_____________________________ | e G o) |
(z()ﬂf)
______________________________________________________________ E)j(x,t)
Gy
0
X

Fig.2 Choice of the isopycnals: ¢; are the surface heights and ¢ 1,, 55 the intermediate isopycnals
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Remarking that ¢, lies in the p;-layer and ¢,y in the ps-layer (see Fig. 2), by
means of this choice we can introduce on 7 the “projection” w by

7 (p(x,2), B(x,2)) = (61,62, 83,711, 72, T3)

{00 = pa)da, [ (0 2) — pa)dz. [P (o) — pa)dz, | ()
[ S 0x, 2)dz, [ S(x, 2)dz, [ £(x, 2)dz

which maps Benjamin’s manifold of 2D fluid configurations to the space of effective
1D fields S, parameterized by the six quantities (¢, o). A straightforward compu-
tation shows that the relations

(h—21)(p1 — p2) + (h — &) (o2 — p3) + (h — &3) (03 — p4)

&
b= o)+ B v —2g)

2 2
1
& = 5(,03 —p4)(&2 — §3)

T1=01+02+03 Ty=011+02, T3=03

(18)

hold.

To obtain a Hamiltonian structure on the manifold S by reducing Benjamin’s
parent structure (6), we have to perform, as per the Hamiltonian reduction scheme
of [15], the following steps:

1. Starting from a 1-form on the manifold S, represented by the 6-tuple

12 3 4 5 6
(a57 aSr as: Q's, aSv as) ’

we construct its lift to Z, that is, a 1-form B, = (B,, Bx) satisfying the relation
400  prh . +oo 6 .k
/ / (Bpp + BsX) dx dz 2/ Yk (m(p.B)) dx . (19)
—00 0 —00

where 7, is the tangent map to (17) and (o, ) are generic infinitesimal variations
of (p, X) in the tangent space to Z.
2. We apply Benjamin’s operator (6) to the lifted one form 8, to get the vector field

: 1)
(£)=G) = (2) @

3. We project the vector (Y,f,,l), Y]f;)) under 7, and obtain a vector field on S. The

.....

PonS.
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As in the three layer case of [4] this construction essentially works as in the two-layer
case considered in [3], provided one subtle point is taken into account. Thanks to the
relations (12) and the definition of 7, we have that, for tangent vectors (p, X),

foﬁ pdz .
0 pdzt 23 (0(x, E3) = p4)
Ty <'0 ) — OZIZ,’édZ + 81 (p(x, $1p) — pa) _ 1)
) Jo Xdz
0 Ede+ ?23 B(x, £23)
0 S dz+ 2 (X, )

Note that in this formula we have an explicit dependence on the variations ¢,

and Z,5. To express these quantities in terms of p, which is needed to perform
the abovementioned steps of the Poisson reduction, we can use the analogue of
relations (14), that is

p=2 (pis1 —p)G8(z — ). (22)

Integrating this with respect to z on the relevant intervals [0, 4], [0, ;5] and [0, £,;]
yields

h
/ pdz = (ps — p3)G + (03 — P2) 62 + (02 — PE1
0
le . .
/ pdz = (o4 — p3)&3 + (p3 — 02)82 s (23)
0

35 .
/ pdz = (ps — p3)83.
0

Solving the linear system (23) with respect to the ;’s, we can obtain §;12 and ?23 in
terms of integrals of p along z, and thus trade Eq. (21) for

foh pdz _ _

o1 fy pdz+ (1 +c3— ) 3 pdz — c3 [3* pdz
. (ﬁ> _| e G B Cz> o s .
fi % dz
823 dz
3 dg

where, for the sake of compactness, we use the notation

L p2— p4 1 p3— p4 1 p2— p4
_ 1 ) = — n = —

L = 5 2 = 5 3 = .
20— p1 20— 20—

(25)
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We now have at our disposal all the elements to perform the Poisson reduction
process.

Step 1: The construction of the lifted 1-form (B8,, Bx) satisfying (19), i.e.,

400 ph i +00 .
f / (b By + X Bx)dxdz = f 20 okm, (p, D)kdx, (26)
—00 0 —

yields
By =g+ (ci+ A +c3—c)0(C1n—2) — 30y —2))) a5+
(cze(az -2+ (% — )0y — z)) o3 27)
Br =as+0(C 1 —2)as+ 0 —2)ab.

In this equation, Heaviside 6’s appear and enable the computation of integrals from
the bottom to the chosen isopycnals ¢ |, and ¢, along the full channel [0, 4].
Step 2: The computation of the vector fields (Y}, Y ,%,1) from the relation

) = () = (a2 £5785) - (R2)
=Jp-| )= SDRRE S IO 28
(Yg) ? Bs Px0; — P70y Xy 0 — X 0k Bs 28)
is greatly simplified by the specific dependence of the lifted 1-form (8,, Bx) of (27)
on z and and on the crucial fact that the inequalities

G+ 0
2

O+
2

=ln<h<ip= <7

&<

hold in the strict sense, so that the terms p,d, and X,0, when acting on (8,, fx)
generate products of Dirac §’s supported at different points, which vanish qua gen-
eralized functions. Moreover,

T 0u(Bs) = (Z210i8' (2 — &) (e§ + 0T 12 — 2) 03 + 0T 03 — 2)at)
= (2,008 (2 —¢) (g, +0C 1, — D ag, + 00 —2)al,)
+ (2,31101'3/(2 - &) (5(212 - Z)Elz,xag +8(Lps — Z)Enx“g)

= (ZL,018'(@ = &) (a5, +0C 10 — D a5, +0(C03 — 2)ai5,)
(29)
still due to the above observation about the supports of the Dirac §’s. Denoting by
AD this term, we can write (28) as

Y\ = —p.(Bs)es Y = —p.(B)e — AP (30)
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We obtain
3
vy = (Z(pk — pes)8(z — g)) of
k=l (31)
3
+ (Z(pk — pes1)8(z — g)) o3, + (03 — pa)8(z — &3)ats .
k=2
as well as the more complicated formula for Y (2),
3
Y37 = (o = piy)8@ — &) ey, + Kao§, + Ko ) — AP, (32)
i=1
where _ _
Kry=ci+0+c3—c)0(1p—2) — 30523 —2)
(33)

_ 1 —
K3 =c0(81 —2) + (E —Cz> 0823 —2).

Step 3: The computation of the push-forward under the map m, of the vector field
Y (1), Yﬁ)), to obtain the six-component vector field (é:"k, %) on S is a direct but
tedious task. Thanks to the explicit expressions (25) and (33), substituting in (24)
and noticing that, due to the presence of the z-derivatives of the Dirac §, A® is in
the kernel of m,, yields

£ = o (o1 — pa) + o3 (02 — pa) + 05 (03 — pa)

1
&= 5(02 - ,04)053,)6 + (o3 — ,04)052,,6

o ]
& = 5(/03 — pa)og

. | (34)
o1 = (p1 — pa)ag

. 1

62 = (p2 — padorg, + 5(,02 — pa)ors

. 1

63 = (03 — pa)arg , + (03 — pa)ors , + 5 (o3 = P .

Thus, the Poisson tensor P on the manifold S in the coordinates (&1, &, &3, 11, T2, T3)
becomes

P1— P4 P2 — P4 P3 — P4

P2 — P4
P = OTA dy, where A = 0 2 03 — P4
A" 0 o
0 0 0=
2
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Recalling relations (18), a straightforward computation shows that in the coordinates
(&1, &2, &3, 01, 02, 03) the reduced Poisson operator acquires the particularly simple
form

00 0-10 0
000 0 —10
0000 0—1
P=1_1000 0 0 |% (35)
0-100 0 0
00-100 0

Remark 1 According to the terminology favored by the Russian school, for Hamil-
tonian quasi-linear systems of PDEs the coordinates (&, t;) and, a fortiori, the coor-
dinates (¢, 07), are “flat” coordinates for the system. In view of the particularly
simple form of the Poisson tensor (35), the latter set could be called a system of flat
Darboux coordinates.

Remark 2 In[4] we conjectured that in the n-layered case, with a stratification given
by densities p; < p» < --- < p, and interfaces ¢} > ¢ > --- > {,—1, a procedure
yielding a natural Hamiltonian formulation for the averaged problem was to consider
intervals

I =10, h1, 12=[0, “gﬂ,hz[o, 52“3] zz[ow}

2 2
(36)
We explicitly proved it here for n = 4, together with the conjecture that the quantities

(1, &2, 83, 01, 02, 03), 37

where o) = pr+1Uk+1 — PrUk, are flat Darboux coordinates for the reduced Poisson
structure.

4 The Reduced Hamiltonian Under the Boussinesq
Approximation

The energy of the 2D fluid in the channel is just the sum of the kinetic and potential
energy,

+00 +o0
H = / / u +w? dxdz—i—/ /g(p po)zdx dz, (38)

where py is the reference density fixed by the far field constant values of the layers’
thicknesses. In our case we have py = Z?:l p,-ni(oo) , wWhere ni(oo) are the asymptotic

values of the 7;’s as |x| — oo.
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The potential energy is thus readily reduced, using the first of (8), to

+00
U =/ %(g(pz—pl);ﬂg(ps —p2) 52* + 8 (ps — p3) &) dx + Ua,

N (39)
where U, contains constant and linear in the ;. ’s terms, which ensure the convergence
of the integral, but that do not affect the equations of motion in view of the form (35)
of the Poisson tensor.

To obtain the reduced kinetic energy density, we use the fact that at order O (€?)
we can disregard the vertical velocity w, and trade the horizontal velocities with their
layer-averaged means. Thus the x-density is computed as

1 & 5 ¢} 5 el 5 h )
T=- (f pauty dz +f p3uz dz +/ pau5 dz +/ P1UT dz)
2 \Jo & & a (40)

1
=3 (,04§3ﬁi + 0382 — &3)U3 + p2(&1 — &)ts + pr(h — Cl)ﬁ%) .

The so-called Boussinesq approximation consists of the double scaling limit
pi—~>p,i=1,...,4, g—>oowithg(pjr — p;) finite, j =1,2,3, (41)

where

1 4
,5=ZZ,05

i=1

denotes the average density. This approximation then consists of neglecting density
differences in the inertia terms of stratified Euler fluids, while retaining these differ-
ences in the buoyancy terms, owing to the relative magnitude of gravity forces with
respect to those from inertia. This results in the Boussinesq energy density

£ = g (T2 + (&2 — E)B + (&1 — )+ (h — £)?)
42)

+=(gp2—pD) ¢t +8 (03— p) &G + 8 (ps — p3) &3) -

| =

To express this energy in terms of the Hamiltonian variables (¢;, 0;),i = 1, 2, 3, we
use the dynamical constraint

(h —¢Dur + (&1 — o)usr + (& — 83)us + L3y =0, (43)

as well as the definitions (13) that, in the Boussinesq approximation, are turned into

ox = p(Upy1 — Up) - (44)
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We get
i = 101 + 500 + 5303
hp ’
o 4101+ 60oo + G303 — hoy
ho | (45)
Ty — _ 5101+ 0y + §303 — hoy — hoy
hp ’
T — 5101+ £0y + §303 — hoy — hoy — hos .
hp

Hence, from (42), the Hamiltonian functional acquires its final form in the Boussinesq
approximation as

1
Hp zf <ﬁ (ofci(h =) + o3 (h—8) &+ 05 (h— &) G+
R o

201028 (h — &1) + 2010383 (h — &1) + 2020383 (h — &) + (46)

% ((o2 = p)CE + (03 — P2)E5 + (ps — /03){32)) dx.

Thanks to the simple form of the Poisson tensor (35), the ensuing equations of
motion can be written as the conservation laws

§1t+<01§1 (h =) +U3§3 (h—2¢1) +02C2(h—§1) —0
hp hp hp x
§2,+<62(h_C2)C2 Lo (h—%) & +<71§2(h—§1) —0
hhpc); (hhpr:w: 5 (I;lp o\
o3(h—8)8 oo (h—80)8  ogiz(h—8))
;3[+< h,O i + hp + hp )x —0
(h—28)0; 01005 010383 B _
o1+ ( hp o o +g(p2—p1) Q)x =0
(h—=28)05 02038 | 0102 (h— &) B _
02, +< 2 o + o +g(03—p2) & ) =0
h—2 2 h — h —
03,+<( {3) 03 +0203( §2)+0103( €1)+g(p4—,03)§3) _o.
2hp hp hpo

(47)
The Hamiltonian formalism easily shows the existence of the eight conserved quan-

tities
+00 +00
Zj:/ {jdx, SJZ/ ajdx, j=1,2,3,

—0Q o0

too 3 (48)
K = / Y Gordx  and Hy given by (4.9).

X =1
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Remark 3 The first six quantities are Casimir functionals for the Darboux Poisson
tensor (35), while the seventh one, K, is the generator of x-translations. Note that,
formulas (45) imply that the total linear momenta of the individual layers are con-
served quantities. This is consistent with the fact that the dispersionless limit of the
N-layer equations are conservation laws for the averaged momenta, and no pressure
imbalances can arise in the Boussinesq approximation [2].

Remark 4 The steps leading to the computation of the effective Hamiltonian (46)
can be performed also by dropping the assumptions (41) of the Boussinesq approxi-
mation. In this case, the kinetic energy acquires a non trivial rational dependence on
the density differences p; — p;+1, and the equations of motion become much more
complicated (as already seen in the 2 and 3-layer cases). However, they are still
Hamiltonian equations of motion that preserve, together with their Hamiltonian, the
quantities Z;, S;, j = 1, 2, 3 and the generator of x-translations K of Eq. (48). Note
that, as shown in [2] and further discussed in [4], once beyond the Boussinesq approx-
imation pressure imbalances can appear. Hence the individual layer momenta are no
longer conserved quantities and K does not even coincide with the total horizontal
momentum.

5 Symmetric Solutions

Symmetric solutions of the three-layer configurations were ingeniously found in [11]
by a direct inspection of the equations of motion (written in velocity — thickness coor-
dinates). They exist provided a certain relation is enforced on the density differences
of the individual layers, and were interpreted in [4] as the fixed point of a suitable
canonical involution of the phase space of the 3-layer model.

Here we shall adopt the latter point of view, and identify an involution of the phase
space of the 4-layer model above that leads to the existence of a family of symmetric
solutions. First, we focus on the kinetic energy part of the Boussinesq model (46),

1
To=57= (ota (=t + 03 (h =) o+ 07 (h = &) bt
p (49)
2010282 (h = &1) + 2010383 (h = &) + 20203 (h = €2 &3).
This expression is clearly invariant under the involutive map
G—h—-8, o—>h-t, 3—>h-t, 01— —03 00— -0, 03— —01. (50)

If we assume that the densities o fulfill the relations

P4 — P3=p2— P1 =P, , (51
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the Hamiltonian density (46) is invariant as well, up to the addition of linear terms
in the ¢’s, that is, up to constant terms and Casimir densities of the Poisson tensor P
of (35) which do not affect the equations of motion. A straightforward computation
shows that the Poisson tensor (35) is left invariant by the above involution. Hence, the
manifold F of fixed points of the involution (50) is invariant under the Hamiltonian
flow (47).

The above statement can be cast in a more geometrical light. Suppose that we are
given a Poisson manifold (M, P) with Hamilton equations written generically as

zz=PdH, (52)

and suppose that z — ¢(z) is an involution preserving P, i.e.,

(1) pop =1d
(1) ¢4« P ¢* = P, where ¢, is the (Fréchet) derivative of ¢, and ¢* is its pull-back
(from the linear algebra perspective, the adjoint map).

Then

9(@), = ¢z = 9. PdH = ¢, Po*¢"dH = Pp"dH = Pd¢p*H.  (53)
Hence, if z satisfies ¢(z) = z we have ¢(z), — z;, = 0 so that initial data fixed by
the involution ¢ remain on the invariant submanifold during the time evolution. In

our case, the invariant manifold can be explicitly described as the submanifold of S
characterized by the constraints (see Fig. 3)

h
G+ —h=0, fh-5=0, o1+05=0, =0, (54)
and is parametrized by two of the remaining variables, for instance the two quantities

oc=o03, (=0 (55)
The reduced equations of motion on F in these variables are

2(¢%0)  (Co)y

‘-7 v 70
, 56
S (56)
t 2 hla gpA X —
while the restriction of the Hamiltonian (46) is
(h —2¢)0?
Hf=/ EOZ29 4 epac?) dx. (57)
R hp

One can readily check that Eq. (56) are the Hamiltonian equations of motion.
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z
P h
) =h-C5(x.1) (X, 1)
P2=P1P4 e
GExy)=h/2
P G wHY
P4=P3TP4 0
x
Fig. 3 Example of a symmetric solution
0 ! a
&) = pr(H7 ) Gith pr = A (58)
Ot 3. Hr
—58,( 0

The appearance of the factor 1/2 in the expression of P is readily explained within
Dirac’s theory of constrained Hamiltonian systems. Indeed, if we consider the con-
straints (54), we notice that, renaming the constraint densities as

O =40+ —h, Pa=0—h/2, P3=01+03, Py=o0,, (59
the sixtuple (¢ = ¢3,0 = 03, @1, ..., 4)isclearly aset of coordinates. The Poisson
tensor in these coordinates is given by the block matrix

A BT
P__BX(BC>’ (60)
with
01 0020
01 00 0001
A=<10)’ B=11o| ©=|2000]" ©D)
00 0100

In this formalism, Dirac’s formula [12] for the 2 x 2 reduced tensor P? with respect
to the pair of coordinates (¢, o) on the constrained manifold is

PP =(A-B".Cc™" B)a,, (62)

by which we recover the tensor Px of (58).
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As a final remark, we notice that the symmetric solutions might appear somewhat
trivial, especially in view of the constraint that fixes the intermediate height ¢, to
be at the middle of the channel. However, one should remark that the additional
requirement (51) on the densities reads p3 = ps — p2 + p1. Thus in general p3 # p,
and, in the non-Boussinesq case, the constraint o, = p3us — pou, = 0 generates a
velocity shear along the flat interface ¢5.

6 Conclusions and Discussion

Building on our previous paper [4], we have considered the reduction of a natural
Hamiltonian structure from the space of 2D general stratified configurations for an
Euler incompressible, non-homogeneous fluid, to an effective 1D model of a four-
layered sharply stratified fluid, in the long-wave dispersionless approximation. We
have applied a general scheme for reducing Hamiltonian structures and constructed a
set of natural Darboux coordinates on the reduced space of sharply stratified configu-
rations. We then constructed an effective Hamiltonian in the Boussinesq approxima-
tion setting, which basically retains density differences only in the buoyancy terms.
We finally pointed out the existence of a special family of symmetric solutions to
the effective equations of motion which generalize their 3-layer counterpart and can
serve to illustrate the expected differences and analogies between the general cases
of odd and even number of layers. Symmetric solutions in the 3-layer case were
introduced in [11] as a natural setting for the so-called mode 2 internal waves, that is,
internal waves with out-of-phase pycnocline displacements. We have geometrically
shown that four layer stratifications can support a similar family of waves, with the
notable peculiarity that such “opposite” disturbances in the pycnocline displacement
happen in the first and fourth layer only. While the middle interface ¢, is forced to be
flat and at the middle of the channel, velocity shears along this interface are not ruled
out. Analytical and numerical properties of these 4-layers solutions (e.g., stability
and well-posedness) are currently under investigation and will be communicated
elsewhere.
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Long Wave Propagation in Canals )
with Spatially Varying Cross-Sections oo
and Currents

Semyon Churilov and Yury Stepanyants

Abstract Two aspects of wave propagation in inhomogeneous media moving with a
spatially varying speed are considered. Firstly, we analyze the mutual transformation
of co- and counter-current propagating waves. In sub-critical flows with the current
velocity U less than the local wave speed relative to the medium c, this process
is known as a reflection. In super-critical flows with U > c, the process manifests
as a simultaneous amplification of positive- and negative-energy waves. The most
interesting phenomena in such a case are the wave transformation in currents that
transit from sub- to super-critical regime and vice versa. Secondly, we find and
examine such inhomogeneous flows that allow an independent propagation of co-
and counter-current waves, so-called reflectionless flows. In the latter case, wave
energy can be transmitted most efficiently in space which can have both positive and
negative effects depending on the particular situation.

Keywords Shallow water flow - Wave-current interaction - Reflectionless wave
propagation + Wave scattering - Negative energy waves

1 Introduction

The theory of wave propagation in inhomogeneous and moving media has a long
story (see, for example, [4-6, 15]). An interplay of Doppler effect and spatial non-
homogeneity makes the problem rich in physical content and practically important.
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Free surface

Bottom H(x)

B(x)

X

Fig. 1 Sketch of the flow configuration in the vertical plane. The perturbed upper boundary is
drawn in dashes

Many studies have been devoted to the investigation into various aspects of this
immense topic, mainly based on approximate methods, such as geometric optics
[17, 27] and the WKB [1, 20]. In this review, we consider two classes of wave prob-
lems that require the development of exact solutions whereas approximate methods
play only an auxiliary role. Exact solutions can be obtained as usual for reasonably
simplified problem statements that are still of physical meaning.

Let us consider in linear approximation a one-dimensional problem of wave prop-
agation in a stationary current assuming that all parameters of a medium, including
the current velocity U, depend only on the x-coordinate (see Fig. 1). If an incident
wave propagates in such a medium in one direction, for example, from left to right
then, due to the inhomogeneities, almost inevitably another reflected wave arises,
traveling in the opposite direction, from right to left. The aforementioned approx-
imate methods usually do not allow one to calculate the mutual transformation of
these waves, while this process is interesting both per se and in its consequences.

In the space where the background flow is subcritical, i.e. where its speed U (x)
is less than the speed of wave propagation relative to the medium, c(x), the mutual
wave transformation generally leads to the decrease of incident wave energy. How-
ever, there are such configurations of the background flow in which waves reflected
from its different parts add out of phase and diminish each other; this dramatically
reduces the total wave reflection. A more interesting phenomenon arises in the wave
transformation in supercritical flows, where U > c. In such a case, a wave traveling
against the current has a negative energy (for details on this concept, see, for example,
[14, 23]), and a kind of positive feedback can occur when the amplitudes of both
waves grow together whereas the total energy conserves (growing positive energy of
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an incident wave is compensated by growing (in absolute value) negative energy of
a reflected wave). As a result, the incident wave of positive energy passing through
the supercritical region leaves it significantly enhanced, while the negative energy
wave (NEW) absorbs in the transition zone.

Another circle of problems opposite in its physical content is connected with the
interesting phenomenon when waves can propagate in an inhomogeneous medium
with a certain flow configuration without reflection. In such cases, both waves can
travel in opposite directions independently of each other despite the medium inhomo-
geneity and movement. Similar situations occur, for example, when a wave scatters
on a hump or well of a finite-length / at a specific relationship between its length
and wavelength. This effect is well-known in quantum mechanics [19] and in the
water-wave theory (see, e.g., [13]). The search for conditions of such reflectionless
wave propagation is also based on exact solutions of model equations describing the
medium and current configurations.

The problem of the existence of waves propagating without large energy losses
in an inhomogeneous moving medium is extremely important for explaining the
propagation of waves over long distances, such as tsunami waves, storm surges and
tidal bores in the ocean, acoustic waves in the atmosphere, and plasma waves in
astrophysics. Knowledge of conditions for non-reflective wave propagation allows
one to undertake measures to protect coasts against unwanted highly energetic wave
impacts.

As the basic physical model of wave processes under this study, we consider the
propagation of surface gravity waves on a shallow water current with the depth H and
speed U both dependent on x. We begin with the problem formulation and derivation
of the governing equations. Then, we apply the equations derived to two classes of
problems outlined above.

Firstly, we consider the flows transiting from subcritical regime to supercritical
one and (or) vice versa and analyze the solutions in the vicinity of critical points
where U (x) = c(x). On this basis, we describe in detail the wave propagation along
sub- and super-critical parts of the flow and transition through the critical points, and
then calculate the transformation coefficients.

Secondly, we use the wave equation in two alternative forms to obtain the condi-
tions for wave propagation without reflection and analyse them in detail. We show
that there are three classes of non-reflecting flows, examine their general properties
and illustrate the results by particular solutions. We conclude this chapter with a
discussion of the results obtained and their practical applications.

2 Problem Statement and Governing Equations

Let us consider the propagation of surface waves on a shallow water flow with the
velocity U (x) in a duct with the width W (x) and bottom profile zg = B(x) gradually
varying along the direction of the flow as shown in Fig. I (note that the water surface
is not horizontal in the presence of spatially inhomogeneous flow).
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In a stationary flow, the current velocity U (x) is related to the canal parameters
by the flux conservation law,

@ = U(x)H(x)W(x) = const, (1)

and the Bernoulli equation
[
SV + g[H(x) + B(x)] — const, @)

where g is the acceleration due to gravity. It is easy to see that by appropriately
choosing profiles B(x) and W(x) one can provide the desired (and independent)
variation along the duct of the flow velocity U (x) and the speed of long waves
c(x) = +/gH (x); this velocities are assumed to be positive everywhere.

In the shallow-water theory (see, e.g., [18]), the linearized Euler equation has the
form

0i Wi __ o

ot ox 8x

3)

where i (x, t) is the perturbation of the longitudinal component of fluid velocity, and
7(x, t) is the deviation of a free surface from the equilibrium state. Then the mass
balance equation is

oS 0

S+ —[sw+i]=0 4

a o WU +u) “)
where S(x, t) = [H(x) + n(x, 1)]W(x) is a part of the duct cross-section occupied
by water. Linearizing this equation with respect to small perturbations 7 and & and
taking into account Eq. (1) with @ # 0, we obtain

on 1 0 an 0 (n u
L4 = Hi)|= = +H ~+=)=o0.
o T W ox [Wwn+H] = o Uax< +U> 0 ®
Let us introduce the functions ¢(x, t) and ¢(x, ) such that
u=0p/0x and W(x)n= 0¢/0x, (6)
and integrate Egs. (3) and (5) in x. We obtain
3@ 199 ¢ ¢
— 0, — +Ux) —+Wx)HX) — =
o () +W(x)8x 8+() + (X)()
(7
Equations describing the characteristics of this system,
dx =U(x) £ c(x), 3

dt
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show that it is hyperbolic for any flow. Eliminating ¢ from Eq. (7) yields the wave

equation
) ) N\ (00 Op\ 5, 0 (10p
(5“’@7‘2%)(5 Ua—x)—cUax(Uax O

where the prime denotes the derivative with respect to x. For an elementary
monochromatic wave with frequency w, ¢ = $(x)e™“!, this equation transforms
to
2> ’ ’ ~ /
@ -l [2025 e+ g 2in} de (w2 - 2in6—> G =0.
dx? c U dx c
(10)
Following [2], we seek an exact solution to Eq. (10) in the form resembling a
JWKB solution:

500) — B iw [ dx R iw [ &

= B[e+ + Re_],

where functions B(x) and R(x) can be interpreted, to a certain extent, as, respec-
tively, the complex amplitude of a co-current propagating wave and the relative
amplitude of the counter-current propagating wave (i.e., “the local reflection coef-
ficient”); e+ denote the corresponding exponential functions. Note that the second
term in the square brackets is singular at the critical points, where U (x) = c(x).
From the physical point of view, the singularities are caused by the blocking of the
wave propagating against the current, so that its phase velocity and wavelength tend
to zero at the critical point. Therefore, crossing through the critical point requires
special attention and will be discussed in Sect. 3.2.

Using the method of variation of constants (see, e.g., [3]) we arrive at the equations

i—f = b(x)(l — R(x)e—i“’“‘))B(x), (12)
C:l_f = — b(x) (¥ — R2(x)e V) (13)

where (see Eq. (11))

bx) = (C—/ + Z) _ dlnal) = [c(x)U(x)]l/z,

2\ ¢ U dx
eV e+(x), W(x) = w/a(x)dx, (14)
e_(x)
1 1

ax) = c(x) + U(x) + c(x)—UX)’
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The system of equations (12) and (13) has a number of useful properties that make
the analysis of wave propagation simpler and more intuitive. Firstly, itis clear thatif in
some flow region function a(x) = const, then both B(x) = const and R(x) = const,
i.e., waves in this region do not experience reflection despite that ¢ and U depend on
x. Secondly, the problem is reduced to the nonlinear first-order ODE—the Riccati
equation (13). After finding a solution to this equation, the amplitude equation for
B(x) (12) is immediately integrated:

B(x) = Bya(x) exp[—/dx b(x) R(x)e_“p(")], By = const. (15)

Thirdly, it is easy to see that in the flow regions that do not contain critical points
(where U (x) = c(x)) Egs. (12) and (13) have the first integral:

_IBwPT, I

= 2—[ — [R()| ]_const, (16)
az(x)

This equation can be treated as the conservation of wave action which is equivalent in

our case to the conservation of the pseudo-energy [14, 21]. According to this law, the

amplitude of the incident wave | B(x)| can be expressed in terms of the transformation

coefficient | R(x)|? and the “geometric factor” of the flow a(x).

For the further consideration, it is convenient to introduce the normalized ampli-
tude that does not depend on the geometric factor, D(x) = B(x)/a(x), and the
normalized coefficient r(x) = R(x)e %™ (recall that R(x) is a complex-valued
function). These functions satisfy the following equations (see Egs. (12)—(14)):

dD

—= = —b(x) r(x) D(x), (a7
dx

& wf1-r i 18
== b1 =@ | —iwatre. (18)

Then, Egs. (11), (15), and (16) take the form:

- . dx

px) = B(x)[l + r(x)] exp (w/m) , (19)

B(x) = Boa(x)exp[—/dx b(x)r(x)], (20)
B

[1 — |r(x)|2] = |D(x)|2[l - |r(x)|2] —const.  (21)

Ca(x)

It should be noted that if at some point of the flow |r(x)| < 1, then this inequality
holds throughout the entire flow due to the conservation law (21) (the same is true
for |r(x)| > 1).
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In some cases it is convenient to express r (x) in terms of the module and argument,
r(x) = |r(x)| e ?™ (recall that [r(x)| = |R(x)]); then for these quantities we have
the equations:

dd|—:| - —b(x)[l — |r(x)|2] cos 0(x), (22)
de
r0l 32 = @)1+ 1rP ] sinb() = walrol. 23)

3 Solution in the Vicinity of a Critical Point

3.1 The Asymptotic Expansion

Let x = xo be a regular critical point. This means that in its neighbourhood U (x)
and c(x) are smooth functions such that U (xy) = c(xg) = ¢y and the difference
o = U’ (xg) — ¢’ (xp) is of the order of unity. Let us introduce a parameter 0 < ¢ < 1,
put x — xo = €&, and use the notation fy = f(xo) for any function f(x). Expanding
functions c(x) and U (x) in the Taylor series in the vicinity of x = x( and replacing
x with £ in Eq. (18), we obtain:

dr iw co+U /5 iw (1 cg=Uj 2.
—_ = - rr=1)—= —= S+..., (24
6df o r+6§|: 2co (r ) 2 (co o? r|TeeSy @4

1 |:(c(’)’+U({ c62+U62) ,
S=- - (r - 1)
2 co e

iw [/ c + U’ 2 Uy o —u’ 2
+_( 0 R O+_ 0 5 0 +(0 5 0) rl.
2 c 3 o o

where

Let us look for a solution to this equation in the form r = r©@ 4+ &7 4 2@ 4
. and introduce a notation 3 = w/o. In the zero order on the parameter €, we

obtain:
dr©®

d¢

In the first order on this parameter, O (¢), the equation is:

ar® ot U} [ 59 i iw (1 cg=U\ 5 .
ST ZIﬁr(l)Jrf[OzT()O(ng”_l)_f(5_%)&)5‘{] 20

=igr®, O =By By =const. (25)

£
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A solution to this equation can be readily derived:

rO = ¢(Bio + Bug” + Big™), @7)

where
B __tlo _ w1l a-Ui\g o atUs g
0T =i M T T2 \e 2 O PR e +if) °
(28)

In the second order on the parameter €, O (€?), the equation is:

dr® ch+ U] iw (1 c=-U/
5 :157(2)+€|: OC—() Or(O)_?<__ 0 5 0)]7(])

d¢ co o
2 / /
N ElfcotUs —i—U0 (r(0)2—1> (29)
2 Co CO
w c +U 2 C///_U/// C//_U//Z
+—(°2°+—02°+(°3°)r<0>.
2 g 3 o o

The solution to this equation we present in the form:

r? =¢ (Bzo + By + Bpé® + Bz3€3i/j), (30)
where
1 o+ U C/2 + U/2 1 o —Uul
By = — - 0 0 _ 0 20+iw<———0 0>BIO ;
22 —1ipB) co 5 co o2
C/ + U/ iw C/ + U/ 2 C/// _ U/// (C” _ U//)Z -
B21:[02c031°+§(020+§0 -+ )| B
0 Co o o
iw (1 ¢=Uf
2= Bi1.
4 ( o? "
(31)
1 i U’ 2 U/2 B ’ U’ .
BZZ= . CO+ O_CO +2 0 Bg+2co+ OBoBll
22 +1ip) co g co
i (1 qmugy
2 Co 0'2 ’
C/ +U/ -
By = —° 0 _ BiBi.

2¢o(1 +10) Bo
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The solution obtained consists of two parts. One of them is the sum of a slowly
varying terms that vanish at the critical point; this part of the solution is represented
by the Taylor series:

ra(x) = Bio(x — x0) + Bao(x —x0)> +.... (32)

Another part of the solution contains the terms with the coefficients EO and B,
(m > 1); these terms are strongly oscillating when x — xq (see Eqgs. (25), (27), and
(30)). Note that B,,,,, ~ ([30)’” and stress that By, depend on B;g, but B;y does not
depend on B,,, with m > 1 (this property holds in the higher orders of expansion
too). Therefore, the slowly varying part of the solution is entirely determined by the
local behavior of functions c(x) and U (x) in the vicinity of the critical point and
does not depend on the fast oscillating contribution. The latter is determined by both
the boundary conditions and behavior of functions c(x) and U (x) to the right or to
the left of the point xo. Note, by the way, that By and the entire quickly oscillating
contribution can be different at the left and right sides of x, therefore, the found
solution is reasonable to represent in the form:

r() = ra @) + B x = xo [ 1+ 0 = 20, (33)

where the signs plus and minus pertain to the regions where x > xp and x < x,
respectively.

The integrals in the Eqgs. (19) and (20) converge for x — xp £ 0, and the asymp-
totic expansions for B(x) and ¢(x) can be written as:

L4yl é(i) .

B(X) = COB(()i) |:1+%00 (x—_x()) (1— l—ﬁlﬁ |x—x0|1d +0(|X—x0|2) , (34)
i ‘ . d

() :coBgi>[1+B(§i)|x—x0|lﬂ+0(|x—x0|)]el‘l’+, w, :”/chr—xU' (35)

3.2 Transition Through the Critical Point

As the next step, we need to understand how these solutions can be continued through
the critical point. This problem was originally studied for a simplified flow model
with a piecewise-linear velocity profile U(x) and c(x) = const [8], and then the
results obtained were generalized to arbitrary smooth profiles of ¢(x) and U (x) [9].
Equation (35) contains only the principal expansion terms. The first term in the
square brackets refers to the co-current propagating wave, and the second term (that
is rapidly oscillating) refers to the counter-current propagating wave. As shown in
[8, 9], for the correct matching solutions through the critical point, it is necessary to
take into account a small viscosity of the medium. The final result is as follows.
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If the current passes from the subcritical regime into the supercritical, then

B = BY, B =B =o. (36)

In other words, co-current traveling waves “do not feel” that the point is critical. The
absence of counter-current running waves is due to the fact that on both sides of the
critical point, they propagate out of this point and therefore, cannot reach it. Hence,
for such a transition we have (see Eqs. (32), (33), (21), and (22)):

r(xg) =0 and E(xg+0) = E(xp — 0). (37)

Therefore, we conclude that if b(xp) # 0 in Egs. (22) and (23), then functions 7 (x)
and cos 6 change their signs in the course of transition through the critical point, i.e.
O(xo+0) =60(xy—0) £

On the contrary, in the course of the transition from the supercritical to the subcrit-
ical regime, the counter-current propagating waves run to the critical point from both
sides and, approaching it with a decreasing wavelength, are completely absorbed in
its viscous neighborhood. Their relative amplitudes Béﬂ and Béf) depend on their
propagation prehistory in the different flow regions and therefore, are not related
to each other, whereas Bé+) = Bé_). The energy flux in the course of the transition
through the critical point is not generally conserved,

|B(()_) |2

g(X() — 0) = az(xo)

o |B(+)|2 5
(1-1B77) # o+ 0 = 0 (1= 1B7P),

it can either decrease or increase (see [8, 9]) since the waves absorbed have both
positive and negative energy.

Thus, co-current propagating waves do freely transit through critical points of both
kinds with no change in their amplitude. By contrast, counter-current propagating
waves can not transit through any critical point because they are either unable to reach
it or absorbed in its neighborhood. In the next three sections, we consider flows with
two critical points in order to highlight the features of wave propagation in ducts
with alternating sub- and supercritical parts. In particular, we give special attention
to transmitting properties of these parts.

4 Wave Propagation in a Sub—Super-Subcritical Flow

4.1 The Flow Model and Preliminary Analysis

Consider a current on the left (—oo < x < x;) and right (x; < x < +00) ends of
which the flow is subcritical, 0 < U (x) < c¢(x), and within the middle part, for x; <
X < xp,—supercritical, U (x) > c(x), as shown in Fig.2. Such flows were studied
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Fig.2 (color online) Sketch of the flow with two critical points, view from the top. Arrows indicate
the flow direction, incident (7), transmitted (7'), and reflected (R; and R3) waves in subcritical
domains 1 and 3, as well as positive (P) and negative (N) energy waves in the supercritical
domain 2

in Ref. [9] as a hydrodynamic model for a wormhole directed from the black to
the white hole. Here x; and x, are the critical points such that U(x;) = c(x1) = ¢;
and U (x,) = c(x2) = c,. We assume that in both critical points the differences of
slopes, 012 = U’(x12) — ¢/(x12), are not small (see Fig.3) and use in this Section
the dimensionless variables

by ~ U(x) c(x) w c1

xX=—, U(x) , c(x) = , w=—, A=—. (38
A C1 C1 g1 o1

In what follows, tildes will be omitted for brevity.

Let us assume that a plane wave of frequency w arrives from the left. Its propa-
gation will be described in terms of functions D(x) and r(x). At the critical point
x = x; and when x — 400 there is no wave traveling upstream, therefore solution
to Eq. (18) must satisfy the boundary conditions:

r(x;) =0, r(4o00) = 0. (39)

Therefore, we can conclude that, firstly, in the entire flow |r(x)| < 1 (as it follows
from the conservation law (21)) and, secondly, the Eq. (18) should be integrated into
the upstream direction in the subcritical areas and downstream—on the supercritical
section x; < x < xa.

Further, suppose that for x — 400 functions c(x) and U (x) tend to their nonzero
limiting values, and let D(—o0) = 1. Then from Eq. (20) and the matching conditions
(36), B(§+) = B(()_), we find the amplitude of the downstream propagating wave as
the function of x:
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Fig. 3 (color online) The (a)
flow models with two critical 2
points: a—flow (66), U

M =1.5; b—flow (69), i /—\ C
c=2c1=2,d=1; 1
c—reflectionless flow with _— N—

a?(x) =c()Ux) =1 | |

0 | |
X X
1 2 X
X
D(x) = exp —/b(x/) r(x)dx’ |, —oo<x < o0. (40)
Then we can define the transmission ratio K (x) =|D(x)| and present it as:
K (x) = exp —/dx’b(x')Re (r(x’)) = exp —/dx/b(x’)lr(x’)| cosB(x)
—0Q —0oQ0
(41)

As can be seen from Egs. (22) and (41), the reflection coefficient |r(x)| and trans-
mission ratio K (x) both increase or decrease simultaneously depending on the sign
of the product b(x) cos #(x). Finally, in those regions where b(x) =0, i.e. a(x) =
const, they are constant too and, as already noted, waves running in the opposite
directions do not interact, but the phase difference between them 6(x) changes due
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to the difference in the directions of propagation and difference in the wavelengths
(i.e., because a(x) # 0—see Eq. (23)).

In accordance with the flow structure and conservation law (21), one can distin-
guish three stages for the downstream propagating wave. In the interval x < x|, the
transmission ratio K (x) decreases from unity to K (x;) = /1 — [r(—00)|2. In the
supercritical interval, amplitude increases, and K (x;) = K (x1)/y/1 — |r(x2 — 0)|2,
and in the last interval, x > x;, K(x) decreases again to K(4+00) = K (x3)

1 — |r(xz + 0)|? (recall that in the general case |r(x; — 0)| # |r(xz + 0)|, there-
fore the increase and subsequent decrease of K are independent). In addition, K (x)
can vary non-monotonically in any of these three intervals. As aresult, in each interval
of the flow, its integral transmission ratios are presented by the formulae:

—1,2
K==l =1, K =[1-lr-0F] =1,
Ks=yT—rm+ 0P <1,

and the total transmission ratio (the transmission coefficient) is 7 = K (+00) =
K, - K, - K3. It can be increased by (i) reducing the transformation of the co-current
propagating wave into reflected waves in the subcritical intervals of the flow and (ii)
increasing its transformation into the NEW in the supercritical interval.

The first condition can be fulfilled at once for all frequencies if in the subcritical
regions b(x) = 0 (i.e. c(x)U (x) =const) and waves propagate without reflection;
then K; = K3 = 1. Note that this condition does not prevent the change of the Mach
number M (x) = U (x)/c(x) along the flow, (see, e.g., Fig.3c). Another way to do
it is based on the effect similar to that of anti-reflective coating in the optics. Its
principle is that waves reflected from the different flow intervals add up in anti-phase
and extinguish each other. As can be seen from Eq. (22), the quenching is complete
if:

(42)

X1

r(—00) =fb(x)[1—|r(x)|2] cosO(x)dx =0, (43)
r(x240) =/b(x)[1—|r(x)|2] cos A(x) dx = 0. (44)

X2

Since in those intervals where b(x) = 0, function 6(x) continues to vary, the ful-
fillment of Egs. (43) and (44) can be ensured by variation of 6(x) due to “inserts”
with b(x) = 0 of the required length in the proper intervals of the flow. But since
forb =0 df/dx ~ w (see Eq. (23)), the choice of the positions of such inserts and
especially their lengths significantly depend on the wave frequency.

As for the second condition, we shall see below that both the selection of inserts
and the difference in the speeds of wave propagation at the ends of the supercritical
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interval (no matter ¢; < ¢ or ¢; > ¢;) can make K, greater, but the increase in wave
frequency prevents to this.

To simplify further analysis, let us strengthen the previously formulated condi-
tion of fast convergence of c¢(x) and U (x) to their limiting values when x — o0,
assuming that ¢ and U are constants and, respectively, b(x) = Oforx < x_ < x; and
X > x4 > xp. Below we perform the analysis for two limiting cases, when w < 1
andw > 1.

4.2 The Low-Frequency Limit, w < 1

Setting w = 0 in Eq. (18), we get

Ry — a? 1+ roi
0—a ) e Ui )

drg a'(x)
Ry + a%(x)’ 1 —ro

dx :_a(x) (1 —rg) = )=

where ¢;, U;, and ry; are the values of c(x), U (x), ro(x) in some starting point x = x;,
and Ry is a constant of integration that depends on the initial conditions in the point
x = x;. If x; coincides with the first critical point x;, then ro; = 0, Ry = 1 and

1 —a%(x) I =c)U(x) _1 2¢(x)U(x)

= =1-— . (46)
1+ a?(x) 14+cx)Ux) 14+ cx)U(x)

ro(x) =

Next, we look for a solution in the form: r (x) = ro(x) + wr(x) + w?r(x) + . . ..
In the lowest order on the frequency, O (w), we have:

dr; a'(x) .
— =2 ro(x)ri(x) —ia(x)ro(x).
dx a(x)

Integrating this equation with the initial condition r; (x;) = 0 and using Eq. (45), we
get:

X

_ 2id*() /df n©) [Ro+a* @I
[Ro+a?()1* ) UE© X&) —-U*E)

Xi

(47)

ri(x) =

In the next order on the frequency, O (w?), we have the following equation:

d /
ﬁ = aa((j:)) [Zro(x)rz(x) + rlz(x)] — ia(x)ry (x).

Its solution subject to the initial condition 7, (x;) = 0 is:
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x ¢
() = — 3 /dﬁRw%mﬂﬂo dnro(p) [Ro+a* (]
’ [Ro+a*@PF J UE© ©-Ux©) | v Em-Um

i

(48)
The integral in the right-hand side of Eq. (47) can be evaluated in the vicinity of

the point x,; when x — x; we have:

X

I&) = /dﬁro(ﬁ) [Ro +a*(©)] R} —¢c5

U@ (&) — U =1 — 20’26‘% In|x — x2f + O(|lx — x2)),

Xi

where I}; =const, 0, = U — ¢. The integral converges if ro(x2) = 0 (i.e. if Ry =
c%), otherwise it logarithmically diverges.

Similarly one can evaluate the integral on the right-hand side of Eq. (48):

x ¢
/ d€  Roa*(x) +a*(©) [dnro(m) [Ro+a*mP
L U©) (&) —UO) U cm —Un)

i

Ry + ¢ RZ — ¢4
= Iy — —2 [11i1n|x—xz|—07221n2|X—x2| + O(lx — x2),
o) 4oy05
where I; =const. Therefore, when x — x,, the solution is:
Ry —c3 iw wt o,
r(x) = 1+ —Inlx —x] —— In“ |[x —x2| + ...
(x) Ro+ 2 . | 2| 202 | 2
2iwesly; [ iw 4?3 Dy
- 2 I+ —Inx—x|+... |- —25— 4 0(lx — x2]).
(Ro + ¢3)? 02 (Ro + ¢3)?

49)
On the other hand, setting in Eq. (33) xg = x and 0 = 0,, we obtain for |[x — x| < 1
andw|ln|x — x| K€ 1:

r(6) = ra ) + Bl = w714 0(x — )| =

1w
r(x) + B(()i) |:

. w2
14 = Infx — x| =~ 1n2|x—x2|+...] [1+0(|x—x2|)].
o0 2075

Matching of this solution with solution (49) shows that when x — x, &£ 0 the solution
should be as this:

() 2 s 273
Ry —c 2iwcs 15
r(x) = ryg(x) + [ o 2 21

+ 0w | Ix = x2[“/2| 1 + O(Ix — xal) |,
RE +32  RE +3)? } [ ]

(50)
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where g (x) is determined by the series (32) with xo = x;. It was taken into account
that Ry and /}; can be different on the left and right of the point x,, because according
to the boundary conditions (39), they are calculated through the integration of Eq. (18)
in the different flow regions. Therefore, if ro(x, £ 0) # O (i.e., R(()i) * c%), then the
reflection coefficient and transmission ratios are:

-
[r(x)| — W = 0(D),
0 2
)12 ) 11/2
R - R -
K=" » Kax =120
Ry "+ Ry + 3

Otherwise, |r(x)] is of the order of O (w?).
It should be emphasized that for x — x, %+ 0, the quantity

@ _ 2

_ 2
ro(x2 + 0) = —(;t) 2
Ry +¢c;

determined by Eq. (45) does not describe the limiting value of r(x) (or its main part),
but, as seen from Eq. (50), the amplitude of the rapidly oscillating part of the solution.
Note that oscillations are concentrated in the exponentially narrow neighborhood of
the point x»,

X — x| = 0(™). (51)

This allows us, firstly, to consider ro(x; £ 0) as the main part of the intermediate
asymptotic of the solution, and, secondly, greatly complicates the detection of oscil-
lations in the numerical solution even in the case of not very small w (see Sect. 6 and
Fig.5).

Based on these results, we will consider wave propagation within each section of
the flow. Let’s start from the left interval, —oo < x < x1, where U (x) < c(x). Given
that b(x) # 0 only in the interval X = (x_, x;), we consider two options. The first
optionisthatx; —x_ = O(1) and b(x) = O(1) inthe entire interval X. Then, taking
into account the boundary condition (39), we obtain (see Egs. (46), (22), and (42)):

2 2

2
4+ Ow) and K1 =1-— ( a2 ) 4+ O(w), a— =a(x-).
1+a
(52)

r—=r(x-)=
1+a3

Within the context of the analog gravity, subcritical flows simulate the “ordinary”
space-time, with the quite natural constancy of the wave velocity, ¢ = 1. Then a? =
U (—o0) < 1 and there is necessarily a reflected wave; the transmission rate is K| <
1. The reflectionless propagation with a_ = 1 is possible only in a more complex
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model, where c(x) > 1 for x — —o0 and decreases to 1 as we approach the critical
point x; (black-hole horizon)—see, for example, Fig. 3c.

In the second option, the interval X contains two intervals of the length O (1)
each, X| = (x_, x,) and X, = (x3, x1), with b(x) = O(1). These intervals are sep-
arated by the insert Xo = (x,, x) with b(x) = 0. Then, Eq. (46) gives ry(xp) =
(1— a%)/(l + ag), where ag = a(x,) = a(xp). As b = 0 within the insert, |r(x)| =
const, and only the phase difference of waves 6(x) varies with x; however, this vari-
ation affects the transmission rate. Indeed, in the case of the ‘phase inverting insert’,

when
Xp

0(x,) — 0(xp) = w/a(x)dx = 2n+ D, (53)
where n is natural, ro(x,) = —ro(x;), so that in accordance with Eq. (45), Ry = aé
and "

=920 k=] (ag_az 2 (54)
rolx-) = —/—=, = _ — .
0 ag +a? : ag +a?

(Note that because the flow is uniform when x < x_, therefore r_o, =r_.) As a
result, the waves reflected in the intervals X; and X, cancel out each other upon the
condition a(z) = a_, which can be easily implemented even in traditional flow models
with ¢ = 1 (see Fig.3a), if in the insert section U (x) = U, = U, = v/U(—00) (in
this case, U(—00) < U, < 1). This equality sets the position of the anti-reflective
insert; its length is determined by Eq. (53) and is very long, since it is proportional
tow™ .

In conclusion, we note that wave propagation in the interval x, < x < oo does not
differ qualitatively from that just described. Indeed, since b(x) = O for x > x, then
ay = a(xy) = a(+o00) and integration of Eq. (18) starts at x = x with r(x;) =
r(4+00) =0.If x; —x; = O(1) and b(x) = O(1), then

a? —a? a2 —a2\? 12
rx+0:+72, Ky=|1-(=2 2) + 0O (w), 55
o(x2 +0) 2 1 al 3 |: (ai—i-a% (w) (55)

and the condition of suppression of the reflected wave, a, = a, is satisfied if
c(+00) > ¢y, i.e. requires an increase in the wave speed downstream from the criti-
cal point x;, (see Fig.3c). But it is possible to suppress the reflected wave using the
above-described ‘anti-reflective optics effect’, i.e. with the help of inverting insert
with b(x) = 0 in such point x = x, where a’(x,) = aya...

Let us now turn to the region x; < x < x, where the flow is supercritical. If
X, —x; = O(1) and b(x) = O(1), then Eq. (46) gives:
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-12
1— c% 1-— c% 2 1 +c%

ro(xz —0) = 5. Ko=|1- +O0Ww) = + O(w).
1+c5 2¢p

(56)
In the case when the wave speeds at the ends of the region are the same (¢c; = ¢; = 1),
ro(xa —0) =0, and K, = 1 + O(w?) differs almost not from one. Again, one can
significantly increase the transmission ratio using an inverting insert. Indeed, since
a; = a, = 1, there is a point x = x,,, at which a(x) reaches its extreme (maximum
or minimum) value, say, a,,. Here b(x) changes sign, and the growth of |r(x)|? is
replaced by a decrease, which leads to a decrease in the amplitudes of waves of both
positive and negative energy. Changing at this point (more precisely, on the inverting
insert with b = 0) the sign of cos 6 (and with it the » sign), we will continue to grow
Ir (01,

1—a2 ar —1
ro(xm —0) = 5 — 10(m +0) = —rglxm —0) —> rolx2 —0) = =7 ;
1+ ajy, am +1

(57)
and amplitudes of both waves. As the result, K» ~ (a}, +1)/(2a%) > 1, and to a
greater extent, the more strongly a,, differs from 1 (to either way, since K»(a,,) =
Ka(a,").

If c; # 1, then K, > 1 and without an inverting insert, and, in addition, K, (c;) =
K>(cy " up to O (w). In other words, the amplification of a wave of positive energy
due to its transformation into a NEW is promoted by both a decrease and an increase
in the speed of waves in the supercritical section of the flow.

4.3 The High-Frequency Limit, w > 1

Letus turn now to waves withw >> 1. This limiting case can be still consistent with the
shallow-water approximation because, in the dimensional variables, the inequalities
w/oy = O(kA) > landkH <« 1 are consistent when A > H. As follows from the
analysis carried out in Sect. 3, in the vicinity of the critical point x, the function r (x)
is defined by the series (32) with coefficients having the order of O (w™"). Therefore,
it is natural to assume that the solution to Eq. (18) has the same order. Setting
r(x) =1iP(x)/w where |P| = O(1), but |[dP/dx| = O (w), we get the equation:

1 dP . . P?
— — =—iax)P+ibx)|(1+— ).
w dx w?

Neglecting the term O(w™?) in this equation, we arrive at the linear non-homoge-
neous equation whose solution subject to the boundary conditions (39) is:
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P(x):iwexp[—iwll-’(x)] / dgb(g)exp[iw\y(g)], W(x) = f a(x)dx, (58)

Xo

and xo = x; when x < x, and xop = x4 when x > x,.

In Eq. (58), when calculating the integral of a rapidly oscillating function, we
take into account that d¥/dx = a(x) has no zeros on the real axis and therefore,
there are no stationary phase points, but a(x) has poles at x = x; ;. Hence, the
main contribution to the integral comes from a neighborhood of the upper limit of
integration (see, for example, [22]), then we have:

jdgb(g) exp[iwqj(@] b exp[iwllf(x)]

X0

=0w™. (39)

iwa(x)

We see that indeed P(x) = O(1) in general. However, P(x) = o(1) when x —
X, £ 0 because of presence of a(x) in the denominator. Thus, in the high-frequency
limit K differs from unity by O(w~2) whereas K, and K3 differ from unity even
less, only by o(w™2). Therefore, both the wave reflections in the subcritical regions
of the flow and wave amplification in the supercritical region diminish.

5 Wave Propagation in a Super—Sub-Supercritical Flow

Let us consider now a duct with a supercritical flow (U (x) > c(x)) in the outer
domains, left: (—oco < x < x), and right: (x, < x < +00), and subcritical in the
inner domain (x; < x < x3). In this Section we make scaling in the same way as in
Eq. (38), namely, with the use of flow parameters at the critical point x = x; corre-
sponding to the transition from sub- to super-critical flow. As a result, in dimension-
less variables,

UzZCzZl, 0'2:U2/—C,2:1. (60)

In this case, the physical statement of the problem is not so evident as for the
sub-super-subcritical flow considered in Sect.4. First of all, it is hard to determine
what is the incident wave. Indeed, the left part of the flow is supercritical, and the
waves, both with positive and negative energies, entering the duct from the left end,
propagate to the critical point x; interacting with each other in such a way that the
total energy flux £ determined by Eq. (21) is conserved, whereas the amplitudes
of both waves change. Because only a finite domain to the left of the point x; is
accessible for observation, in any point of it we see a superposition of both waves
and have no possibility to recognize which of these two waves arrives from the left
infinity. Of course, if £ > 0, the positive energy wave does unambiguously present at
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left infinity but the negative energy wave can present there as well, and the amplitudes
of both waves remain unknown.

However, we know that in the neighborhood of the critical point x; any NEW
is completely absorbed (see Sect.3.2). Therefore, it seems that the only reasonable
statement of the problem in this case is to set the amplitude of the co-current propa-
gating wave at either end of the subcritical domain and ignore the prehistory of wave
propagation in the left supercritical domain x < x;. Technically, it is more convenient
to set the amplitude of the co-current propagating wave at x = x,, because both the
reflected wave and NEW vanish in this point. Assume that the co-current propagating
wave arriving from the domain where x < x; has the amplitude D(x;) = 1. Then,
in the domain x; < x < oo (cf. Egs (40) and (41)) we have:

D(x) = exp —/ b(x"r(x)dx'|, (61)
K(x) = exp —/ b(x)Re (r(x’)) dx' | =exp —/ b(x)|r(x")|cosO(x")dx’ |,
L x 2 2

and the integral transmission ratios of sub- and supercritical domains are (cf.
Eq. (42)):

K= VTP <1 Ks=[1-lrthoo)P] 21 K(too) = K- Ko,
(63)
It should be borne in mind that the oscillating component of r(x) develops with the
distance from x, rather than from x;.
Scaling as per Eq. (60) yields a% = c,U, = 1, therefore, the scattering of low
frequency waves in the subcritical domain is approximately described by Eq. (46).
Then, the transmission ratio in this domain is:

1—c2\° 2
Ky = 1-( C') +O0w) = — 4 ow). (64)
1+t 1+¢f

From this formula, it follows (bearing in mind a small contribution of the last term
O (w)) that K, is only slightly less than unity if the wave velocities in the ending
points of the domain are the same, ¢c; = ¢, = 1, but K, decreases when c; deviates
from c; in the either side. It should be also noted that K»>(c;) ~ K»(1/cy).

In the high-frequency limit, one can demonstrate by analogy with Sect.4.2 that
K, — 1 — Oforany c;. As a consequence of this, when c¢; = 1, K> (w) goes to unity
in both limiting cases, when w — 0 or w — 00, and inside this frequency range, it
has at least one minimum. If ¢; # 1, then K, (w) grows from K»(0) < 1 up to 1, but
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not necessarily monotonically (this will be confirmed below through the numerical
calculations shown in Fig. 16).

In the right outer domain x > x», the transformation of a positive-energy low-
frequency wave into a NEW is described by the same Eq. (46), and the transmission
ratio is:

2 -1 277172 2 1
K3=[1—<%” +0(w>=%+0(w> (65)

Asymptotically K3 ~ a(4+00)/2 increases with a(4-00) = [c(4+00)U (+-00)]"/2.
However, when the frequency increases K3 approaches unity from the top.

6 Numerical Calculations and Some Remarks

6.1 Sub-Super-Subcritical Flows

The analysis presented above shows that the most interesting scenarios of wave
propagation occurs in the middle (supercritical) flow region where a positive energy
wave is amplified due to the coupling with the NEW; then the transmission coefficient
can be noticeably greater than one. Numerical calculations were performed mainly
for this region. Recall that at the far end of the region where x, — x ~ exp(—w™'),
the function r (x) rapidly oscillates; therefore, the spatial resolution of the oscillating
solution in the numerical calculations can be performed without extra complications
only for not too low w. Below we consider separately two particular cases when the
wave speed is (i) the same at the ending points of the supercritical interval and (ii)
when it is different.

Currents with the equal velocities at the ending points Bearing in mind the con-
ditions (38), we take for calculations a simple flow model with ¢; = ¢, =1 (see
Fig.3a):

c(x)=1, Ux)=14+x2d —x)/2d), x1 =0, xo=2d. (66)

For such a flow, the Mach number attains its maximum, M = 1 + d/2, at the
midpoint of the supercritical interval, x,, = d, and function b(x) changes its sign. As
was discussed in Sect.4, the wave amplification can be increased with the use of a
properly chosen phase-shifting insert. In our calculations, such an insert begins in the
point x,, and is simulated by changing of the phase § = arg(r) by the required value
Af. As a result, function 6(x) becomes discontinuous in the point x,,. Note that in
the limit w — 0, the most effective insert is inverting one, with Af = +; we have
considered this above. However, when the frequency increases, the phase 6 changes
more and more significantly in that region where b(x) # 0, therefore the optimal
phase shift that maximizes the transmission ratio K,, depends on the frequency.
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Table 1 Data for the optimal phase shift versus frequency used in the numerical calculations

w 0.2 0.3 0.5 1 3 5 8

AG 2.688 2.443 1.990 0.977 —1.187 —2.234 —3.002
Fig. 4 (color online) The AO
optimal phase shift as a B

function of frequency. Dots
show the values used in the
numerical calculations and

presented in Table 1 w2

-T2

- - - - - — - — ZT=—

Specific values of Af(w) used in our calculations for the flow with M =4 (d = 6)
are given in Table 1 and shown in Fig.4.

Figure 5 shows the reflection coefficient |r(x)| that describes the transformation
of the co-current propagating wave into the NEW, as well as 0(x) = arg(r) for the
frequencies w < 1, both with the optimal phase-shifting insert (OI), and without
it (NI). The upper part of Fig.5 shows that even when the frequency is not very
small, the “zero” approximation |ry(x)| as defined by the Eq. (45) (and with phase
inversion, if any) describes pretty well the behavior of the function |r(x)|, except
for the neighborhood of the point x = x, = 2d in the NI version when there is
no insert. The difference between the curves is caused by missing in ry(x), but
accumulated in r(x) (due to w 7 0) a rapidly oscillating component, although its
amplitude is significantly less than in the OI version. For w = 1, the downstream
change in # manifests faster, therefore | (x)| and |ry(x)| differ notably throughout the
entire supercritical region, in both versions of the flow, with the insert (OI-version)
and without the insert (NI-version). Note that when x — x; = 2d, the reflection
coefficients (which are equal here to the amplitudes of fast oscillations of the functions
r(x)) corresponding to the different flow versions, approach each other (cf. lines 1
and 2 in Fig.5) and slightly decrease compared with what was for w = 0.3 in the
Ol-version. Moreover, we draw attention to the fluctuation of | (x)| near the point x,,
which became noticeable as the result of the expansion of the region of oscillations.

Figure 6 shows the reflection coefficient |r(x)| and function 6(x) for w > 1 for
both flow models, OI (with insert) and NI (no insert). Here the region of oscillations
is even wider, and oscillations of |r(x)| are seen in a notably greater range of x. When
Xx — x,, these oscillations, as expected, decay, and |r(x)| approaches a finite limit
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Fig. 5 (color online) The reflection coefficient (left panels) and function 6(x) (right panels) as
functions of x for three values of frequency w < 1 in the flow model (66) with M = 4: line 1—NI;
line 2—OLI. Dashed lines correspond to the reference case with w = 0 and A = 7 line 3—NI;
line 4—OI. Function #(x) has a jump at the point x,, within the OI model due to the phase shifting
insert

which is equal to the amplitude of oscillations of the function r(x). Comparison of
graphs forw = 1, 3, 8 confirms the conclusion made at the end of Sect. 4 that |r(x)|
decreases as w™!, and even faster in the vicinity of x;.

In the course of propagation from x; to x,, waves of positive and negative energies
interact such that the total energy flux (21) conserves. As a result, their amplitudes
synchronously increase or decrease in accordance with the change in their phase
difference. Quantitative measure of wave interaction is the gain of the positive energy
wave:

0w = (1-1r@P) (67
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Fig. 6 (color online) The reflection coefficient (left panels) and function 6(x) (right panel) as
functions of x for two values of the frequency w > 1 in the flow model (66) with M = 4: line
1—NI; line 2—OI. Function #(x) has a jump at the point x,, within the Ol model due to the phase
shifting insert

this quantity is shown in Fig. 7. According to Eq. (22), the growth is replaced by the
decrease when the sign of either b(x) or cos 6 changes.

At low frequencies (w < 1) in the OI model of the flow, the change of the b(x)
sign is compensated to a large extent by the phase jump, therefore Q(x) grows
monotonically and begins to slightly oscillate only near the point x; (see curves 3).
As the frequency increases, #(x) varies more and more rapidly, and Q(x) acquires
more and more distinct oscillatory character whereas its value becomes closer and
closer to unity. Figure 8 shows the dependence of the transmission ratio K, of the
supercritical domain on the frequency w for the NI (line 1) and OI (line 2) models. As
one can see from the comparison of lines 1 and 2, both models, with the optimal phase-
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Fig.7 (color online) The gain coefficient as the function of x for the several particular frequencies:
l—w =02, 2—w =05, 3—w=1, 4—w=3, 5w =15, 6—w = 8. Solid lines pertain to
the NI model, dashed lines—to the OI model
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shifting insert (OI) and without it (NI), provide approximately the same transmission
ratio for w > 1, whereas they differ in the low-frequency domain. Whereas the OI
model provides monotonic increase of K, when w — 0, in the NI model, K, has
a maximum at w = 1, and then goes to zero when w — 0. Even in the NI model
without any insert, the transmission ratio is notably greater than one, which can
provide the laser effect of wave amplification in the “active zone”. The amplitude
gain in the supercritical domain may be drastically reduced by wave reflection in the
left and right subcritical domains. To gain a better insight into the effect of domain
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Fig. 9 (color online) Top panels: left—velocity profiles (68) for Uy = 0.1 and Uy = 0.8, and
right—the total transmission ratio K = K| K> K3 as a function of frequency w. Bottom panels:
left—transmission ratios of the left (K| ) domain and right—for the middle (K> ) domain as functions
of frequency w; 1—Uy = 0.1, 2—Uy = 0.4, 3—Uyp = 0.8

competition, we have calculated the wave transmission through all three domains in
the bell-shaped velocity profile (see Fig. 3a) with following dependences:

c(x)y=1, and U(x) =Uy+ (M — Up) sechx. (68)

Calculations were performed for the fixed Mach number M = 4 and with various
velocities at the infinity Uy € (0, 1). The results obtained are presented in Fig.9.
As one can see, the supercritical flow with any Uy acts as a broadband amplifier
(see the top right panel in Fig. 9). This can be explained as follows: the wave reflection
plays a noticeable role only at low frequencies, whereas the transmission ratio K,
responsible for the wave amplification decreases with w rather slowly. It should
be noted in passing that due to the flow symmetry, the transmission ratios in the
subcritical domains of the flow are equal, K; = K3, so that the total transmission
ratio is K = K7 K. And finally, when comparing K»(w) shown in Fig.9 with that
presented in Fig. 8 by curve 1, it should be born in mind that in calculations presented
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in Fig. 9 the scaling (38) was not fulfilled. Due to this, the dimensionless frequencies
of the maximal amplification are different.

Currents with the different velocities at the ending points In this section, we
consider currents in which wave velocity c(x) monotonically increases or decreases
downstream from c¢; = 1 to ¢,. For calculations, we take a modification of the flow
model (66) without a phase-shifting insert (see Fig.3b),

¢ —1 x(2d — x)
sz Yo UM =e@+ =" x=0 n=2 ()

cx)y =1+

In such a flow, the maximum Mach number is attained at x = 2d /(1 + ,/c2):

2d
M=14 ———, 70
(14 /c2)? 70
so that for the given Mach number we have:
M -1 2
d= (1 n x/cQ) : 1)

Let us assume that in the entire region function a?(x) = ¢(x)U (x) varies mono-
tonically, and b(x) does not change its sign. This limits the range of the flow param-
eters, so that

3—— i e,
d<le—1, 1<M=< S Tve (72)
T 1, if o<l
14/ :

The parameters ¢, and M used for calculations are shown in Table 2. For a given ¢»,
the Mach number M was chosen close to the maximum value, and then the parameter
d was calculated using Eq. (71).

For the flows with the increasing velocity c(x), Fig. 10 shows the dependence
|r(x)| for different ¢, and w. It is clearly seen that the transformation into the NEW
increases with an increase of ¢;, but falls abruptly when the frequency grows. This is
also exhibited by the graphs of the gain coefficient Q for the same set of parameters,
see Fig. 11.

Similar relations for the flows with the decreasing function c(x) are shown in
Figs. 12 and 13. They demonstrate the strengthening of the wave transformation

Table 2 The Mach numbers used in numerical calculations with the different values of ¢
c 2 3 5 9 2/3 0.5 1/3 1/6 0.1
M 1.3 1.5 1.6 2 1.2 1.3 1.5 1.8 2
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Fig. 10 (color online) Dependence of |r(x)| in the flows with increasing wave velocity c(x) for
different values of ¢, and frequencies shown by the numbers next to the curves. Dotted line pertains
tow=0

with the decrease of the ending value ¢, and its sharp weakening with the increase
of w. The oscillatory nature of the transformation near x, is seen even more clearly
than for ¢, > 1.

Figure 14 shows the transmission ratio K, of the inner domain as function of
frequency w for the different values of ¢, > 1 (left panel) and ¢, < 1 (right panel).
As one can see from the figure, the transmission ratio in both panels monotonically
decreases from some maximal value K,(w = 0), which depends on ¢, to zero.
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Fig. 11 (color online) The gain coefficient in the flows with increasing wave velocity c(x) for the
different frequencies and ending values of ¢, shown by numbers next to the curves

6.2 Super-Sub-Supercritical Flows

For this type of flow, the inner domain, x; < x < x», is subcritical and the corre-
sponding transmission ratio is less than one, K»(w) < 1. The frequency dependence
of K, is determined by the particular profiles c(x) and U (x) (see Sect.4.3). For the
numerical calculations, we chose a family of flows with the linear c(x) and quadratic
U (x) profiles (cf. Egs. (66) and (69)),

_ (c1 — 1)Qd — x) _ _ x(2d — x)
cx) =1+ B E— U(x) =c(x) g (73)
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Fig. 12 (color online) Dependence of |r(x)| in the flows with the decreasing wave velocity c¢(x)
for the different values of ¢; and frequencies: 1—w = 0.2, 2—w =0.5, 3—w =1, 4—w =2,
S-w=5

Here ¢; = ¢(0), and d is chosen such that U (x) > 0 in the entire interval x; = 0 <
x <xp=2d.

If ¢; = ¢, = 1, then ¢(x) = 1, and a?(x) = c(x)U (x) = U (x). In this case, the
transmission ratio K,(w) — 1 when the frequency goes either to zero or to infinity,
and its minimum decreases with the decreasing of U,,;, = (1 — d/2) (see Fig. 15).
If, however, c¢; # 1, then K,(0) < 1 (see Eq. (64)) and K,(w) increases to 1 (not
necessarily monotonically) when frequency grows (see right panel in Fig. 16).
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Fig. 13 (color online) The gain coefficient in the flows with decreasing wave velocity c(x) for the
different frequencies and ending values of ¢ shown by numbers next to the curves in the upper left
panel

The positive energy wave is amplified after passing into the supercritical domain

X > xp due to the interaction with the NEW [14], therefore, the transmission ratio

K3 > 1. For the calculations, we choose c¢(x) and U (x) in such that the scaling (60)

is satisfied and the finite limits exist when x — +o00. In particular, if c(x) = 1, than
we take

U(x) =1+ Dtanh(x/D), x; =0. (74)

The results of calculations for D = 1 (U,,,uxy = 2) and D = 3 (U, = 4) are shown
in Fig. 17.
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Fig. 14 (color online) The transmission ratio K of the inner domain as a function of frequency w
for different values of ¢ > 1 (left panel) and ¢ < 1 (right panel). Numbers next to curves show
the values of ¢;

U,a?

1

0.5

Fig. 15 (color online) Graphics of the flow as per Eq. (73) with ¢; = 1. Left panel: the flow velocity
U (x) = II(x) as the function of x. Right panel: the frequency dependence of the transmission ratio
K5 (w). Lines 1 are plotted for d = 1 with U,,,;, = 0.5; lines 2—for d = 1.5 with U,,;,, = 0.25

In the more interesting case when c(x) and U (x) grow simultaneously with x
(and U(x) > c(x) everywhere), the calculations were carried out for current and
wave speed in the following forms, respectively:

X

U(x) =1+ Ay tanh (D > , c(x) =1+ A.tanh (%) , (75)

U c
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U, a?
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Fig. 16 (color online) Graphics of the flow as per Eq. (73) with ¢; # 1. Left panel: the flow velocity
U (x) (solid lines) and I'T(x) (dashed lines) as functions of x. Right panel: the frequency dependence
of the transmission ratio K> (w). Lines 1 are plotted for c; = 0.5,d = 1; lines 2—forc; = 2,d = 1;
lines 3—forc; =2,d =1.5
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Fig. 17 (color online) The flow (74), c(x) = 1. Left panel: flow velocity U = a? versus x. Right
panel: frequency dependence of the transmission ratio K3. 1—D =1 (Upax =2), 2—D =3
(Umax = 4). For comparison, the dashed line presents curve 2 plotted in the right panel of Fig. 18

with the various combinations of parameters satisfying the condition:

Ay A,

Dy D,

)

which follows from the scaling (60). Figure 18 presents the results of calculations
for the three cases:
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Fig. 18 (color online) Left panel: U (x) (solid lines), a®(x) (dashes), and ¢(x) (dash-dotted lines)
graphs. Right panel: frequency dependence of the transmission ratio K3. The numbers next to
curves indicate the number of a Case in Eq. (76)

4
7DU:_1 AC:

5
Casel: Ay = — 0.5, D, =2,
3 3
. ! 4 (76)
Case2: Ay =2, Dy =1.6, Ac=§, Dc=§,
Case3: Ay =1, Dy =08, A, =1, D, =4.

As one can see from Fig. 18, the dependence K3(w) in the Case 3 notably devi-
ates from the dependences K3(w) in the Cases 1 and 2. There are two distinction
peculiarities in the Case 3. Firstly, the characteristic width of variation of the wave
speed, D., significantly exceeds (5 times) that of current variation Dy . Secondly,
U (+00) = c(+00), that is there is a third critical point at infinity. The former dis-
tinction feature seems, however, not very important since even if c(x) =1, K3
depends on w in nearly the same way as in Cases 1 and 2 (cf. line 2 and dashed line
in the right panel of Fig. 17). On the contrary, the presence of an additional (albeit
infinitely remote) critical point has a profound impact on the behavior of function
r(x) which determines the progress of the wave transformation.

Figure 19 demonstrates the absolute value and argument of r(x) for Case 2 and
Case 3; it allows us to compare the wave propagation in these two cases with greater
detail. It is clearly seen that in the Case 3 the oscillations of r(x) begin to develop
noticeably at a much smaller distance from the critical point x, = 0, and this results
in lesser values and more pronounced oscillatory character of |r(x)|. Moreover,
when x increases, the oscillation period in the Case 3 decreases whereas in Case 2 it
approaches a constant value.
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Case 2

Fig. 19 (color online) The absolute value and argument of the function r(x) for the Case 2 (top)
and Case 3 (bottom). Different numbered curves pertain to different frequencies: 1—w =0, 2—
w=05 3—w=1,4—w=2, 5w=>5

6.3 Some Remarks

We have carried out the analysis of simple harmonic wave propagation in quite
general stationary flows inhomogeneous in the streamwise direction, with emphasis
on currents with critical points separating sub- and supercritical flow regimes. Note
that in contrast to Ref. [26] where the propagation of dispersive gravity-capillary
waves was studied, in our paper devoted to non-dispersive purely gravity long waves,
each of the currents is traversable only in the co-current direction, from left to right
in the considered geometry. The reason is that the counter-current waves can not
transit through critical points (see Sect. 3.2).
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To describe the wave propagation, we have derived the wave equation (9) and
reduced it (for a single harmonic) to the set of two first-order ODEs (17) and (18).
Solutions to this set of equations have been investigated analytically to describe the
transition through the critical points and to determine the conditions of the opti-
mal wave amplification. Our analytical study together with numerical calculations
provides results that can be of interest to the interpretation of wave amplification
in natural estuaries (rivers, canals, and straits) or laboratory tanks. In addition, this
should shed light on the intriguing (and somewhat exotic) problem of wave propa-
gation through wormbholes if they exist in nature indeed.

The performed analysis has highlighted a very significant influence of the “geo-
metric factor” a(x) on the wave propagation. So, in the sub-super-subcritical flows,
the reflection coefficient in the subcritical regions depends mainly on the behavior
of function a(x) rather than on the Mach number at the infinity, My, = U/c . In
addition to that, amplification of positive energy waves in the supercritical region is
also determined mainly by the difference in the values of a(x) at the ending points
of the ‘active’ (supercritical) region. With regard to this, we recall that at low fre-
quencies, the gain does not depend on which of the speeds is greater, ¢; or ¢, but is
determined entirely by their ratio.

In a super-sub-supercritical flow, the a (x) behavior has a profound impact on the
wave propagation as well. However, the frequency dependence of the transmission
ratio K3 of its final (supercritical) domain is highly sensitive to that does the Mach
number tends to unity at the infinity or not (see Fig. 18).

Finally, with the proviso that a(x) = const the waves propagate without reflection
and transformation regardless of the frequency. In what follows we shall derive
and examine other conditions for a(x) which provide the reflectionless (RL) wave
propagation as well.

7 Surface Wave Propagation Without Reflection:
Equations for a(x)

To find all conditions of RL propagation for surface waves of arbitrary frequency on
inhomogeneous flows (see Fig. 1), let us return to Egs. (7) and eliminate ¢ (x, 7). We
arrive at the equation

2+U3+2U’ 8—¢+U8— _ewd (Lo (77)
or " ox o Tox) T Tax\wax )

which is complementary to Eq. (9). Then, we represent

plx, 1) = A1(0)P(x, 1) and ¢(x, 1) = A2(X)x(x, 1),

substitute into Egs. (9) and (77), and obtain
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& 2_ 2 Y 9% A} oY
at2+(U )—+2U88 +2U(A—1——) 5
(78)
+[2(U2—c) +(U2+c) Uzci|a—w+T1(x)1/}=O,
A Ox
where

Al T (x) = (U? — )A! + A [(U2 +A(InU) —20%(In c)’]

and

0*x 0*x 9*x A, Ox

NEEANIS § EANSA DA} 2({U—=+U

g U= G Gt < o >8t

(79)
Al U’ 0
|:2(U2 —c?) A—i - T +30U" — 2cc’:| a—i( + T(x)x =0,
where

Ar(0) To(x) = (U2 — ) A + [3UU’ —A(nUy — 2cc’]A’2.
One can see (for more details, see [10, 11]) that T} (x) = 0 if

% . Bc2(x)U (x)

dr () - Ux)’ b= const o
and 7>(x) = 0 when
d4, — ¢ ,  C =const. (81)
dx U(x)[UZ(x) - c2(x)]

As the next step, we consider the model equation

<88 +w1(x) +G(x)> (8 + wa(x) —) F(x,t) =0, (82)

where w; (x), wp(x), and G(x) are as yet undefined functions. One of its solutions
describes a traveling wave,

]—"(x,t):]-](t—/ dx )
wa(x)

where F1(X) is an arbitrary function. Expansion of Eq. (82) leads to
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32]:+ 0*F ( N )82}"+G8}"+[ G ]af 0
wiw w; +w — wiw wy |— = 0.
oz T ox2 P Brox or 2 *1ox )
Let us compare this equation with Eq. (78) provided that 7;(x) = 0 and Eq. (80)
holds. The equations are identical if

Al /
wiwy = U2—C U)1+U)2=2U, G:2U(A—l_%)s (84)
1

and )

Al / U
wlu/z—i—ng:Z(Uz—cz)A—l—2UZC——I—<U2+C2>U. (85)
1

c

The first two Egs. (84) show thateither w; = U — candw, = U + c,orw; = U + ¢
and w, = U — c. In both these cases Eq. (85) provides (cf. with Eq. (14)) A;(x) =

[c(x) U(x)] v = a(x), and Eq. (80) takes the form

da _ Bc(x)U (x)

dx  2(x) = U2(x) (86)

Similar calculations demonstrate that Eq. (83) is identical to Eq. (79) with T»(x)
= 0 for the same (w;, w,) pairs (i.e.,forw; =U —c,w, =U +corw; =U +¢c,
wy, =U —c)and Ay (x) = a~ ' (x). Substituting the last relation into Eq. (81) yields

da Cc(x)
dx — 2(x) — U(x) 87)

As a result, we see that Eq. (78) with 77 = 0 can be presented in two equivalent

forms: 9 U'(x) '(x)
X Cc (X
{at [U(x)—c(x>] o T U )(U(x) - c(x)>}
0
) (31‘ (v +ew] 5 )w_

9 B U'x) )
{& [U(x>+c(x>] 5 TV )(U(x) B c(x)>}

o B
x <E n [U(x) _ c(x)]a—x> W =0.

The general solution to this equation is a superposition of two waves of arbitrary
form which propagate along the characteristics (8),

(88)
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dx dx
vwn=u(i- [t ) o (- [ oo )

The independent propagation of each of these waves in an inhomogeneous medium
is provided by Eq. (86) specifying the necessary relation between c(x) and U (x).
Similarly, when T, = 0, x(x, t) obeys Eq. (88) as well and can be represented as a
sum of two waves of arbitrary form,

- ae) ol )
D =X U +c)) 2 Ux) —c))’

but in this case c¢(x) and U (x) must be related by Eq. (87).
Thus, we have derived Eqs. (86) and (87) which relate the flow and wave velocities
U (x) and c¢(x) in such a manner that the fulfillment of either of the two ensures
1/2
RL wave propagation. When corresponding a(x) = [c(x)U (x)] is found, the

perturbed flow velocity u and free surface elevation 7 in the wave are expressed in
terms of v and y as follows (see Egs. (1), (3), (5), and (6)):

0 0
~=a(X)a—¢+a’(x)¢, n=—ﬂ[ d} U(x )—w+a(x) U(x )¢]
X ot a(x)
(89)
and U@ oy d)
~ X _X _ X
T T a0 [ v a(x) U(x)x]’
(90)
B 1 [8_)( B a'(x) ]
n= W(x)a(x) a(x) Xl

Equations (86) and (87) are very similar, but the properties of the RL velocity
profiles that satisfy them notably differ. Only when 5 = C = 0, both equations lead
to the already known relation a(x) = const, or

c(x)U(x) =TI = const > 0. (C2Y)]

An example of the flow belonging to this class of RL flows (let’s call it class A) is
shown in Fig. 3c. Note that one may interchange c(x) and U (x) profiles in this figure
to obtain the other flow of this class. In view of the flux conservation equation (1),
the velocity and width of an A-class flow are related to its depth by

U(x) H'/?(x) = const and W(x) H'?(x) = const, (92)

so that U(x)/ W (x) = const, that is, the wider the channel, the higher the fluid
velocity.
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In studies of RL propagation of long surface waves in channels without current,
the second relation (92) plays an important role (see, for example, [12, 16, 24, 25]). It
distinguishes the so-called self-consistent channels—the only class of channels with
regular W(x) and H (x) profiles, in which waves propagate without reflection along
the entire x-axis. Class A contains RL flows in self-consistent channels with currents,
and these flows are also regular. One can set the profile of one of the velocities (for
example, c(x)) on the entire x-axis in the form of an arbitrary continuous positive
function and, using Eq. (91), obtain a family of corresponding profiles for another
velocity (U (x)) “labelled” by the parameter I1 (as an example, see Fig. 3c).

The class of RL flows controlled by Eq. (86) with B # 0 (the B-class of flows)
has been studied in detail in [10] and is described in the next section. And Sect. 9 is
devoted to the third class of RL flows controlled by equation Eq. (87) with C # 0
(the C-class of flows) which was examined in [11].

8 B-class RL Flows

8.1 General Properties and Some Examples

Let us note first that Eq. (86) is invariant with respect to the simultaneous replacement
x — —x and B — —B. For this reason, we introduce a variable £ = B x which
remains the same under such a transformation and rewrite Eq. (86) in two forms:

da c2(£)U(§) dU de 265/2(£)U3/2(§)
da_ COUO g oW 4y 2 27QUTO)
- co-re "M Wet'O% T dgm-ve - P

In addition, Egs. (86) and (93) are invariant with respect to the scaling transformation
Ux) — Ux)/cy, c(x) — c(x)/cog, where ¢y = const. In what follows, we
will choose the appropriate scale cyp. Note also that these equations possess the
translational symmetry which means that if ¢(§) and U (&) satisfy Eq. (93), then
c(&+b) and U (& + b), where b is an arbitrary constant, satisfy this equation too.
And finally, it is easily seen that a(£) monotonically increases in subcritical (U < ¢)
flows and decreases in supercritical ones.

The right-hand side of Eq. (93) is singular for U =¢, U =0, ¢ =0, as well
as for unbounded growth of U (§) or c¢(&). To solve the question of whether these
singularities are attainable at a finite £, we rewrite the first Eq. (93) in the form

1 da _ SPOUE

- = 7 94
a(§) d§¢ (O - U© o9

It is easy to see that if c(&) is bounded everywhere, that is 0 < c(§) < cy < o0,
then the singularities U = 0 and U = oo are attainable only asymptotically, when
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|£] — oo. The same is true for ¢ = 0 and ¢ = oo if U(§) is bounded everywhere,
and only U = ¢ can be reached at a finite £, in critical point(s).

In distinction to regular critical points in A-class flows (see Sect. 3), the critical
points in B-class flows are singular. At such a point, both velocities, c(¢) and U (§),
are finite and nonzero, but their derivatives can be singular. Let us examine the neigh-
borhood of a critical point (say, £ = 0) where U = c. Assume that the normalization
constant cg is chosen such that U (0) = ¢(0) = 1. Let us set

c@ =145, U@ =1+0v(),

where s(§) — 0 and v(§) — 0 when & — 0. Substituting into the second Eq. (93)
yields

(s—v)(s/—kv') =142s+v+ 0> +v?),

where prime stands for the derivative with respect to £. From here, we see that (s — v)
and (s + v) are power-type functions of &:

(s—v)~&h,  (s+uv)~&h, (95)

where A\; + Ay =1, A2 > 0.

Since ¢ = 0 is a branching point and s(£) and v(&) are real functions, the cases
& > 0 and ¢ < 0 should be considered separately.

Case A. If \; = \, = 1/2, then we readily find for £ > 0:

c© =1+s:"7400©), UE=1+v:£"7+0(), (96)

where 52 = v +2.
For £ < 0, we find:

c©) =1+s_(=O"*4+0©), UE®=1+v_(="*+0(), 97)

where s> = v? — 2. Here s+ and v are constants which can have any sign, depend-
ing on the branch of the solution (subcritical or supercritical). Moreover, it is not
necessary that both velocities have singularities at £ = 0. In particular, in the domain
& > 0 the flow velocity can be regular (v = 0), while the wave speed can be regular
(s_ = 0) in the domain where £ <0 .

If \; # A, we can present s(x) and u(x) as:

S(€) = Saxl€™ + spel€™ 4+ .00, 0(E) = vaslEM + vpal€? + ..,

where the indices plus (minus) pertain to the regions £ > 0 (¢ < 0).

Case B.If 0 < \; < )\, then from the condition (s + v) ~ |£|*, we obtain:

Sat F Ve =0, 2X8,4(Sp+ + vpt) = 1. (98)
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Case C. When, conversely, A\ > A\, > 0, from the condition (s — v) ~ |£ M, we
obtain:
Sht = Upt, 2208+ (Sqx — Vax) = 1. (99)

Emphasize that in any case at least one of the velocities is singular at the critical
point ¢ = 0. Moreover, both flows, subcritical and supercritical, do exist on the same
semiaxis of &, positive or negative. Since the flow velocities at the critical point do
not vanish, the flow exists on the complementary part of {-axis as well, but ceases to
be reflectionless. It would be very interesting to know what happens when the wave
passes through a critical point,—its reflection, or (most likely, partial) absorption, or
a combination of these,—but this issue requires a separate study.

For further consideration, it is convenient to introduce functions determined by
the ratio of the velocities U (§) and c(€) in each point &,

U(§>]‘/2 _ [U%)

Fe= [_ gH (©)

1/4 1
G } and f(§) = ——= (100)

F(©'

For the sake of brevity, we will call function F (&) the Froude number, and function
(&) the reciprocal Froude number. Note that M = F?, where M is the Mach
number introduced in Sect.4.1. In terms of F" and f, Eq. (93) can be written in two
equivalent forms:

dF _ FA9  F( de©
& T T-F©  c© d
df £ | F© de©

df _ , 102
i€ “T-r© Teo ae (102)

where c¢(€) is assumed to be given. As a useful illustration, let us consider two
examples.

(101)

8.1.1 Currents of a Constant Depth, H (x) = const

In this case, the wave velocity is also constant, c(§) = cp. Setting ¢y = 1 and inte-
grating Eq. (101), we arrive at the algebraic equation

F*4+3(E—-&)F+3=0. (103)
When ¢ < &, = & — 4/3, ithas two positive roots, F_(§) < 1 and F(§) > 1 which

merge in one double root F = 1 at £ — &,.. These solutions do exist only for £ < &,
and are singular,
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4 ~

F

Fig. 20 (color online) Solutions to Eq. (103) for different values of £ in the subcritical (F' < 1)
and supercritical (F > 1) regimes

12
o, Ui(g):Fi(g):lj:[Z(f*—f)] ..

(104)
where plus/minus signs correspond to super/subcritical flow. And for £ — —o0
the asymptotic solutions originated for each root are (we are recalling that a(§) =

c(©) F()):

&—E\'"? & —¢
2)+12

Fi(£)=1i<

a(©) =F- O~ (O™, ar©=F©)~ (39",

105
U-(§) = F2(O) = (=72, Uy (&) = F1(§) ~ (=3 e
Solutions of Eq. (103) are shown in Fig. 20.
8.1.2 Flows with the Exponential Variation of Wave Speed c(&)
Let c¢(¢) = C exp(ué). Then Eq. (101) takes the form:
dF F?
@ =T~ uF. (106)

This equation, in contrast to the one considered above, has a null-isocline (NI) F (§) =
Fy = const on which its right-hand side vanishes. The value of Fj is a positive root
of the equation
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F
Fry22—1=0. (107)
W

It is evident that for ;o > 0, the value of Fy < 1, i.e. corresponds to the subcritical
domain, whereas for ;1 < 0, the value of F{ > 1, which corresponds to the supercrit-
ical domain. It can be shown (for more details, see [10]) that the phase trajectories
of Eq. (106) are moving apart from NI as ¢ increases, see Fig.21.

As a result, the upper half-plane (¢, F) is split into three strips (separated from
each other by the straight lines F = Fy and F = 1), in which the behavior of solu-
tions to Eq. (106) is significantly different. If 4 > 0, then 0 < Fy < 1, and solutions
to equation (106) are such as shown in Fig.21a. In the lower strip, 0 < F < Fy, any
solution F (&) decreases monotonically approaching Fy from below when & — —oo
and zero from the top when £ — 400, according to F ~ F,, exp(—u&). Respec-
tively, in the same limit we have a(§) — const and

W(E ~UE) ~FE ~H ' ~c ). (108)

In the middle strip, Fy < F < 1, any solution F (£) grows monotonically from F
when £ - —oo to F = 1 at some &,. Near this critical point the asymptotic solution

1S
. — 1/2 1—8
F(§)=1—(£2§> - 12“(5*—§)+... (109)

In the upper strip any solution tends to infinity as F =~ F,,_ exp(—u&) when
& — —oo and decreases with ¢ approaching unity, when & tends to some & as per
the formula:

& =€\ _1-8p
F@zu(—yﬂ - () +-. (110)

If © < 0, then Fy > 1. Solutions to Eq. (106) are shown in Fig.21b. In the lower
strip,0 < F' < 1, all solutions F (£) monotonically increase from F & Fj;_ exp(—u&)
when £ — —oo attaining F = 1 at some finite £ as per dependence similar to
described by Eq. (109). In the middle strip, 1 < F < Fp, solutions F () monotoni-
cally decrease from Fy when ¢ — —oo to F' = 1 achieving this value at some finite &
as per dependence similar to (110). In the upper strip, F > Fy, solutions F'(£) mono-
tonically increase from Fy when & — —o0,to F & Fy;4 exp(—p&) when & — +00;
the dependences similar to (108) are held in this limit.

It should be noted that in the lower strip for iz > 0 and in the upper strip for ;1 < 0
solutions are global, i.e., they are defined on the entire £-axis, whereas in other strips,
solutions are defined only to the left of some finite point &, which is different for
each particular realization.
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Fig.21 (color online) Solutions of Eq. (106) with a positive p = 0.4 (Fy = 0.3907) and b negative
= —0.4 (Fp = 1.4705). Blue lines correspond to global solutions
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8.2 Global Solutions and Conditions of Their Existence

As follows from the analysis presented above for the specific flow models, in the
majority of cases solutions for the RL current profile are valid only on the limited
spatial interval, because the profiles of the flow depth, width, or velocity become
either singular in certain points, or diverge at the infinity. Therefore, one of the
important questions is whether it is possible to find such conditions when solutions
for the profiles are globally defined on the entire x-axis. Such a problem was solved
in the case when there is no current [24]. We provide the solution for the case when
the current is taken into account.

Let us recall that in the case of the exponential variation of the wave speed c(§)
considered above, horizontal NI (F = Fy = const) is the flow trajectory in itself and
serves as the separatrix separating the global trajectories from those that are defined
on the bounded &-interval. Under a non-exponential variation of ¢(§), NI F = Fy (),
on which the right-hand side of Eq. (101) vanishes, is still described by Eq. (107)
but now p(€) = dlnc(§)/d€ # const. In other words, NI is not horizontal, not a
trajectory, and not a separatrix because it does not obey Eq. (101) and is intersected
on the (¢, F)-plane by some trajectories of Eq. (101). Nevertheless, it is necessary
for the existence of global solutions.

In the subcritical domain (F < 1) NI exists if ¢(£) increases (u(&) > 0) whereas
in the supercritical domain (F > 1) decreasing of c¢(£) (u(§) < 0) is required. Let
us consider first subcritical flows. If ¢(£) grows so fast that ;(£) increases monotoni-
cally, with or without limit (see lines 2 and 1 in Fig. 22a respectively). NI F = Fy(§)
also increases monotonically starting at & = &, (possibly, at & = —o0) to some
Fy <1 when & — 400 (see line 1 in Fig. 23a).Trajectories representing solutions
of Eq. (101) either intersect NI and are global, or lie entirely above it and are bounded
from the right by some £ = &,. (Note that NI has a positive derivative, whereas tra-
jectories below it have negative slopes. Therefore, all such trajectories intersect NI
when ¢ decreases.)

If function c(§) grows slower than exponentially, then p(£) has a maximum (pos-
sibly, even more than one, but it does not matter, in principle) and vanishes when
& — +oo (see Fig.22b). NI F = Fy(&) has qualitatively the same shape (see line
1 in Fig.23b). All trajectories lying above or crossing its right (descending) slope
(for example, like line 2 in Fig.23b) are, obviously, bounded from the right by some
& = &p,. The global trajectories such as shown by line 3 in Fig.23b must lie below
Fy (&) for sufficiently large €.

Consider the trajectory passing through the point (£;, F}) inthe subcritical domain
(0 < F| < 1). Integrating Eq. (94) with the use of the mean-value theorem provides

¢ ¢

L_ 1 _/ dy — 1 — 1 /d_y (111)
a) a() cI — F*)]  c&) F 1—F4(£u)5 cy)’

1
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Fig. 22 (color online) The qualitative dependence of () for the flows with a fast and b slow
growth of ¢(&)

where &, is between &; and &. It turns out that in the subcritical domain both the
existence of global solutions and asymptotic (as ¢ — =£00) behavior of F'(£) depend
on the convergence of integrals

:‘:oody
Ipi(§)=i/— (112)
/ c(y)

on the upper limit. Indeed, let ;(¢) < 1 and decreases monotonically for & > &;.
Then, according to Eq. (107), Fy(&) =~ u(§) and decreases as well. For F; < Fy(&)),
the trajectory lies below NI on some interval containing &;. If I (&) diverges, the
right-hand side of Eq. (111) vanishes at some finite £ and F'(£) increasesupto F' = 1,
and therefore the trajectory intersects NI. If, however, c(§) grows rapidly enough
(faster than &) so that Iy (&) converges, and if F| is sufficiently small, the right-hand
side of Eq. (111) tends to a finite limiting value alji > 0as{ — +o0. Thena(§) =
c(§)F (&) — a4 while c(§) Fo(&) ~ u(&)c(€) = ¢'(§) — 400, and the trajectory is
global because it lies below NI when £ > &;. Thus, the convergence of the integral
Ir4 (&) for any finite € is necessary and sufficient for the existence of global subcritical
RL flows of class B. Figure 24 demonstrates a qualitative variation of the global flow
parameters along the channel.

In the supercritical domain, NI exists if ;1(§) < 0, i.e., if the depth H (£) and wave
speed c(§) decrease with £. In this domain, it is convenient to use the reciprocal
Froude number f (&) = 1/F(&);thena(&) = c(&)/f(£)). In this case, all the reason-
ing presented above remains almost the same. As a result, it is sufficient to replace
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n §

Fig.23 (coloronline) Solutions of Eq. (101) for a fast and b slow growth of ¢(§). Line 1 corresponds
to NI in both frames. Lines 2 in frame a illustrate examples of global trajectories; other non-
numbered blue lines illustrate bounded solutions that exist for £ < &, with the individual value
of &, for each line. In frame b non-numbered blue lines depict bounded trajectories, line 2 is an
£-bounded trajectory partially passing below NI, and line 3 illustrates a global solution
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Fig. 24 (color online) Typical variation of the subcritical global flow parameters along the channel.
All variables are normalized to some reference values and presented in dimensionless form

wby |u| (or by —p) in Fig. 22 and F by f in Fig.23 in order to have an idea of the
solutions of Eq. (102).
In this domain, NI is described by the algebraic equation

O
6]

fH© + 1=0, (113)
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and global solutions exist if the integral /£, (), where

+o0
Ip(§) ==+ /dyc3(y), (114)
3

converges for any finite £, that is, if ¢(£) decreases with ¢ faster than £~1/3. Indeed,
let us consider the trajectory passing through the point (&, f>) and rewrite Eq. (94)
in terms of f(&):

1 da© _ O _ *(©

a€) d& 1= fHO T BOIll - f4O)]

Integrating it with the use of the mean-value theorem provides

¢ ¢
dyc’(y) (&) 3
3 3 _3/ — /d 3(y), 115
a’(§) = a’(&) =y - 2 1_f4(§h)5 yer(y),  (115)

>

where &, is between &, and &. Suppose that for £ > & |u(€)] < 1 and decreases
monotonically. Then Eq. (113) yields fo(€) ~ [u(€)|"? < 1.If I74(&) converges,
the right-hand side of Eq. (115) tends to a finite limiting value a3 . as§ — +oo,and
this value is positive for sufficiently small f>. Therefore, f(£) ~ ¢*(§) /a3, < &'
on the trajectory while f3(€) ~ |u(€)| = |¢/(€)]/c(€) Z €. Hence, f(€) < fo(€)
and the trajectory is global.

In closing, it should be noted that the conditions for the existence of global sub-
and supercritical RL flows are incompatible, therefore, depending on the behavior
of ¢(&), there may be either one or the other (or there may not be global flows at all,
see Fig. 20).

8.3 Asymptotic Behavior When £ — —o0

Consider the trajectory passing through the point (¢;, F}) and use Eq. (111) for
& < &. Its right-hand side is positive and grows with a decrease in &. If the integral
Ir_ (&) converges (see Eq. (112)), a(§) — ar_ = const > 0 and relations (108) are
fulfilled.

If, conversely, Ir_(&;) diverges, let us suppose first that

3
! d
cO__2 a*‘(§)~/—c(§) ~ (=917,

~ (=P — _
c©~ O, p<l, = W= © ;
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The solution to Eq. (101) is F(§) = (p — 1)/&. For £ — —o0, it has a qualitatively
similar behavior at any p < 1 including p < 0 when p(§) becomes positive and NI
Fo(€) = pu(€) = —p/€& emerges. On the contrary, the flow velocity and other flow
parameters do significantly depend on p:

—3p 2p p—1
L HEO~ (=€) a@~ (=€)
(116)
In particular, the channel width is constant at p = 2/3, expands for p < 2/3, and
contracts when p > 2/3.
To change qualitatively the F(£) behavior, p(€) should be greater. For example,
if 11(€) = b(—€)” with —1 < 3 < 0, then NI F = Fy(€) ~ u(€), and

1 dF s B
F = 4+ ap—ef L
© = 1O + g g¢ ¥P-9" ¢

approaches NI when £ — —o0. And in the limiting case 5 — 0 we obtain Fy(§) =
const and the trajectories F' = F(£) shown in Fig.21a.
Similarly, for the supercritical trajectory going through the point (&, f>) into the

& < & domain, Eq. (115) shows that if the integral /;_(&,) converges (see Eq. (114))
then a(§) — a>— = const > 0, and relations (108) are fulfilled. If, conversely, it

diverges and (§) = g /& with ¢ > —%, then we obtain f(§) = [—(61 + %)/f]_l/3
and

ve~ ()" we~ (-

—Bq+2/3)

ve~ (=€) weo~(-)

H(§) ~ (—5)2(]’ a(€) ~ (_§>q+1/3. (117)

Finally, when | (§)] is greater, f(§) approaches NI f = fy(&) as & — —oo.

9 C(C-class RL Flows

9.1 The Distinctive Features of C-Class Flows

The similarities and differences in the behavior of C-class and B-class flows are
determined by the similarities and differences between Eqs. (86) and (87). Equation
(86) is homogeneous in the velocities ¢ and U, and the constant B has the dimen-
sion of inverse length, whereas Eq. (87) does not have this property, and C has the
dimension of acceleration. Therefore, in the C-class the dimensionless variables can
be introduced only through the scaling

E=Cx/c}, E=c/co, U=UJcy, a=alc. (118)
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Omitting the tildes, we rewrite Eq. (87) in two equivalent forms:

da c(©) and dcU) _22@QU(©
g ) - U(©) ¢ @ -V
The right-hand side of the second Eq. (119) is singular for U = ¢, U =0,c =0

as well as for the unbounded growth of U (§) or c¢(§). To understand whether these
singularities are attainable at a finite &, we rewrite the first Eq. (119) in the form

(119)

d )
— Ina(¢) = .
s vr©fe© -v©]

(120)

It is easy to see that, if c(£) is bounded everywhere, i.e., 0 < c(§) < 0o, then not
only can U = ¢ be reached at a finite &, as in the B-class of flows, but also U = 0
can be reached at some other finite point &, whereas U = oo can be attained only
asymptotically, when £ — —oo. Similarly, ¢ = 0 and ¢ = oo are attainable only
asymptotically.

It is easily shown that in the neighborhood of the critical point U = c the class-
C flows have the same behavior as the B-class ones. But the singularity U = 0 at
some finite & = &y is the distinctive property of the C class. Near this point, we set
() =cy + (€ —&y) + ... and obtain using Eq. (119)

d 1z c O 12 £-¢&u _i _
d_E(CU> —mwc - (CU) = v |:1 2CU (g éU)+:|,

so that when £ — &y + 0

(€ —&u)?
3 (121)

2 /
U© = 1——C”<§—5U>+...]
cy Cy
F) ~ (€ —¢&y), and W) ~ (£ —&y)2

For further analysis, it is convenient to rewrite Eq. (119) in terms of the Froude
numbers F (&) and f (&) (see Eq. (100)):

2(5)—5 T=Fie ~ MOFQ©. (122)
) dé L 6;?( 5+ MO©. (123)
.
O % TG~ FooT (12
where
ME© =c© S = G (C f)) =7 dﬁf) (125)
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is determined by the variation of the flow depth. It is convenient to present solutions
of these equations as a set of trajectories (the phase portrait) on the half-plane (¢, F)
or (&, f) (recall that functions F and f are positive).

As a useful illustration, consider flows of constant depth where the wave speed is
also constant, c(§) = cg. Setting cp = 1 and integrating Eq. (122), we arrive at the
algebraic equation

F () —5F() +5E—-¢&) =0, & = const.

If & <& =& +4/5, it has two positive roots F (&) which merge into one double
root F = 1 at £ = &,. In the vicinity of the point &, these solutions are

Fo©) =1+ B(a —5)1/2} ~(e-g)+ . (126)

The bigger root, .y > 1, grows indefinitely when ¢ decreases from &, up to minus
infinity, whereas the smaller root, F_ < 1, changes its sign at £ = &

1
F—(€)=§—§o+§(§—§o)5+..., (127)

so that, for £ < & there is only a single positive root.

Thus, in C-class, subcritical flows of constant depth (as opposed to those of B-
class) remain RL only within a finite interval of &, & < & < &,, and supercritical
flows are RL on the semi-axis ¢ < &, (see Fig.25 and compare it with Fig.20). Let
us find the conditions under which these restrictions are absent for some part of the
trajectories.

9.2 Global Trajectories and Asymptotic Behavior

For a subcritical trajectory to be unbounded in &, i.e. to be global, it must reach neither
F = 1 when ¢ increases, nor F = 0 when £ decreases. Thus, the task is split into two
parts. Let us find first the conditions under which a trajectory is not bounded from
the right. As in the B-class flows, reaching the value F = 1 can only be prevented
by the presence of NI separating regions with opposite signs of the right-hand side
of Eq. (122). NI is described by the equation

G(Fy) = Fj (&) — Fo(§) = —M (), (128)

which has two positive roots, 0 < Fy_(§) < Fo, (§) < 1if (see Fig.26a)

55/4
ME > M. = o~ 1.8692. (129)
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Fig. 25 (color online) Phase portrait of C-class flows of constant depth in subcritical (F < 1) and

supercritical (F > 1) domains

(a) (b)

G

2

Fig.26 (color online) Roots of equations for null isoclines: a Eq. (128): dashed lines | —M = 1.25,
2—M = M. and 3—M = 3; b Eq. (136): the left-hand side (curve 1) and the right-hand side for

M = —0.5 (curve 2), M = —1 (curve 3),and M = —1.6 (curve 4)
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Fig. 27 (color online) The subcritical part of the phase portrait of Eq. (128) for My = 3. a NI
(curve 1) and surrounding trajectories, bounded (curves 2—4) and unbounded (curves 5-8) on the
right; trajectories 7 and 8 are bounded from the left by the singularity F = 0. b Bounded (curves
2-4 and 8) and global (curves 5-7) trajectories in the presence of a NI (curve 1) and with inequality
(135) fulfilled; blue and red dashed lines show the boundaries of the bundle of global trajectories

Thus, in the subcritical region, NI appears only at a sufficiently large depth gradient
as a result of the merger of two complex conjugate roots of Eq. (128). NI has two
branches that cannot extend far to the left. Indeed, if c(§;) = ¢; > Oand M (&) > M.
for £ < & then, with decreasing &, we will inevitably arrive at the singularity ¢ = 0
(H = 0) for a finite .

Let us assume that M (§) = M, at £ = £, and grows monotonically for £ > &.
Then NI branches, F = Fy1(£), start in the point £ = &, and each monotonically
tends to its own limit (see Fig.27). The slope of the trajectories is negative between
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the branches and positive outside. Therefore, trajectories passing above Fy4 (&) end
up reaching F = 1 at finite £. But any trajectory that crosses any branch remains
between them up to ¢ = 400, i.e. is not bounded on the right, as well as all trajectories
lying below it (see Fig.27a).

Monotonic growth of M (£) does not require so fast an increase in depth. In the
borderline case, when M (&) tends to the finite limit My > M, when £ — 400,

H(E) ~Mo§, FE) — Foo >0, U@~ F;c€)~E7 WE~e?,
(130)
that is, the flow and wave velocities grow in the same way, and the channel is nar-
rowed.
If M (€) grows with no limit then Fy_ (&) ~ M~'(¢) — 0. Consider the trajectory
passing through the point (£3, F3) into the £ > &3 region and denote ¢3 = c¢(&3) and
a3 = c3F5. From Eq. (123) we find

¢ ¢
dy 1 / dy
— [ — _— VRN 131
a(§) = as +£/ cll—Fiyy] @ Tz F4(fd)£ c(y) (b

where &, is between &3 and &, and see that the integral 17, (€) (see Eq. (112)) again
plays a crucial role. If it converges, a(§) tends to a3, > 0 as £ — 400, and relations
(108) are fulfilled. If c¢(&) grows more slowly than &, e.g., £ with % < p <1,the
integral diverges and

a@~¢&"r FO~ET U@ ~ET W@~ HE© ~ &
(132)
At p = 1/2 these relations turn to Eq. (130), and when p < 1/2, NI disappears and
all trajectories become bounded on the right.

Consider now the continuation of the trajectory passing through the point (3, F3)
to the left, into the region £ < &3. For a(&) not to vanish (together with F(£)) at some
finite &, the integral Ir_(&3) must converge and provide a positive limiting value
as_ for a(¢) when £ — —oo0. Since M (§) < 0 and F (&) grows monotonically, the
following inequalities hold:

Ir_(&3)
1—Fj

az — <az- <a3— Ir_(&).

For an unlimited continuation of the trajectory to the left, it is necessary that
az = c3F3 > Ip_(&§). (133)
Because max[F(l - F4)] = M "at F = F, = 5"'/4, we obtain the condition

3= Mo Ir- (&), (134)
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sufficient for the trajectory passing through the point (£3, F.) to continue with no limit
to the left as well. Together with this trajectory, all the above-lying (with F3 > F_)
and some part of the below-lying (with F3 < F_) trajectories also continue with no
limit to the left. The condition (133) cuts off low-lying trajectories which inevitably
reach F = 0 at some finite £ (curves 7 and 8 in Fig. 27a and curve 8 in Fig. 27b).
Thus, we see that, for the existence of global subcritical flows of C class, the
flow depth H (¢) must increase indefinitely both to the left (faster than ¢2), for the
inequality
c(€e) = Mc Ip— (&), (135)

to be hold, and to the right (faster than M_£) to ensure the monotonic growth of M¢)
for £ > &, which is necessary to maintain NI. When these conditions are met, the set
of global trajectories forms a bundle of trajectories strung on the trajectory passing
through the point (&, F.) (in Fig.27b the bundle boundaries are shown by dashed
lines).

Note that for M () > 0 all trajectories in the supercritical part of the phase portrait
(F > 1) are bounded on the right by the singularity F = f = 1, asin Fig.20. Global
supercritical trajectories can arise if, to the right of some point &,, > —oo, function
c(&) decreases monotonically (i.e., M (&) < 0) that leads to the appearance of NI
f = fo(&) described, according to Eq. (123), by the equation

f©=-M@[1- ] (136)

As seen in Fig.26b, for any M < 0 there is one positive root fy < 1 such that

1/5
f© =[-M©@| " +1M©+0aMPH), My <1, (137
fo© =1+ M7© + o), ~M)> 1. (39)

The existence of global solutions and the asymptotic behavior of f(£) depend
on the convergence of integrals (114). For the trajectory passing through the point
(&4, f1), we write Eq. (124) in the form

da 4(©)

€~ 1—f4%9)  d Ol - f49)]

c®)

and integrate it

3 £
S @]5: Sceny s [ S0y :[c@)r_ 5 Sondy. (139
“(O‘[f(g) &) /l—f“(y) i 1—f4<§f>£/c (dy. - (139)

&4
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where £ is between & and £. The trajectory will be global if the integral /¢ (x4)
converges and fy is small enough for positiveness of the limit ai . of the right-hand
side of Eq. (139) when £ — +-00. Then a(§) — a4+, and relations (108) are valid.

For ¢ — —o0, all trajectories are unlimited, but the behavior of function f(¢))
depends on the convergence of the integral I r_ (x4). If it converges, a(§) — as— > 0,
and relations (108) hold. If it diverges and, for example, c(§) ~ (—&)7 with —1/3 <
q < 1/2, then

a(§) ~ (=IPDB - f(&) ~ (=6BDA,
U(E) ~ (_5)(2-"-(1)/5’ W(f) ~ (_g)—(Z-qu)/S‘ (140)
For ¢ > 0, we have M(£) ~ —q(=6)%~! <0, and NI f = f5(&) =~ M'5(€)
appears, to which f (&) tends asymptotically. And when ¢ > 1/2, they both tend
to a finite non-zero limit, so that, in this case, we have for { - —o0

a(@) ~UE) ~c), WE~c©, HE ~O. (141)

Let us describe in more detail the phase portrait of flows with the depth decreasing
in such a manner that M (£) < 0 monotonically increases. Let M (£) has a negative
(finite or infinite) limit M_ when £ — —o0, whereas M (£) goes to zero when £ —
+o00 faster than £7/3 to secure the existence of global trajectories. Then NI £ (&)
decreases monotonically from fo(M_) (see Fig.26b) to zero. Each trajectory lying
above NI or intersecting it is bounded on the right, but there are also global trajectories
that lie entirely below NI and approach it from below as & — —oo (see Fig.28a).

Since M (&) < 0, in the subcritical part of the phase portrait (f > 1, F < 1)
all trajectories are bounded on the right by the singularity F = f = 1. Suppose,
however, that for some &3 condition (134) is satisfied, so that there are trajectories
that are unbounded from the left. From underlying trajectories, bounded on both
sides, they are separated by a separatrix. For greater clarity, this part of the phase
portrait is shown in Fig. 28b in coordinates (&, F).

10 Discussion and Conclusion

Thus, in this chapter, we have studied some specific features of long surface waves
propagating in the inhomogeneous environment, in canals with a variable cross-
section and spatially varying current. In a particular case, the canal can be unbounded
in width.

We have analyzed two classes of related problems. Firstly, we considered the
mutual transformation of co- and counter-current propagating waves and calculated
the transformation coefficients, that is, the reflection and transmission coefficients. It
has been shown that in super-critical flows with U > c, the transmission coefficient
can be greater than unity which means that the transmitted wave can be amplified by
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g

Fig. 28 (color online) Qualitative view of the phase portrait for M (£) < 0: a the supercritical part
(f <1, fo(M-) = 0.8), line 1 is the NI; b the subcritical part (F < 1), the dashed line shows the
separatrix

a current. This phenomenon is related to the existence of negative energy waves. The
coefficient of amplification has been calculated. The most interesting phenomena in
such a case are the wave transformation in currents that transit from sub- to super-
critical regime and vice versa.

Secondly, we have shown that in spatially inhomogeneous flows of specific config-
urations, the linear waves can propagate in opposite (co-current and counter-current)
directions independently, without reflection. We have found that there are three
classes of RL flows, both sub- and supercritical, and have studied their properties
in detail. It is interesting to note that for the A-class flows the critical point U = ¢
is not a singular one, whereas the B- and C-class flows can be either sub-critical or
supercritical. However, under certain conditions, each class contains global flows.
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The phenomenon of reflectionless propagation in inhomogeneous media is well-
known in general (see, for example, [5, 6, 12, 15, 16, 24, 25] and references the-
rein); here we have generalized it to moving fluids. The practical importance of such
a regime is related to the possibility of the most efficient energy transport which
can have, however, both positive and negative effects depending on the particular
situation.
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Abstract For the case of nonlinear second-order differential equations with a con-
stant coefficient of the first derivative term and polynomial nonlinearities, the fac-
torization conditions of Rosu & Cornejo-Pérez are approached in two ways: (i) by
commuting the subindices of the factorization functions in the two factorization con-
ditions and (ii) by leaving invariant only the first factorization condition achieved by
using monomials or polynomial sequences. For the first case the factorization brack-
ets commute and the generated equations are only equations of Ermakov-Pinney
type. The second modification is non commuting, leading to nonlinear equations
with different nonlinear force terms, but the same first-order part as the initially fac-
tored equation. It is illustrated for monomials with the examples of the generalized
Fisher and FitzHugh-Nagumo initial equations. A polynomial sequence example is
also included.
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Keywords Nonlinear second-order differential equation - Factorization
condition - Generalized Fisher equation * FitzHugh-Nagumo equation - Implicit
solution

1 Introduction

Many dynamical systems in mechanics and in physics in general are described by
non linear second order differential equations or evolve under the action of internal
forces with small non-linear components, especially during external forcing or along
the relaxing stage after the forcing has been canceled. In their homogeneous form,

d*x

F+7(X)Z—j+f()6)=0, ey
these equations are traditionally known in the literature as Liénard equations [1—
3], although in the case of the constant parameter y(x) = -, they may be consid-
ered as of Duffing type, because the Duffing oscillator corresponding to v > 0 and
f(x) = rix + x>, with r; and r, two real constants, is a representative example.
The simplest physical description of (1) in the latter case is that of a particle attached
to a spring which provides a restoring force which is close to linear, i.e., r; > 0 and
|r2| < 1. Two types of springs can be introduced, known as soft and hard [4], for
r, < 0and r, > 0, respectively. In the case of soft springs, in the extension phase the
restoring force becomes progressively weaker than for the linear spring. The hard
springs which become stiffer than the linear one while increasing the extension are
less frequent.

Moreover, if one goes beyond mechanical oscillators and nonlinear electronic
circuits, one comes across a second important and widespread category of equations
of constant «y coefficient which are obtained by the travelling wave reduction of
reaction-diffusion equations and nonlinear evolution equations. In such cases, the
coefficient v that we denote by v is the constant velocity of the travelling fronts [5].
The nonlinear force f covers the phenomenology due to (bio)chemical reactions or
any process capable of producing new components.

A simple way to obtain particular solutions of these non linear second order
differential equations consists in using the factorization method, where the second-
order differential operator

D2+’y(x)D+fix), D:%, ©)

is factored in terms of two different first-order differential operators in the operatorial
form of Eq. (1)

(D= () (D—¢1(x)x=0. 3)
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This may provide particular solutions of (1) by a single quadrature of
(D — ¢1(x)) x = 0. To match the factored operator in (3) to the operator (2), the
factoring functions ¢; should satisfy the conditions

d
¢1+¢2+x%=—’y 4)
x

f @)

192 = ®)
that have been introduced in 2005 by two of the authors [6, 7]. They applied this kind
of factorization to many well-known equations with polynomial nonlinearities by
taking additional advantage from the polynomial factorization of the nonlinear part.
The second condition shows that </ f (x)/x is the geometric mean of the functions ¢;
that can be chosen from combinations of the factors of f(x)/x if f(x) isapolynomial
which does not have the zero degree power. This also assures that from (3) one can
obtain a particular solution of (1) by the quadrature of (D — ¢;(x)) x = 0,

dx
/ o ©

since ¢ can be chosen as one of the factors of f(x)/x.

Moreover, as in supersymmetric quantum mechanics [8, 9], the reverting of the
factorization brackets has been used in [6, 7] to obtain particular solutions of equa-
tions with identical operator part, but different polynomial part f , of the form

d? d . .
d—tf + v(x)d—f F I =0, F) =)+ by — da)x®. (T

where the subscript x denotes the derivative with respect to x. As well known, the
reverting of the factorization brackets in quantum mechanics is equivalent to going
to the Darboux-transformed partner equation of a given linear Schrodinger equation
and it is also based on the logarithmic derivative connection between the solutions
of the Riccati and Schrodinger equations. Such logarithmic connections between the
solutions of different nonlinear evolution equations are also well known being a very
useful tool for obtaining new analytic solutions [10, 11].
On the other hand, with a different grouping of terms, one can also obtain particular
solutions of ‘supersymmetric’ nonlinear equations of the form
d’x  _dx -
W+’Yg+f()6)=0, Y=+ (@1x — 20X, )
i.e., with the same polynomial nonlinearities, but a different operator part which
turns nonlinear in damping. Resorting again to the mechanical and electronic cir-
cuit description, Eq. (7) describes springs with additional stiffness, whereas Eq. (8)
describes more complicated oscillators that can display positive and negative damp-
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ing and chaotic dynamics, such as the cases of Rayleigh’s equation of violin strings
and van der Pol equation of self-excited valve circuit [4] which are amongst the
simplest particular cases of (8).

All these calculus properties have yielded many interesting particular solutions
of the kink and soliton type for well-known nonlinear equations obtained by the
traveling wave change of variables from evolution equations [6, 7, 12-22] and have
been also widely implemented in Matlab and Maple algorithms [23].

In this chapter, we discuss similar nonlinear equations and their particular solu-
tions obtained through some additional conditions and/or modifications of the fac-
torization functions in the factorization conditions (4) and (5) for Eq. (1) of the Duff-
ing type (constant parameter y(x) = <) and traveling wave reductions of reaction-
diffusion equations with v = v. Regarding the variable ~ class, some cases have
been presented previously in [7] and their study with the same focus as here is left
for future work.

In particular, we will consider here the effect of two types of modifications of the
factorization brackets in Eqgs. (4) and (5):

e The first modification is performed in a way that keeps invariant the two factoriza-
tion conditions, which leads to a commutative factorization setting in which the
reverting of the factorization brackets does not generate a new equation.

e The second type of modification is by adding a polynomial into the multiplication
brackets in such a way that only the first factorization condition is kept invariant
which generates a non-commutative factorization.

The chapter is organized as follows. In the second section, the conditions for having a
commutative factorization scheme are presented together with some physical exam-
ples of this approach. In the third section, a non-commutative factorization which
generalizes the Rosu and Cornejo-Pérez factorization is introduced and some exam-
ples are presented for illustrative purposes. The conclusions are summarized in the
last section.

2 Commutative Factorization Setting

We now study the consequences of interchanging the subindexes in the RCP pair
of factorization conditions. This is equivalent to adding another pair of conditions
obtained by commuting the subindexes in both equations. However, one can instantly
find that this is a minimal change since the second factorization condition keeps its
form under such an interchange. Therefore, proceeding in this way, we obtain the
following triplet of different factorization conditions
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d

¢>1+¢z+x%=—v ©)
X
d

¢2+¢1+x%=—v (10)
X

261 (= o) = L fj‘) . (11)

In this case, by comparing the first two equations, one can see thatd¢, /dx = d¢,/dx
implying
$2 =1+, (12)

where ¢ is an arbitrary real constant. In other words, these extended (commuting)
factorization conditions introduce the additional restriction on the factoring functions
of being different only by a constant. Furthermore, from (8) one has 4 = ~, so that
the interchange of the factorization brackets does not produce a new equation in this
case. Thus, in factored form, one deals with equations of the type

(D—=¢1—co)(D—¢pDx =0, (13)
where ¢; satisfies
PLUI YR (14)
dx

which is obtained by substituting (12) into (9). For constant -y, (14) implies

Y+co | Ki Y —Co ki
2 + x2 k) ¢2(x) - 2 x2 ’

¢1(x) = (15)

where ) is an arbitrary integration constant. Besides, f(x) is obtained from (11) as

2 2 2
— C K K
f(x):ux_l_ry_i__l

4 X x3° (16)

A direct connection, not depending on -, between the factoring functions and the
nonlinear term f(x) is obtained by substituting (12) in (11)

Fco — \/C(% +4f(x)/x

2

P12 = a7)

(1) Case v = 0. For this case, let us take co = —2a and x| = b in (15), writing
the factorization functions as

b b
hx)=a+—, ) =-a+—. (18)
x x
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These factorization functions provide the standard Ermakov-Pinney differential
equation
d’x b?
— —a’x+— =0, 19
dr? x3 (19)

which admits the following commuting factorizations

(D:I:a—ﬂ)<D$a—%>x:O, (20)
x?2 X

providing two particular solutions from each of the first-order equations

dx fax 4+ b 21
— = *a -
dt * X

For each of the signs of the linear term, these particular solutions are given by

b e2a(t+c) b e—Zu(l‘—c)
x(t) =+ ) —= + Cox) =4 (22)
a a a a

respectively, where c is an integration constant. These particular Ermakov solutions
correspond to a different nonlinear superposition compared to that of Pinney [24].
If one writes the general Ermakov solution for d?x/dt> — a*x + b*>x~3 = 0 in the

known form x, = \/ Q1x} 4+ x5 + 2a;3x1x; with the superposition constants «;

of x1, = e*“e*™ related by ajas — a3 —b?/W?2, where W is the Wronskian
determinant of x; ,, then one can see that they correspond to oy = 1/a, o, = 0, and
a3 = b/W

Moreover, if v = 0, one can obtain the general solution as follows. Substituting

¢y = ’;(’; ) in the first factorization condition, the Abel equation of the second kind
[13]
d X
o2y i+ 10 o 23)
is obtained, which for f(x) = —a’x + b?/x> has the solution
k  b?
P1(x) =+ a2+—2+—4, (24)
X X

where £ is an integration constant. For & = £2ab, one obtains the previous particular
cases in Eq. (18). Next, from

dx b?
E_@(x)x—:i: a’x? +/<z+— (25)

for the positive sign, one obtains the solutions
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1
x(1) = iz—\/ez"(f—’U) — 27 + (R? — 4a?b?)e2at—1) (26)
a

whereas for the negative sign, the solutions are

1
x(1) = :tz—\/e—z“(’—lo) — 2F + (R2 — 4a2b2)eati—n) | 27)
a

all of which are general Ermakov-Pinney solutions. The solutions (22) are obtained
for k = 2ab and ty = — (c + l“(4‘1)).

2a

(ii) Case v = constant # 0. For this case, the simplest factorization is obtained
by setting ¢ = ¢» = ¢ (co = 0), making identical the two factorization brackets. In
this special case, we have )

g
() == + . (28)
which one can easily verify that satisfies the triplet factorization conditions. The
obtained second order non linear differential equation is of the following Ermakov-
Pinney type
d’x dx +* vb  b?
+ —x—-——+—==0, (29)
4 x X3

or in operatorial form

v b\

which yields the particular solutions given by

2b e =20
xt)y=x/—+———, 3D
v v

where c is an integration constant.
Another possible pair of factorization functions for this case is

b b
$1(x) =ar+ el P2 (x) = —ar + el (32)
which generate the following equation

d’x dx (@ —a)b  b?
WJF(“Z_“‘)E_‘”WC_ijx_s:O' (33)

Thus, for v = a, — ay, Eq. (33) admits the following commuting factorizations
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b b

D+az——2 D—al——2 x=0, (34)
X X
b b

D—[l]——2 D+612——2 XZO, (35)
X X

which lead to two particular solutions obtained from

dx n b dx n b (36)
— = a1 X -, — = —arX - .
dt : X dt 2 X
These solutions are
b eZaI(t+c1) b e—Zaz(r—cz)
xt)y==£x,/—+ —, x)==x,/—+ ——, 37
aj aj as az

respectively; ¢; and ¢, are integration constants.
In closing this section, we notice that multiplying each of the factorization brackets
by an exponential factor in the independent variable,

eV (D = g1) = (D = 1) x =0, (38)

is another way of producing the triplet of commuting factorization conditions. How-
ever, in this case, only the constants ¢y are introduced in the factorization brackets.

3 Non-commutative Factorization Setting

We move now to the study of additive extensions of the factorization functions,

) =1 +a®), ) =d +ealx), (39)

where the e functions are arbitrary functions so far. Of course, both factorization
conditions can change under the additive extension, but to keep a link with the initial
equation defined through the ¢ factorization functions, we are interested in those
gzNS functions for which the first factorization condition is satisfied for the same
parameter while the product one is changed to a different nonlinear force f,

.. dd

& +¢z+x% = —y (40)
~ X

1d, = TH A1)

X
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Therefore the factored equation (D — (;32) (D - <z~51) x=0is

x 43 + f(x)=0 (42)
— — x)=0.
arr
The additions € (x) and €, (x) are not independent, but related through the following
relation f J
€ (x)dx
er(x) = E— 43)

obtained by substituting (39) into (40) and (41), (for zero integration constant). This
condition can be fulfilled by power functions or a finite sum of power functions. For
the monomial case, ¢;(x) = —ax™ and e¢;(x) = a(m + 1)x™, m € N, the nonlinear
force f (x) has the expression

fu () = a[(m + Dy — go]x™ " —a’(m + Dx*" (44)

From the physical point of view, it is useful to think of (42) as an equation that
replaces (1) under small perturbations of the nonlinear force. In this perturbative
context, the most interesting cases are the lowest powers, m = 0 and m = 1, which
provide the following fm (x)

fox) = f(x) +alp) — o —a)x, (45)
filx) = f(x) +aQ¢; — po)x? —2a%x3 . (46)

3.1 Examples

We illustrate the monomial extension with two cases that are traveling wave frame
forms of reaction-diffusion equations and also provide a finite polynomial sequence
case. In the traveling wave context, the -y parameter is the velocity v of the traveling
wave.

(1). The generalized Fisher equation

The generalized Fisher equation has the form [6]
X"+’ +xQ-x"H=0, v#£0, n>1, 47

where the primes stand for derivatives with respect to ( = s — vt. In the reaction-
diffusion form, the case n = 2 has been proposed by Fisher as an equation governing
the population dynamics in the genetics context of the alleles. It has become over
the years the fundamental law of population genetics. The general solution, obtained
using Mathematica, can be written in terms of Kummer’s confluent hypergeometric
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x($) x($)
1000 60k
500 ;8:

[

-10 [ <5 <&/ 10° 73 2 —3_20_
-500 —40¢f
~1000 60§
— v=—=1 — v=1 — v=—=1 — v=1
@n=2;c1=1,c2 =0. b)n=2;¢c1 = —1,c0 =0.

Fig. 1 Particular solutions obtained from (48) for the values of n and constants of integration as
displayed

function of the second kind (the Tricomi function), U, as

2 n+2
XK)=%[£+£——C

>+ n+2—UUm+&VO+qHﬂ+Q. (48)

where c¢; and ¢; are integration constants. Plots of particular solutions derived from
this general Fisher solution are provided in Fig. 1.
On the other hand, Eq. (47) can be factored with [6]

pr=h"(1=x"?), o=h,(1+x"?), hi=1+n/2. (49

forvy, = — (h,, + h;l).
The monomially-only-extended factoring functions read

dr(x) =ht (1=x"?) —ax™,  o(x) = hy (1 +x"%) +a(m + Dx™, (50)
which lead to

m+1 m+1

hy

fx)=foo+ a[ — hy —a(m 4 1)x™ — ( + h,.) X"/ [

619

n

Using (50), a particular solution of

xﬂ+wﬂ+xa—f5+{m+l—hn—am+1nm—(ﬂfl+m>ﬂﬂ}wH:0,
(52)
is obtained from
(=) x +ax™ =0, (53)

dg¢
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xo(4) x1(J)
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0.8} /
0.6/
0

0.2

-5 5 -5 5
a=-0.15 a=-0.1 a=-0.05 ----- a=0 a=-0.15 a=-0.1 a=-0.05 ----- a=0
@n=2v=-3/v2¢co=0. b)yn=2v=-3/v/2,¢ =0.

Fig. 2 Particular solutions from (55) for negative values of a and the values of n, v, and constants
of integration as displayed

as

/ dx _ 1 /d( (54)
x(hpax™ —x"2 4+ 1)~ h, '

For n =2 and the cases m = 0 and m = 1, the quadrature in the latter equation
provides the following particular solutions

(SN

— —V2a . _ 75 €1
Q) = L2 (G ) g L2 (F5-a) mo=—.
V2 1+(1+\/§a)eﬁfc‘

(55)
respectively, where ¢y and ¢; are integration constants. This kind of particular solu-
tions are presented in Fig. 2 and have typical traveling wave front profiles.

The differences between the nonlinear forces for these cases are given by the
expressions

MO = fo= S == (VRF 14300 0. (56)
AfiQ) = fi— [ =-2a@+V2)x(Q) (57)

and are plotted in Fig.3. For small values of the parameter a, they still have the
switching profile of the solutions.

(2). The FitzHugh-Nagumo Equation
The FitzHugh-Nagumo equation,

X"+’ + fx)=0, fx)=x@x-1D(B-x), (58)
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Fig. 3 Differences between the nonlinear forces as given by (56) and (57), respectively
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Fig. 4 Particular solutions obtained from (59) for the values of (3 and constants of integration as
displayed. The values of v, —1/+/2 and 3/+/2, correspond to positive and negative (3, respectively

emerged in a simplified system of two equations modelling the transmission of elec-
trical impulses through a nerve axon with the variable x representing the axon mem-
brane potential. In the homogeneous Eq. (58) the effect of a slow negative feedback
on the membrane potential is not taken into account which eliminates the evolution
equation of the feedback. The general solution is

x(Q) =—

1[2171(”)34— ﬁVZC _ 2P1(V)2+ Br* C_z T P1(v) Q ¢ +51e_”<i| +é, (59)
v v v 2 v 3 4

where p;(v) =3 + (8 + 1)v and ¢, , are arbitrary integration constants. Some par-
ticular solutions derived from this general Fitz-Hugh-Nagumo solution are plotted
in Fig.4. Their profiles are not very different from the particular Fisher solutions
obtained from the general Fisher solution.

For the particular value vg = (1 — 23)/ V2, Eq. (58) is a particular case of the
generalized Burgers-Huxley equation and can be factorized [7] with ¢;(x) = (x —
1)/+/2 and ¢»(x) = +/2(3 — x), which we use in the monomially-only-extended
factorization functions
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o1 = L ax" .y =~2(8—x)+a(m+ Hx" (60)

to factorize the equation
X tup + f(x)=0, (61)

where

7o = £ —a(\/§5+ %)xnﬂrl +a<xf2+ V”T‘zl)xmu —2(m 4+ D2+
(62)

A particular solution of (61) is obtained from

through the following quadrature

/ dx _ L [ dc (64)
x(x—1-— \/Eax’") - V2 '

For the m = 0 and m = 1 cases, the particular solutions are given by

2(1 2 2
ro@ = 2AEN 2 )

V2 — YRS V2(1 = /2a) —¢ 2

respectively, where ¢y and c; are integration constants. These solutions plotted in
Fig.5 are manifestly singular; they blow up at finite traveling variables given by
¢i(@) =1n2/(v/2 4 2a) — 2¢p and (f(a) = +/2In[v/2(1 — v/2a)] — 2¢;, respec-
tively.

-2
-2
-2
-4
a=-0.3 a=-0.2 a=-0.1 ----- a=0 a=-0.3 a=-0.2 a=-0.1 ----- a=0

Fig. 5 Particular solutions as obtained from (65) for zero integration constants and the displayed
values of the parameter a
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p=1
Af4(7)
0.10
4
0.05
5 q
~0.10
— a=-0.15 a=-0.1 — a=-0.05 — a=-0.15 a=-0.1 — a=-0.05

Fig. 6 Differences between the nonlinear forces as given by (66) and (67), respectively, for the
displayed values of the parameters

From (62), one can also obtain the differences between the nonlinear functions of
the two equations

a

AP O =fo—f= 5
Afi(Q) = fi — f=~2a[2 - V20)x1(0) — 8- 1]x}(©), (67)

[3x0(0) — 28 — v2a — 1]x0(¢) (66)

form = 0 and m = 1, respectively. These differences are plotted in Fig. 6 for several
values of the parameter a and 5 = 1.

The interesting feature to be noticed is that the particular solutions obtained for the
monomially-only-extended FitzHugh-Nagumo equation depend only on the param-
eter a, while the forces depend also on the parameter 3. This is due to the fact that
the factoring functions ¢ (x) and ¢ (x) do not depend on .

(3). Polynomial sequence example
Finally, we discuss a polynomial sequence extension of the factorization functions

involving N terms of a y = 0 initial case for which the factorization functions ¢ ,
are both zero, i.e., a degenerate D2x = 0 case. Then, we have

N N
Gr(x) ==Y anx",  Ga(x) =Y (m+ Dax", (68)
m=0 m=0

which one can easily verify that satisfies the conditions given in Egs. (40) and (41).
Using the first pair of factorization functions, the corresponding second order non
linear differential equation has the form
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dzx N N dzx N m
- <Z amxm> (Z(m + l)amxm> X=o5 {Z (Z(m -+ 1)azam1> xm}x =0,
! m=0 m=0 ! m=0 \/=0
(69)
which admits the following non-commuting factorization

N N
<D =Y m+ l)amxm) (D +> amx’”> x=0. (70)

m=0 m=0
One particular solution for Eq. (69) can be obtained from the first order equation

N

d
d—x = =3 amt 1)
d m=0

While for N < 2 one can easily obtain simple explicit solutions of (71), for N > 2,
the solutions will be in general implicit solutions depending on the roots of the cubic,
quartic, a.s.o., algebraic equations.

Let us consider the N = 2 case for which anzo a, X"t = x(ag + ajx + axx?) =
ax(x —ap)(x — az), where o, are the roots of the quadratic algebraic equation.
Then, we have the quadrature

dx - d 7
/x(x—al)(x—az) __aZ/ ' (72)

The classification of the solutions in terms of the roots is the following [25]:

(). If ayp = ﬁ (—a] + JZ) , A =a? —4dapa; > 0, then by the method of
partial fraction decompositions, one obtains

1
7[111)((@1@2) +In(x —a))* —In(x — az)“‘:| =—a(t — 1),
ajp(a) — ap)
(73)
which leads to the implicit solution
(x — al)azx((n—az) — e—agalaz(al—ag)(t—to) = e—z—g«/z(l—fo) . (74)
(x —ap)™
(ii). Whena = ap = a (= —2%‘2), A = 0, the implicit solution is
1 1 X aj
- —In|——|=—a(at+c)= —(t—1n). (75)
X—a « -« 2
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(ii). fa; = ap =r +1is, A <0, the implicit solution is

In|x| r xX—r ) 2
—ln|\/(x—r)2+s2|+—+—arctan =a)(r +s7)( — 1) .
s s s
(76)
(iv). In the degenerate case oy = ap = 0, i.e., ag = a; = 0, one obtains the simple
explicit solution

1
72—l —h). (77)

In all cases, 7y is an arbitrary integration constant.

In a very limited amount of these kinds of zero y cases, one can also obtain implicit
solutions with two integration constants (general solutions). As in the Ermakov-
Pinney case, this is obtained through the Abel equation of the second kind for the
factorization function q~51 , which reads

B d"‘ 1 - N m
¢1% + ;qbf = Z (Z(m -1+ 1)alam1) xm (78)
m=0 \1=0

In terms of the function 1) = ¢?2, this equation is a linear first order equation, which
in the N = 2 leads to the solution

di(x) = i\/ (ap + a1x 4 ax2)2 + ';—; : (79)

where k) is an integration constant. Then, from

d -
d_): = d1(0)x = £/ (apx + a;x2 + ax3)? + ky (80)

one can obtain forayg = a; = 0, ay # 0 (case (iv) above) the general implicit solution

332
@O + k2 F <2 ), 1 ) ):kl(r—to), 81)

376 k;

where ;, F| is Gauss’ hypergeometric function. For k; = 0, one obtains the explicit
singular solution given in (77).
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4 Conclusions

We have discussed some minimal extensions of the factorization conditions of Rosu
and Cornejo-Pérez in the case of the constant «y coefficient of the first derivative
with emphasis on the generated nonlinear equations and their particular solutions.
The necessary conditions to have commutative factorizations have been introduced
which lead to equations of the Ermakov-Pinney type at most as has been shown in
this paper. For the non-commutative factorization case, one can obtain equations
with the same ~y parameter through designed additive monomial extensions of the
factorization functions. The new equations have nonlinear forces that differ from the
initial nonlinear elastic forces by supplementary terms. In the mechanical context of
spring models, one may seek applications in cases of weak nonlinear nanoelasticity
[26, 27]. On the other hand, in this paper, the illustrative examples have been chosen
from the vast area of reaction-diffusion equations in which a huge variety of travel-
ling fronts are present and + is just the constant velocity of their motion. We have
presented such kinds of modified counterparts of the generalized Fisher equation and
the FitzHugh-Nagumo equation, and their particular solutions have been obtained
by the factorization method. A polynomial sequence extension in the case v = 0 has
been also provided, for which various types of implicit solutions have been given
for the N = 2 size of the sequence. We hope to extend these ideas in future work to
the more general case of dissipation depending on the spatial coordinate and time
and also to inhomogeneous equations of this kind [28] with the goal of enlarging
the class of nonlinear equations with analytic solutions and identifying their possible
applications.
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Abstract A simplified Hirota method for the computation of solitary waves and
solitons of nonlinear partial differential equations (PDEs) is presented. A change
of dependent variable transforms the PDE into an equation that is homogeneous
of degree. Solitons are then computed using a perturbation-like scheme involving
linear and nonlinear operators in a finite number of steps. The method is applied
to fifth-order Korteweg-de Vries (KdV) equations due to Lax, Sawada-Kotera, and
Kaup-Kupershmidt. The method works for non-quadratic homogeneous equations
for which the bilinear form might be unknown. Furthermore, homogenization of
degree allows one to compute solitary wave solutions of nonlinear PDEs that do
not have solitons. Examples include the Fisher and FitzHugh-Nagumo equations,
and a combined KdV-Burgers equation. When applied to a wave equation with a
cubic source term, one gets a “bi-soliton” solution describing the coalescence of two
wavefronts. The method is largely algorithmic and implemented in Mathematica.
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In memory of Prof. R. Hirota (1932-2015)
Photograph courtesy of J. Hietarinta.
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1 Introduction

In the 1970s, Hirota [42, 43] started working on an algebraic method to compute
solitons of completely integrable nonlinear partial differential equations (PDEs).
His method has three major steps. Given a nonlinear PDE, (i) change the depen-
dent variable (a.k.a. apply Hirota’s transformation) so that the transformed PDE
is homogeneous of degree in a new dependent variable (or variables), (ii) express
that homogeneous equation into one or more bilinear equations using the Hirota
operators, (iii) solve the bilinear equation(s) using a perturbation-like scheme that
terminates after a finite number of steps.

Finding the Hirota transformation is quite challenging and often requires insight
and ingenuity. Based on experience, Hietarinta [37] provides some useful tips for
finding a suitable candidate thereby reducing the guesswork.

Next, finding the appropriate bilinear form for the homogeneous equation can also
be a difficult task. In particular in cases where the homogeneous equation is cubic
or quartic in the new dependent variable and would have to be decoupled into a pair
of bilinear equations, either involving an extra independent variable or an additional
function [40]. To circumvent this difficulty, we will not use the bilinear form of the
homogeneous equation but include it for completeness.

To compute solitons, the type of solutions one seeks for the homogeneous equation
is quite specific. They are a finite sums of polynomials in exponential functions with
different traveling wave arguments. The terms in that sum are computed order-by-
order, using a “tracking” or “bookkeeping” parameter () which is set equal to one'
after the exact solutions are computed.

Hirota’s method [45—49] can be found in many books on solitons and complete
integrability [2, 3, 16, 77, 82], books on differential equations (e.g., [108]), ency-
clopedia (e.g., [112]), and survey papers [9, 70, 71, 78, 92] most noteworthy those
by Hietarinta [38—40].

Hietarinta’s papers have a wealth of information about Hirota’s method: how to use
it to construct regular and oscillatory solitons (breathers), Backlund transformations
and Lax pairs, and as a tool in a computer-aided search for possibly new completely
integrable systems. His surveys have a plethora of examples including nonlinear
Schrodinger (NLS) equations, the sine- and sinh-Gordon equations, shallow water
wave equations, the Sasa-Satsuma equation, and systems of coupled equations such
as the Hirota-Satsuma and Davey-Stewartson systems.

Hirota wrote a book [49] about his method. As far as we know, the only other
book about the bilinear method is by Matsuno [74]. Several theses, for example, [89,
115, 126] have been written about Hirota’s method and it is the subject of thousands
of research papers.

Of course, there are several mathematically more rigorous methods to compute
solitons, such as the Inverse Scattering Transform (IST), the Wronskian determi-
nant methods, the Riemann-Hilbert approach, the dressing method, the Darboux and

! Unlike the small parameter e used in perturbation methods where one seeks approximate solutions
up to some order in €.
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Bicklund transformation methods, etc. In contrast to the more advanced analytic
methods that use complex analysis, such as IST and the Riemann-Hilbert method,
Hirota’s method can not solve the initial value problem for nonlinear PDEs. Regard-
less, Hirota’s method is a direct, powerful, and effective method to quickly find the
explicit form of solitons. Apart from soliton solutions, Hirota’s method can be used
to find rational (lump) solutions of PDEs and the method applies to various types of
discrete equations as well. A discussion of those is beyond the scope of this paper.

A mathematical foundation for the Hirota method by Sato and other researchers at
the Kyoto School of Mathematics can be found in, for example, [13, 14, 54, 66, 86,
116]. There are deep connections of Hirota’s method with infinite dimensional Lie
algebras, transformation groups, Grassmanian manifolds, Wronskians, Gramians,
Pfaffians, Bell polynomials, Pliicker relations, etc. We refer the interested reader to
the literature.

This survey paper is based on one (WH) of the authors’ thirty years of experi-
ence with Hirota’s method mainly from the perspective of applications and computer
implementation. He argues that if one seeks solutions involving exponentials, replac-
ing a nonlinear PDE (which usually consists of both linear and nonlinear terms) with
an equation that is homogeneous in degree in a new dependent variable (or variables)
is quite important, perhaps more so than working with Hirota’s bilinear form(s) of
the transformed equation. Therefore, “homogenization of degree” is at the core of
what is now called” the simplified Hirota method in which Hirota’s bilinear operators
are no longer used. Instead, we use a perturbation-like scheme involving linear and
nonlinear operators to solve the homogeneous equation without first recasting it into
bilinear form.

Although the bilinear representation of the PDE is not used in our approach,
dismissing it would be a mistake because it is a valuable tool in the search for
completely integrable equations [36, 37] and theoretical considerations (see, e.g.,
[116] and the references therein).

The concept of homogenization of degree is illustrated for the Burgers equation
and the ubiquitous Korteweg-de Vries (KdV) equation. For the Burgers equation, a
truncated Laurent series of its solution yields the Cole-Hopf transformation, which
allows one to transform the Burgers equation into the heat equation. The latter is
homogeneous of degree one (linear) and can be solved by separation of variables
and other methods. Using Hirota’s method, traveling wave solutions of the heat
equation involving one or more exponentials readily lead to multiple kink solutions
of the Burgers equation. Contrary to solitons, these do not collide elastically but
coalesce into a single wavefront.

In the case of the KdV equation, a truncated Laurent series reveals the transfor-
mation that Hirota used to replace the KdV by a quadratic (bilinear) equation. The
connection between Hirota’s transformation and the truncated Laurent expansion,
a.k.a. truncated Painlevé expansion or singular manifold expansion, has been long
known [17, 81, 84]. As the examples will show, it is a crucial step in the application
of any flavor of Hirota’s method.

2 Some authors [65, 97, 114, 123] call it the Hereman or Hereman-Nuseir method.
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The idea of homogenization is further illustrated on a class of completely inte-
grable fifth-order KdV equations, including those of Lax [67], Sawada-Kotera (SK)
and Caudrey-Dodd-Gibbon (CDG) [28, 95], and Kaup-Kupershmidt (KK) [19, 50,
57]. Their solitons are computed with a straightforward algorithm involving linear
and nonlinear operators which are not necessarily quadratic. Also, the cubic oper-
ators we introduce are not the same as the trilinear operators discussed in [25, 40]
because we split off the linear operator the same way as for quadratic equations.

The computations for the KK case are complicated, lengthy, and nearly impossible
without using a symbolic manipulation program such as Maple or Mathematica. One
reason is that the homogeneous equation is of fourth degree. Another reason is that
the structure of the soliton solutions is quite different from those of the KdV, Lax,
and SK equations. Although the soliton solutions of the KK equation were already
presented in [30], and these for the Lax and SK equations have been computed long
before that, from time to time their computation resurfaces in the literature, most
recently in [56, 63, 64, 104, 107, 113, 114].

Homogenization of degree also allows one to find solitary wave solutions of
nonlinear PDEs that are either not completely integrable or for which the bilinear
form is unknown. A couple of such examples, mainly from mathematical biology,
will be shown. We pay particular attention to a FitzHugh-Nagumo (FHN) equation
with convection term for it has a so-called bi-soliton solution that describes the
coalescence of wavefronts. The same happens for Burgers and wave equations with
cubic source terms which are also discussed in detail.

The simplified Hirota method has been successfully used by many authors to find
solitary wave and soliton solutions. Most notably, Wazwaz has extensively applied
the method to find bi-soliton solutions [109, 110] and soliton solutions of a large
number of PDEs involving one or more space variables (see, e.g., [111-113] and
many of his other papers). Additional applications to PDEs with multiple space
variables can be found in, e.g., [65, 97, 114, 123].

Before applying the (simplified) Hirota method, it is a good idea to test if the
PDE has the Painlevé property [2, 11] by running, e.g., the PainleveTest.m
code [6]. The Laurent series used in the Painlevé test often provides insight in which
homogenizing transformation to use.

We developed a Mathematica package, called PDESolitonSolutions.m
[22]. It uses the homogenization method to solve several polynomial PDEs that
are completely integrable as well as some that do not have soliton solutions. In this
paper we focus on (1 + 1)-dimensional PDEs although our code already works for
some PDEs involving up to three space variables (x, y, z) in addition to time (¢). We
cover only two examples of PDEs with multiple space variables. One of the examples
is the well-studied Kadomtsev-Petviashvili (KP) equation.

The paper is organized as follows. In Sect.2 we discuss the homogenization of
the Burgers and KdV equations using logarithmic derivative transformations.

After a brief review of the original Hirota method, we describe the simplified
version in Sect. 3 still using the KdV equation as the prime example.

In Sect.4, we apply the simplified Hirota method to the Lax, SK, and KK equa-
tions. For each we compute the one-, two- and three-soliton solutions explicitly.
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In Sect.5 we show how the method needs to be adjusted to find solitons for the
modified KdV (mKdV) equation.

To show how the simplified method can be applied to PDEs that are not “solitonic”
in Sect. 6 we compute solitary wave solutions of the Fisher and FHN equations with
and without convection terms. Additional examples include a combined KdV-Burgers
equation, a Burgers and wave equation with cubic source terms, and an equation due
to Calogero. For each of these equations we compute exact travelling wave solutions.
None has soliton solutions although some have bi-soliton solutions.

Section 7 covers an equation in (1 + 1) dimensions which has two-soliton but not
three-soliton solutions.

In Sect. 8§ we compute multi-soliton solutions for the KP equation and an equation
in (3 4 1) dimensions studied by Geng and Ma [21].

Section9 covers software to automate Hirota’s method. In particular, we discuss
the implementation and limitations of PDESolitonSolutions.m and review
related software packages.

Finally, some conclusions are drawn in Sect. 10 followed by a brief discussion of
future work.

2 Homogenization of Nonlinear PDEs

2.1 The Burgers Equation

Our initial example is the Burgers (a.k.a. Burgers-Bateman) equation,
U+ 2uny — Uy =0, (D

named after Harry Bateman (1882-1946) and Johannes Burgers (1895-1981). The
subscripts denote partial derivatives, e.g., u,, = % and later on us, = %, etc. Note
that the coefficient of the diffusion term (u,,) has been normalized. Equation (1) can
be linearized with a logarithmic derivative transformation due to Cole and Hopf.
First integrate’ the Burgers equation with respect to x, yielding

8,</xudx>+u2—ux=0. 2)

u:c(lnf)x=6(—), 3)

Then substitute

3 Alternatively, set u = v, and integrate with respect to x to get v; + v2 — vy, = 0. Substitution of
v = ¢ In f yields (4). The same can be done for other equations in this paper.
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where c is a constant, to get

f(fi— o)+ + D fE=0. 4

Setting ¢ = —1 yields the heat equation

ft - fxx =0. 6]

Then,

u(x,1) = —(In f), = —? ©)

is the well-known Cole-Hopf transformation.* We now show where this mysterious
transformation comes from. As in the Painlevé test [6], substitute a Laurent series

(e, 1) = [0 Y e, 0 f4x, 1) (7)

k=0

into (1). Note that f(x, t) is the manifold of the poles since « is a negative integer.
The most singular terms f2*~! and f°~2 will balance when oo = —1 and vanish
for ug(x, t) = — f,. Truncating (7) at the constant level term in f yields an auto-
Bicklund transformation,

u(x,t)=—?+u1(x,t)=—(1nf)x+u1(x,t), ®)

provided u; (x, t) is also a solution of the Burgers equation. For the zero solution
(u1; = 0) (8) becomes the Cole-Hopf transformation (6). The transformation allows
us to replace the Burgers equation which has a mismatch of linear and quadratic terms
in u by an equation that is homogeneous in degree in the new field variable f. The
fact that the resulting equation happens to be of first degree (linear) is advantageous
for it can be solved by separation of variables eventually resulting in a large class of
solutions of (1).

Setting the stage for what follows, we consider a couple of simple solutions of
(5). Substituting f(x, 1) =1 +e’ =14+ e~ where k is the wave number, w
the angular frequency, and & a phase constant, into (5) yields the dispersion law
w = —k2. Hence,

4 This transformation is consistent with the scaling symmetry [29] of the Burgers equation which
is invariant under x — A\ ~!x, r = A2, u — A\u with an arbitrary constant \. Hence, one would
expect a first derivative of In f.
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u(x,0)
2.0

1.0

0.5¢

-3 -2 -1 0 1 2 3

Fig.1 2D and 3D graphs of the one-kink solution (10) for K =1and A =0

_ _h ¢\ _ e
u(x,t) = —(lnf)x =—==—k (1 +e€> =—k (m)

f
eg | Zeg
—k\ 7| =3k | 7=
ez 4e 2 ez +e 2

0 0 0 0
€z +e 2 +e2—e 2
=—%k( " ):—%k(1+tanh§) 9)
2 2

with @ = kx + k>t + 6, or, simply
u(x,t) = K (1 —tanh ®), (10)

with ® = Kx —2K%t+ A, K = —'%, and A = —%. This kink-shaped solution
(shock wave) of the Burgers equation is pictured in Fig. 1.
Due to its linearity, f(x,7) = 1+ Y., e where e = ek *+K 140 with k; and

0; arbitrary constants, also solves (5) yielding a N-kink solution

ki ZzNzl e”

ulx,t) =—
1+va=1 el

(1)

for any integer N > 1. Figure 2 shows solution (11) for the case where two wavefronts
(N = 2) coalesce into a single kink-shaped wavefront as time progresses. For a more
detailed analysis of solutions of type (11) we refer to [106].

2.2 The Korteweg-de Vries Equation

Next we explore the homogenization of the ubiquitous KdV equation,

u; + 6uu, + usz, =0, (12)
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-20 -15 -10 -5 0

Fig. 2 2D and 3D graphs of the two-kink solution (11) fork; = —1,k, = —2, and §; = 9, =0

u(x,0)

- ~
i i B P P E. NP S A PRI v

_3 2 -1 [ 1 2 3

Fig. 3 Graphs of the solitary wave (dashed line) and cnoidal wave (solid line) solutions for

k=2 m= 35, andd=0

named after Diederik Korteweg (1848—1941) and Gustav de Vries (1866—1934).
In [61] they derived the equation and its solitary wave and cnoidal wave solutions:

u(x, 1) = 2k*sech?(kx — 4kt + 0), (13)
uCx,t) = 231 — m) + 2k* men® (kx — 4kt + 5; m), (14)

where m € (0, 1) is the modulus of the Jacobi elliptic cosine (cn) function. Both
solutions are shown in Fig.3. As m approaches 1, the peaks of the periodic solution
get a little taller, the valleys become lower and flatter before they eventually spread
out horizontally to become the pulse-type hyperbolic secant solution.

The interaction of the more complicated soliton solutions (to be discussed later
in this paper) were first observed in numerical simulations by Zabusky and Kruskal
[122] in 1965.

To compute soliton solutions with Hirota’s method the original KdV equation
needs to be replaced by an equation (in a new field variable) that is homogeneous
of degree. To get a candidate transformation, again substitute a Laurent series (7)
into (12). The most singular terms £2*~! and f“3 will balance when ov = —2. The
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terms £~ and f~* vanish when uo(x,t) = — f, and u;(x,t) = 2 f,,. Hence, we
obtain an auto-Bicklund transformation for the KdV equation

2f° n 2 frx
f? f
where u,(x,t) is also a solution of the KdV equation. Taking u, = 0 yields the
Hirota transformation’ that “bilinearizes” the KdV equation. To see the effect of a
logarithmic derivative transformation substitute

ulx,t)y = —

Fur(x, 1) = 2(In f)ax +uz(x, 1), 15)

ffxx - fx2
u=c(nf),=c <T : (16)
where c is an undetermined constant, into the integrated version of (12):
o, (/ udx) +3u’ +u =0. (17)

This yields

Pt + fax) = fRefe =3 = DA + 4 f3x) +3(c =2 f2(f2 = 2ffrx) = 0.
(18)

Setting ¢ = 2 (confirming what we learned from the truncated Laurent series), (18)
simplifies into®

f(fxt+f4x)_fxﬁ+3fxzx _4fxf3x :Os (19)

which is homogeneous of second degree in f. Hirota [49] introduced the transforma-
tionu = 2 (In f),, in the early 1970s and realized that (19) can be written in bilinear
form

(DD, + D3) (f-f) =0, (20)

with operators D, and D; defined (see, e.g., [46, 49]) as

DY (f-g) = (Ox = 0)" f(x,)g(x",1)| 21

x'=x

: (22)

t'=t

DY(f-g) = (0 — 0" f(x,)g(x, 1)

with m and n positive integers.

5 Note that the KdV equation is invariant [29] when x — A lx, t > A3, u — M\u. Therefore,
a second derivative of In f makes sense.

6 Many authors, in particular those working on the mathematical foundation of Hirota’s method,
use 7 instead of f and investigate the rich mathematical properties of the “tau” function.
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Working with these Hirota operators is easy because it amounts to applying
Leibniz rule for derivatives of products of functions with every other sign flipped.

Thus,
" (D"l QI fN (9" g
DY(f-9) = ; =) <W> (axm_j) , (23)

and, more general,

DYD](f-g) = (Ox — 0:)" (0 — Op)" f(x, )g(x', 1) (24)

x'=x,t'=t

B m.on (_1)n+m—i—jm!n! ai+_/'f an+m—i—jg
- ZZ <3ti6xf) <8t"—i8xm—j - (25)

S jlm = Plitn = D)!

For example,

DY(f-9) = fixg — 4 f3x9x + 6 fixGex — 4fi g3 + fGax, (26)

and
DiDi(f-9) = fxg — fi9x — fx9r + [ Gxs- (27)

With the above one can readily verify that (D, D, + DY) (f-f) = 0 yields (19).

3 Solving the Homogeneous PDE

3.1 Hirota’s Method

We now show how Hirota computed soliton solutions of (20). He sought a solution
of the form

fa=14> e fP@n=1+efO+EfP 4. .., (28)

n=1

where € is a formal parameter. The building blocks of solitons are exponentials with
different plane-wave arguments. Actually, £’ will be the sum of a chosen but fixed
number (N) of exponentials e’ = ek *~«i’+% (j = 1,..., N). Then, f@ will have
products of just two of these exponentials such as e’ ande®*% (i, j = 1,..., N).In
turn, @ will have products of three exponentials, for example, 3%, e20i+0i eli+20
and e? 0+ (i j k =1,..., N). The role of € is to keep track of how many expo-
nentials are in the mix because terms involving products of two exponentials can
never be equated to terms with products of three exponentials, etc. In other words,
€ serves as a bookkeeping parameter which can be set to one once the computations
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are done. As we will see in all the examples that follow, when solitons exist (28) will
truncate and therefore be a finite sum of exponentials.
Substituting (28) into (20) and splitting order-by-order in € gives

0(% : B(1-1) =0,

0@ : BU-fV+ V1) =0,

0€): BA-f@ 4+ fO. O 4 r@.1) =0,

0(63): B(1~f(3) +f(l)‘f(2) + f(z)'f(l) + f(3),1) =0,

0" : BA-f@ 4 fO.fO 4 @ p@ 4 pO. p Dy @1y =0,

O : B[Y fPf0= =0, n=0, withf® =1, (29)

Jj=0

where for the present example B = D, D, + D?.

To illustrate, we compute the one- and two-soliton solutions of (12). Note that the
first equation in (29) is trivially satisfied. Using (26) and (27), the second equation
reduces’ to fx(,]) + f4():) =0.

One-soliton Solution of the KAV Equation

If we take f(V = e’ = ek*~w+9 that second equation yields the dispersion law
w = k3. Next, one can readily verify that B(f". f() is zero. Consequently, f® is
zeroandsoare £, f@® etc. Therefore, there are only two terms in (28). Explicitly,

f — 1 + e@ — 1 +ekx—k3l+6 (30)

after setting e = 1. Hence,

1ef)’ [e—g (1 +69)T

= 1k?sech® [ (kx — K’t + 6)] = 2 K?sech® (Kx —4 Kt + A),  (31)

u(x,t) =2(

ffxx - fx2> . 2k2 69 _ 2k2 66676
1? (

where K = % and A = % Figure 4 shows a 3D graph of this so-called solitary wave

solution or one-soliton solution for K =2 and A = 0.
Two-soliton Solution of the KdV Equation

Starting with £ = e?1 + &%, wheree? = eki *~“i’*+9 the first nontrivial equation in

(29)yieldsw; = k. Then, B(fV. f(V) = —6k ks (ki — k2)*e?1 ™% which determines
the form of f @, namely, f @ = gy, with some constant coefficient a;, to be
computed. Then, B(1- f@) = B(f®-1) = £ + £ = 3ankiky (ki + ky)?e?+0.

7 With B = D, D, + D*, one has B(1.f) = B(f.1) = fu + fa. for any function f.
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Fig. 4 3D graph of the hump-shaped solution (31) for K =2 and A =0

Substitution of the pieces into the third equation of (29) then gives

ki — ko \?
= . 32
e (kl +k2> 62

One can show that from O(e®) onward one can set f@, f@, etc., equal to zero.
Thus, f contains only four terms. With e = 1, using

f=1+e"+e 4 apehth, (33)
and u = 2(In f),,, this yields

2[kFe + k3e™ + 2k — ko)?e" 2 + apy (ke + kie)e! 2]

u(x,r) = . (39
(14 + e + ay, ehi+tz)?
Setting k; = 2K;, ; =2A; +In (ng'lg ), the above can be written as
. h) 4 (K3 — K}) [(K3 — K}) + Kfcosh(20,) + K3cosh(26))]
u(x,t) =
[(K2 — K1)cosh(©; + O1) + (K3 + Ki)cosh(©; — O]
K?sech?(®;) + K3csch?(©
=2(K22—K12)< isech”(®1) + Kjcsch™( 2)2>’ (35)
[K; tanh(®;) — K; coth(®,)]

where ®; = K;x — 4K i3t + A; (i = 1,2). The elastic scattering of two solitons for
the KdV equation is shown in Figs.5 and 6 for k; = 2, k, = %, and 6; = 6, = 0.
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U(x,-25) u(x,~0.015) u(x,25)

2, 2

X X -
5 10 15 -15 -0 -5 0 5 10 1515 -10 -5 0 5 10 15

Fig. 5 Graph of the two-soliton solution (35) of the KdV equation at three different moments in
time

Fig. 6 Bird’s eye view of a two-soliton collision for the KdV equation. Notice the phase shift after
collision: the taller (faster) soliton is shifted forward and the shorter (slower) soliton backward
relative to where they would have been if they had not collided

3.2 Simplified Hirota Method

In this Section we use a simplified version of Hirota’s method which does not use
the bilinear representation (20). Instead, we write (19) in the form

fFLF+N(f f)=0, (36)

where

Lf = fu+ fax (37)
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and
N(fv g) = _fxgt + 3fxxgxx - 4fx93x (38)

define a linear differential operator £ and a quadratic differential operator V. Note
that the latter is linear in each of the auxiliary functions f(x, ¢) and g(x, 7). So, we
could also call it “bilinear” but, of course, N differs from Hirota’s bilinear operator
B. Substituting (28) into (36), and setting the coefficients of powers of € to zero
yields®

0 : £fV =o,
O : LFD = —N(fD, FDy,
0(63) . Lf(S) - _ (f(l)l:f(z) +N(f(l), f(Z)) +N(f(2), f(l))) ’

n—1

O(") : ﬁf(n) - _ Z (f(.i)ﬁf(n—j) +J\/(f('i), f("—j))) ., n>2. (39

j=1

The N-soliton solution of the KdV is then generated from

N N
f(l) — Z ee,- = Z ek,- x—w; t+0; , (40)
i=1 i=1

where N is a natural number, by solving the equations (39) successively to determine
f®, £®, etc. The first equation, £ f = 0, yields the dispersion relation w; = k.
With (40) one readily computes

N
— NGO Oy == 3kiki (ki — ke’ 0 = 3" Bkik; (ki — kj)*e" V.

i,j=1 I<i<j<N
(41)
Note that there are no terms e’ . Hence, f® must be of the from
fO =30 ayet (42)
l<i<j<N
with constants® a; ; to be determined. Next, compute
2 2 0,46,
LfP = 3" 3kik;ki +kj)* ai; e, (43)

1<i<j<N

8 Details of the derivation are given in the Appendix.

° The a; j are often called phase factors because they can be absorbed in the exponents viaa;; = e,
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u(x,-4.5) u(x,0) u(x4.5)
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Fig. 7 Graph of the three-soliton solution of the KdV equation at three different moments in time

and equate (41) with (43) to get

ki —kj\*
= , 1 <i i < N. 44
aij <k1+kj> 1< ( )

To keep matters transparent we show some details of the computation of the three-
soliton solution and the result for the four-soliton solution.
Three-soliton Solution of the KAV Equation

Proceeding in a similar way with the third equation in (39) leads to the explicit form
of f&. For N = 3, we find

f(3) — b]2369|+62+€3 (45)

with 5

(k1 — k2) (k1 — k3) (ko — k3)]
biys =apapzan = . 46
1 AR [(k1 + k) (ki + k3) (ka + k3) (#0)
For N = 3, one can verify that " = 0 for n > 3. Thus,
f=1+ e eyl o a1269|+02 +aps elit0s an el +03

+ay arz az; e 0t 47)

after setting e = 1. Notice that (47) has no terms in e2%1, e2%2, 201102 /14202 etc. The
explicit expression of u(x, t) (not shown due to length) then follows from u(x, t) =

2(In f)xe.

The elastic collision of three solitons for the KdV equation is shown in Figs.7
and 8 fork; =2, ko =3, k3 =1, and §; = 6, = 63 = 0.
Four-soliton Solution of the KdV Equation

The computation of the four-soliton solution proceeds along the same lines. After
setting € = 1,
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I".I —
"

=20

Fig. 8 Bird’s eye view of three solitons colliding for the KdV equation. Notice the phase shift after
collision: the faster soliton has advanced and the slower ones are behind. The shortest of the three
solitons is shifted the most

f — 1+601 + e@z + 693 +e€4 +a12 691+02 +a13 601+93 +a14 691+04 +a23 602+93
0,+0. 03+0. 01+0,+0 01+0,+0
+azs € 4 azg " 4 apaizar " T + appajsaz, T

0140510, Or+05+0. 0,40
tazaisaze’ M fararazse’ N faanzaiananas e’ (48)

with a;; as defined in (44).

The four-soliton solution u(x, t) of the KdV equation follows from u(x, t) =
2(In f),,. Its analytic expression is not shown for it would fill pages.
N-soliton Solution of the KdV Equation

Hirota introduced [46, Eq. (5.38)] a concise formula for the function f leading to
the N-soliton solution of the KdV equation,

f — Z e[Efg lliﬂinj'i'EiNzl Hi‘gi], (49)
1=0,1

where ) 1=0,1 denotes the sum over the 2V combinations of pw =0,1, up =0,1,
.. v = 0, 1. Furthermore, V)

i<j
with i and j chosen from the N elements {1, 2, ..., N} buti < j,and a;; = edii,

indicates summation over all possible pairs (i, ;)
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Inspired by the result obtained by the IST, the N-soliton solution can be written
in a compact form [20, 42, 101, 103] as

u(x, 1) = 2 (Indet(I + M)),, (50)

where I is the N x N identity matrix and

e@€+@m

My, = ——— with @, = Kyx — 4Kt + A,. 51
¢ K. T K, with &, X L+ Ay (51)

Note that det(/ + M) will match f in (30), (33), (47), and (48) when k; = 2K; and
6i = ZAZ - ln(ZKI) with Ki > 0.

4 Application to a Class of Fifth-Order Evolution
Equations

In this section we investigate the soliton solutions of a three-parameter family of
fifth-order KdV equations,

wy + au’uy + Buitgy + yuus, + us, =0, (52)
where «, 3, and ~y are nonzero real parameters. With u = },12 one gets
iy + S0+ Dl + i3, + fis, =0, (53)

showing that the individual values of the parameters are less important than the
ratios <% and 5 Table 1 shows the values of these ratios for which (52) is known to
be completely integrable together with values of («, 3, ) used in the literature. The
names of the equations are also listed together with a couple of references. Using
scales on u, x, and ¢, the named equations cannot be transformed into one another;
they are fundamentally different.'”

Integrate (52),

Oy (/ udx) + %ozu3 + %(ﬁ — ’y)ui + Yuu ey + gy =0, 54)

and substitute (16) where c is a constant, to get

6> (fre + for) = 3F* QL fi 4o A 12 fs) + 203 () F2 + oo+ COF2 far)
F3F2 (D FRA D fe fix) 212 (360—68c+ac? —127¢) B f frx — [ =0, (55)

10 After a trivial scaling the CDG equation becomes the SK equation. They are the same equations
which often goes unnoticed in the literature (see, e.g., [64, 91]).
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Table 1 Completely integrable fifth-order evolutions equations of type (52)

% g (o, B3,7) Name References
= 2 (30, 20, 10) Lax [67]
(120, 40, 20) [94]
% 1 (45,15, 15) Sawada-Kotera [95]
(180, 30, 30) Caudrey-Dodd-Gibbon [10, 15]
L 3 (20, 25, 10) Kaup-Kupershmidt [19, 50, 57]

which is of sixth degree. In the next subsections we investigate the integrable cases
listed in Table 1. For each case the constant ¢ can be obtained from substituting a
Laurent series into (52).

4.1 The Lax Equation

Using a = %72, B8 =27, and ¢ = 27_0’ (55) reduces to a homogeneous trilinear

equation

F2(fur + fox) = F(fefo = 5fex fax + 61 fox) + 100f2, = 2fs fex for + f2f2)=0,  (56)

which can be written in bilinear form consisting of two coupled equations (see [49,
p. 56] and [46, 94]):

(D«Ds + DY) (f-f) =0,
(D:D; + DY) (f-f) — 2 (D} + D,D) (f-f) =0, (57)

for only one function f but with an extra independent variable s which corresponds
to the time variable in the KdV equation. This comes as no surprise because the Lax
equation belongs to the family of KdV flows [82, p. 114] each with its own time
variable. Upon elimination of s via suitable cross differentiations one obtains (56).

Note that (56) can also be recast in terms of Hirota trilinear operators
[40, Eq. (8.113)]. Completely integrable trilinear equations have been studied [25,
40, 41, 69] but are less common than their bilinear counterparts. Specific examples
can be found in, for example, [72, 93, 96].

We will not use (57) in the subsequent computation of solitons. Instead, we write
the cubic equation (56) as

FPLE+ fNUCE )+ Nadfs f f) =0, (58)
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with operators

Ef = fu + foxs
-/\[](f’ g) = _(ftgx - Sfxxg4x + 6fx95x)7 (59)
NZ(f» g, h) = lo(fxxgxxhxx - 2fxgxxh3x + fxgxhélx),

where f, g, and & are auxiliary functions.
Upon substitution of (28) into (58) the first four equations of the perturbation
scheme become'!

oY : LfY =o,
O : LD = -Ni(f DV, fM,
0@): LD =—2fVLfP+MUD, fO)+ N (fP, fO)
+FON D, FDY+ N(f O, £ O, g Dy),
O : Lf® = — (2f<1>£f(3> " <2f(2> n f<1>2> LFP £ N(FO, £O)
+ N, DY+ MUP, fP)+ D (MUD, £P)
+ NP DN+ FOMGED, D)y + M(f D, £ D, £
+ M (D, FO DYy L N (FP, D, DY), (60)

where we used the first equation to simplify the other ones. Starting from (40), one
can proceed as in KdV case to construct soliton solutions of any order N. The only
difference is that for the Lax equation w; = k? instead of w; = k. For example, the
one-soliton solution

u(x,t) = %kzsech2 [%(kx — kKt + 5)] = 2W—(,)Kzsech2 (Kx —16 Kt + A) , (61)
where K = % and A = %, solves

uy + %Vzuzux + 27uxuxx + yuusy + usy = 0. (62)

4.2 The Sawada-Kotera Equation
Using o = %72, B=r,andc = % one gets a quadratic equation,

[ (faa+ for) = fufi = 10f5 415 for fax = 6. f5x =0, (63)

! The derivation is given in the Appendix.
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which can be written in bilinear form [46] as
(DD, + DS) (f-f) = 0.
Ignoring the bilinear representation, we write (63) in the form (36) with

Ef = th + f6X7
N(f, g) = _fxgt - 10f3x93x + 15fxxg4x - 6fx95x:

and proceed as in the KdV case, leading to the following soliton solutions.

One-soliton Solution of the SK Equation
The solitary wave solution

u(x, 1) = 2k>sech’ [§(kx — k1 +0)]
= 30 K?sech’ (Kx — 16 Kt + A),

where K = % and A = 5, solves

20

u + é’yzuzux + Yuxlxx + yUUZ + Usy = 0.

Higher-order Soliton Solutions of the SK Equation

121

(64)

(65)
(66)

(67)

(68)

The computation of higher-order soliton solutions is analogous to the KdV equation;
see (33), (47), and (48). Except that the dispersion relation is now quintic, w; = kl.s,

and the a;; must be replaced by

(ki — k)P k2 = kikj +K2) (ki = kp)> (6 + kD)
a;;i = = .
DT kA k)P R hk KD (ki + k) () — kD)

(69)

The actual two- and three-soliton solutions u(x, t) of the SK equation are very long

expressions (not shown).

4.3 The Kaup-Kupershmidt Equation

Using o = %72, 8= %7, and ¢ = %, (55) becomes a guartic equation,

AF3(fur =+ fox) = LPAS fr = 5 f3” + 24 fe f2)
_3Offx(fxxf3x - 2fxf4x) + lsfx2(3fxx2 - 4fxf3x) = Oa

(70)

which can be written as a coupled system of bilinear equations (see [49, p. 36] and

[88, 104]),
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(DD, + £D8) (f-f)+ 2Di(f-9) =0, (71)
DX(f-f)—4fg=0, (72)

for two unknown functions f and g. One can verify that upon elimination of g in
(71) and (72) indeed yields (70).

In what follow, we will ignore the bilinear system and write (70) in operator form
as

FLE+ PPN )+ fNACE f )+ Na(F f f f) = 0. (73)

This homogeneous equation involves one linear operator and three nonlinear opera-
tors defined as

Lf =4(fu+ fox), (74)

Ni(f. 9) = =@ figc — 5 f3xg3x + 24 £ 950, (75)
Na(f, g, b) = =30 fi(gexhze — 295hax), (76)
N3(f, 9,1, ) =15 292 Gl jux — 4hy jax), )

for auxiliary functions f(x, t), g(x,t), h(x,t), and j(x, t). The nonlinear operators
are bilinear, trilinear, and quadrilinear, respectively.

Substituting (28) into (73) and equating the coefficients of powers of € to zero
yields'? the perturbation scheme of which the first four equations read

oEH:cr®M =o,
0@ : Lf® = MO, 1),
0@ : L == (3rVer@ +2r QMO ) + M (r @, r D)
NI, D)+ N (D, p D, p D)),
0(64) . Lf(4) - _ (3f(1)£f(3) +3 (f(2) + f(l)z) Lf(z) + M (f(l), f(3))
+ N D)+ NP, @) 427D (M D, @)
TN, F D) 4 (25D 4 f D) N D, O
+ N2 (DL DL D) 1 N (f DL @ D)+ N (@D )
AN AN A R IO AN AN A ) R )
where we used the first equation to simplify the subsequent ones. Clearly, the num-
ber of terms grows at each order in € and the computational complexity increases
accordingly. Full details of the step-by-step solution of the perturbation scheme for

the KK equation with coefficients @ = 20, = 25, and v = 10, can be found [30,
85] where we used Macsyma to perform the lengthy computations. Here we sum-

12 Details of the derivation are given in the Appendix.
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marize the results for general «, 3, and -y subject to the conditions o = %72, and
8= 3.

One-soliton Solution of the KK Equation

Taking f() = e = ¥~ £ () = Qyieldsw = k°. In contrast to the KdV case,
the right hand side of the second equation,

=~ NGO D) = 15k, (79)
does not vanish but has a term in €?’. Thus, f® must be of the form
@ =ae?, (80)
with undetermined constant coefficient a. Then,

LfP =240ak® ¥ (81)
and equating the right hand sides of (79) and (81) yields a = %. Next, we check that
we canset £ = 0forn > 3 by verifying that the right hand sides of the subsequent
equations in (78) are all zero. This is indeed the case and the perturbation scheme
terminates after two steps. Setting € = 1,

f:l+eg+%eze, (82)

and u = %(m f)xx yields

)= 202 e’(16 + 4e’ + ) 83)
Y (16 4 16ef 4 e20)2
which solves
ur + %72”‘2”)( + %’W/txuxx + YUU3x + usy = 0. (84)
The one-soliton solution can also be written as
2,0 0 2,0
L = 20,2 [1 — tanh (5)] [21 —30tanh 5 + 13 tanh (E)] (85)
K [33 — 30 tanh g + tanhz(g)]2
_ 202 ( 4+17cosh9—155i.nh92>7 (86)
/ [16 4+ 17 cosh @ — 15 sinh 6]

where 6 = kx — k3t + 0. Figure 9 shows the 2D and 3D graphs of the one-soliton
solution for v = 10, k = 2, and § = 0. In comparison with the solitary wave solution
of the KdV equation shown in Figs. 3 and 4, the solution of the KK equation is wider
and flatter at the top.
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L x kv t
-6 -4 0 2 4 6 -1.0

Fig. 9 2D and 3D graphs of solution (85) withy = 10,k =2, and § = 0

Two-soliton Solution of the KK Equation

Starting from
fO =e"+e, (87)

where 0; = k;x — kist +4; (i =1, 2), we compute

— M(FO, fD) = 15k ' + 15kS €2 + 10kiky (2K} — kik3 + 2k3) e 472,

(83)
Thus £ must be of the form
[P =a & +are®” +ape (89)
with the (constant) coefficients a;, a,, and a;; to be determined. Then,
LfP =240a,k8 e*' 4 240a,kS e**
+20ai2kika (ki + ka)* (k7 + kiky + K3) P12, (90)
Equating (88) with (90) determines a; = a, = %, as expected, and
2kt — K2k + 2k2
s = 1 2122+ 2 _ 1)
2(kl + k2) (kl + klk2 + kz)
Therefore,
2kt — k2k3 + 2k2
o = % e 1 % 2 4 (2k] iky + 2k5) 01+ 92)

2k + k)2 (K3 + kiky + k3)

The main difference with the the KdV, Lax, and SK equations is that the terms e’

and e?” in f@ no longer drop out. At O(€®) one gets

f(3) — b12 (691+292 4 6201+92) , (93)
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u(x,-0.7) u(x,-0.1) ufx,0.7)

AN

. . -
-5 -0 -5 0 5 10 15X -5 -0 -5 0 5 10 15 45 -0 -5

Fig. 10 Graph of the two-soliton solution of the KK equation at three different moments in time

with
(ki — k2)? (ki — kika + k3)

T 16k + k)22 + kiko + K2)

12 (94)

At the next order

F@ 2 200 (ki = k2)* (kf — kiks + k3)? Q201+02)
12 256(ki + ka)*(k? + kiky + k3)? '

95)

After verification that all f ™ are zero for n > 5 and setting e = 1,

2 2
f=1+e" +e + L + Le? tapeth

+b]2 (3291+€2 + 69|+292) + b%z 62(0]+92). (96)

The explicit expression of u(x, t) (not shown due to length) then follows from
U= 17—5 (In f),. The collision of two solitons for the KK equation is shown in Figs. 10
and 11 fork; =2, k, = 1,and 6; = 5, = 0.

Three-soliton Solution of the KK Equation
Starting with

3
fO=> e =" e+, 97)

i=1

where 0; = kjx — kist + §;, the equations of the perturbation scheme are solved order-
by-order yielding expressions for f®, @ ..., f© because, as it turns out, " =
0 for n > 7. The latter requires verification that the right hand sides at O(¢’) and
beyond all vanish in order for the perturbation scheme to terminate. The computations
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%
‘
i

Fig. 11 Bird’s eye view of the collision of two solitons for the KK equation. Notice the phase shift
after the collision

are very lengthy, time consuming, and currently at the limit of what Mathematica
can handle.!® Summarizing the results:

3
f(z) = % Zezai + Z a;j 69i+0j, (98)
i—1 l<i<j<3

with phase factors

2k} — ki + 2k}

a;i = , 1<i<j<3. 99)
T2k + k)P (K + Kikj + K2
Next,
f(3) _ Z bij (eze,-+e,- +e‘9"+29f')—|—c123 e61+92+93, (100)
1<i<j<3
where ki —k)2(k? — kik; + k2
(ki —kj)“(ki — kikj + k%)
d L l<i<j<3, (101)

U6 + k)2 + kiky kD)

13 With the code PDESolitonSolutions.m discussed in Sect. 9, the computation of the three-soliton
solution takes about 4 min on a Dell XPS-15 laptop with Intel Core i7 processor at 4.7GHz and 32
GB of memory.
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ufx,-1.5) ufx,-0.1) uxL.7)

z’ H

127

X

Fig. 12 Graph of the three-soliton solution of the KK equation at three different moments in time

and

c1ns =75 [k — kik3 + 2K5) (kS + k{k3) + (ki — kik3 + 2k3) (K5 + kik3)
+(2k3 — I3K + 2k (kS + K3k — 55 [ (kT + k3) (ki + k) (kS + kK3KD)

+ (k7 + K3k} + KD US4+ KZK3KD) + (k3 + kD) (kS + k3) (kS + k2k3k3)
+12k1 k5K |
with

D=4 [] (k+k)* (& +kikj+k3).

1<i<j<3

Carrying on,

f(4) — Z bl2] 62(9["!‘0/) + 16 (a23b12b13 6291+92+93

1<i<j<3

+ ai3b1abase” Tt 4 a1yby3bos e )
f(S) = 256 b1yb13bas (blz 6291+202+03 + b1362€1+02+293

+ by e9l+292+293) ,

f(G) — 16(161)121?131)23)2 o201 +0:+03)
Finally, after setting e = 1,
f=1 _|_f(1) +f(2) _|_f(3) +f(4) +f(5) +f(6),

and u(x, ) = B(In f),, (not shown due to length) then solves (84).

(102)

(103)

(104)

(105)
(106)

(107)

The collision of three solitons for the KK equation is shown in Figs. 12 and 13

forkl=2,k2=%,k3=1,and(51=52=53=(),
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-1 20

Fig. 13 Bird’s eye view of the collision of three solitons for the KK equation. Notice the phase
shift after the collision

5 The Modified KdV Equation

Of course, not every polynomial soliton equationin (1 + 1) dimensions can be solved
with a solution of type (28). Consider, for example, the mKdV equation,

u, 4 24uu, + us, =0, (108)

which after integration becomes

) <f udx) +8u® +u, =0. (109)
The Laurent series for (108) suggests the transformation

u=+3i(nf), =+3i <f7) : (110)

Substitution of either of these branches into (109) yields

Ffi+ f) =3ffix =0. (111)
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Although homogeneous of second degree and deceptively simple, it has no solution
of the form f =1 +e’ where § = kx — wt + 6. Indeed, the term in e’ vanishes for
w = k> but the term —3k3e?’ is only zero when k = 0. It is clear from (110) that to
obtain a real-valued solution, i.e., u* = u, f must be a complex function. One can
readily verify that u = :I:%i (In(f 4+ ig))y, for real functions f and g does not work

either. So, f must be a ratio of complex functions. Hence,

. f+ig
=+l (In : 112
B ( <h +ij)). e
where f, g, h, and j are real functions. From u* = u it follows that 4 = f and
Jj = —g. Observe that (108) remains invariant when u is replaced by its negative.

Therefore, without loss of generality, we continue with the plus sign,

i <ln (;ji;’)) - (arctan (g)) - %, (113)

which is Hirota’s transformation for the mKdV equation [43]. Note that the roles of
f and g can thus be interchanged in the computations below.

Goldstein [23] gave a different argument'* to arrive at (113). Accounting for the
=+ signs in (110), he argued that the solution may have two families of singularities
and therefore assumed'>

=t (B-2)=u(n(5)) - (114)

Note that the two terms (in the first equality above) indeed account for the two
branches in (110). Setting F = f +igand G = f — i g then gives (113).
Applying Hirota’s transformation (113) to (109) yields

<
Il
D=

G+ g3 — Cfi + fi) — F2(fi9+3FcGur + 3 frxgx + f3:9)
+92(fgt + fg3x + 3fxgxx + 3fxxgx) + 6fgx(fx2 + g)%)
—6£:9(f2+ %) +6£9(fr fex — gxgrx) = 0, (115)

which is clearly not of the usual form the simplified Hirota method applies to. The
terms in (115) can be regrouped as

24+ 9= f9 — fgax +3feGex — 3fexgx + f329)
—6(feg — f9)(ffox — [2 4 99 — %) = 0. (116)

14 The argument is based on modified singular manifold expansion methods [17, 24, 81].

15 With u = £+ i (In(F/G))x, (108) can be replaced by (D; + D3)(F-G) = 0 and D(F-G) =0
where G = F*. See, e.g., [28] for explicit expressions of F and G for the two- and three-soliton
cases.
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Taking advantage of the fact that there are two free functions in play, Hirota [43, 45]
then set the factors multiplying 2 + g% and f,g — fg. separately equal to zero, to
get the coupled system

f(g +930) — g(fi + f30) = 3(fxGxx — frxgx) =0, (117)
ffox— 24990 — g2 =0, (118)

which can be written in bilinear form as

(D + D) (f-9) =0, (119)
DI(f-f +g.9)=0. (120)

Ignoring the bilinear form, one could write (117) and (118) as

fLyg—gLf+Ni(f.9) =0, (121)
No(f, f) +Na(g, 9) =0, (122)

with
Lf=fi+ fo (123)

and
M(fa g) = _3(fxgxx - fxxgx)v (124)
A/Z(fv g) = fgxx - fxgx~ (125)

With a suitable adaptation of the method in Sect. 3.2, one could then seek a solution
of (121) and (122) using

f=fOper® 2@ (126)
g=99 +eg® +2g?+.... 127)

Based on the interchangeability of f and g, one can either take f© = ¢V =0
and ¢ = 1, or equivalently, ¢©@ = f =0 and f©@ = 1. In either case, Le? =
Lekix=wit+9i = ( determines the dispersion relation w; = k7. Proceeding with the
former case but skipping the details of the computations we summarize the results.

One-soliton Solution of the mKdV Equation
With \
f=el =K and g =1, (128)

one gets
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0
u= fx =k © =%ksech0
14 f2 14e2
= 1ksech (kx — k’t 4+ ) = Ksech (2 Kx — 8 Kt +6) (129)
with K = &.
Two-soliton Solution of the mKdV Equation
Now
f=e" e,
g=1—ape"*", (130)

2
with 6; = kix — k31 + 6 and ar = (252 )" Then,

keft 4+ koeb kief + kref)eli b2
Y- 1€ + kae” + app (k1€ + koe™' e (131)

8kik ’
1 4 e201 4 26 4 @ +1k22)2 et 4 g2 2420

Three-soliton Solution of the mKdV Equation
After some computations one finds that

0 L b 4 o0 01+0,+0
f=e" +e” +e — by’ T,

g=1—ape"™ —q;e"th — gy et (132)

with 0; = kix — k)t + 6, a;; = (i;;i;)z, and b1os = anaizds.
N-soliton Solution of the mKdV Equation
A concise formula [35, 52, 73] for the function F = g + i f leading to the N-soliton
solution u = %i <ln (%))x of the mKdV equation is given'® by
P e[zl(-f} it A0 (@-&-i%)]’ (133)

1=0,1

where the summations have the same meaning as in (49) and again g;; = edii. The
extra i 5 takes care of the complex coefficients and sign reversals.
The N-soliton solution can be written [43, 100, 102] as

1 ( det(l—l—iM))
In——— | ,

u@ 1) = 2\ e =i

% (134)

lf’ Recall that the roles of f and g can be interchanged because —u solves (108) whenever u does.
F is F with the roles of f and g reversed.
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where [ is the N x N identity matrix and

e@é‘+@m

My = o with Oy = Kox — 4Kt + A, (135)

Note that % matches i = @ with f and g in (128), (130), and (132) when

ki = 2K, and 6, = 2A; — In(2K;) with K; > 0.

6 Application to Non-solitonic PDEs

6.1 The Fisher Equation with Convection

One of the examples discussed in [26] is the Fisher equation with convection term
[76, 79],
U+ auuy —uy —u(l —u) =0, o #0, (136)

where « is the convection coefficient. This equation can also be viewed as a Burgers
equation with quadratic source term. Motivated by a truncated Laurent series, use

fx>
= _2nf), =2 137
u Z(In f) a(f (137)

to replace (136) with a homogeneous equation of second degree

fst fo=fa)+ filfi = fa+ 2D = FLAHNL =0, (138)

where

sz f3x+fx_fxtv (139)
N(f! g) = fx(gt — Gxx T %gx) (140)

Seeking a solution of type (28), LM = LYV, ¢%) yields w; = —(1 + k?). The
second equation in (39) then becomes

N

LFP == "k(142k) e — > (ki+kj+2kk;) e (141)
i=1 I<i<j<N

If we were to include the terms e?’ in f® the perturbation scheme would not

terminate. Hence, we are forced to set all wave numbers equal to k; = —% (i=

1,2,..., N). Thus, N = 1 and only a solitary solution can be obtained. Note that

both sums in (141) vanish when k; = —%. Hence, f® =0 and
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a 1 5
fx,t) =1+¢e" =14e 25 g@adies, (142)
Finally, from (137)
e’ 1 1 1 2
un ) =35 =3 (I —tanh [5 (§x — ;(4+ )1 —d)]), (143)

since k = —7. The graphs of the kink solution (143) in 2D and 3D are similar to
those in Fig. 1.

6.2 The Fisher Equation
A transformation to homogenize the Fisher equation [18, 80] without convection,
U, — gy —u(l —u) =0, (144)
is remarkably different from (137). Indeed, a truncated Laurent series suggests
u=—6(Inf)ex + 2(In f),, (145)
which yields

Fae+ foo = S+ 3 fu = L) =4 f o #3172 — 2

—$fifix+ S fifu+ 5 fP = FLE+N ) =0. (146)
Here,
Lf=fax+ fox = $fex + 5fu — 3100 (147)
N(f, 9)=—4f: g3 + 3 frxGux — frgx — gftgxx + 15_2fxtgx + %ftgt- (148)
Solving (39) with f = "N efi = 3" ekiv—wit+di g5 a starting point, one gets
wi = —5k? or w; = —(1 + k).
Case 1: For w; = —Ski2 the second equation in (39) reads
N
LFP=3"KA—6kHe +2 > ¢l (149)
i=1 I<i<j=<N

where ¢;; = kik; [1 + 2kik; — 4k} + k%)]. If we put terms e’ in £ the pertur-

bation scheme does not terminate. Hence, k; = :I:% (i=1,2,..., N) which also
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makes ¢;; = 0. This leads us to conclude that a multi-soliton solution does not exist
and N = 1. With k = j:ﬁ we have w = —2. Using (145) with f = 1 + ¢’ gives
20 1

A+eh)? ~ (I+e )

u(x, 1) = — 1 (1 4+ tanh &), (150)

where each of these forms of the solution appears in the literature (see, e.g., [4]).

Explicitly, for k = 75

ux, ) = 4 (1 — tanh [% (ﬁx — 35— 5)])2, (151)

which is a wave traveling to the right. The graph of this kink solution is the same as

in Fig. 1 but with a steeper slope due to the square in (151). For k = ﬁ,

ux, 1) =1 (1+tanh[% (ﬁx—l—%t—ké)])z, (152)

which is a left-traveling wave, a bit steeper than the one shown in Fig. 1 after a vertical
flip. Note that (152) does not follow from (143) in the limit for « — 0.

Case 2: For w; = —(1 + kiz) the second equation in (39) becomes
N
LFP =—% D A+HA+6k)e +2 Y e |, (153)
i=1 I<i<j<N

where ¢;; = |1 + ki + Sk — =+ k) (7 + ki) |. So, for real wave
here ¢;j = | 1+ 35k;k; + 46kk2 — 2(k? + k3)(7 + 10k;k;) | . So, for real

numbers ; the terms e*’ do not vanish. No solitary wave solutions or solitons can
be obtained in this case.

6.3 The FitzHugh-Nagumo Equation with Convection

The FHN equation with convection term [58],
U +ouuy, — e, +u(l —u)la—u) =0, (154)
where « denotes the convection coefficient and a is an arbitrary constant, is also

called the Burgers-Huxley equation [87].
A truncated Laurent series suggests two possible transformations, namely,

u:\/rZ(lnf)x:\/n_’l<%), m > 0. (155)
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and

u——i(lnf) ——i<£> m >0 (156)
C m oym\ )’ ’

where we have replaced o by ”’T_mz in (154) to simplify their forms and the computa-
tions below. Using (155), (154) transforms into

f(fo _afx - fxt) + fx (ft - (m + l)fxx + M(l +a)fx)

=fLF+N(f. f)=0, (157)

where
Lf = fsx—afc— fu, (158)
N(f,9) = fi (90— (m+ Dgey + V/m(1 4+ a)gy). (159)

To compute a single solitary wave solution we take f = 1 + e”. Then, Le? = 0yields
w =a — k% Next, N'(e?, ¢?) = 0 determines k = \/Lm ork = \/aﬁ Thus, w = 22=1

a(m—a)

orw = “5==, respectively. Returning to u, we obtain the solitary wave solutions
1 (am —1)
1 1
,H)=5(1+tanh |5 | —=x — ——t+9 160
u(x, 1) 2(+ [2<_mx - +>D (160)
and

u(x,t) = ta (1 + tanh [% (%x - Wt + 5)}) . (161)
m

Although itis impossible to find a two-soliton solution, a so-called bi-soliton solution
can be computed which describes coalescent wave fronts. Indeed, taking f = 1 +
e +e%, withw; = a —k? (i = 1, 2), after some computations one gets

_ tact 162
B (162
where
Or= o — (41401, b= dox— (") 116 (163)
Since o = ’“—:ﬂz, possible!” values for m are
m:%(4+a2:|:a\/8+a2>, m > 0. (164)

This solution can be found in [30, 58] where it was obtained with a different method.

m—=2

T

17 For any positive value of m, the pair (c, m) must still satisfy o =
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Fig. 14 3D graphs of solution (162) with (163) (left) and (167) (right) both fora =3, a =1 (i.e.,
m=4),andd; = =0

Skipping the details, with (156) one obtains the following solutions

u(x, 1) = % (1 — tanh [% (@x + (4a4;m)t — 5)]) (165)

and

u(x, 1) = ta <1 — tanh [% (““fx + a(4;“m)t — 5)]) , (166)

with m given in (164). The bi-soliton solution corresponding to (156) is (162) with

0= L — (S2) 146, 6= —Sfx— (25m) 45, 16D)

Solution (162) with either (163) or (167) describes the coalescence of two wave
fronts pictured in Fig. 14.

Finally, form = 2 (i.e., « = 0), one gets a solitary wave solution of the FHN equation
without convection [5].
6.4 A Burgers Equation with a Cubic Source Term

Consider the Burgers equation with a polynomial source term of third degree,

U+ auny, — e =3u2 —u)u+1), (168)
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which is of the kind treated in [99, Eq. (26)]. Equation (168) can also be viewed as
an equation of FitzHugh-Naguma-type with convection term.'® Such equations are
known to have coalescent wave fronts [27, 58]. Based on a truncated Laurent series,
there are potentially two homogenizing transformations:

u:ﬂ(lnf)szﬁ(?), m > 0. (169)

and
2 (n f) > (L 0 (170)
u=———_(~In =——(=), m>0,
3/m g 3Jm \ f
where we used o = % in (168) to simplify their forms. Starting with (169), sub-
stitution into (168) yields

f (6fx - fxl + f3x) + fx (fr + Sﬁfx - (1 + 3m) fxx) (171)
=fLf+N(f f)=0. (172)

Here, £ and N are defined by

Lf=6fc— fu+ fax (173)
N, 9) = fi (9 +3Vmge — (1 +3m) gyy) . (174)

For the single solitary wave solution, £e’ = Oyieldsw = — (k> 4 6). Next, A/(e’, e?)

= 0 determines k = —ﬁ ork = % Thus, w = —ﬁ’fn—“ orw = —W, respec-
tively. So, with f = 1 + ¢’ we obtain the solitary wave solutions
6m—+1) §

u(x,t) =—1 (1 — tanh [ﬁx -5 (175)

and

u(x,t) =1+ tanh

+(3m+2)t+é] (176)

[ﬁxT 2

where, with regard to a = 3=2 possible values'® for m are
NG

m= (1240’ £av24+a?), m>0. (177)

As with the FHN equation with convection term, no two-soliton solution exists but
a bi-soliton solution can be found which describes coalescent wave fronts. Indeed,
taking f = 1 + e’ + e’ where w; = —(k? +6) (i = 1, 2) one gets

18 Except that u — 1 is now replaced by u + 1.
3m=2

N

19 For any positive value of m, the pair (c, m) must still satisfy o =
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Jm(kie? + kye®)

ulx,t) =
(.0 = Y
zeﬁx+'(”7“)t+6l _ effor“”:f”wé
- 1+efx+2(3m+7)t+6 e L Gty s, (178)

because k| = ﬁ and k, = —ﬁ with m in (177). For m = 1, a solution of (168)
with o = 1 then reads

262x+101+51 _ efx+7t+(52
ulx, 1) =7 e 100 4 g xtT40 (179)
The solution procedure using (170) is similar and leads to
333 8 1)
u(x,t):—% <1+tanh [#X-F(mT—F)I—FE]) (180)
and 3 333 2 1)
u(x, ) = 1 — tanh ym _3Gm+y 01 (181)
2 2 2
with m given in (177). The bi-soliton solution corresponding to (170) reads
2 (kie? + koe?)
ulx,t)y =—
3/m (1 +eh +e)
e P+ 20 5 o =3mx 433 mA)1+)
=_ (182)

l+e 3y 3CmES) +ef3\/—x+3(3m+2)t+5o

because k| = %— and ky = —3./m withm in (177). Form = 1, a bi-soliton solution

of (168) with & = 1 then becomes

ea HF IS _ pa—3x+151+0

u(x, 1) = _1 + e%x+%t+51 + e—3x+15146 ’ (183)

Solutions (179) and (183), describing two coalescent wave fronts, are shown in
Fig.15.

Returning to «v via (177) also allows one to consider the case o« = 0 (i.e., m = %),
leading to solutions of (168) with a cubic source but without convection.
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Fig. 15 3D graphs of (179) (left) and (183) (right) for §; = —6, = 1

6.5 A Wave Equation with Cubic Source Term

Consider the wave equation,
S+ by — Juee = uu — 1) +2), (184)

which is a special case of an equation investigated in [99, Eq. (2)]. The Laurent series
solution suggests the transformation

—K
u=3kl0n f); — k(n )] = 3k (%) ) (185)

with k = £1. We first consider the case where x = 1. Using
u=%(f’;fx>, (186)

allows one to replace (184) by

f (16ft + 8ftt + f3t - 16fx - 8fxt - fxtt - fxxt + f3x)
—Q@fi = f)@Gfi + fu =4S = 2fa + fax)
=fLfF+N(Sf [)=0, (187)

with

‘Cf = 16ft + Sftt + f3t - 16fx - 8fxt - fxtt - fxxt + f3x’ (188)
N(f.9) =—=@fi — fo) 49 + g — 49 — 20 + Grx) - (189)

Then, Le? =0 yields w = —k, w=4—k, or w=4+k. With f =1+¢’, one
readily obtains
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of
u(x, 1) = —3(w +k) <m) =—lw+k (1 +tanh ). (190)
Obviously, the choice w = —k must be rejected. For w =4 — k, one finds that

N, e?) =0and
u(x,t) = — (I +tanh [{ (kx — 4 — )t + 6)]) (191)

with arbitrary k and 6. For w = 4 + k, N'(e?, e?) = 0 determines k = —2 ork = —3
resulting in w = 2 or w = 1, respectively. The case k = —2 (i.e., w = 2) is rejected
for it leads to u(x, t) = 0. For k = —3 (i.e., w = 1) one gets

u(x, 1) = %(1—tanh[%(3x+t—5)]), (192)

which is different from (191) when k = —3.

Attempting to find a solution of type (28), LfV = L(3 N &%) determines
w; = —k;, 4 — k;, or 4 + k;. As with the solitary wave solution, to avoid trivial solu-
tions we continue with w; =4 — k; and w; = 4 + k;.

Here again, it is impossible to find a two-soliton solution but a bi-soliton solution
can be computed. Indeed, taking f =1+ e + e + ape? 2 leads to ap = 0.
Then, for w; =4 — k; (i = 1, 2), after some computation one gets

e + e
u(x, t) =-2 <m) ’ (193)

where 0 = kix — (4 — k)t +9; and 6, = kox — (4 — k)t + 6,. Solution (193)
agrees with the result in [99, Eq. (37)]. As shown in Fig. 16, (193) describes
two coalescent wave fronts. For w; = 4 + k;, after some computations one gets

ki = =2,k = =3, and aj, = 1, resulting in (192) with § replaced by d,.
The computations for kK = —1 in (185) are similar but only lead to

w0 = (1 +wnh [ e =3 +9)] ) (194)

which does not follow from (191) when k = 1.

6.6 A Combined KdV-Burgers Equation

A combined KdV-Burgers equation [98],

U, + 6un, + use — 50uy, =0, (195)
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4

Fig. 16 3D graph of (193) withk; =1,k = —2,and 61 =0, =0

where (§ > 0, is used in models where both dispersive and dissipative effects are
relevant. A Laurent series of the solution of (195) suggests the transformation

u =2(In f)xx —268(n [y, (196)

which we substitute into the integrated KdV-Burgers equation,

B, (/ udx) +3u® + tyy — 58u, =0 (197)
to get

f(fxt - ﬂft + sﬁzfxx - 6ﬁf3x + f4x)
—fofi F B 60 i fox +3F% —4f for = 0. (198)

This homogeneous equation is of the form f L f + N (f, f) = 0. Therefore, we can
proceed as in the KdV case and solve (39) step-by-step with

Lf = fu—Bfi+56 fix — 685 + fax, (199)
N(fa g) = _fxgt + /Bzfxgx + 6/6fxgxx + 3fxxgxx - 4fxg3x- (200)

We summarize the results. First, Le! = L&~ = 0 yields (3 — k)(w — k> +
5 ﬁkz) = (. Thus, two cases have to be considered.
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. o0
== 04
-0.2 1

Fig. 17 3D graphs of (201) (left) and (202) (right) for =2 and 6 =0

Case 1: When w = k*(k — 53) and k # 3, N'(e’, ’) = 0 determines k = —f3. So,
w = —63°. Inserting f = 1 + ¢ into (196) yields

7o) 0
%) 1P G-whd) (I +whd), QoD

u(x, 1) =23 (
with = —fx + 63t + 6.
Case 2: When k = 3, N'(e’, e’) = 0 determines w = —63°, yielding

20
u(x,t) = =23 (ﬁ) — 18 (1 +tanh §), (202)

with @ = Bx 4+ 63°t 4 8. Solutions (201) and (202) are shown in Fig. 17 for 3 = 2
and 6 = 0.

An attempt to find a multi-soliton or bi-soliton solutions based on (28) failed. Assum-
ing k; # (3 (discussed in Case 2) and working with (28), L1 = £(3_, e”) deter-
mines w; = ki2 (k; — 50). The second equation in (39) then becomes

N
LfP =Y ki + /e — 3 et (203)

i=1 I<i<j<N

where ¢;; = kik; [2/62 + Bk + k;) + 6kik; — 3(k? + k?)] . Putting terms e*’ in

f@ prevents the perturbation scheme from terminating. Hence, k; = —f3
(i=1,2,..., N) which also makes c;; = 0. But if the wave numbers have to be
equal then N = 1 and that brings us back to Case 1 and (201).
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6.7 An Equation due to Calogero

For the equation
u; — 3(3uu)2€ + u4ux + uzuxx) —u3z, =0 (204)

due to Calogero [8], the Laurent series (7) has o = —%. Therefore, to apply the
simplified Hirota method we first change the dependent variable. Setting u = /v
with v > 0 gives

dv?y, — 30} — 120702 — 120%v, + 6VV, v, — 12070, — 40?03, =0, (205)

which looks more complicated than (204) but has a truncated Laurent series with
« = —1. Then, with the transformation

v=1Lnp), =1 (’%) (206)

(205) can be replaced by an equation of fourth degree,

FAF fu =32 +6f foxfor — 4F2 fax) — FE@ L fi +3F5 —4f fa)

= fNI(f D) +No(f S f f) =0, (207)
with

Nl (f9 9, h) = 4fxgxhxt - 3fxxgxxhxx + 6fxgxxh3x - 4fxgxh4)m (208)

Na(fs g, hy ) = = fuge @R ji 4 by jux — 4 j3x). (209)

If one seeks a solution to (207) of type (28), then AV (e, e/, e?) with @ = kx — wt + 6
yieldsw = —1k*. Fortuitously, if the dispersion law holds then A3 (e?, ¢?, e, ¢?) = 0
and, therefore, f = 1 + e’ solves (207). Using (206) and u = 4/v, after some algebra
one gets

u= %JE\/l + tanh [ § (4kx + k31 + 40)], (210)

where k > 0. This solution was computed in [30] with a different method. It is
graphed in Fig. 18 for k = 4 and 6 = 0.
If one tries to find a multi-soliton solution with f( = Z,N: ! el with 6, = k;x +

13t 4 6;, then Ny (f O, O, £O) only vanishes if the wave numbers are equal.
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u(x,0)

150

/

. ' x
-4 -2 0 2 4

Fig. 18 2D and 3D graphs of (210) fork =4 and 6 =0

7 An Equation with Two but Not Three Solitons

Equations that have two-soliton but not three-soliton solutions have been discovered.
The best known example is the sine-Gordon equation in two space variables which
already appears in early work by Hirota [44] and was later studied in greater generality
in [59]. Another example is a (3 + 1)-dimensional eight-order equation due to Kac-
‘Wakimoto [90, 105].

With respect to equations in (1 + 1) dimensions, Hietarinta (see [36, 37] and ref-
erences therein) did an extensive search of bilinear forms for which the necessary
condition to have a three-soliton solution is violated. Although the appropriate bilin-
ear forms are given explicitly, the equations in the original field variable u are not
always available in his papers. Reversing the process, i.e., finding the nonlinear PDE
(or a system thereof) that leads to a (known) bilinear form is not straightforward.
Consult, e.g., [36, 37, 40, 70] for strategies and explicit examples.

Taking a different example, we study the soliton solutions of a polynomial equation
in (1 + 1) dimensions,

Uy + 2y + Bun + 2utuse + Suguse + ugiiay + uttsy + uz, =0,

(211)
which appears in [51, Eq. (19) for K = 56]. The authors claim that this equation has
at most a two-soliton solution. However, they do not give the constraint on the wave
numbers k; that prevents the existence of, e.g., a three-soliton solution. We therefore
investigate (211) in more detail.

Based on a truncated Laurent series, we substitute

(212)

u=56(n f)e =56<ff“ SEEZNLLE fi: )

f

into the integrated form of (211),

I5) </ udx) + 313614 + ;guzu” + 4uxx + uugy + ue, =0, (213)
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yielding

[ (Fe+ fax) = fofi +35fax® = 56 fax fox + 28 fex for — 8fxfre =0, (214)
which is of the form fLf + N (f, f) = 0 with

Lf = fu+ fo, (215)
N(f? g) = _fxgt + 35f4xg4x - 56f3x95x + 28fxx96x - Sfxg7x' (216)

As usual, Le? = 0 yields the dispersion relation w = k’. So, with f =1 + e’ we
obtain the solitary wave solution

u(x, 1) = 14k*sech® [1 (kx — k7t +6)]. (217)
Seeking a solution of the form (28), as before £ = L(3N e%) = 0 with §; =
kix —wit + 6; ylelds w; = ki7.

For the two-soliton solution, taking f = 1 +e?' +¢e%” + ajze
computations one gets

_ 2 21\ 2
au:((kl ka) (ki k1k2+k2)> o18)

01102 after some

(k1 + ko) (ki* + kika + k2?)
and, then from (212),

ki%e” + ky?e® + apne? 0 (ky + ky)?
1+ e + e 4 ajpefitt

(kie? + ke + aype® 0 (ky + kg))2> ©19)

u(x,t) = 56(

(1 + et + ef2 4 ajpefitt2)?2

with 0, = k;x — ki7l + 6;.

The collision of two solitons for Eq.(211) is shown in Figs.19 and 20 for
k1 = 1, k2 =2, and51 =(52 =0.

The existence of a two-soliton solution comes as no surprise because (214) can
be written in bilinear form as

(D:D: + DY) (f-f) =0, (220)
which satisfies the conditions?° for the existence of a two-soliton solution (see, for

example, [34, Eq. (22)] and [46, Eq. (5.47)]).
In an attempt to find a three-soliton solution, one would take

20 For a derivation of such conditions see, e.g., [74].
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u(x,~0.125) u(x0.)
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Fig. 19 Graph of the two-soliton solution (219) of (211) at three different moments in time

-10

Fig. 20 Bird’s eye view of the collision of two solitons for Eq.(211). Notice the phase shift after
the collision

f =1 + 601 + 602 + 603 + a12691+92 + a13691+03 +a23602+03 + b123601+02+93
221)

2 2\ 2
o (ki — k) (ki* — kik; +k;?) 02
Y (ki +k;) (k2 + kik; + k;?)

with

and b3 = appajzans and substitute it into (214). A lengthy computation shows that
the equation is only satisfied if the wave numbers are equal or zero. Actually, this



Symbolic Computation of Solitary Wave Solutions ... 147

agrees with Hietarinta’s earlier studies of equations that have a bilinear form. Indeed,
for an N-soliton solution to exist, the condition [46, 74]

(n)
S[P,n]= ZP(ZU, i Za,w,)ﬂP(al i —ojkj, —ojwi +ojwj)oic; =0 (223)

==1 i=1 i<j

must hold forn = 2,3, ..., N. In (223), P is the polynomial corresponding to the
bilinear operator B, ) _, indicates the summation over all possible combinations

of oy = %1, 0o =#1, ..., 0, ==%1 and I—[fi)] means the product of all possible
combinations of the n elements with i < j, and all k;, w; subject to the dispersion
law w; (k;). Note that (223) is a condition for P and not for the k;. Also, all w; are
replaced in terms of the k; because (223) is evaluated on the dispersion law.

For (220), P(D.,D,) =B = D.,D, + Df and the three-soliton condition

S[P,3] = 0 (see, [34, Eq. (28)]) gives’!

2
(kikak3)* [(kf — k3) (kT — k) (k3 — k3)]
(kik; + kiks + k3k3) (kT + k3 + k3 + kiks + kik3 +k3k3) = 0. (224)

Thus, the wave numbers must be either equal, each other’s opposites, or zero. In
conclusion, the non-existence of a three-soliton solution agrees with the claim in
[51].

8 Soliton Solutions in Multiple Space Dimensions

8.1 The Kadomtsev-Petviashvili Equation

Arguably, the KP equation [2, 16, 55],
(uy + 6uny, + usze), +3ouy, =0 (225)

foru(x, y,t) and 0 = =£1, is one of the most studied soliton equations involving more
than one space variable. We only consider the so-called KPII equation [7, 60] where
o = 1. A Laurent series of its solution suggests the transformation u = 2 (In f),,.
We therefore integrate (225) twice,

8,(/ udx)+3u2+uxx+36)2,</ (/ udx)dx):O, (226)

2l Based on symmetry considerations, simplified expressions of (223) are given in [71,
Eq. (2.9)] and [83, Egs. (4.3) and (4.4)]. A computer implementation can be found in
[126, pp. 27-29 and p. 82].
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before replacing u in terms of f. The resulting equation,

FUfa+ fo +3f0) = fofo 4302 —4fefe =32 =0, (227)

can be written in bilinear form
(D«D; + D} +3D3) (f-f) =0, (228)

where D, is the Hirota operator defined in a similar way as D, and D, in (21) and
(22), respectively.

Continuing with (227), the computation of soliton solutions is similar to the KdV
case in Sect.2.2. Indeed, the forms of f(x, y, t) for multi-soliton solutions remain
the same except that 6; = k;x + [;y — w;t + §; with w; = k?;y"z. Setting [; = k; P;
simplifies matters. Then 6; = k; (x + P;y — (k} + 3P?)t) + &; and the phase factors
are

_ki=k) = (P = P)?
W ki + k)2 — (P — P)? (229)

and b123 = ai ai3 azs.
Setting k = 2K and 6 = 2 A, we obtain the solitary wave solution

u(x,y, 1) =2K?sech’[K (x + Py — (4 K> +3P%)t) + A] (230)

which is essentially one-dimensional.
The lengthy expressions for the two- and three-soliton solutions are not shown for
brevity. A graph of the two-soliton solution of (225) at ¢t = 0.35 for K| = %, K, =

1, Py = —4, P, = 2 and A} = A, = 0is shown in Fig. 21. Various types of soliton
interactions have been reported in the literature and observed at flat beaches [1].

8.2 A (3 + 1)-dimensional Evolution Equation

Consider the (3 + 1)-dimensional evolution equation [21],
3Wee —=20QW, + W3 —2WW,), +2 (wxa;l W}.))C =0, (231)
which can be written as
Btxe; — Quixy + tay — 2uxttyy)y + 2(uxxtty) e =0 (232)

after substituting W = u,. Integrating (232) twice with respect to x, yields
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u(x, y, 0.35)

Fig. 21 Snapshot of a two-soliton solution for the KP equation

3u, — 20, (f Uy dx> — Uyyy + 2uyuy = 0. (233)

A Laurent series solution of (232) suggests the transformation u = —3 (In f), which
indeed allows one to replace (233) by a homogeneous equation,

f(_zfyt + 3fxz - fxxxy) + 2fyft - 3(fxfz + fxxfxy - fxfxxy) + fofy = O,

(234)

of the form fLf + N (f, f) = 0 with
‘Cf = _2fyt +3fez — fxxxyv (235)
N(f7 9D =219 — 3(fxg: + frxGxy — [fxGxxy) + f3:9y- (236)

To compute a single solitary wave solution we set f = 1 4 e’, where § = kx + Iy +
mz — wt + 6. Then, L&’ = 0 yields w = W Since NV (e’, e?) = 0 we readily
obtain a solitary wave solution

3 1 k(k*l =3
u(x,t) = _Ek (1 + tanh I:E (kx +1ly+mz— (Tm)t + 5)}) . (237

For a two-soliton solution we take f = 1 +e? 4 e + a2/ *%, with 6; = kix +
k; (klzl, —3"’”)

Liy+miz—wit+ 6 andw; = 20

. After some computations

_ kikolil(ky — ko)1 — 1) — (kily — kaly)(Iymy — [my)
kikolila (ki + ko) (L + ) — (kila — kaly) (limy — lmy)

aln (238)
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Fig. 22 Plot of a two-soliton solution for (231) at r = 0.05 and z = 1 with k; =2,k = %,
I =—41—1,12= %,ml =4, my = %, andd; =9, =0

Thus, a two-soliton solution exists without having to impose any restrictions on the
components (k;, [;, m;) of the wave vector. In [21], the authors took /; = k; and
m; = k? from the outset and therefore only computed a special two-soliton solution
for which w; = —k}. Assuming a traveling frame 6; = k; (x + y) + k; (t + z) from
the start is too restrictive. Indeed, by a change of variables (x, y, z, ) — (£, n) with
& = x + yandn = t + z,one canreadily show that after two integrations with respect
to £ Eq. (231) becomes the integrated KdV equation, that is, (17) with ¢ replaced by
7, x by &, and u(x, t) by u(&, n).

Moving on with our computations, a three-soliton solution does not exist for
arbitrary wave numbers. Indeed,

f=1+ et + e + e + a12691+92 + a13€91+93 +a23e‘92+93 + b123e91+92+9z
(239)
only yields a three-soliton solution if /; = k; with m; still arbitrary (and a lengthy
computation shows that the same holds for a four-soliton solution). The dispersion
law and coefficients then simplify into w; = %(ki3 —3m;), a;; = (ki —kj)/(ki +
k j))z, and b3 = ajpajzans, which are the same as for the KdV equation.
A graph of a two-soliton solution of (231)att = 0.05and z = 1 withk; =2, k, =
%, L = —%,12 = %, my =4, mp = %, and 0; = &, = 0 is shown in Fig. 22.
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9 Symbolic Software

Symbolic software for Hirota’s method comes in two flavors: (i) code that aims at
finding the bilinear form of a nonlinear PDE and (ii) code to compute soliton solutions
with and without the use of the bilinear form.

9.1 Early Developments of Soliton Software

As part of the design of symbolic software for soliton theory, in the early 1990s
Hereman and Zhuang [28, 31-33] implemented the Hirota method in Macsyma, a
commercial computer algebra system now superseded by Maxima,”* a descendant
of the original DOE Macsyma system. The code HIROTA_SINGLE . MAX is able to
automatically compute up to three-soliton solutions of well-known nonlinear PDEs
that can be transformed into a single bilinear equation of KdV-type [31, 34], includ-
ing the KdV, Boussinesq, KP, SK, and shallow water wave equations. To compute
soliton solutions of these mostly (1 + 1)-dimensional PDEs, the bilinear form must
be given explicitly. The code can also verify condition (223) for the existence of
three- or four-soliton solutions (n = 3 or 4). To cover bilinear equations of mKdV-
type [35], Hereman and Zhuang made HIROTA_SYSTEM.MAX [28, 126] which
was applied to various extensions of the mKdV equation taken from [52]. Codes for
the sine-Gordon equation, NLS equations, and various other types of soliton equa-
tions which have quite complicated bilinear forms [37] were not developed. The
code HTIROTA_SINGLE .MAX was converted into Mathematica syntax and released
under the name hirota .m. Further details about these open source codes” can be
found in [32, 126].

Although the simplified Hirota method (which does not use the bilinear form)
was already published in [30, 85], its implementation did not start until 2012 and
is still ongoing. Cook et al. [12] made the code Homogenize-And-Solve.m
to automate the computation of the soliton solutions discussed in Sect.4 and
other soliton equations in (1 + 1)-dimensions. That code is now superseded by
PDESolitonSolutions.m [22].

9.2 Implementation and Limitations of
PDESolitonSolutions.m

The current version of PDESolitonSolutions.m [22] computes up to three-
soliton solutions for a given single PDE in one dependent variable (called u below)

22 Maxima is freely available from SourceForge at https://maxima.sourceforge.io/.
23 The codes are still available at https:/people.mines.edu/whereman..


https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://people.mines.edu/whereman.
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which is function of up to three space variables (x, y, z) and time (¢). The PDE must
have polynomial terms with constant coefficients. Presently, the code can not handle
systems of PDEs. The algorithm largely follows the steps of Sect.3.2:

®
(ii)

(iii)

(iv)

v)

(vi)

The PDE is integrated with respect to x as many times as possible.

The code first attempts to find a transformation to homogenize the given PDE
based on the (truncated) Laurent series expansion of its solution. If unsuccessful,
the code tries a transformation of type u = c (In f),,, with integer 1 <n <
Nmax (With default value np,x = 4) and constant c. Starting with n = 1, the
code seeks the lowest value of n and matching c so that the PDE is transformed
into an equation that is homogeneous in f.

A solution of type f(x,y,z,t) =1+ > F_ € f™(x,y,z,1) is sought where
1 < p < pmax (with default value pp,x = 8). The bookkeeping parameter ¢
helps with splitting expressions into single exponentials, products of two expo-
nentials, etc. Substituting the above sum for f into a homogeneous equation
for f (of degree d) yields an expression of degree €,x = d Pmax 10 €.

Starting with f = "N #:(x, y, z, 1), where the natural number N refers
to the N-soliton solution one aims to compute and ¢;(x,y,z,t) = eli =
gkixtliytmiz=wit+0; at order e the code balances the linear terms in ¢; to determine
the dispersion relation w; (k;, I;, m;).

Next, based on the monomials in the functions ¢; that occur at order €2, the
codebuilds f? = Zi’ j aij ¢i¢; and computes the coefficients a;; (and possible
constraints for k;, [;, and m;) by balancing like products of two exponentials.
Note that i = j is allowed to account for terms in (;51.2.

At the next orders in ¢, expressions for f®, f@® etc., are computed the same
way. If at some order n < ppay in € the function £ becomes identically zero,
the code verifies that f@+D f@m) can be set to zero. It also verifies
whether or not the coefficients of €"T!, ..., efm= in the expression mentioned
in (iii) all vanish. For non-solitonic equations this may lead to (additional)
constraints on the wave numbers. If both verifications are successful, the code
returns the solutions after explicitly verifying that the final f indeed satisfies
the homogenized PDE. If none of the ™ become zero, the code reports that a
N -soliton solution could not be computed. The code will return a solitary wave
solution for N = 1 and a bi-soliton solution for N = 2, provided such solutions
exist.

Some remarks are warranted:

®
(ii)

(iii)

The current code only considers integration with respect to x ignoring the
possibility to integrate the given PDE with respect to y or z.

In addition to transformations based on a truncated Laurent series, currently
only single-term logarithmic derivative transformations with respect to x up to
fourth-order are used. At present only transformations involving one new depen-
dent variable ( f) are considered. Therefore, the current code can not find solu-
tions of, for example, the mKdV equation.

With regard to the growing complexity of f as n increases, pmax = 8 has
been set as default value.
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(iv) The current code is limited to three space variables and time. To prevent long
expressions and avoid Mathematica’s conversion of products of exponentials
into a single exponential, the explicit form of ¢; (x, y, z, t) is never used. Instead,
the code uses rules for derivatives of ¢;(x, y, z, 1), such as ¢; (x, y, Z, t)ux =
k{lgb,-(x, Y Z, t) and (bi(-x» Y, 2, t)mt = (_wi)m¢i(xs Vs Z, t)~

(v) For example for the two-soliton case, f® = aj;¢? + aing1¢2 + aznd3 where

some of these terms might not be included. Indeed, after substitution of
f=14+fD =1+ ¢, + ¢ into the homogeneous equation, the code gen-
erates the list of monomials of type ¢;; (including ¢7) that occur at order €
and makes a linear combination of those monomials with undetermined coeffi-
cients a;; to create f® with the minimal number of terms. The coefficients a;;
are then computed by requiring that like terms in ¢;¢; vanish.
The same procedure is used to compute N-soliton solutions. Starting from
fF=1+fO =14¢;+¢,+...+ ¢n, the code constructs the minimal
expressions for all subsequent ™ in which each term is a product of n (not
necessarily distinct) functions taken from {¢;, ¢», ..., ®n}. The code deter-
mines which of these products are actually needed and combines them with
undetermined coefficients.

(vi) For homogeneous equations of high degree, some symbolic verifications can

be quite slow. To speed things up, the code does no longer symbolically verify
that coefficients of higher orders in € in the perturbation scheme vanish as
soon as two consecutive coefficients of lower orders terms already vanished
identically. Once two consecutive expressions are determined to be zero, the
code numerically tests if the expressions at higher order are also zero. This
applies to both the computation of the £ as well as the coefficients of ¢ in the
perturbation scheme.
Furthermore, verifying that the (lengthy) expressions of f indeed solve the
homogeneous equation can be time consuming, especially for cubic and quartic
equations. Indeed, checking that (107) satisfies (70) is computationally very
expensive. Therefore, after the solution is substituted into the homogeneous
equation, all independent variables, wave numbers (k;, [;, m;), phase constants
d;, and parameters in the PDE (if present) are repeatedly replaced by random
real numbers in [—2, 2]. In each case it is checked if the resulting expression
is zero within machine precision. Likewise, the solitary wave and one-soliton
solutions for u(x, y, z, t) are tested symbolically but the numerical approach is
used to verify that the often long expressions of two- and three-soliton solutions
u(x,y, z, t) indeed solve the original PDE.

9.3 Other Software Packages for Hirota’s Method

As early as 1988, Ito [53] designed code in REDUCE to interactively investigate
nonlinear PDEs with Hirota’s bilinear and Wronskian operators.
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In [124], Zhou et al. introduced the Maple package Bilinearization to con-
vert (mainly) nonlinear evolution equations of KdV-type into their bilinear form
using logarithmic-derivative transformations. To cover the mKdV and nonlinear
Schrodinger equations, they later extended the algorithm to work for arctan and ratio-
nal transformations. They also added the code Multisoliton to compute up to
three-soliton solutions for single bilinear equations and simple systems of bilinear
equations. Ye et al. [120, 121] presented a more efficient method to do the same but
only with logarithmic-derivative transformations. Their method is also implemented
in Maple. When successful, these Maple codes return the bilinear form explicitly.

Yang and Ruan [117-119] have produced the Maple packages HBFTrans,
HBFTrans?2, and HBFGen to transform nonlinear PDEs into their bilinear forms,
again based on logarithmic derivative transformations. In their newest algorithms,
they take advantage of the properties of the Hirota operators and the scaling invari-
ance’ of the original equation. Doing so, makes their codes more efficient and faster.

Based on the Bell polynomial approach [68, 69], Miao et al. [75] developed the
Maple package PDEBel1IT to compute bilinear forms, bilinear Biacklund trans-
formations, Lax pairs, and conservation laws of KdV-type equations. In contrast to
PDEBell, developed earlier by Yang and Chen, PDEBel11IT does no longer use
scaling invariance to make it applicable to a broader class of nonlinear PDEs.

For completeness, we mention the new computational method of Kumar et al.
[62] for the construction of bilinear forms which, as far as we know, has not been
implemented yet.

10 Conclusions and Future Work

Hirota’s bilinear method is an effective method to construct soliton solutions of
completely integrable nonlinear PDEs. In this paper we discussed a simplified version
of Hirota’s method (which does not use Hirota’s bilinear operators) and used it to
construct solitary and soliton solutions of various soliton equations as well as some
nonlinear polynomial equations that do not have solitons.

We showed that the Hirota transformation is crucial to obtain a PDE that is homo-
geneous of degree (in the new dependent variable). We focused on logarithmic
derivative transformations but, as we saw with the mKdV equation, rational and
arctan transformations might be required, or combinations thereof. To homogenize,
e.g., the Davey-Stewartson system, one needs a mixture of rational and logarithmic
derivative transformations. There is no systematic way for finding these transforma-
tions but the first few terms of a Laurent series solution and scaling invariance of the
PDE can help determine a suitable candidate thereby reducing the guess work.

The actual recasting of the transformed PDE into bilinear form in terms of Hirota’s
operators, which assumes a quadratic equation or a tricky decoupling into quadratic

24 Dilation or scaling symmetry is a special Lie-point symmetry shared by many integrable PDEs
[29].
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equations, is not required to compute solitary wave solutions or solitons. Indeed,
without bilinear forms, exact solutions of the transformed equation can still be con-
structed straightforwardly by solving a perturbation-like scheme on the computer
using a symbolic manipulation package.

The simplified version of Hirota’s method is largely algorithmic and now avail-
able as the Mathematica program PDESolitonSolutions .m. In future releases
a broader class of transformations (likely involving two functions f and g) will be
considered to make the code applicable to a large set of PDEs including mKdV-type
equations. A future version of the code might follow the algorithm presented in this
paper even closer. It will use the perturbation schemes involving the linear and non-
linear operators which will automatically be generated by splitting the homogeneous
equations into linear and nonlinear pieces. This “divide-and-conquer” strategy is
expected to make the computations faster. An extension of the algorithm and code
to systems of PDE:s is being investigated.
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Appendix

In the derivations below we use that £(f) is linear in £, N|(f, g) is bilinear (i.e.,
linear in both f and g), N> is trilinear, and N3 is quadrilinear.

Bilinear Scheme

For the derivation of the perturbation scheme for an equation of type (36) we need
Cauchy’s product formula (to regroup terms in powers of €),

e8] oo 00 n—1

doetay | |D ety | =D "D ajba . (240)

p=1 g=1 n=2 j=1
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Then,
fLf= (1 + Zeﬁ f(p)) L Zeq f(q)
q=1
— (1 +Z€p ik Zeq L@
q=1

pnqg

€4 ,Cf(‘” + Zep f(p) Zeq l:f(q)
p=1 g=1

Q
Il
=

f(n) + Z n Zf(j)[’f(n D, (241)

n=2 j=1

||M8

where we have applied (240) witha, = f?) andb, = L f©. Similarly, we compute

N, H=N 1+Zepf(1’), 1+Zeqf(q>
p=1 =

o] oo

N ZGP f(p)’ Zeq f(q)

p=1 q=1

— Z & N(f(j), f(”*j))’ (242)

where again we applied (240) and used the bilinearity of A'(f, g). Adding (241) and
(242), the coefficient of €” is

n—1
L™+ Z (f(j)ﬁf(n*j) + N(fD, f(n*j))) =0, n>2. (243)

j=1

Trilinear Scheme

For the derivation of the perturbation scheme for equations of type (58) we need
Cauchy’s product formula for three sums:

[e9) [e9) 00 oo n—1 j—1
dera, | [ D €lp, <Zercr> DTN Y arha i (244)

p=1 q=1 r=1 n=3 Jj=2 £=1



Symbolic Computation of Solitary Wave Solutions ... 157

Substituting (28) into (58) and applying (240) and (244) yields the following term
in€":

n—1 n—1 j—1
£f(”) + Z (Zf(j)ﬁf(ﬂ—j) +N1(f(j), f(”—j))) + Z Z (f(f)f(”—j)cf(j—()

Jj=1 j=2 t=1

+ FONGTD TN NSO, fOP ) =0, nz3 (245)

Quadrilinear Scheme
Setting up the perturbation scheme for equations of type (73) requires the formula

r=1 s=1

0 .
= Z ¢ [ bn—j Cj—t d[_m. (246)

Substituting (28) into (73) and applying (240), (244), and (246) yields the following
at O("):

n—1
Lro+3 (3f(j>£f(n—j> TN, f<n—j>))
j=1
n—1j—1
+ <3f(5)f(ll*j)£f(j*5) +2f’(5)./\/'l (f("*j), f(j*l)) +_/\/'2(f(£)’ f('l*j)7 f(j*@)))
=2 =1
n—1j—11¢-1

+ Z Z Z (f(m)f(ﬂ—j)f(j—l)ﬁf(l—m) + f(M)f(n—j)Nl (f(j—l), f(l—rﬂ))

=3 6=2 m=1
+f(m)./\/2(f(n7j), f(j*ﬁ)’ f(lfm)) +M(f('n), f('l*j)v f(j7[)7 f(e—m))> =0,
n>4. (247
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Propagation of Bright Solitons )
for KdV-Type Equations Involving L
Triplet Dispersion

Kamyar Hosseini, Evren Hincal, Olivia A. Obi, and Ranjan Das

Abstract In the present paper, a series of KdV-type equations with triplet disper-
sion, as mathematical models of waves on shallow water surfaces, are explored.
Bright solitons of the governing equations involving triple-spatial dispersion, spatio-
temporal dispersion, and dualtemporal-spatial dispersion are formally constructed
using the Kudryashov method. The impact of triplet dispersion as well as the nonlin-
ear parameter on the propagation of bright solitons is investigated in detail. Results
reveal how the propagation of bright solitons can systematically be controlled.

Keywords KdV-type equations - Triplet dispersion - Kudryashov method - Bright
solitons + Propagation

1 Introduction

The KdV equation
Uy + 6unty + g =0,

is known as a mathematical model of waves on shallow water surfaces. The history of
the KdV equation [1] goes back to Scott’s experiments in 1834 and theoretical studies
accomplished by Rayleigh and Boussinesq around 1871, and finally, Korteweg and de
Vries in 1895. Today, researchers deal with many nonlinear partial differential equa-
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tions (NLPDESs) along with their exact solutions, which are referred to as KdV-type
equations. For example, Wazwaz [2] employed Hirota’s bilinear method to derive
multiple solitons of the perturbed KdV equation. The scholar of [3] extracted soli-
tons of the modified KdV (mKdV) equation using the tanh-coth method. Zhang and
Ma [4] applied an ansatz method to construct rational solutions of a KdV-like equa-
tion. Newly, the following KdV-type equations, as mathematical models of waves
on shallow water surfaces, were introduced

uy +auuy, + lgluxxx + ﬂZuxxt + /33uxtt = 07 (1)
uy + auzux + ﬂluxxx + IBZMxxt + ,33uxtt =0, (2)

by Biswas et al. [5] which involve triplet dispersion. Biswas et al. [5] derived solitary
waves of the above KdV-type equations using an ansatz method. It should be pointed
out that Egs. (1) and (2) are reduced to KdV and mKdV equations, i.e.

Ur +auuy + lgluxxx =0,

2
Ur +au-uy + ﬁluxxx = 01

by considering B, = B3 = 0. The principal aim of the current paper is to acquire
bright solitons of the above KdV-type equations by applying the Kudryashov method
[6-8]. Among the efficient methods [9-18] to obtain soliton waves of NLPDEs,
Kudryashev’s method has received considerable attention from academic scholars.
Onder et al. [19] utilized the Kudryashov method to find soliton waves of a coupled
nonlinear Schrodinger system. Hosseini et al. [20] found dark solitons of a nonlinear
Schrodinger equation with the parabolic law using the Kudryashov method. More
applications of the Kudryashov method can be found in [21-26].

This paper is organized as follows: In Sect. 2, the Kudryashov method is explained
in short. In Sect. 3, after applying a special hypothesis and deriving the reduced forms
of the KdV-type equations, their bright solitons are retrieved using the Kudryashov
method. In Sect. 4, the impact of triplet dispersion as well as the nonlinear parameter
on the propagation of bright solitons is investigated in detail. By reviewing the results,
the present paper ends in the last section.

2 Kudryashov Method

In the current section, the Kudryashov method is explained in short. The first step of
this method is taking the following series

Ue) = ao+aiK(€) + aK*(€) + - +ayk¥(e), ay #0, 3)

as the solution of
PU(e),U'(e),U"(e),...) =0. 4)
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For more information, a;,i = 0, 1, ..., N are unknowns, N is the balance num-
ber, and K (¢) is

1

K(e) = - ,
(A — B)sinh(¢€) + (A + B) cosh(¢)

satisfying
(K'(€))* = K*(€)(1 —4ABK*(¢)). (5)

The second step is applying (3)—(5) and solving the resulting system to derive

unknowns. Finally, solitons of Eq. (4) are constructed by inserting unknowns into
Eq. (3).

3 KdV-Type Equations and Their Bright Solitons

In the present section, after applying a special hypothesis and deriving the reduced
forms of the KdV-type equations, their bright solitons are retrieved using the
Kudryashov method. To this end, the following hypothesis is employed

ulx,t) =U(e), € =x— wt, (6)
where o is the soliton velocity. So, the first KdV-type equation becomes

—wU'(€) +aU(e)U'(€) + B1U" (€) — wpU" (€) + 0’ B3U" (€) = 0.

Integrating the above equation w.r.t. € leads to
1
—wU(e) + EaUz(e) + (B1 — wP2 + &*B3)U" (€) = 0. )
From U” and U?, we find that N = 2, and consequently, Eq. (3) takes the form

U(e) = ap+ a1 K (€) + axK*(€), ar #0, 8)

where ag, a;, and a, are unknowns. Applying (5), (7), and (8) yields the following
system
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aay — 2w =0,

— B30* + (B + Dw — aag — B1 = 0,

1 1
4ps0’ar — S (8> + Dw + saal + a(@a +4p) =0,
1
— AB3Bw? + AByBw — ABB; + g = 0,
1
— AB3Bw* + AB,Bw — ABB; + 25 = 0,

with the following solutions:

Case 1:
ap =0,
a) = 0,
3AB(4; + 1 & [ —6461 B3 + 1683 + 86, + 1)
a = 2B >
4By + 1 \[~6481 55 + 1683 + 86 + 1
w = .
8ps

Thus, solitons of the first KdV-type equation are derived as

3AB(462+ 1 \/—646165 + 1683 + 862 + 1)
2Bz

upa(x, 1) =

1 2
((A — B)sinh(x — wt) + (A + B) cosh(x — a)t)) ’

where

4By + 1 \[~6481 3 + 1683 + 86, + 1
w = .
883

Case 2:

4By — 14 \/—64Bs By + 1683 — 86 + 1

ao 4B s
a) = 0
3( =482+ 1F /64831 + 1683 — 862 + 1) AB
a = 2B ,
4By — 1 \[~64B5p1 + 1683 — 8 + 1
w = .

883
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Consequently, solitons of the first KdV-type equation are acquired as

4 — 1+ \/—6453/31 + 1682 —8py + 1
483
3( — 42+ 1F |/ —64Bsp1 + 1687 — 86y + I)AB
+ 2830

u34(x,t) =

1 2
((A — B)sinh(x — wt) + (A + B) cosh(x — a)t)) ’

where

4Ps — 1%\ ~64B3f1 + 1683 — 85 + 1
w = .
883

Now, by considering (2) and (6), the second KdV-type equation becomes

—wU'(€) + aU*@)U'(€) + fiU" () — wpU" (€) + &’ B3U"(¢) = 0.

Integrating the above equation w.r.t. € yields
1
— U (&) + 30U () + (Bi — 0fs + B3 U"(€) = 0. ©)

From U” and U3, it is found that N = 1, and accordingly, we have
U(e) =ag+aK(e), a #0, (10

where ap and a; are unknowns. By employing (5), (9), and (10), the following system
is generated

aa§—3w=0,
—wBs+ (B + Do —aa; — pi =0,

ozaoal2 =0,

1
gaaf — 8AB(w*B3 — wh> + Bi)a; = 0.

Applying Maple results in
Case 1:

ap =0,

—3AB\/—4,33,31 +B2+2B+1—3ABS, —3AB

ay = +2
apfs

’
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BB+ B+ 28+ 1
w = 2[33 .

Thus, solitons of the second KdV-type equation are derived as

—3AB./—4B3B1 + B + 2B+ 1 —3ABB, — 3AB 1
U, 1) =+£2 | —

aps (A — B)sinh(x — wt) + (A + B) cosh(x — wr)’

where
Bot 1+ —~4Bsp1 + B3+ 262 + 1
w = .
2p5
Case 2:
ap =0,
—3AB\/—4,33,31 +B2+2B+1—3ABS, — 3AB
ay = :|:2 — 5
apB3

,32+1—\/—4,33,31 +B5+2B+1

w = .

285

Consequently, solitons of the second KdV-type equation are acquired as

3AB\/—4B38) + B3 +2B2 + 1 — 3ABB, — 3AB 1

ap3 (A — B) sinh(x — wt) + (A + B) cosh(x — wt)’

uz 4(x,1) = :EZJ —

where

Bt 1=\ AP+ B 26 + ]
w = 2ﬂ3 .

4 A Comprehensive Analysis

In the present section, the impact of triplet dispersion as well as the nonlinear param-
eter on the propagation of bright solitons is investigated in detail. First, we portray
the first bright soliton of Eq. (1) for the following parameter regimes
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u, -

(c) (d)

Fig. 1 The first bright soliton of Eq. (1) for a Sets 1 and 2, b Sets 1 and 3, ¢ Sets 1 and 4, and d
Sets 1 and 5 whenr =0

Setl:{A=2,B=1l,a=1,8 =1, =2 p =1},

Set2:{A=2B=1l,a=128 =18 =28 =1},
Set3:{A=2,B=1l,a=18 =125p8 =28 =1},
Setd:{A=2B=la=1,8 =18 =228 =1},
Set5:{A=2B=la=1,8 =18 =2 B3 =12},

in Fig. 1 when ¢t = 0.

From Fig. 1a, b, and d, it is seen that by increasing «, B, and B3, the amplitude
of the wave profile decreases while it increases by increasing 8, as shown in Fig. lc.
Such information is useful in controlling the propagation of bright solitons in the
first KdV-type equation. As another case study, we depict the first bright soliton of
Eq. (2) for the following parameter regimes

Set]:{AZZ,B:l,azl,ﬁlzl’ﬂzzz’ﬁ3:1},
Set2:{A=2,B=1la=13,8=1=2p=1},
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35 351 —s
3 35
25 259
1 2 i 2~
15 1.5
1 1
05 05
-6 -4 -2 0 2 4 6
(b)
| —Set 1
4 351 —
34
* 25§
Y19 = 2"
i 1.5
1 1
05}
-6 -4 -2 0 2 4 6 -6 -4 =2 0 2 4 6
X X
(c) (d)

Fig. 2 The first bright soliton of Eq. (2) for a Sets 1 and 2, b Sets 1 and 3, ¢ Sets 1 and 4, and d
Sets 1 and 5 whent =0

Set3:{A=2B=1la=1,8=176=2p=1},
Setd: {A=2B=1la=1p =18 =240 =1},
Set5:{A=2B=1la=1p8=1p8=2p =13}

in Fig.2 when t = 0.

By looking at Fig.2a, b, and d, it is observed that by increasing «, §;, and B3,
the amplitude of the wave profile decreases while it increases by increasing B, as
illustrated in Fig. 2c. Using this information, the propagation of bright solitons in the
second KdV-type equation can be controlled.

5 Conclusion

In the present paper, the authors explored a family of mathematical models of waves
on shallow water surfaces called KdV-type equations with triplet dispersion. Using
the Kudryashov method, as a pioneering method, bright solitons of the govern-
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ing equations involving triple-spatial dispersion, spatio-temporal dispersion, and
dualtemporal-spatial dispersion were formally derived. The influence of triplet dis-
persion as well as the nonlinear parameter on the propagation of bright solitons was
examined by representing a series of 2D plots. As a result, the propagation of bright
solitons in KdV-type equations can be readily controlled. As the authors could not
obtain the dark solitons of the KdV-type equations by the Kudryashov method, so,
other methods [27-30] in the future will be used to do this.
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A Natural Full-Discretization )
of the Korteweg-de-Vries Equation L

Xingbiao Hu and Yingnan Zhang

Abstract In this paper, we propose an integrable full-discretization of the Korteweg-
de-Vries (KdV) equation. Our method is based on the compatibility between the inte-
grable equation and its Bicklund transformation. By using this approach, we derive
a discrete equation that is a natural discretization of the KdV equation. Specifically,
in the natural limit, the discrete system approaches the continuous KdV equation.
We demonstrate that the integrability of the discrete system is confirmed by a Lax
pair and a Bicklund transformation.

Keywords Integrable discretization + Korteweg-de-Vries equation - Biacklund
transformation

1 Introduction

In this paper, we investigate the full-discretization of the Korteweg-de-Vries (KdV)
equation, which is a well-known completely integrable equation used to describe
shallow water waves [1]. The KdV equation has attracted significant interest since
the seminal numerical experiment performed by Zabusky and Kruskal [2]. Over the
years, various approaches have been used to discretize the KdV equation, and several
discrete analogues have been developed. Taha and Ablowitz discretized the Lax pair
of the KdV equation to obtain both a space discrete analogue and a fully discrete
analogue, which they applied to simulate the KdV equation [3]. In [4], Ohta and
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Hirota introduced a semi-discrete analogue and left the time variable smooth. The
Lotka-Volterra equation can also be viewed as an integrable semi-discretization of
the Korteweg-de-Vries equation [5—7]. As for the full-discrete analogues, the lattice
KdV developed by Hirota [8] and Nijhoff et al. [9] is a well-known example, and
it can be reduced to the continuous KdV equation, though not in a standard limit.
Schiff also constructed a full-discretization of the KdV equation using a loop group
approach in [10]. Other notable works include those by Suris [11], Tempesta [12],
and their respective references.

The idea of obtaining integrable discretizations through a suitable interpreta-
tion of Bicklund transformations is well established. The generation of integrable
differential-difference equations from Bécklund transformations was first explored
by Chiu and Ladik in [13], and Levi and Benguria in [14, 15]. In our previous work
[16], we demonstrated that by introducing a convergence condition, we can obtain
an integrable discretization of a soliton equation through the compatibility between
the integrable equation and its Biacklund transformation. In [16, 17], we applied this
method to discretize the space and time variables of the KdV equation separately.
In this paper, we extend our approach and show that by using two sets of Biacklund
transformations, we can discretize both the space and time variables simultaneously.

The main procedure we used in obtaining integrable discretizations through Back-
lund transformations involves working with bilinear equations and bilinear Béacklund
transformations. Compared to the traditional bilinear method [8, 18, 19] used to dis-
cretize soliton equations, the procedure presented in [16] is from a different viewpoint
of the bilinear method and is much more direct. The traditional method, as shown in
the left chart of Fig. 1, is to discretize the bilinear form of the soliton equation first
and then confirm the integrability. Due to non-uniqueness, there is some freedom
in (eq 1) when we discretize the smooth bilinear differential equation. Subsequently
(eq?2) is obtained from (eq 1) by considering its integrabilities (soliton solutions or
Bicklund transformation). Different from the traditional approach, the procedure
shown on the right of Fig. 1 preserves the integrability first and then discretize the
equation. Given an integrable bilinear equation and its Béacklund transformation, an
expanded system (eq3) of bilinear equations compatible with the original bilinear
equation can be obtained. In (eg3), there are some free parameters inherited from
the associated Bicklund transformations. Using properties of the 7-function or the
ideas in [14], it is natural to introduce some discrete variables in the new integrable
system. By considering continuum limit, we impose a convergence condition on the
new integrable system. Then the parameters can be determined and an integrable
discretization of the original bilinear system can be derived. We will give a brief
review of this approach with the KdV equation in next section.

The paper is organized in the following. In Sect. 2, we will review the integrable
semi-discretizations of the KdV equation obtained in [16, 17]. In Sect.3, we will
show the full-discretization of the KdV equation and prove its integrability. Section4
devotes to conclusions and discussions.
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integrable integrable
differential differential
equation equation
variable variable
transformation transformation
bilinear bilinear
differential differential
equation equation
discrctizationl compatibilityl
of BT
bilinear expanded
difference bilinear
equation(eql) system(eg3)
integrability (%introduction of (@convergence
iscrete variable condition
bilinear bilinear
difference difference
equation(eq2) equation(eq4)
variable variable
transformation transformation
integrable integrable
difference difference
equation equation

Fig.1 Flow charts of bilinear method of integrable discretization—Left chart: traditional approach;
Right chart: approach based on BT

2 Semi-discretization of the KdV Equation Based
on the Bicklund Transformation

In this section, we will provide a brief review of two semi-discretized versions of the
KdV equation presented in [16, 17]. One semi-discretization is applied to the space
variable, while the other is applied to the time variable. Our approach is based on the
bilinear method and the utilization of Bicklund transformations.

The Korteweg-de Vries (KdV) equation can be written as

Uy + Uyrr + 1R2uu, =0. (D)
Here, u, x, and ¢ are quantities that can be rescaled to produce any desired coefficients

in (1). The KdV equation is a completely integrable equation and has a Lax pair and
infinite conservation quantities. For more details, see [1] and references therein.
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The dependent variable transformation u = (In f),, converts (1) to the bilinear
form
D (D, +D)f - f=0. ©)

Here the D-operator is defined by

i 1

D;nD)’Cla(t’x) b(t3x) = ag—mayn

a(t +s,x+y)b(t —s,x —y) ly=0,y=0,
mn=0,1,2,..., 3)

or by the exponential identity

exp(0D;)a(z) - b(z) = exp(60y)(a(z + y)b(z — ¥)) ly=o,
=a(z+ Ob(z —9). “4)

The following bilinear Bécklund transformation (BT) of (2) has been given in
[20]:

(D> —AD,)f-g=0, )
(D, + D+ f-g=0, (6)

where A and p are arbitrary constants. For details of the D-operator and the bilinear
Bicklund transformation, see [20].

2.1 Semi-discretization of the Space Variable

To discretize the space variable, we consider (2) and (5) together as a new system

D.(D,+ D} f-f=0, (7)
(DX —AD,)f-g=0. (8)

Taking f — fu, g > fu_p and A = % where 7 is a discrete variable and 4 is the
step size, we get a differential-difference system

D.(D;+ D)) f, - fu =0, ©)

(D2—30>f-f =0 (10)
x h x)Jn n—h — Y,

From properties of the Bécklund transformation, the above system is also integrable.
One can rewrite (10) as
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[D; cosh(%Dn) - %Dx sinh(%Dn)]fn - fu=0. (11

Expanding this equation in powers of &, we get
[D} = DiDy + O] fo - fu =0, (12)

which means that D, = D, + O (h?). Thus the discrete variable 7 can be viewed
as an approximation to x and # is just the step size in the x-direction. We do not
discretize x directly but take it as an auxiliary variable. In the bilinear equations, we
still write it as x without confusion.

Applying the dependent variable transformation v, = (In f,,)x, y, = Vyx, pn =
Unx>Gn = Pn,x>Tn = qn.x to (9)_(10)7 we get

Ups+rn+ 12u,p, =0, (13)

(s + 1t 1) = E(UH% = V,1) = Wy — vn_%)z, (14)
2
(pn+% + pnf'z’) = E(un+% - unfg) - 2(un+g - unfg)(vnntg - vnf%)’ 15)

2
(anr%l +qnf§) = E(pn+% - pnfg) - z(pn+’5‘ - pn,%)(v,Hg - vnf’%)
_2(Mn+% - unfi—’)zf (16)

2
(rnJr% +rn7’%) = Z(qn+’5’ _qnf’%) - 6(pn+’% - pnfg)(unJr% - Mnfg)
_z(qn+% - qn—g)(vn+% - vn—%)' (17)

Under the natural limit 7 — 0, the above system tends to the KdV Eq. (1). The
discussions above can be summarized as the following theorem.

Theorem 1 The system (9)—(10) is an integrable discretization of the KdV Eq. (2).
Using transformations v, = (In f,)x, Uy = Vpx, Pn = Unx, Gn = Pn.x> 'n = Gn.x»
this system can be converted to (13)—(17), which converge to the KdV Eq. (1) as
h— 0.

The bilinear Egs. (9) and (10) have the Bicklund transformation (BT)

i 1
(Dye™ P fr - gy = (—Ze*%"" + BeP) £ - gn, (18)
D,%fn “Gn =Y fuGns (19)
(D; + D} +3yDy) f, - gn = 0, (20)

where [ and +y are arbitrary constants. Setting v, = (In gy)x, Un = Vn.x, Pn = Un x>
Gn = Pnxs fn = Ongn and 1, = ¢, , in (18)—(20), we can get a Lax pair for the
discrete Eqs. (13)—(17):
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ﬁ<¢n+l>=<%+vn_vn+l 1 >(¢n)
'l/]nH "Y — Uy — Up41 % + Uy — vn+1 ’l/)n ’

<¢n,t> — < an _4(’Y+un)) (¢n)
Ut 2g, — 40y = 2u,) (77 + up) —2py U )

See the details in [16].

2.2 Semi-discretization of the Time Variable

To discretize the time variable, we need derive a higher order Bicklund transforma-
tion. In fact, we have the following proposition [17].

Proposition 1 If f and g are two solutions of (2) and satisfy the BT (5)—(6), they
also satisfy
1 3
(D, D, — 5Df+ E/\L)3+uz)x)f.g:o. (1)
Proposition 1 means that (21) is also compatible with the original Eq. (2). Similarly

as the case of space variable, setting f — fi44, § = fis t = —% and v = 0, from
(2) and (21), we get an integrable differential-difference system

Dy(D; + D) fo - fu =0, (22)
(DD, 3D} =2 D) s S =0 (23)

The integrability is inherited from the compatibility between (2) and (21). Here we
view t as an auxiliary variable and k as the step size.
With n,, = (In fi.)s, sy = (In f) xx, the system (22)—(23) can be transformed to

Um,x = Um, (24)
Nm,x + 6”3, + Um xx = 07 (25)

E(“erl —Upy) + 17(um+1um+l,x + umum,x) + (um+1um,x + um+1,xum)

+§(um+1,xxx + um,xxx) + 3(vm-&-l - vm)(um+1,xx - um,xx)
+3Wmt1 — Vn) W1 x + i x) + 121 — V) gy — )

~ (i1 = W) W1 = ) + 2Ums1 — V) Umg1 — ) = 0. (26)

Here we have omitted the detailed derivation process and written subscript m + k as
m + 1. Replacing u,, by u(x, t), u,,+1 by u(x, t + k), and similarly for v and n, and
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then taking the limit k — 0, Egs. (24)—(26) tends to the KdV Eq. (1). A Lax pair for
the integrable differential-difference system (24)—(26) is

L.V, = \V¥,, 27
q”m-&-l = Am\pma (28)
where

Ly = &+ 2uy. (29)
Ay = kap 0 + kb0 + keyOy + (kdy + 1). (30)
an = —4, (31)
bm = 4(Um+l - Um)’ (32)
Cm = _z(varl - Um)2 - 2(5um =+ um+1)9 (33)

1 2 20 2 3

dy = —g(nmﬂ — M) + §Mm+1,x - ?Mm,x + g(varl — Um)
F2Wmt1 — Vi) Gy + i) (34)

and ' is the quasi differential operator. The compatibility of the above system is
Lm-HAm = AmLm» (35)

which gives the Eq. (24)—(26).

3 Full Discretization of the KdV Equation

In this section, we present a fully discrete approximation of the KdV Eq. (1). In
contrast to the semi-discrete case, where only one discrete variable is introduced, the
fully discrete case requires the introduction of two discrete variables, necessitating
the use of two sets of Bécklund transformations. Specifically, the integrable fully
discrete approximation of the KdV Eq. (2) is given by:

D.(D; + D)) fum * fam =0, (36)
, _h 2 h
(Dx GXP(EDn) - ZDX eXp(EDn))fnJrl,m : fn,m == O, (37)

(D, D, e (kD) 1D4e (kD)
X X_m__ X_WL
1eXP 2 Fx XL

3 k
_%Dx exp(EDm))fn,mH : fn,m =0. (38)
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Equation (36) corresponds to the original bilinear KdV Eq. (2), whereas Eqs. (37)
and (38) are obtained from the Bicklund transformations (5) and (21), respectively.
The discrete variables n and m correspond to the continuous variables x and 7. Let
M,m = (ln fn,m)t’ 6n,m = (ll’l fn,m)xts Un,m = (111 fn,m)x’ Unm = (h’l fn,m)xxv Pnm =
(ln fn,m)xxxv qdn.m = (111 fn,m)xxst nm = (ln fn,m)xxxxx~ Then ECIS (36)_(38) can be
transformed into a nonlinear system

(ulH—l,m + un,m) = Z(er-l,m - vn,m) - (vn+1,m - Un,m)za (39)
2
(Pnttm + Prm) = E(un+1,m — Un,m)
_2(un+l,m - un,m)(vn+l,m - Un,m)v (40)
2
((IrH—l,m + ‘In,m) = Z(er—l,m - pn,m) - 2(pn+l,m - pn,m)(vn+l,in - vn,m)
_2(un+l,m - un,m)za (41)
2
(rn+1,m + rn,m) = E(QHJrl,m - CInm) - 2(QI1Jr1,m - QH,m)(vn+1,m - Un,m)

_6(pn+1,m - pn,m)(un+1,m - un,m)a (42)
ﬁn,m + 6“5,"1 + qn.m = 07 (43)

3
%(Un,mntl - Un,m) = (ﬁn,erl + ﬁn,m) + (nn,m+1 - nn,m)(vn,m+1 - Un,m)

1
_E[(qn,val + qn,m) + 4(Un,m+l - vn,m)(pn,erl - pn,m)

+3(un,m+l + un,m)2 + 6(Un,m+l - Un,m)z(un,m-f-l + Mn,m)
+(Un,m+1 - Un,m)4]' (44)

From Eq. (43), we have

(ﬁtﬁl,m - 5n,m) + 6(un+1,m + Mn,m)(unJrl,m - un,m)
+(Qn+1,m - Qn,m) =0. (45)

Inserting Eq. (39) into the above formulae, we obtain

12
(ﬂn-&—l,m - Bn,m) + (Qn+1,1n - Qn,m) + z(vn+1,m - vn,m)(u11+l,m - Mn,m)

_6(Un+l,m - Un,m)z(un-‘rl,m - un,m) =0. (46)

Note that u = vy, p = uy, ¢ = px, § = 1. Thus integrating Eq. (46) about x, we
have

(nn-H,m - 77}1m) + (er—l,m - pn,m)

9 _ 2 _ _ 3 _
+h (Un+l,m vn,m) 2(le—l,m Un,m) =0. (47)
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Here we have taken all the integral constants as zero. Eliminating (3 in Eq. (44) and
then differentiating it with respect to x, we obtain

3 3

%(Mn,mwtl - un,m) + E(rn,m+1 + rn,m) + (un,erlpn,m + un,mpn,erl)
+17(Mn,m+lpn,m+l + un,mpn,m) + 3(vn,m—H - Un,m)(qn,m+l - qn,m)
+12(vn,m+l - vn,m)(ui,m.t,.] - uﬁ,m) + 3(vn,m+l - Un,nl)z([)n,m+l + pn,m)

+2(Un,m+l - Un,m)3(un,m+l - un,m) - (nn,erl - 7711,m)(“n,m+1 - un,m)
=0. (48)

It can be observed that the system of Eqgs. (39)-(42), (47)—(48) converges to the
semi-discrete Eqs. (13)—-(17) as & — 0, and to the semi-discrete Eqgs. (24)—(26) as
k— 0.

In the next, we will show the integrability of the full discrete Eqs. (36)—(38).

Proposition 2 The Biicklund transformation of the bilinear Egs. (36)—(38) is

) 1 )
DxeigD" fn,m *Onm = (Ve%D” - _eigD”)fn,m *Gn.ms (49)
D2 fum * Gum = AN umGnms (50)
(D; + D2 +3ADy + 11) fum * Gum = O, (51)

’ 3,
(DtegDm — 2D§e§D”‘ — 6)\Dxe%D'” + (u— %)e%Dm

_ee_gDm)fn,m *GGnm = 0, (52)

where A\, u, v and 0 are Béicklund parameters.

Proof Assume f, ,, is solutions of Egs. (36)—(38). All we need to do is to prove that
the g, » given by (49)—(52) is also a solution of the Egs. (36)—(38), i.e.

Py = D.(D: + D)) gum * Gnm = 0,

. h 2 h
P2 = [Dx COSh(EDn) - EDx Slnh(EDn)]gn,m *GGnm = 07
k 1,k
P3 = [D, D, cosh(=D,,) — = D; cosh(=D,,)

2 2 2
3 .k
_%Dx Slnh(EDm)]gn,m *Gnm = 0

In fact, P; = 0,P, = 0 can be proved in a same way in [16]. In the following, we will
prove P; = 0. Firstly, in a similar way in [17], we can prove that f, ., gu.» satisfy

1 9
(DD, — ED;‘ + uD, + Exz)fn,m < Gum = 0. (53)
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Secondly, we have the following identities,
(D, D,e:Pra - a)(erPnh - b) — (e2Pna - a) (D, D,e2Pb - b)
1 |
=D, cosh(EDm)(Dfa -b) - (ab) + Dy (D,e:Pna - b) - (e"2Prg - b)

— sinh(%Dm)[(DxD,a -b) - (ab) + (Dya - b) - (D,a - b)], (54)

(Die%Dma -a)(e?Prb - b) — (e2Pra - a)(Die%D'"b -b)
1
=4D,(D¢*P"a - b) - (e *Pra - b) — 3D? sinh(EDm)(Dﬁa -b) - (ab)
1
—2D, cosh(EDm)[(Dia -b) - (ab) + 3(D?a - b) - (D,a - b)]

- sinh(%Dm)[(Dia -b) - (ab) +2(D3a - b) - (Dya - b)]. (55)

D, cosh(%Dm)(Dxa -b) - (ab)
— D, (Dye?Pna by (e72Prq - b) — sinh(%Dm)(Dfa .b)-(ab). (56)
By using (54)—(56) and the relations (49)—(53), we have
—(@2P fum - fum) Ps
= [(D;Dye? P — %D;‘eéDm ~ %Dxe%%fn,m amn €22 G - Gum)
—(€3P" fum - frm)[(Dx Dyes P — %Die%‘% - %DxeéDm)gn,m - o]
=Dy cosh(%Dm)(szn.m ~gnm) * FomGn.m)
4D (D foy - Gum) - € 307 fo - G
- sinh(gDmn(Dthfn,m “gnm) * FnmGnm) + (D fom - Gnn) - (Dt fam - Gnom)]
—2D, (D33P foym - Gum) - (€20 fo - Gm)
+%D§ sinh(%DmXD,%fn.m “gnm) * (FomGnm)
+D, cosh(%DmM(Difn,m “gnn) - FamGnm) +3D3 fam - Gnm) - (D fom * Gnm))
+% sinh(%Dmn(D;tfn,m “gnm) - FnmGnm) +2(D3 fum - Gnm) - (Dx fam - Gn.m))

6 . k
_E Slnh(EDm)(Dx fn,m “Gn,m) (.fn,mgn,m)
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kp _kp
= Dy(D;e? mfn,m . gn,m) c(em20m fn,m . gn,m)
3 kp, —&p,
_ZDX(Der mfn,m . gn,m) c(em20m fn,m . gn,m)

6 k
+(2M - E) Sinh(EDm)(Dxfn,m . gn,m) . (fn,mgn,m)

k
_6)\Dx COSh(E Dm)(Dxfn,m . gn,m) ) (fn,mgn,m)
kp _kp
= Dy(Dez™m fn,m . gn,m) <(e72 mfn,m . gn,m)
35D, -£p
_ZDX(Der " fn,m “Gnm) - (€72 mfn,m . gn,m)
3 kp _kp
+(N - E)Dx(ez mfn,m : gn,m) : (6 2 mﬁz,m : gn,m)
k _1
_6/\Dx(Dxesz fn.m : gn,m) . (e sz f}l,l’l‘l : gn,m)
=0 (57)

Thus we complete the proof.

Setting Un,m = (111 gn,m)x, Un,m = Unm,xs Pnm = Unm,xs n.m = Pn,m,x» fn,m =
GumGnm s Onm = On.mox> and Dy = (Bym» Yu.m)?, the bilinear Egs. (49)~(52) can
be transformed to Lax pair of the discrete system (39)—(42), (47)—(48).

'YCDn-H,m - An,mq)n,ma (58)
Bn,mcpn,m-H = qun,ma (59)

where ~, @ are constants,

1
A _ n + Un,m - vn+l,m 1
nm — 1 s
A— Upn,m — Un+1,m n + Un,m — Un+1.m

a1 Gy
Bn,m = < ) s
a3 Oy

3
[ _z + 2pn,m + 4pn,m+1 + 12)\Un,m + 6un,mvn,m - 6un,m+lvn,m

+ 2U3,1m - 12)\vn,m+l - 6un,mvn,m+1 + 6un,m+lvn,m+1 - 6”,21,mvn,m+l

+ 6vn,m vﬁ,m-&-] - 2’vi,m-i—l — Nn,m + Mn,m+15 (60)
oy = —12X = 6ty 1y — Olty i1 — 6V, + 120, Vs ms1 — 6V, 01, 1)
—120% 4 3Gum + 3qnmr1 + Oty + 120+ 6Nty iy + 120,

2 2 2
+ 6pn,m Un,m — 6pn,m+1vn,m - 6)\vn,m + 6un,mvn’m + 6un,m+l Un,m

Qa3

- 6pn,mvn,m+1 + 6pn,m+1vn,m+1 + l2)\'-’n,mvn,m+1 - 12”;1,mvn,mvn,m+l

2 2 2
_ lzun,m+1vn,mvn,m+1 - 6)\Un,m+1 + 6un,mvn’m+1 + 6un,m+lvn,m+17 (62)
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Oy = _E - 4an - 2pn,m+1 + 12)\Un.m - 6un,mvn,m + 6un,m+lvn,m + zvim

2
- 12)\Un,m+l + 6un,mvn,m+l - 6un,m+lvn,m+l - 6vnymvn.m+l

+ 6vn,m vyzlyqu - 2v2,m+1 - nn,m + 77n,m+1- (63)
We can check that the compatibility conditions
Bn+1,mAn,m+1 - An,m Bn,m = 07 (64)

gives the discrete system (39)—(42), (47)—(48).

Theorem 2 The bilinear system (36)—(38) is an integrable discretization of the bilin-
ear KdV Eq. (2). Through the variable transformation 1y, = (0 fum)e, Vnm =
(In fn,m)x’ Unm = (In fn.m)xx: Pnm = (In fn,m)xxxr qnm = (In fn,m)xxxxr nm =
(n fom)xxxxx, it turns to the full discrete system (39)—(42), (47)—(48) which tends to
the KdV Eq. (1) under the natural limits h — 0, k — 0.

4 Conclusion and Discussion

In this paper, we have presented a full discretization of the KdV equation using the
bilinear method and the compatibility between the integrable differential equation
and its Biacklund transformation. Unlike the semi-discretizations in [16, 17], the full
discretization requires two sets of Biacklund transformations to discretize both the
space and time variables.

Our approach has significant potential and warrants further investigation. In the
future, we plan to discretize the initial boundary value problems of the KdV equation
to conduct numerical studies. Additionally, we will explore the extension of our
method to other types of equations, such as the NLS equation.

Acknowledgements This work was supported by the National Natural Science Foundation of
China (Grant no. 12071447, 11931017) and the Natural Science Foundation of Jiangsu Province
(Grant no. BK20211266).
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Damped Nonlinear Schrodinger )
Equation with Stark Effect oo

Yi Hu, Yongki Lee, and Shijun Zheng

Abstract The problem of singularity formation for damped NLS (dNLS) has been
an interesting and meanwhile challenging one in both mathematical and physical lit-
erature. We study the L?-critical damped NLS with a Stark potential. We prove that
the threshold for global existence and finite time blow-up of this equation is given
by ||Q|l,, where Q is the unique positive radial solution of AQ + |Q|*?Q = Q in
H'(R?). Moreover, in any small neighborhood of Q, there exists an initial data ug
above the ground state such that the solution flow admits the log-log blow-up speed.
This verifies the structural stability for the “log-log law” associated to the NLS mech-
anism under the perturbation by a damping term and a Stark potential. The proof of
our main theorem is based on the Avron-Herbst formula and the analogous result for
the unperturbed dNLS. The method of our analysis allows to further prove a general
blow-up criterion. Moreover, we give a concentration compactness description for
the limiting behavior of blow-up solutions, which might have independent analytical
interest.
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1 Introduction

Consider the damped nonlinear Schrédinger equation (ANLS) with Stark effect:
i, = —Au+ (E -x)u — [u|P'u —iau, u(0) =uyeH'. (1.1)

Here pe (1,1 + ﬁ) if n >3 and p € (1,00) if n =1,2. The solution u =
u(t, x) : R*" — C is the wave function, V (x) = Vg(x) := E - x is a Stark poten-
tial with £ € R"\ {0}, and —iau is a linear damping to the system with a > 0
being the coefficient of friction. The initial data ug is in the energy space H' :=
{¢> eH' :1x¢ e Lz}, whose norm is given by |¢] = (||¢||§1, + ||x¢||%2)1/2,
where H' denotes the usual Sobolev space.

The problem of studying singular solutions for the dNLS has been known techni-
cally difficult [10, 14, 16, 39]. In laser optics, it is desirable to understand the effect
of small damping on singularity formation (rate of wave collapse, asymptotics of
the blow-up profile) for the NLS mechanism. The dNLS (1.1) provides a model for
optical self-focusing phenomenon, where an electromagnetic wave is absorbed by
the propagation medium.

The damping term —iau, a > 0 contributes to the decrease of the mass and thus
there does not exists minimal mass blowup solutions, see (2.1) and Remark 3.2.
In fact, any initial data uy with possible large mass can quickly change to small
mass because of ||u(t)||§ =2 ||u0||§. Hence, there are analytical difficulties in
determining the blow-up behavior and the blow-up time. In the absence of a potential,
i.e., V = 0, Darwich [12] showed the existence of blow-up solutions in the log-log
regime for L2-critical ANLS based on some modifications of Merle-Raphaél spectral-
hypothesis approach [28]. When V is an unbounded potential, such approach does
not seem applicable since one would not be able to treat the dNLS (1.1) as a small
perturbation of the free dNLS. In addition, there is some difficulty verifying the
appropriate spectral hypothesis. Motivated by the R-transform method in [4] for the
rotational NLS, we apply the Avron-Herbst transform (3.1) to convert Eq. (1.1) to the
unperturbed dNLS, which allows to obtain the blow-up solutions above the ground
state solution Q of (1.7) with exact log-log blow-up rate in Theorem 1.1. This result
on the dNLS (1.1) is two-fold:

(1) It shows that || Qoll, is the threshold for global existence and blow-up.

(ii) It informs that in any small neighborhood of Qy, there exist blow-up solutions
in the log-log regime. Per the authors’ best knowledge, such construction of
singular solutions of (1.1) is new for Stark potential.

In the remaining of the introduction section, we elaborate on our results in Theo-
rems 1.1 and 1.2. The associated energy of the NLS (1.1) is given by

2
Ev () ::/ <|Vu|2+VE|u|2— —|u|”+l>dx. (1.2)
R p+1
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In physics, E may represent an electric field or quantum gravity [11, 38], and damped
NLS equations appear in nonlinear optics, plasma physics, and water waves [16, 19,
23, 33].

The hamiltonian H = Hg := —A + E - x arises in the study of hydrogen model
in connection with the resonance phenomenon associated with quasi-stationary states
[20, 21]. The operator H is essentially selfadjoint in C$°(R?), which has absolutely
continuous spectrum R = (—o00, 00). The presence of a Stark potential has an res-
onance effect such that it shifts the discrete energies of the hydrogen atom into
resonances (pseudo-eigenvalues) via the hamiltonian Hz p = —A — % + E - x,
where Z > 0 is the atomic number. This distinguishes from the harmonic oscil-
lator —A + |x|? in that H; g has weaker decaying “bound state”, andso Vg = E - x
is also called the spatially damped oscillator.

On the other hand, when a > 0, the linear term —iau is present as a temporal
damping effect for the NLS equation. So it might be of analytical interest to study
the Schrodinger type system as (1.1). There has been a large body of literature in the
field of wave dispersion-dissipation in physics and numerics [1, 6, 19, 24, 25].

If E=0anda = 0, then Eq. (1.1) becomes the classic NLS

i, = —Au— ul”'u,  u©) =uyec H' (1.3)
and its well-posedness and blowup have been studied extensively in the H'-

subcritical and H !-critical cases p<1+ %, see [9, 37]. The following quantities
are conserved in time for (1.3):

(Mass) M) = u@)|7. (1.4)
(Energy) Eou) = |Vu@)|7. — pi 7 Ilu(t)lli,,tll (1.5)
(Momentum)  P(u) :=Im (/ uVu dx) . (1.6)

In the L2-critical regime p = 1 + %, if we let Q = Q) be the unique positive and
radial solution in H' to the elliptic equation

AQ+01"0 =0, (1.7)

then Weinstein [40] showed that || Q]2 is the threshold for global existence and
finite time blowup of the Cauchy problem (1.3) in H'. Namely, if ||ug||;> < || Q] 12,
then the solution u(¢) of (1.3) is global in H', while for any ¢ > || Q|| 2, there exists
ug € H" with ||lug|| > = ¢ such that the solution u () blows up in finite time T* > 0.
Further, Merle [26] showed that the set of all minimal mass blowup solutions at
the ground state level || Q||, consists of pseudo-conformal transforms of the solitary
wave €'/ Q(x):
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if

$(.3) = o O

X — X Sexgl?
et ay

where (0, T, xg) € R x R x R” are parameters.

When the initial data is above the ground state level, under the assumption of
certain spectral property (see Remark 2.6), Merle and Raphaél ([28, 29]) proved the
sharp blow-up speed for the solutions, i.e., there exists a small universal constant
a* > 0 such that for all uy € B,- with negative energy £y(uo) < 0, the solution u(t)
blows up as t — T* with the speed (called “log-log law™)

log [log (T* — 1)| ) 2

IVu@)l> ~ ( T —; (1.9)
where
By:={p e H :[Qll> < ¢llz < Q> + e}
This log-log regime is also known to be stable in H' [36].
If E = 0in Eq.(1.1), then one has the damped NLS
ioy=—Ap—lpI" "9 —iap, @O)=¢o=ugeH'.  (1.10)

The local well-posedness in H' for the dNLS is well-known (see e.g. [9, 39]).
Precisely speaking, for every ug € H', there exists 7 > 0 and a unique solution
¢ € C([0,T), H') of the Cauchy problem (1.10), where [0, T) = [0, Tjuqy) is the
maximal time interval of existence. Moreover, if T, is finite, then | Vp(?)|, — oo
as t — T,.x. Because of the damping term —iag, the dynamics of the solution
may behave differently from that of the classic NLS. For instance, the mass, energy,
and momentum (1.4)—(1.6) are not conserved. Darwich [12] studied the Cauchy
problem (1.10) in the L2-critical regime p = 1 + % when n < 4, and he proved that
|| Q> is the sharp threshold for the blow-up phenomenon in H'. Furthermore, there
exists oy > 0 such that for all @ > 0 and arbitrary « € (0, &), there exists a blow-up
solution in the log-log regime corresponding to some u( € By, see Theorem 2.4.

Motivated by the abovementioned work, in this paper we concentrate on the L>-
critical case p = 1 + 4/n for the focusing dNLS (1.1) with a Stark potential. We
shall establish the sharp threshold for global existence and the log-log law for the
Cauchy problem (1.1) in the weighted Sobolev space H!. Our main result is stated
as follows.

Theorem 1.1 Let p =1+ % and a > 0. Suppose uy € H'(R") for 1 <n < 4.

(a) If luollr2 < || Qllr2, then the solution of (1.1) is global in time such that u(t) €
C ([0, 00), HY).

(b) There exists a small oy > 0 such that for arbitrary o € (0, o), there exists
ug € By N'H! such that the corresponding solution u(t) of (1.1) blows up at
T* < oo with the log-log speed (1.9).
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The proof of Theorem 1.1 (see Sect.3) relies on the Avron-Herbst transform
(Proposition 3.1) and Theorem 2.4. An alternative, independent proof of part (a) in
all dimensions is given as a corollary (Corollary 4.4) of a limiting profile result in
Theorem 4.3.

We wish to mention that for the L?-critical NLS (1.3), there exist minimal mass
blow-up solutions (1.8) with |jugll> = || Q|l» and pseudo-conformal blow-up speed
(T* — t)~'. However, in the presence of damping, ||uo]|>» = || Q|| will lead to a global
solution to the Eq.(1.1), so Theorem 1.1 also proves the none existence of minimal
mass blow-up solutions for (1.1).

Theorem 1.1 shows the structural stability for the NLS mechanism: The log-log
law continues to hold when the free NLS iu, = —Au — |u|*"u is perturbed with a
damping term and a linearly growth potential. Similar results have been obtained for
other Schrodinger type equations rencently [4, 15, 34, 35]. However, from the proofs
in either [12] or [13], it is not evident whether such log-log regime is topologically
stable for the dissipative NLS (1.1) in an electric field.

Our second main result is concerned with finding a sufficient condition on singular
(blow-up) solutions for (1.1). By the A-H transform in Proposition 3.1, we are able
to show that, given any u( with &(ug) < 0, there exists a, = a,(up) > 0 such that
the solution u(¢) blows up for all 0 < a < ag by an application of [14, Theorem 1.2],
see Theorem 2.8.

Theorem 1.2 Let p=1+4/n, n > 1. Suppose ug € H' and Ey (up) < [E - x|uol*.
Then, there exists a, = a,(||ug|| 1) > Osuchthat foralla € (0, a,), the correspond-
ing solutionu(t) of (1.1)in C([0, T*), H') blows up finite time on [0, T*) in the sense
that |Vu(t)|l, > occast — T*.

Note that this theorem, along with part (a) in Theorem 1.1, implies the blow-up
for any initial data in the open region {u € B,, N H>° : £,(M) < /} for any prescribed
positive «y.

On the other hand, the numerical result in [16] and also [10, 14] suggest that
increasing the value of a > a, can give rise to the effect that damping arrests self-
focusing so that the solution will survive over infinity time. However, such a, is
dependent on the initial data. Meanwhile, in the case Vg = 0, a simple scaling argu-
ment informs that given any solutionu of NLS, in (2.5), thenu;, (¢, x) := # u(/\’—z, )XC)
solves NLS, 2, cf. [12, Remark 3.2]. Thus, the problem of stability/instability of
blow-up for the dNLS can be notably subtle and sensitive.

We would like to comment that the results in this article inform that the Stark
potential Vi = E - x does not seem to essentially change the blow-up by its interac-
tions with the damping term and the L2-critical nonlinearity. However, this potential
may affect the scattering behavior owing to its interaction with a linear potential
potential like |x|77, as was observed in Ozawa’s work [32], cf. also [8, Remark,
p- 727]. It would be of interest to further study the effect of Vx on the long time
asymptotic behavior for Eq.(1.1) when p < 1 +4/n.
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2 Preliminaries

For the dNLS (1.1) with a Stark potential Vg, the local well-posedness in 7' holds.
In fact, following a standard fixed point argument as in [9] or [8, 42], we can easily
show the following 1.w.p. for (1.1).

Proposition 2.1 Let p € (1,1 +4/(n — 2)). Suppose uy € H'. Then there exists
T :=T* € (0, oo] and a unique solution u(t) in C ([O, T), Hl) of the Cauchy prob-
lem (1.10), where [0, T) is the lifespan for forward time. The blow-up alternative
holds: If T is finite, then ||Vu(t)|, - ocoast — T.

‘We omit the detailed proof of the proposition, but instead provide below a descrip-
tion of the “modified conservation laws” on the interval of existence [0, T) for the
mass, energy, and momentum of the system.

Proposition 2.2 Let u be a solution of the Cauchy problem (1.1) on [0, T). Let
M), Ey(u), and P(u) be defined as in (1.4)—(1.6), respectively, and let Ey (u) be
the associated energy (1.2). Then

M) = e M(ug) 2.1)
%So(u) = —2;'/ E -uVudx — 2a||Vu()||7. + 2a||u(z)||§jjl (2.2)
%&(u) =-2a f E - xluPdx — 2al|Vu(@®)|2: + 2alu@)||7}) (2.3)

Pu) = e (=t EM(uo) + P(up)) . (2.4)

Proof Equations(2.1) to (2.4) can be verified by straightforward calculations. For
instance, to verify the identity (2.1), we multiply both sides of Eq.(1.1) by u and
integrate them with respect to x to obtain

/ iuudx = / (—Au +E - xu—|ulP'u— iau) udx
= / (IVul* + E - x|u* — [u|"*" —ia|u|*) dx.
Since
d 2 — - 2
— |lu|“dx =2Re | u;udx =2Im [ iu,udx = —2a lu|“dx,
dt R Rr

we obtain the o.d.e.

d
Enu(nniz = 2allu®lz..  NuO 2 = lluollz2,

whose solution yields (2.1).
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Similarly, Eqgs.(2.2) and (2.3) follow from a direct calculation, and Eq.(2.4)
follows via solving the Cauchy problem

%P(u) = —EM(ug) — 2aP(u), Pu(0)) = P(ug).

O

Remark 2.3 If the system is damping-free, i.e. a = 0, then the quantities M (u) and
Ey (u) are conserved. Also, from (2.1)—(2.4), it seems that the Stark potential affects
the dynamics of all but M (u). Indeed, Eq. (2.1) also holds when E = 0 (which will be
used in the proof of Theorem 1.1 later). Moreover, Eq. (2.1) indicates the nonexistence
of solitary waves of the form u (¢, x) = e'/¢ (x), for otherwise ||u(t)|| ;> = ||$|| ;> does
not decay in time.

The following theorem is the main result in [12], and it will be applied in the proof
of Theorem 1.1.

Theorem 2.4 (Darwich [12]) Let p = 1 + * and ug € H'(R"), n = 1,2,3, 4.

(a) If lluollz2 < |1QllL2, then the solution to Eq.(1.10) is global in H'.

(b) There exists a &g > 0 such that, for all a > 0 and § € (0, &), there exists a
ug € H' with |lugllz> = || Q2 + 8, such that the solution to Eq.(1.10) blows
up in finite time in the log-log regime (1.9).

The proof of Theorem 2.4 is a modification of the approach in [27] to [30]. The
initial ansatz for the profile near t — T* is given as

ei@(z) ¥ — y(l)

= W (Qb(t) + 77) (, W)

@(t, x)
for some geometrical parameters (b, A, y, 0)=(b(t), A(t), y(t),0(t)) € Ry x Ry x
R" x R with A(t) ~ 1/ |[|[Vu(z)||,. These profiles Q, are regularization of the self-
similar solutions of (1.3) that obeys the elliptic equation

8Qy+ib(5+xV) Qo +101 Qs = 0.

Thus Q,, are resultantly suitable deformation of Q up to some degeneracy of the prob-
lem (1.7). The geometrical parameters here are uniquely defined per some orthogo-
nality conditions in the Spectral Property [28, p. 164], or [4, 41].

Remark 2.5 The limit on the dimension n < 4 is required in an interpolation
inequality in the proof of [12, Lemma 6.2], see also similar proof for [13, Lemma
4.2].

Remark 2.6 The Spectral Property has not been analytically verified for all dimen-
sions. In one dimension it was proved by Merle and Raphaél [28] using the explicit
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expression of Q to (1.7). The recent progress in higher dimensions is attributed to
[18], and [41], where is given an improved numerically-assisted proof for n < 10
and also for n = 11, 12 in the radial case. See also the discussions on the rotational
NLS in [4, 5], where the spectral property is required.

Remark 2.7 It is known in the literature that that nonlinear damping arrests blow-
up, while linear damping can arrest blow-up only when the parameter a is larger than
a threshold value ap,esn01a [3, 16]. At first glimpse one might think that the result
in Theorem 2.4 should be valid for a finite range of a dependent on u,. However,
a close read of, e.g., Remark 4.5 suggests that even for large damping value of a,
the solution u(#) can blow up in very short time before the mass going below || O ||%.
On the other hand, when a = 0 and |Jug|l, = || Q|l,, it is easy to construct for the
undamped NLS with Stark effect a pseudo-conformal type blow-up solution with
blow-up rate (T — t)~' for any prescribed T > 0. Also, we can construct a global
solution that has blow-up at infinite time. Nevertheless, whena > 0, the ANLS (1.1)
no longer admits similar blow-up solutions, even though the converted nonlinearity
—e~ (=D |p|P~1p ~ —|p|P~ ¢ for shorter time under the transform u = e~ ¢. We
see here again that even in very short time the role of damping —iau in arresting
blow-up is crucial and can be exceptionally subtle.

For the proof of Theorem 1.2 we need the analogous result in [14], where some
blow-up conditions for (1.10) were obtained. Let J(¢) := f |x|2|¢|? be the variance.
In the L2-critical regime p = 1 + %, the virial identity for the free NLS (1.3) reads
j—; J () = 8&(up), which can be used to show that uy — u(t) is a blow-up solution
of (1.3) if &y(ug) < 0. This result was extended for the dNLS (2.5) in the absence of
Vg in [14, Theorem 1.2]

igp=—Ap — |p|""0 —iap,  @(0)=gp. (2.5)

The proof is based on a localized virial identity for the dNLS. Denote ¥ := H' N
{ueL?: [|x|*lu]* < oo}

Theorem 2.8 (Dinh [14]) Let p = 1+ 4/n, n > 1. Suppose uy € X and Ey(py) <
0. Then, there exists a positive a, = a.(||uoll 1) such that for all a € (0, a,), the
corresponding solution u(t) of (2.5) in C ([0, T*), X) blows up finite time on [0, T*).

The proof of Theorem 1.2 is based on a simple application of the Avron-Herbst
formula (3.2) and Theorem 2.8. The A-H transform allows us to convert solutions
u(t) of (1.1) into solutions ¢ of (2.5). We leave the proof as an easy exercise for the
reader.
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3 Avron-Herbst Formula and Proof of Theorem 1.1

First we introduce the Avron-Herbst formula, as is well-known [2, 8, 11].

Proposition 3.1 Let T € (0, oo]. If ¢ is the solution to the Cauchy problem (1.10)
on [0, T), then for E € R" \ {0}, the function

. E23
u(t,x) =g (t,x +1’E) ;i (P 3.1)

is the solution to the Cauchy problem (1.1) on [0, T).
Conversely, if u is the solution to the Cauchy problem (1.1) on [0, T), then the
function

2.3
2|E|“t
MR

o, x):=u (t, X — tzE) ei(lE' (3.2)

is the solution to the Cauchy problem (1.10) on [0, T).

Proof Both can be verified by direct computation. For example, to verify that u in
(3.1) solves the problem (1.1), obviously we have u(0) = ¢(0) = ug, and

. 2,3
u(t,x) = [@ (t,x +12E) + 2tE - Vo (t, x + 1*E)| e"(’E'H%)

1E23

+o(t,x +1°E) o (E )[—i (E - x +|EP?)]
= [(p, (t,x + t2E) +2tE - Vo (t,x + tzE) —iE - -x¢ (t,x + t2E)

i £ 2,3
_i|E|2t2(p (t, X+ IZE)] e—l(fE<x+%)

and

—i(tEuH—%) —l‘([Eu’(‘*'w)
Au(t,x):A[(p(t,x +t2E)]e +2V[(p(t,x+t2E)]-V e i
_i(iE. IEW)
+<p(t,x+t2E)A{e l<'Ex+ i }

(i)
=[Ag (1, x + 2E) = 2itE - Vo (1, x + 1*E) — 2| EPg (1, x + 2E) ] e G .

Then Eq.(1.1) holds if we bring u, u,, and Au into both sides and use Eq.(1.10)
for ¢. O

Now we prove Theorem 1.1 using the Avron-Herbst transform (3.1)—(3.2).

Proof of Theorem 1.1 To prove (a), note that if |lugl|;2 < ||Q]|.2, then according
to Theorem 2.4, there exists a global solution ¢ to the Cauchy problem (1.10) with
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¢(0) = up. Applying formula (3.1) to ¢, we obtain a global solution u to the problem
(1.1).

To prove (b), let gy := 8y in Theorem 2.4. Then foreach« € (0, «g), there exists an
initial value ||ugl|2 = || Q|2 + o with which the solution ¢ to the Cauchy problem
(1.10) blows up in finite time 7* at the log-log speed (1.9). Then we obtain u in terms
of ¢ on [0, T*) through formula (3.1), and [0, T*) is the maximal time interval for
u because otherwise we can use formula (3.2) to extend ¢ beyond 7*. To show that
u blows up in the log-log regime, we have

LE23

Vo (tox 4+ 2E) e (FH ) Ly (x4 2E) o
— 1411

2123
,E.H%)

Vu(t, x) (—itE)

It is easy to see that

I—

as t — T,

log | log(T* —t)|
Il = Vo)l ~ (L

T* —t
Also, by the identiy (2.1) (and Remark 2.3), we have
)2 =t|E|llo Ol 2 = te™ " |E| Nuoll,2

which is a bounded function on [0, oo) with maximum occurring att = % .Combining
both estimates, we have

log |log(T* — 1)]

3
as t — T,
T —t

Va2 ~ [Tl 2 + [Tl 2 = (

]

Remark 3.2 We have noted in the introduction section that, in the presence of
damping, Theorem 1.1 (a) indicates that there always exists a global solution of
(1.1) when |lug|l2 = || Qll2- Indeed, we will give another proof of this property in
the next section as a corollary of a limiting profile result (Theorem 4.3), which
basically says that the mass of a blowup solution will concentrate and will be no less
than || Q||,. This, together with the mass decay (2.1), will explain why there are no
blow-up solutions at the level || Q||,, see Corollary 4.4.

4 A Limiting Profile Result for Eq. (1.1)

In this section, we will first prove a limiting profile result about the mass concentration
of blow-up solutions of Eq. (1.1) in Theorem 4.3, and then give an alternative proof of
Theorem 1.1 (a) for all dimensions. Throughout this section, we assume p = 1 + %.
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In [22], Hmidi and Keraani proved a refined version of compactness lemma
adapted to the analysis of the blow-up phenomenon for the Cauchy problem (1.3) in
the L2-critical case. Their result is as follows.

Theorem 4.1 ([22]) Let {v;} be a bounded sequence in H' (R") such that

limsup [|[Vugllp2 < M 4.1)
k—o00
and
limsup [[ug ] .. s = m. 4.2)
k— 00 "

Then there exists a sequence {x;} € R" such that (up to a subsequence)

n 2 122

n Pt
M2

u(+x) =V and V] > (
We will also use the following lemma from [31].

Lemma 4.2 ([31]) Let T € (0, 00), and assume that f : [0, T) — R* is a contin-
uous function. If lin} f(t) = oo, then there exists a sequence {t;.} in C [0, T) such
t—

that

/[k f(r)dr
d &£ 590
S @)

tn > T an as k — oo.

Now we present the main result in this section.

Theorem 4.3 (Concentration of mass) Consider the Cauchy problem (1.1) with
p=1+ %. Suppose that the solution u of (1.1) blows up at finite time T* <
oo, iLe. ||Vu(t)||f2— oo as t — T*. Then for any function w(t) satisfying
w®)||Vu(t)||p2 = oo ast — T, there exists a function x(t) € R" such that (up to
a subsequence)

litTEiT{}f lu@ 2 gx—x@y<wy = 1@ Lz 4.3)

Proof Let G(u) be the r.h.s. of the Eq.(2.2), i.e.
L2HEe

4
Gu) = —2i/ E - uVidx — 2a||Vu(@®)|% + 2alu@®)|’’ "

Integrating (2.2) on [0, ¢), we have

Eo(u(t)) = Eo(uo) +/O Gu(r))dr. 4.4)
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Now we give an estimate of G («#). By Holder’s inequality and the mass decay (2.1),
we have

/ E - uVidx| < | E - u(t) | Vae(o) | 2

= |El luOll 2 IVu@)ll> < [E] uoll2IVu(®)]l 2,
and by Gagliardo-Nirenberg inequality and (2.1), we have

247 : 2 : 2
||M(f)||L2 s < Cllu®liz IVu@lze < Clluollz. IVu@)liz

+ —

SO

|G ()] < 2IE| luoll2[IVu(®)ll 2 + 2a [IVu(@)ll72 + 2aC lluol . I Vu(®)l7.
SIVu@®) e + Vu@®)|;.. (4.5)

Since | Vu(t)||;2 — coast — T*, by Lemma 4.2, there exists a sequence t; — T*
such that

/0 (Va2 + IVu()|2:) dr
IVu e + Va2,

— 0,

so by (4.5) we have

173
/ Gu(z)) dr
0
o (4.6)
IIVu(tk)Iliz
Let
p(t)::%, ot x) = plult, px),  pri=p),  ve(x) = v(h, X).

Now we check that {v;} defined above satisfies the assumptions in Theorem 4.1.
Firstly, by the mass decay (2.1), we have

lvellz = llu(@)ll> < lluollz2,

showing the boundedness of {v;}. Secondly, since

Vol = oI Vu@)ll: = IV Q2.
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we know that inequality (4.1) is satisfied with M = |V Q|| 2. Finally, by (1.5), (4.4),
and (4.6), we have

_ 2 n 2+%
Eov) = IVullyz — mHUkHLH%

n 2+§
= R IVu: = —— (oFluol’Lr )

n+2 12+
= pi Eo(ulty))

= 0 Eouo) + 0} / G(u(r))dt
0

/ k G(u(r))drt
0

_IVOIZEouo)
Va2

+1VOli
IVu@l; t

-0 ask — oo,

or equivalently,

n—+2
n

2+; 2 n+2 2
loell ' — IVUelze = ——IIVOIL.,

so inequality (4.2) is also satisfied with m = (”nizHVQlliz)z"nﬁ. Hence by Theo-
rem 4.1, there exists a sequence {x;} € R” such that

piulte, pr - +x) =~V 4.7

weakly in H', and

ISE

mitl 41

n
Vv >
VIl = <n+2) YE 1Ql.2

_< n )3 (H2VQl7.)" +1
n+2 IVl

192 = 1 QL2
By (4.7), for every R > 0, there is

liminf/ p;g|u(zk,pkx+xk)|2dxz/ |V|?dx,
[x|<R

k— 00 IxI<R

or equivalently,

liminf/ lu(te, x)|? dx zf |V|*dx.
[x—x¢|<px R

k—o00 Ix|<R
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Now let w(¢) be a function satisfying w(¢)||Vu(t)|;2 — oo as t — T*. Then

% — oo as k — 00, SO % > R for k large enough. Hence,

lim inf sup/ lu(te, x)|* dx > lim inf sup/ lu(te, x)|* dx
[x—yl=w(t) [x=yl<pR

k=00 yeRn =00 yeRn

> liminff lu(te, x)|* dx
[x—xg|<px R

k— 00

z/ VI dx,
|x|<R

and letting R — oo, we have

lim inf sup/ lu(ty, x)|* dx 2/ V[2dx > || Q|3..
[x—y[<w(t) R"

k— 00 yeRn

For every ¢ € [0, T*), the function

Yy Iu(t,x)lzdx

lx—yl<w(t)

is continuous and vanishes as |y| — oo, so the supremum is attained at some point
x(t) € R". Therefore,

lim inf lu(ty, x)|> dx = liminf sup / (. ) dx = 10113, .
k=00 Jix—x ()| <w(t) k=00 yeRrn Jix—y|<w(t)
and the proof of Theorem 4.3 is complete. (]

Now we give an alternative proof of Theorem 1.1 (a) by virtue of the mass con-
centration property (4.3) in Theorem 4.3.

Corollary 4.4 Theorem 1.1 (a) holds for all dimensions.

Proof Since ug € H!, according to Proposition 2.1, there exist 0 < T* < oo and a
unique solution u(¢) in C ([0, T*), H'). Assume u blows up at T* < oco. Then by
(4.3) (taking w(z) = 1), we have (up to a subsequence)

liminf [|u ()|l L2 x—x)i<1) = 19112
t—>T*

for some function x(z) € R". However by (2.1), ||u(?)]|z2 decays in ¢, so its limit
inferior will be strictly less than || Q|| 2, contradictory to the prior inequality. (I

Remark 4.5 By Theorem 4.3, if |ug||.2 > || Q|72 and u blows up at finite time T*,

1 lleoll 2
then 7* < _ log ( ”Q”; )
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5 Concluding Remarks

It is commonly known that, unlike the standard NLS, the damped NLS is non-
hamiltonian, which does not enjoy conservation laws in mass, energy or momentum.
This can bring in difficulties to the study of singularity formation of dNLS. In this
article, we consider the linearly damped NLS (1.1) under a (weak) waveguide poten-
tial V, where V (x) = E - x represents the Stark effect. In the absence of a potential,
the existence of blow-up solutions for dNLS has been obtained in e.g. [6, 1214,
16]. Our main result, Theorem 1.1, shows the existence of blow-up solutions in the
log-log regime above the ground state level || O ||,. Furthermore, Theorem 1.2 gives a
general blow-up criterion for (1.1). These two theorems together suggest that given
any ug in {¢ eH 10N < 1ol < 1012 +a} for some o > 0, there exists
a, = a,(Jluoll 1) > Osuchthatforalla € (0, a,), the solution u(¢) blows up in finite
time with log-log speed. This can be viewed as a remarkable structural stability for
NLS type systems. Observe that, in view of (2.1), Theorem 1.1 (a), and Corollary
4.4, the “damping arrests self-focusing” phenomenon occurs in the presence of Stark
effect too, if one increases the value of a > 0.

The advantage of our analysis and transform method is that the work is not over-
whelmed by complex technical details. The line of approach can be applied to treat
other unbounded perturbations, e.g., a confining harmonic potential. In application,
the abovementioned results might provide a priori information for observation in
the lab as well as numerical simulations [3, 7, 17, 19]. Following this direction of
investigation, our work might leave open the question concerning the construction
of blow-up solutions for a general potential V.
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Abstract In the present paper, the authors have explored the existence of KdV and
mKdV solitons in a collisionless and unmagnetized plasma model involving positive
ion and negative ion beams together with thermal electrons. For various selections of
Q'(= my/m;, negative ion beam to positive ion mass ratio) larger and less than one,
low amplitude rarefactive and compressive KdV solitons are created in the plasma
under the effect of the electron’s drift velocity v). In two intervals of drift velocity
v, for 0 < v, <26 and26.5 < v, < 28.5 when Q' is less than one, the existence of
the mKdV solitons is demonstrated.
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1 Introduction

Nonlinear phenomena in different mediums and diverse physical situations have long
been the subject of inquiry. Over the past three decades, a wide range of acceptable
approaches has been exerted to extensively explore the nonlinear ion-acoustic soli-
tary waves (NLIASWs) in plasma, both theoretically and empirically. Starting with
the theoretical studies of [1] in a straightforward model of cold plasma, the KdV
equation has been applied to examine the presence of IASWs in plasma in multi-
component plasmas that incorporate varied physical circumstances. According to
Watanabe’s [2] theoretical work and Ludwig et al. [3] experimental observations,
ion-acoustic solitons (IASs) are formed in a significant part by negative ions. Mod-
ified KdV solitons in plasma including negative ions have been seen by Nakamura
and Tsukayabashi [4]. Negative ion beams have a long history that spans several
decades, and there are numerous scientific and technological uses for them today,
ranging from nuclear fusion and industrial applications to sources for accelerators
and spallation neutron sources [5]. Burgess [6] has looked at how optical scattering
methods might be used to determine the H~ concentrations in plasma sources that
are relevant to the negative ion beam. The observation of the change in the collec-
tive ion characteristic in Thomson scattering in a plasma containing negative ions in
that experiment offers a more promising possibility. The impact of negative ions in
the plasma and the excitation of solitary waves and double-layer in the plasma was
subsequently discussed by various scholars (Watanabe [2], Hase et al. [7], Tagare
and Reddy [8], Verheest [9], and Baboolal et al. [10]). Solitons that are compressive
and rarefactive are seen in a negative-ion plasma. By investigating the effects of the
electron’s drift motion along the magnetic field’s direction, Kalita et al. [11] looked
into the effect of IASs. The drift velocity’s limiting value is discussed, as well as
the upper and lower bounds on the existence of solitons with different velocities.
The existence of modified KdV solitons has only been proven by Kalita and Kalita
[12] for negative to positive ion mass ratios Q" > 1. In light of the plasma’s electron
inertia, Khuel and Zhang [13] investigated how ion drift affects small amplitude IAS.
The existence of IASs has been shown to depend on the ion-drift velocity being less
than the electron thermal velocity. The movement of IASWs in a heated plasma of
negatively charged ions and its interaction with the drifting motion of electrons were
explored in [14]. For various values of Q' > 1 or Q' < 1, it is demonstrated that
rarefactive and compressive solitons exist depending on the drift velocity v.. It is
discovered that the compressive soliton for Q' > 1 and the rarefactive soliton for
Q' < 1 but small, are at their highest near v, = 0 when r < 0.5 demonstrating the
characteristic change in solitons for the inclusion of v). The presence of IASs in a
magnetized ion beam plasma has been explored by Kalita et al. [15]. In a heated
magnetoplasma with the electrons initially drifting in the magnetic field’s direction,
the study on IASWs by Kalita and Bhatta [16] has been completed. They proved
that the parametric domains contain both compressive and rarefactive solitons. For
various selections of v, and Q’, the authors of [17] have examined the presence of
mKdV solitons. In a negative-ion plasma, Chattopadhyaya et al. [18] discovered that
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the ions’ drift motion significantly contributes to the stimulation of IASWs and dou-
ble layers. Islam et al. [19] have studied ITASWs in a magnetized plasma composed
of non-thermal and isothermal electrons. Sharma et al. [20] demonstrated that IAW
instability can be caused by the passage of an ion beam through a magnetized plasma
containing negative ions via the Cerenkov type beam-plasma interaction. Rehman
[21] studied the quantum soliton waves, which include cold positive ions, negative
ions, and Fermi electron gas. He also examined how low-frequency ion-acoustic
waves spread when negative ions are present in quantum plasma. Using the linear
kinetic theory, the authors in [22] have investigated the impact of negative ions on
drift ion wave instability in a weakly collisional magnetized plasma. The researchers
of [23] examined the dust IASs with the electron’s drift velocity in an unmagne-
tized plasma using the mkdV equation. They have shown the existence of the mKdV
solitons in two new drift velocities for 94 < v/, < 104 and 303.75 < v, < 306.Ina
non-magnetized plasma made up of two-temperature electrons that follow a kappa-
type distribution, a positive ion beam, and a positive warm ion fluid, Kaur et al. [24]
looked at the nonlinear propagation of IASWs. The KdV equation was used in a
plasma system of the ion beam to investigate the influence of magnetically quan-
tized degenerate trapped electron and positron on small amplitude IASWs by Deka
and Dev [25]. They have proven that solitary waves of both compressive and rar-
efactive types exist in this kind of plasma environment. Recently, by adopting the
method of reductive perturbation, in polarised quantum plasma containing relativistic
degenerate electrons and positrons, Mohsenpoura et al. [26] examined the oblique
propagation of the ion-acoustic quantum soliton. This equation demonstrated that
two ion-acoustic modes (slow and fast) exist when a negative ion is present. More
results are found in [27-36]. The existence of KdV and mKdV solitons is inferred
using the reductive perturbation method (RPM) in a collisionless and unmagnetized
plasma model that includes thermal electrons and positive and negative ion beams.
The RPM is typically used with nonlinear waves of small amplitude [37, 38]. In
order to introduce space and time variables, which are suitable for describing long-
wave length phenomena, this method rescales both space and time in the governing
equations of the system.

This study is arranged as follows: The basic equations are provided in the second
section. The third section represents the construction of KdV and mKdV models.
The solitary waves are retrieved in the fourth section, and finally, the outcomes are
analyzed in the fifth section.

2 Basic Equations of Motion

In the current analysis, the motion of IAWs in a plasma involving positive ions,
negative ion beams, and electrons is considered. The one-dimensional collision-free
plasma equations are:
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For the ions

E)n,» d
—(nv) =0 1
5 T ox (niv;) (1)
aU,‘ + 31),‘ + 3¢ 0 (2)
vi— + — =
ot ax ox
For the negative ion beams
an}, d
AL AT =0 3
o + ox (npvp) 3
av av 10
W 4y 2 L3P @
ot ox Q' ox
For the electrons
Me v 2 newy) =0 5)
—(nev,) =
at ax
dve v, 1,3¢ 1 9n,
e (06 Loy ©
at 0x O\ox n, 0x
Poisson equation
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i - ; 7
0x? ne+1—anb l—a" ™

where i, b, and e denote for ions, negative ion beams, and electrons, respectively.
Q' =mp/m;, Q = m,/m; and & = nyo/n;o represent respectively the ratio of neg-
ative ion beam mass to ion mass, electron mass to ion mass, and ion beam to
ion density ratio. By normalizing densities to equilibrium plasma density ng, time

1
t to the ion plasma period w;i' = (mi /47'moez)2, distances to the Debye length

1 1
Ap = (T./4mnee?)?, velocities to ¢, = (T./m;)*, and potential ¢ to T, /e, the set of
Egs. (1)—(7) is represented in a non-dimensional form.

3 Derivation of KdV and mKdV Equations

The stretched variables 1 \
E=¢ei(x—-Ut), T=e¢2t (8)

are utilized to obtain the KdV equation from (1) to (7). In (8), ¢ and U are respec-
tively the small dimensionless expansion parameter and phase velocity of IAW. The
derivatives of space and time are thus substituted by
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respectively. We asymptotically expand the flow variables as

n[=1+81’li1+82}’l,’2+-~-
np=1+enp +&np + - -

ne=1+ene +e&ng+--

Vi = e + v + - )
Up = 8Vp1 + & U + -

Ve = U, + 8V1 + 6%0e2 + - - -

¢ =cep +elpy+---

Using (8) and (9) in (1)—(7) under the conditions n;; = n,; =np; =0, v;; =0,
vp =0, ve) = v, and ¢; = 0 at |§] — oo, we get

R R ¢1 s b (U—v)d
il U2’ el l—Q(U—Ué)Z’ bl Q,Uz’ il U’ el 71—Q(U—vé)2'
1 o 1
Vpl = ——Q/Uzm,ngl tio g T o =0 (10)

Owing to the values of n;1, n.1, and n;; as well as the last equation of (10), we arrive
at the phase velocity equation as

1 _ o _ 1 —0 (11
1-QU -v)? (1-a)QU? (1-a)lU?

From the set of £2-order equations, the KdV equation can be obtained with the help
of (10) and (1)-(7) as

991 991 i
s - — =0 12
R R T (12)
A |
where p = 3B and g = 3B with
30U —v)>—1 3 3
= - +
{1-0W0 -’ (A-QU* (1-aU*
QU —v))? o 1

b=t —ou-wyr T izwor " U-ar
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We are more concerned with researching the existence of mKdV solitons in plasma
that is impacted by electron drift velocity; than, we are with proving the existence
of KdV solitons, which has been extensively researched in the past. As a result, we
must set p = 0 in place certain assumptions in order to derive the mKdV equations
that incorporate higher order nonlinearity in the system (12). This gives

X+Z
o, =
X+Y
30U —v)?—1 3 3
where X = o v) ,Y = and Z = —.
{1-0U —v)?3 QU4 U4

The critical density ratio is represented here by the corresponding o, = npo/n;0
determined by p = 0. We focus on finding the mKdV solitons for various values of
o.. To acquire the mKdV equation from (1)—(7), we take the new variables

E=¢c(x—Ut), t=2¢ (13)
instead of (8).
Using (13) and (9) in (1)—(7), the mKdV equation can be derived as
8¢i 1ol 28¢i /33(]5/1 /
=0, = ¢, 14
97 +P(¢1) 9E +4q 8§3 ¢1 @1 (14)
C 1
where p’ = iD and ¢’ = D with
C— 40U — vg)2 —150%(U — v;)4 —1 n 15a, n 15
B {1-0WU —v)?P QU —a)  US(L—a,)
QWU —v) o 1

“U_0W w2 00 -—a U1 -

4 Solitary Waves

With the use of n = & — Vt, the soliton of Eq.(12) can be found as

3v 1|V
¢ = —sech2<— —n) (15)
p 2\ q

where V signifies the velocity. The amplitude and the width of the wave are

3V
$o = —, A=2,/g-
p \%4
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The soliton of Eq.(14) can be retrieved subject to ¢ =0 and 8¢ /dn* = 0 as

n — £o0 as
, 6V ( Vv )
¢, = | — sech| . [—n
p q
6V !
where ¢y = . /— and A’ =,/ z
P 14

5 Results and Discussion

(16)

It is seen that the drifting influence of the electrons plays a crucial role in the creation
of KdV or mKdV solitons in the current model containing negative ions in a plasma
and a negative ion beam. To investigate the characteristics of IASWs for a negative
ion beam plasma with the impact of electron drift, we create the profile of the solitary
waves depicted in figures [1-8]. By using the method of reductive perturbation, we
have presented a study on the existence of KdV soliton and mKdV soliton of small
amplitude in our plasma model under the impact of electron’s drift velocity v, for
various selections of Q' greater or less than one. It is perceived that the KdV soliton’s
amplitude Fig. 1aincreases rapidly at small values of Q' < 1, and after a certain value
of Q’ stays nearly constant, reaching its maximum value in each case. With bigger
« and higher values of Q' the saturation value of the amplitude is observed to be
less. At smaller Q” and smaller temperature ratio «, the width Fig. 1b of the KdV
soliton rapidly drops. The width, however gradually diminishes as the temperature

0.017 1.75 4
/_'_f'—\_\_\_'__“——\_
] (b)
a=0.1 a=02
=0.15 | =0.151
0.015 ¢/ =0.2 1.475 + =0.1
1 T 5
& A \.\
(a) \ e ERS
0.013 +—+ +—+ —+ 1.2 +—t —t— t
0.1 03 0.5 0.7 09 0.1 03 0.5 07 09
o'— o' —

Fig. 1 Compressive KdV soliton’s amplitude ¢o(a) and width A(b) for v, =40, V = 0.1, and

a=0.1,0.15,0.2 versus Q' < 1
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Fig. 2 Compressive KdV soliton’s amplitude ¢o(a) and width A(b) for v, =40, V = 0.1, and
a=0.1,0.15,0.2 versus Q' > 1

0.72 i
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Fig. 3 Compressive KdV soliton’s amplitude ¢o(a) and width A(b) for « = 0.05 and V = 0.05
and different values of Q' < 1 versus the drift velocity v/,

ratio increases, reaching a minimum value for higher values of Q' for a certain
value of v,. Figure 2a shows that for v, =40, V = 0.1, and « = 0.1, 0.15, 0.2, the
amplitude of the KdV soliton decreases with increasing values of Q' > 1. For the
same set of values, the KdV soliton’s width Fig. 2b likewise drops. Furthermore, it
is vital to point out that the compressive KdV solitons have much higher amplitudes
at smaller v, Fig.3a for o = 0.05 and V = 0.05 as well as for various mass ratios
Q' =0.2,0.4, 0.6. They are seen to be extremely small and tend to zero in v,’s upper
existence region. Ironically, the widths of KdV solitons demonstrate an ignorable
difference Fig.3b for Q' = 0.2, 0.4, though they are prominent for Q' = 0.4, 0.6
It is noteworthy to notice that the growth scenario of the amplitude Fig.4a and
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Fig.4 Compressive KdV soliton’s amplitude ¢ (a) and width A () for the fixed Q' < 1,V = 0.05,
and different values of « versus the drift velocity v,
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Fig.5 Compressive KdV soliton’s amplitude ¢ (a) and width A(b) for v, = 3, V = 0.05, and and
different values of Q' > 1 versus the density ratio «

width Fig. 4b of KdV solitons are comparable to Fig. 3 for various selections of. The
amplitude Fig. 5a of the KdV soliton is observed to rise evenly with « for V = 0.05,
and Q' = 3, 6, 9. Additionally, the KdV soliton’s width Fig.5b grows linearly. The
mKdV soliton’s amplitude Fig. 6a grows as « rises for a fixed value of Q' < 1,V =
0.2, and for various selections of v/,. The growth pattern of the width Fig. 6b of mKdV
soliton is similar to that of the amplitude. The amplitude of mKdV solitons decreases
very slowly in the lower regime of v/, and then decreases more rapidly in the upper
regime of v, for « = 0.01 and V = 0.15, and Q' = 0.7, 0.8, 0.9 Fig. 7a. However,
the widths Fig. 7b of the mKdV soliton are almost constant in the lower regime of v,
and decrease more rapidly in the upper regime of v/ for « = 0.01 and V = 0.1. For
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Fig.6 Amplitude ¢ (a) and width A’(b) of mKdV solitons for O’

a—>

values of v}, versus the density ratio «
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Fig.7 Amplitude ¢ (a) and width A’(b) of mKdV solitons versus v,, fora = 0.01, V = 0.15, and
different values of Q' < 1

o = 0.02and V = 0.2, the amplitude Fig. 8a of mKdV solitons against v, decreases
rapidly, but linearly for various selections of Q9 = 0.013, 0.014, 0.015. Further, for a
very tiny range of v}, itis perceived that the corresponding width of the mKdV solitons
decreases uniformly and then slightly increases parabolically, thereafter decreases in
a diverging manner higher yet constrained regime of v,,. Figure9 shows the soliton
solution ¢; with n for @ = 0.05(red), 0.10(pink), 0.15(yellow). The investigation of
nonlinear wave behaviors, mathematical modeling, and the consequences in plasma



Effect of Electron’s Drift Velocity in Nonlinear Ion-Acoustic ...

217

0.011 (a) 0.82 + (b)
0'=0.013
T =0.014 4
=0.015
T L | —“"F""\
i} 0
¢i A’
0.001 : \: 0.18 - ; : : !
26.5 27 28.5 26.5 27 28.5
v > V.-

Fig.8 Amplitude ¢ (a) and width A’(b) of mKdV solitons versus v,, fora = 0.02, V = 0.20, and
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Fig. 9 Variation of the 425
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physics is related to the effect of electron drift velocity in nonlinear ion-acoustic
solitons in a negative ion beam plasma [39-44].

6 Conclusion

The effect of the electron’s drift velocity in a multi-ion plasma system consisting
positive ions, negative ion beams, and electrons has been discussed in this investiga-
tion. Using the usual reductive perturbation method, the KdV and mKdV equations
have been obtained. Small amplitude compressive KdV solitons were produced in
the plasma for various selections of Q’, bigger and less than one, under the influence
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of the electron’s drift velocity v,. It was shown that the mKdV solitons occur in two
drift velocity v/, intervals when Q' is smaller than one.

Conflict of Interests The authors declare no conflict of interest.
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the authors.
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Darboux Transformation and Exact )
Solution for Novikov Equation ek

Hongcai Ma, Xiaoyu Chen, and Aiping Deng

Abstract In this paper, the lax pair of Novikov equation is given in 3 x 3 matrices
form. Based on the spectral problem and the lax pair of Novikov equation, we con-
struct the Darboux transformation and give the theoretical proof. By selecting the
appropriate seed solution and using the obtained Darboux transformation, we can
acquire the new exact solution of this equation. Finally, three-dimensional distribu-
tion and density plots of the new solution are shown. Exact solutions are depend on
the different chosen seed solutions.

Keywords Novikov equation + Darboux transformation - Lax pair - Exact solution

1 Introduction

With the continuous development of science and technology as well as scientific
research tools, the importance of nonlinear phenomena in nature is gradually increas-
ing [1]. Compared with linear phenomena, the nature and structure of nonlinear phe-
nomena are more complex. The solution is the most important step in the study of
partial differential equations [2]. The effective solution methods for linear systems
are generally not applicable to nonlinear partial differential systems. Some meth-
ods, include inverse scattering transform, Hirota bilinear method, Riemann-Hilbert
method and the Painlevé test method are extremely useful method to acquire various
soliton solutions [3-5]. The Darboux transformation is one of the most important
approaches to acquire soliton solution for differential equations [6-9]. In this paper,
we use the Darboux transformation method to study the Novikov equation.
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The Novikov equation has the following form
Up — Upxr + 40Puy — Py — Suttyity, =0, Q)
that is equivalent to
m,+u2mx~|—3uuxm=0, m=U — Uygy. 2)

This equation has been discovered by Novikov as a new integrable equation with
cubic nonlinearities which can be thought as a generalization of the Camassa-Holm
equation [10-12].

For Eq. (2), Adler have searched its Backlund transformation [13], Wu et al have
acquired Global weak solutions [14], Holliman et al have studied its cauchy problem
in Sobolev spaces [15, 16], Li have obtained a parametric representation for N-soliton
solutions [17], Shi et al have investigated mixed lump-soliton solution [18].

The structure of the paper is as follows. In Sect. 2, based on the Lax pair, we
formulate the Darboux transformation matrix of the Novikov equation and give a
theoretical proof. In Sect. 3, we select the different seed solutionsm = u = Oandm =
u = 1, acquire the new exact solutions by the constructed Darboux transformation
in Sect. 2 and demonstrate three-dimensional distribution plot and their dynamic
properties.

2 Lax Pair and Darboux Transformation

2.1 Lax Pair

The Eq. (2) has the following 3x3 matrix form Lax representation [19]

o
O, =MD, &, =NP, o=| ¢, 3
¢3
with
0 xm 0 Ny — Uity ny — Amu? ui
M=|00 m|, N= n3 —2n,  —np—mu? |, (4
10 O —u? n3 ny + uu,
where
1 Uy u
n=-—, Hp=—, Nz=—.
BE) CA D W Y
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Here ) is an arbitrary complex number called the spectral parameter, and ¢ is called
the eigenfunction associated with A, and u, m is a potential function of position with
respect to x, t which are two independent variables. Equation (2) is equivalent to the
compatibility condition @,, = &,,, i.e. the zero curvature equation [20]

M; — N, +[M,N]=0, (5)

where [M, N]= MN — NM.

2.2 Darboux Transformation

Firstly, we introduce a gauge transformation

S|

=To. (6)
It is easy to see that the Lax pair (3) is transformed to
=M®, M= T +TMT™', (7)
&, =Nd, N=(T,+TN)T™". (8)

where T is a Darboux matrix. Our aim now is to find the specific form of T such
that M and N obtained under transformation (6) have the same forms as M and N
respectively. After confirming the specific form of the matrix 7', the original seed
solution (u, m) in M, N is mapped into a new solution (u, 77) in M, N.

Without loss of generality, we assume that the Darboux matrix 7 in Eq. (6) is of
form

v E oy S oy RSN
AV D biA Y A 2 bizA
it t3 N_li:o' =0 ' = '
T=|titnty | = Z bgl)/\i ANV 4 Z bgz)/\l Z bgg))\l s
f31 132 133 N1 Nt o
)3 bYN )3 bGN AV 4+ )3 BN

where bl.(f)(i,j =1,2,3,k=1,2,..., N — 1) are functions of x,t to be deter-
mined, and bSY "V =p TV = bV = 0,0 = bV HNTY 4 p0D =
268" V(N > 2).

Let (X)), #(A;) and x(X;) be the three basic solutions of the equation (2) asso-
ciated with ;. For the sake of convenience, we introduce
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PN) = (1), 2\ ), o3 AT,
o) = (01N}, (A, ps(A)T, )
X)) = ), xaOA), xsGy)'.

According to the trr(M) = tr(N) = 0 and Eq. (6), we get

[det (B, 6, )], = [detT - det (¢, ¢, \)]x = 0,

_ (10)
[det (a’ ¢9 X)]t = [detT -det (()01 ¢7 X)]t =0.
Let \j(Ni #Xj, i #J;Aj #0,j=1,2,...,3N)beroots of the 3N-th order poly-
nomial detT', these conclusions described above are obtained by direct calculation.
Thus for A\=A;, j =1,2,...,3N, there are constants 'y] ,7](2) such that the
following equation

1 ‘ 2

et +h2e2 11393 + 7} )(f11¢>1 + 11202 +11393) +7’; )(flle +t2x2 +113x3) =0,
1 ‘ ‘ 2

n1e1 + e + 1393 + "/; (1211 + 1226 + 12363) +7§- ) (t1x1 + ax2 +123x3) =0,
1 ‘ 2

1311 + 13292 + 13303 + 7} (13101 + 13202 + 13363) +”/; ) (13101 + 1322 + 133%3) = 0.

Also, it can be rewritten in the form of a linear system of equation

t11+05 12+U 113—0
I +0; 22+U '3 = 0, (11)
t31+0'; 2+O’ l3g—0

where

Lo _ 92 +960) + 7P x2()
! <P1()\j)+7](-1)¢1(/\j)+’YJ(-2)X1()\]‘)’
o _ $OD +7 ") + Y xa(Af)
/ ‘Pl()\j)+’}/](-l)¢l(/\j)+7J('2)X1(>\j).

(12)

Then, we can obtain the following Riccati equations according to Egs. (3) and (11),

(1) )\m[a(z) (0.(1)) 1,

(2) —1—Ps@

Ojx 7j 9>
fix = =Wty — oVt — o3 — 0Py, 13)
hix = —0(-1)1‘ 2 — (l)lzzx - O’(z)t 23 — (2)123)“
Bix = —U( )l32 - 0( )l3zx - J( )l33 - 0( )l33x

As a consequent, we have
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Theorem 1. Matrices M and N given by Egs. (7), (8) are respectively have the same

forms as M and N, and relations between the original eigenfunctions u, m and the
new gain ones u, 1 are

-2 -2
=l -2,

3|

(14)
7 =u+ @ —mlby " — b,

Equation (6) make up the Darboux transformation of the Eq. (2). Now, we give a
detailed proof of Theorem 1 with respect to matrix M.

Proof. Let
S fiz(N) f1z(V)
(T +TMT* = | f21(N) fa2(N) fazs(N) |, (15)
F1N) f32(N) fi3(N)

where T* is the adjoint matrix of 7. We can find that f;;(\) (s, = 1, 2, 3) are both
3N or 3N + 1 degree polynomials of A. Here, f12()) , f23()\) are 3N + 1 degree
and the rest are 3N degree with respect to A. Then fi;(A\) (s, = 1,2, 3) = 0 when
A = Aj, this result is directly calculated by using Eq. (13).

Since T~! = T*/detT, Eq. (13) can be written as

©) (1) ) 0)
Py Pz A+ pis P13

T.+TM=pPNT=|p0  pO  pOx4+p0 | T, (16)
(0) (0) (0)
P31 P3 P33

where ps(];) (s,1 =1,2,3; k=0, 1) are independent of A\. Comparing the coefficients
of N, k= N — 1, N, N + 1 at both ends of the Eq. (16), it implies

1 1
AN 3P§2) = p§3) =m, 17)

with N . (0) ©) ©) (0) 0) 0) )
AVipl =pi3 =Py =Pn =Py =p3 =0,p3 =1,

(18)
N-1 N-2 N-2
o _ o _ b Hm®l ™ = b5
Py = Py = b(Nfl)
22

’

and
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N ) = O
B = o) p )
B0 = b Y i = e
e
B bl =y 4 6,

(N-1) (N=-2) __ (N=-2) 0),(N=2) (N=-1) (N=2) __ 4 (N-1)
by, +mby, T =mby; T+ pyybyy T, by +mby T =by .

Combining Egs. (2.2) , (14), it is not difficult to acquire P(\) = M.

Here, coefficients bff) i,j=1,2,3,k=1,2,..., N — 1) can solved by Cramer
rule in linear system (11). We can also prove N has the same form as N by similar
steps.

3 New Exact Solution and Dynamical Properties

As we all known before, different seed solutions of the same equation will yield
different exact solutions after Darboux transformation.

3.1 Seed Solutionm =u =0

Choose seed solutionm = u = Oandsolve the Eq. (4)forA = A;, j =1,2,...,3N,
we deduce that

P1(Aj) ¢ + ket
2\) = ) | = c2+ke™ |, (19)
?3(Aj) c1X + kze M)

where ¢; and k;, j = 1, 2, 3 are arbitrary constants but ¢; # 0 and

1 2
=, = e 20
PL=P3= 33 P2 e (20)
According to Egs. (11) and (14), we find
b B T P e

and
A A A A
N-2 1 N=2 2 N—1 33 N—1 2
pVD = 2L pm = D2 vl 28, h 22 (2

A A

A

A
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where A, A, are the determinant of the 3N x 3N coefficient matrix of the linear
system (11), i.e.

oA - AN oD Gy g DAN=T @ @ g @ \N-
1 a 1 1 2 @ 2)\N—
1 M ‘)\QV 10_5) Ué))\z ())\NI () 5))\2 Ué)/\é\ll
A= Nol ) (). (1) N-1 (2) ('2'>' ot |
1A ')‘j O'j o} Ajoeee )\ o7 0] )\""O'j /\j
-1 () 1 ) @ 2) \N—
1 My -A§VN10§;30§/3>\3N"' ())\Nl () <>>\1__. () \N-1
I T S L VIR L Wl e O VIRRR D
... —)\év )\12\/—1 Jél) Uél))\z (I)AN 102 552))\2 (Z)AN 1
A ’
! 1 S AN VL D O'(-l)/\' (7(.1))\15171 o? a(.z))\‘ 0(2)/\1_\/—1
J N j i
N \N-1 (1) (1) (1) N 1 (2) (2) (2) yN—1
1 —Ny A3y T3y UsN/\?N o O3NA3y O3y O3yAL o O3y A3y
L AN D Gy DN N @) 0y N
PR S (NI IV (N o o oA
Ao | ’
Sl RSV E U RY ROROY (UAN 1 <m oDy e PN
J J i gj
N-1 (1) (1) (DN (1) N—1 (2) (2) 2)yN—-1
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For N = 1, we have similar results

m = by — 2bx,

u =

(b11 — 2b23) (b — b33),

(23)
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and A A A
11 2 33
by =2 p, =22 =28 24
1 A 2 A 33 A 24)
where b o b o
lag)af) —)\lai)af)
A=|10"e? ], An=|-Xale?],
Lol) o g ol
(25)
1—o"\ o 100 —o® )
Ay =11 —0’&1)/\2 0&2) , Ayz=1]1 O’él) —052)/\2
1 —0’;1))\3 Uf) 1 O';l) —Uéz))\g

To better analyze the exact solution, we show the three dimensional plots of the
solution (23) and its density plots in the x — ¢ — u(m) coordinate in Fig. 1.

Figure 1 displays the one exact solution 7 and u# with seed solution m = u = 0.
(a) and (b) shows the peakon solution 772, (c) and (d) shows the peakon solution u. A
part of the image of the solution is truncated due to the restriction of the range of m
and u.

3.2 Seed Solutionm =u =1

Choose seed solution m = u = 1 and solve the Eq. (4) for A\ = X;, j =1,2,3, we
deduce that

o1(A)) rePODx+ki ()
o) = | 0 | = [ reiOpertrkon | 2123 26
¢>3(>\j) Tcz()\j)e/’()\/)X+k;(/\j)t

where 7 is arbitrary constants and
clz)\*%, c=A"3, p==A 27

with

1
o (—2916)° + 10833 + 12¢/3 /3402010 — 129608 + 135X + 5434 —9X2 +4 — 108))3
= 1803
201800 —3X2 4+ 1)
1
3A3(=291679 + 10873 + 124/3 v/34027010 — 129678 + 1356 + 540% —9)2 +4 — 108))3
1
32

+
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Fig. 1 Taking the parameters as A = % A= =1, " ’752) =./3, 751) =
AR =0 = 14 AR =1 - 3

1
_ = 2916X% + 10873 + 124/3 /3402010 — 1296A8 + 13506 + 540% —9A2 + 4 — [08))3
36)3
1806 — 322 4+ 1

1

3A3(=2916X9 + 10823 + 124/3 /3402010 — 12068 + 135X6 + 5404 — 9)2 + 4 — 108))3
1
+h@cam&9+mw3+uJLhmww—1w&8+wﬂ6+ﬂv—9V+4—wmﬁ

36A3
Q1800 —3X2 4+ 1)

1
3A3(=2916X9 + 10823 + 124/3 /3402010 — 12068 + 135X6 + 5404 — 9)2 + 4 — 108))3
1
3N

+

_l’_

+
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1
(29162 + 108)3 + 12+/3 /3402010 — 12968 + 13510 + 5404 —9A2 + 4 — 108))3
n 3673
1800 —3)2 41

1
3A3(=2916X9 + 1083 + 124/3 v/3402010 — 129678 + 13506 + 540% —9A2 + 4 — 108))3

+

1

3 (—=2916)% + 10823 + 124/3 /3402010 — 12968 + 135)0 + 5404 —9A2 + 4 — 108))3

—1
363
Q1800 =322 4+ 1)

- 1

3A3(=2916X9 + 10823 + 124/3 /3402010 — 12068 + 1356 + 5404 — 9)2 + 4 — 108))3

1

YA

_|_

For the simple case (N = 1), we can obtain new exact solutions fromm = u = 1
m=1+by —2byp, u= (b —2by)(byn — b3y), (28)

where b;;, i, j =1, 2, 3 is defined by Eqgs. (24) and (25).

4 Conclusions

In this paper, based on a 3 x 3 matrix spectral problem and the Lax pair of Novikov
equation, we successfully construct N-fold Darboux transformation matrix. The
paper aims to obtain precise solutions with different seed solutions. Results indicated
that the change of related parameters and seed solutions has a great influence on
the waveform of the acquired exact solution. By selecting appropriate parameters,
we acquire the three dimensional plots and density plots of exact solution with
seed solution m = u = 0. This solution we found does not appear in the literature
previously associated with this Eq. (2). Lastly, these soliton solutions deserve further
study and may have relevance in physics or related disciplines. In the future, we hope
we can seek the rogue wave solution, breather solution and other forms of solutions
for Eq. (2) base on the results achieved so far.
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Construction of Multi-wave Solutions )
of Nonlinear Equations with Variable L
Coefficients Arising in Fluid Mechanics

Hongcai Ma, Yidan Gao, and Aiping Deng

Abstract The nonlinear development equations play an important role in describ-
ing natural phenomena, so it is very important to solve the nonlinear development
equations. In this paper, the (2+1)-dimensional variable coefficient Date-Jimbo-
Kashiwara-Miwa equation, and the variable coefficient shallow water wave equa-
tion are studied by using exp-function method, which can be regarded as a special
multi-soliton method. The one-wave solution, two-wave solution, three-wave solu-
tion and four-wave solution are solved with the mathematical software Maple, and
corresponding figures are drawn to better observe the state of the solution.

Keywords Exp-function method - The (2+1)-dimensional variable coefficient
Date-Jimbo-Kashiwara-Miwa equation - The (2+1)-dimensional variable
coefficient shallow water wave equation + Multi-wave solutions

1 Introduction

Soliton theory plays an important role in the nonlinear development of science and
has been applied to almost all natural sciences. Due to their abilities to describe a
lot of natural phenomena quite accurately, the research on nonlinear equations is
flourishing. Obtaining exact solutions of nonlinear equations has become one of the
important research. Through the continuous efforts of scholars, there have been many
methods to attain the exact solutions of nonlinear equations: homogeneous balance
method [1], sine-cosine method [2], jacobi elliptic function [3], mapping method [4],
extend F-expansion method [5], etc.
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In this article, we are going to solve two equations with time-dependent variables
by using the exp-function method. This method was first proposed by Ma et al. in
2010, they applied this method to study the three wave solutions of (3+1)-dimensional
potential Yu-Toda-Sasa-Fukuyama Equation [6]. Exact solutions of many nonlinear
equations have been solved by using this method [7—11]. The multiple exp-function
method can be regarded as a generalization of Hirota’s perturbation scheme, so the
multi-wave solutions are soliton-type.

In this article, we will use the exp-function method to explore the multi-wave
solutions of two equations with variable coefficients depending on time. The first
equation is the (2+1)-dimensional variable coefficient Date-Jimbo-Kashiwara-Miwa
equation (veDJIKM) [12, 13]:

Unrxy T Apxyty + 2gxctty + Ottty — attyyy — 2B8(ODtyye + h(H)uxyy =0,
()
where g(¢) and k() are variable coefficients, which depending on time. The variable
coefficients g(¢) and h(¢) may be caused by the geometrical and physical inho-
mogeneities, such as varying radius, material density, and so on. When g(¢) = 1
and h(t) = 0, the Eq. (1) is reduced to the famous (2+1)-dimensional DJKM equa-
tion. Khalid et al. obtained the analytical soliton solutions of (1) [14]. Adem et al.
acquired the complexiton solutions of (1) [15]. Yuan et al. gave N-soliton solutions
in the Wronskian and Grammian [16]. Kang and Xia constructed abundant solutions
of (1) [17].
The second equation is the (2+1)-dimensional variable coefficients shallow water
wave equation (veSWW) [18-20]:

1
Uy + za(t)uxuxy + a(l)uyuxx + ﬂ(t)uxy + Epa(t)uxxxy =0. (2)

When «(t) = -2, B(t) = «, p = —1, we obtain the (2+1)-dimensional extended
shallow water wave equation [21]:

Uyt — 4”xuxy - ZMnyx + QUyy + Uxxxy = 07 (3)
where famous Korteweg-de Vries equation is obtained by assumingx = y and 8(¢) =
0in (2) [22, 23]:

Uyr — OUyUyy + Uyrrx = 0. €]

The (2) is reduced to the (2+1)-dimensional breaking soliton equation [24], when
at)=-2,p(1)=0,p=-1L

Uxr — 4uxuxy - 2“)‘”){){ + uxxxy = 0 (5)

This article is arranged as follows: in Sect. 2, we use the exp-function method
to solve the four types wave solutions of the (2+1)-dimensional vcDJKM equation
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and draw corresponding figures. Similarly, in Sect. 3, we also use exp-function to
solve four types wave solutions of the (2+1)-dimensional veSWW equation, and
draw corresponding figures. In Sect. 4, we make a brief summary of the previous
research, and put forward some problems for future considerations.

2 Multi-wave Solutions of the (2+1)-Dimensional veDJKM
Equation

In this part, we will use exp-function method introduced in [6] to explore multi-wave
solutions of the (2+1)-dimensional veDJKM equation. For each wave solution, we
take two different sets of parameters and plot corresponding 3D figures, density plots,
and values of x or y for the given parameters.

2.1 One-Wave Solution

We take the linear conditions,

Nx = ki, n,y =L, ny = —01(On, (6)

with

m = e, (N

where ¢, is an arbitrary constant.

In order to gain one-wave solution of (1), we assume that the form of p and g are
as follows:

p=ap+an,q=by+bin, ®)

and the solution is a rational function,
, )

where ay, a;, by and b; are constants. By applying Eq. (9) into Eq. (1), we obtain

dr. (10)

b1 (2k1bgy + ap) / Lk} +kih(t) — o)
al =, (Ul = —

bo 2Bk7g (1)
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We take the parameter and the wave frequencies determined by (10) into (9), we
get the one-wave solution of (1):

1 &3 no—13e)
ap + h|(2k1b/(7]0+ﬂo)cleklx+lly+f 2B250)
‘e kit y [ 1 tefrifho - (in
by +bicie ’ Gty
2.2 Two-Wave Solution
Similarly, we take the linear conditions,
Nix =kini, niy =Limi, niy = —0;(On;, (1 <0 £ 2), (12)
with
m = T (1 <i <), (13)

where ¢; (1 <i < 2) are arbitrary constants.
In order to gain two-wave solution of (1), we assume that the form of p and g are
as follows:

p =2(kiny +kama + ann(ky + ka)ninz), g = 1+ 01+ 02 + apnina, (14)

and
, (15)

where the a;, is a constant will be determined later. We take (15) into (1), then we
solve the algebraic system with Maple, and obtain the result

_ kikG(ky — ko)? + a(kily — kolp)?

ap = , 16
P TRk +k)? +athh — k)2 (1o
and
Lkt +k3h(t) — I Lk} + k3h(t) — 2
a)1=—/ 1 (kY + 12() lot)dt,wz:_/ 2(k; + 22() za)dt. a7
2Bkig(t) 2Bk;g(1)
Then we gain the two-wave solution of (1) as:
2(kin1 + koma + aa(ky + k2)nim2)
u= , (18)

L+ni+m+apnmmn

where a; is determined by (16), and w;, w, are determined by (17).
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o) o
i tofx,
of 0
1] o
" -2
TR e 6w B S0 -l B B w®
(a) (b) (c)

Fig. 1 The two-wave solution of (1) with the parameters as « = B =c; =1l =k =g(t) =
1,c0 =11 =2,ky =3, h(t) = 6. a 3D figure, b density plot at # = 0 and ¢ density plotat = 3

(a) (b) (c)

Fig. 2 The two-wave solution of (1) with the parameters as —« =c; =1l =1,8=ca =k =
2,lp = —kp = =3, h(t) = tanh(t), g(t) = 6. a 3D figure, b density plot at t+ = 0 and ¢ density
plotatt =3

When taking the parameters as « = f=ci=hbh =k =g(t)=1l,co=11 =
2,k, =3, h(t) = 6, the 3D figure and density plots of (18) are shown in Fig. 1.
And Fig. 2 shows the 3D figure and density plots of (18) with the parameters as
—a=ci=h=1L8=c=k=2L=—k =-3,h(t) =tanh(t), g(t) = 6.

2.3 Three-Wave Solution

Similarly, we choose the linear conditions,
Nix =kini, niyy =Limiy miy = —0; (O, (1 <0 < 3), (19)

with
ni = cehTiyei (1 < < 3), (20)

where ¢; (1 < i < 3) are arbitrary constants.
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In order to describe the three-wave solution of (1), we assume that

p = 2(kini + kama + kanz + app(ky + k2)nina + az(ky + k3)ninz
+ax(ky + k3)nans + apaizaxn (ks + ky + k3)ninanz),

21
and
g =1+n1+n+ns+apmn +asmn; + axnn + anaasnnn, (22)
in addition to this, we have three-wave solution,

u="-. (23)

Just like before, we take (23) into (1), then we solve the algebraic system with
Maple, and we obtain

K23 (ki — kj)? + aukilj — kjli)?

;= ,(1<i<j<3), 24
i kizka-(k,' +kj)2+05(kilj —kjli)2 ( b= ) @9
with the wave frequencies
LY + K2h(t) — 17
w,.z_/l('“le() (1 <i<3). 25)
2Bkig(t)

In the form of (24) and (25), it is easy to get three-wave solution to (1). We provide
two examples where A (¢) and g(¢) go to special functions. We also obtain 3D figures
and corresponding density maps of the two states of (1) with different parameters. At
the same time, we also draw the value graph of x with different values of y to study
the trend of x. Figure 3 shows the pictures of (23) with the parameters as « = g =

By

AN \ ]

\ & -
.\ Ty g+ :
(a) (b) o

Fig. 3 The pictures of (23) with the parametersasa = =c1 =l =k =kz3=g(t) =1,c0 =

Ih =c3=2,13 =ky =3, h(t) = 6.a 3D figure, b density plot at # = 0, ¢ the value graph of x with
different values of y

0 40
10

— i = ) Y= —3
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10

Fig. 4 The pictures of (23) with the parametersasae = = -l =k =c1 =1, =h =c3 =
—kz =2,13 =ky = g(t) =3, h(t) = cos(t). a 3D figure, b density plot at = 0, ¢ the value graph
of x with different values of y

co=lLi =k =k = g(t) =l,co=bh=c3=2,3=k;=3,h(t) = 6AHdFIg4
shows the pictures of (23) with the parametersasae = 8 = -} =kj =c1 =1, =
bh=c3=—k3s=2,13 =k, =g(t) =3, h(t) = cos(t).

2.4 Four-Wave Solution

Again, we choose the linear conditions,
Nix =kini, niy =Limiy miy = —0; (O, (1 < i < 4), (26)

with
ni = ¢t HiyTei (1 < < 4, (27)

where ¢; (1 < i < 4) are arbitrary constants.
Let us try the polynomial form of the four-wave solution,

p =2(kiny + ko + kans + kana + a2 (ky + ko)minz + aiztky + k3)mins
+ aa(ky + ka)ning + axz(ky + k3)nans + aza(ka + ka)nang + aza(ks + ka)nzna
+ apazax(ky + ky + k3)ninanz + azaisaza(ky + ks + ka)ninang

+ appaisass(ky + ko + ka)ninans + axpazaazs (ko + ks + ka)nansna),
(28)
and

q=1+n+mnm+n+n4+anmn+azmns + aunins + axnnn
+ aanang + azanang + apaasn nanz + a3aaazanin3ns (29)
+ a2a14a24M1M204 + A23024A34M2131)4,
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Fig. 5 The pictures of (30) with the parameters as e« = 8=l =h =l =ks=c1 =c3 =
Ley=ca=ky=—ks =13 =2,k =3,8(t) = 5, h(t) = sin(t). a 3D figure, b density plot at
t = 0, ¢ the value graph of x with different values of y

in addition to this, we have four-wave solution,
u=—. (30)

By the multiple exp-function method and using the linear conditions, we acquire
the solution with Maple,

k2K (ki — k) + a(kil; — k1)’

- (<i <4, 3
aijj klzka(kt +kj)2+a(kllj _kjll)z ( <1< J= ) ( )
and the wave frequencies,
Lk + kPh(@) — 12
w’:_/ W AHKRO 21D gy (1< < 0, (32)
2Bk;g(1)

Two specific solutions of the four-wave solution are plotted in Figs. 5 and 6. In each
figure, the first plot is three-dimensional diagram, and the other plots demonstrate
the y-curves with different x-values at t+ = 0. The results show that when time is
constant, the peak value of y increases with the increase of x.

3 Multi-wave Solutions of the (2+1)-Dimensional veSWW
Equation

In this part, we will also use exp-function method introduced in [6] to study the
(2+1)-dimensional veSWW equation. When p = 1, (2) becomes

1
Uy + 2a(t)uxuxy + a(l)uyuxx + ﬂ(t)uxy + Ea(l)uxxxy =0, (33)
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Fig. 6 The pictures of (30) with the parametersasa = k; = k3 =ci=c3=1,—f=c2 =c4 =
—ky =13 =14 =g(t)=2,1) =—1hb = -3, h(t) =t. a 3D figure, b density plot at r = 0, c the
value graph of x with different values of y

we call (33) as the new (2+1)-dimensional variable coefficient shallow water wave
equation (VCSWW).

Next, in this section, we will use the exp-function to explore the multi-wave
solutions of (33). For each wave solution we also take two different sets of parameters
and plot corresponding figures.

3.1 One-Wave Solution

We obtain the linear conditions,

Nx = ki, N,y = hn, Ny = —01(On, (34)

with
m = ¢y, (35)

where ¢ is arbitrary constant.
In order to obtain one-wave solution of (33), we assume that the form of p and g
are as follow:

p=ap+an,q=by+bin, (36)

and the solution is the rational function,

u="=, (37)
q

where ay, ai, by, and b; are constants. By applying Eq. (37) into Eq. (2), we obtain
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+ L1 B(t)dt. (38)

b (2k1by + ap) /‘lla(t)klz
a)\ = —— ——,w = )

bg

We take the parameter and the wave frequencies determined by (38) into (37), the
one-wave solution of (33) is

ao + b](zklf)f:)()-}—ao)cleklx-"lly—%[:w )
u= b2k bgtag) .
bO +blclek1x+11)77bo
3.2 Two-Wave Solution
Similarly, we take the linear conditions,
Nix =kini, niy =Limiy miy = —0; (O, (1 <8 < 2), (40)

with

n = Ciek,erliy*wi(t)’ (1<i<?), 41

where ¢; (1 <i < 2) are arbitrary constants.
In order to gain two-wave solution of (33), we assume that the form of p and g
are as follow:

p =2(kin +kanz +ann(ky + k2)ninz), g = 1+ 01 + 2 + appmna, (42)

and

u=">, (43)

q

where the aj; is constant will be determined later. We take (43) into (33), then we
solve the algebraic system with Maple, and obtain the result,

(ky — k2)?
ap=——, 44
CETSE @
and 5 )
Lo(t)k La(t)k
o :/ 1“(2) ! +11/3(t)dt,a)2=/ 20‘(2) 2 4 LBdr. 45)
Then we gain the two-wave solution of (1) as:
2(k k ki +k
"y (kini + kany + ap(ky + 2)771772)’ 46)

L+m +n+apmn

where a;, is determined by (44), and w,, w, is determined by (45).
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(a) (b)

Fig. 7 The two-wave solution of (33) with the parameters as /| =2,k = %, Ih=-3k =
%, a(t) = sinh(t), B(t) = 6,c1 = 1,co = 1.5. a 3D figure, b density plot at # = 0 and ¢ density
plotatt =3

0 207

o o

i 0 -0 0 10 20 B =20 =10 o 10 20
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Fig. 8 The two-wave solution of (33) with the parameters as /1 = —3,k; = —1.5,lr = =2,k =
1.2, a(t) = sin(t), B(t) = cos(t),c1 = 1,2 = 1.5.a 3D figure, b density plot at # = 0 and ¢ den-
sity plotatt =3

When taking the parameters as [} =2,k = %, L =-3k = %, a(t) =
sinh(t), B(t) = 6,c; = 1, cp = 1.5,the 3D figure and density plots of (46) are shown
in Fig. 7. And Fig. 8 shows the 3D figure and density plots of (46) with the parame-
tersas [y = —3,k; = —1.5,1, = =2, k, = 1.2, a(t) = sin(t), B(t) = cos(t),c; =
1, Cy = 1.5.

3.3 Three-Wave Solution

Similarly, we choose the linear conditions,

Nix =kini,niy =Lini, niy = —w;On;, (1 <i <3), (47)
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with
m = e TIT0 (1 <0 <3), (48)

where ¢; (1 < i < 3) are arbitrary constants.
In order to describe the three-wave solution of (33), we assume that

p = 2(kini + kama + kanz + app(ky + k2)nina + az(ky + k3)ninz

(49)
+ axs(ky + k3)nams + appazas(ky + ka + k3)ninans),

and
g =1+nm+m+n+aonn +aznn; + asnns + apapasnnng, (50)

in addition to this, we have three-wave solution,

u=—. (28

Just like before, we take (51) into (33), then we solve the algebraic system with
Maple, and we obtain,

(ki — k;)? Q<i<j<3 52)
ajj = 77 5> S <J=9),
R e /
with the wave frequencies,
Lio(t)k? .
o = [ — +1BWdt, (1 <i <3). (53)

In the form of (52) and (53), it is easy to get three-wave solution of (33). We
provide two examples where « () and B(¢) go to special functions. We also obtain
3D figures and corresponding density maps of the two states of (33) with different
parameters. At the same time, we also draw the value graph of x with different values
of y to study the trend of x. Figure 9 shows the pictures of (51) with the parame-

tersash =22 k=3 h=-22 kh=55L=-3k=3,a0) =1,p0) =
4y2,¢1 =0.5,¢, = 0.8, ¢3 = 1.2. And Fig. 10 shows the pictures of (51) with
the parameters as [} = —%,kl = %,lz = —%,kz = —%,13 = —%,k3 = 17—2,a(t) =

t,B(t) =sin(t),cy =0.5,¢,=0.8,¢c3 =1.2.
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Fig. 9 The pictures of (51) with the parameters as [} = —%ﬁ, ki = %, L= —%E, ko =5,13 =
—2k3=F,a() =1,B(t) =42,c1 =0.5,¢2 = 0.8, c3 = 1.2. a 3D figure, b density plot at
t = 0, c the value graph of x with different values of y

(a) (b) (c)

Fig. 10 The pictures of (51) with the parameters as /| = —%,kl = %,lz = —%,kz = —%, I3 =
—16—1, k3 = 17—2 a(t) =t, B(t) =sin(t),cy =0.5,¢c2 = 0.8, c3 = 1.2. a 3D figure, b density plot
att = 0, c the value graph of x with different values of y

3.4 Four-Wave Solution

Again, we choose the linear conditions,
Nix =kini, niy =Limiy miy = —0; (O, (1 <0 < 4), (54)

with
ni = ¢ty (1 < < 4, (55)

where ¢; (1 < i < 4) are arbitrary constants.
Let us try the polynomial form of the four-wave solution,
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p = 2(kini + kamo + kanz + kana + arp(ky + ko)nina + apz (ks + k3)nins
+ aia(ky + ka)ning + axz(ky 4+ k3)nans + aza (ko + ka)nans + aza(ks + ka)nzna

+ appapazs(ky + ky + k3)ninanz + apzajsaza(ky + k3 + ka)ninzna
+ appaisans(ky + ky + ka)ninang + axzassaza (ks + k3 + ka)nanzna),
(56)

and
qg=1+mn+n+n+n+anmn +azmn + aamng + asnm
+ axaMang + azan3ns + a12a13a3N1M2103 + A13014G34711374 (57)
+ apai4a24m1M2M4 + A23024a34M21314,
(58)

in addition to this, we have four-wave solution,
p

By the exp-function method and using the linear conditions, we acquire the solu-
tion with Maple,
(ks = ky)” (1<i<j<4 (59)
a;i = s <l < = ,
NCETNE !

with the wave frequencies
Lio(t)k? .
w; = > +p0)de, (1 =i =4). (60)

Two specific solutions of those four-wave solution are plotted in Figs. 11 and 12.
In each figure, the first plot is three-dimensional diagram, the second plot is density

plot, and the third plot exhibits the x-curves at t = 0. Figure 11 shows the pictures

0: \\ le.l|
16 J| _,-/{Ub‘ o
X LR
o
g B K\ |
10 IJ \\ r J
[;J LY ¢ |
0 £l
™ J
I.r| h
------ |-f' . :-fl ) Y . l‘r
(c)

(a)
Fig. 11 The pictures of (58) with the parametersas —lp = ks =cy =cs = 1,11 = —k3 = B(t) =
2,ky =13 =—l4=3,a() =4,k =5,c; =c3 =0.8.a3D figure, b density plot at t = 0, ¢ the

value graph of x withy =5att =0
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(a) (b) (c)

Fig. 12 The pictures of (58) with the parameters as Ih = —ka =1, —k; = —ls = B(t) = c2 =
ca=2,kp=—-13=3,k3=4,11 =5,c1 =c3 =—0.5,a(t) = sinh(t).a3D figure, b density plot
att = 0, c the value graph of x withy =5atr =0

of (5§8) with the parametersas —l) = ks =, =cs = 1,1 = ks =) =2,k =
Ii=—ly=3,a(t) =4,ky =5,c; = c3 =0.8. And Fig. 12 shows the pictures of
(58) with the parameters asl, = —ks =1, —kj = -l =B{t) =co=cs =2,k =
—I3 =3, k3 =411 =5,c1 =c3 = —0.5, a(t) = sinh(t).

4 Conclusions

In this paper, we study the (2+1)-dimensional vcDJKM equation and the (2+1)-
dimensional vesww equation. According to the exp-function method, we obtain the
one-wave solution, two-wave solution, three-wave solution and four-wave solution of
the two equations respectively, and we take two sets of different values for the variable
coefficients to enrich their various states. The results show that both equations have
multi-wave solution determined by p and ¢q.

The nonlinear equations with variable coefficients can describe the physical lin-
earity more accurately than the general equations, so they have more research value.
As far as we know, the content of using this method to study variable coefficient
equation is not very much. Since we have given the forms of p and g, the obtained
solutions are solitonic, so the forms of the solutions are very limited. Therefore, it
is worth studying the different forms of p and g. The solutions obtained here are
soliton-type, and we can introduce a very powerful formula for soliton solutions in

[25-34]:
f= Zexp(Zu,nﬁ Z itk i6;f). (61)

n=0,1 1<i<j<N
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In addition, we only have four types of wave solutions for the two equations, and
perhaps there are other types of wave solutions for these equations, which we have
yet to solve. We hope that our conclusions can enrich the literature which study the
behavior of nonlinear evolution equations.
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Nonlocal Integrable Equations in Soliton )
Theory Shecte

Wen-Xiu Ma

Abstract This article is to provide a brief overview of the study of nonlocal inte-
grable equations in soliton theory. The concept of nonlocality is explained, a little
history of nonlocal dynamics is given, and basic problems of nonlocal differential
equations are discussed. With the AKNS matrix spectral problems being taken as
examples, a classification of the corresponding nonlocal integrable NLS equations
and mKdV equations is presented. The identification of those nonlocal integrable
equations is made within the zero curvature formulation, where local and nonlo-
cal group reductions of matrix spectral problems are carefully conducted in pairs.
Iustrative integrable models include six couples of scalar nonlocal integrable NLS
equations and five couples of scalar nonlocal integrable mKdV equations.

Keywords Matrix spectral problem - Zero curvature equation * Nonlocal
integrable equation + NLS equations + mKdV equations
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1 What About?

In mathematics, local and nonlocal concepts are balanced, particularly in calculus.
For a local operator A acting on functions, it is possible, in principle, to compute
the value (Au)(x) using only knowledge of the values of u in an arbitrarily small
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neighborhood of a point x. For a nonlocal operator, this is not possible. In calculus,
two basic operations are differentiation and integration. The first is local and the
second is nonlocal.

In the theory of differential equations, a nonlocal differential equation is a kind
of mathematical equation that describes the evolution of a system with a nonlocal
interaction. Unlike local equations, which describe the evolution of a system at a
specific point in space and time, nonlocal equations take into account the interaction
of the system with its big environment. The ordinary differential equation (ODE)
y' =y is local, but the ODE y’ = y(—t) is nonlocal, since its motion at time #
depends on two times, ¢ and —¢. It remains open how to solve such general linear
nonlocal ODEs, even with constant coefficients. The partial differential equation
(PDE) u; = u,, is local, and similarly, the PDE u; = u,,(—x, —t) is nonlocal. The
firstis the heat equation, a prototypical equation in mathematical physics. The second
one provides solutions to the linearized Boussinesq equation u,, + ty ., = 0, which
describes a vibrating elastic beam; but yet, its well-posedness theory has not been
established.

In a nonlinear world, by integrable equations, we mean a kind of nonlinear ODEs
and PDEs. Anintegrable ODE is a Hamiltonian equation defined on a 2n-dimensional
symplectic manifold, which possesses n independent constants of motion commuting
under the corresponding Poisson bracket [1]. A PDE is called to be integrable, if its
eigenfunctions of associated linear problems, known as Lax pairs [2], provide a com-
plete set of functions in a normed infinite-dimensional vector space of functions, so
that any solution can be represented by its corresponding generalized Fourier series
with respect to that set of eigenfunctions. Lax pairs, generating infinitely many con-
servation laws and symmetries, play an essential role in establishing such complete
integrability. Moreover, by virtue of Lax pairs, the inverse scattering transform is
often used to solve Cauchy problems of integrable PDEs [3]. This method involves
decomposing the initial wave profile into a set of elementary waves that satisfy a Lax
pair of linear spectral problems, and then using these waves to construct the solution
of a Cauchy problem of an integrable PDE.

In this article, by integrable equations, we mean integerable PDEs. It is known that
group reductions of Lax pairs lead to constrained integrable equations, not only local
but also nonlocal. This motivates us to study nonlocal integrable equations, based on
matrix spectral problems. Primary characteristics of nonlocalities are time reverse,
space reverse and spacetime reverse utilities [4]. By checking invariance of Lax
pairs under similarity transformations, a certain classification of nonlocal integrable
equations associated with a given spectral problem can be achieved [5]. However,
nonlocal equations are almost impossible to solve using conventional techniques.
We just started studying nonlocal PDEs, particularly integrable ones, and many of
their mathematical theories need to be developed from scratch.

In what follows, we will provide a little history of nonlocal dynamics and high-
light the study of nonlocal integrable equations. By conducting group reductions
of the (1+1)-dimensional AKNS matrix spectral problems in pairs, the correspond-
ing nonlocal integrable NLS equations and mKdV equations are constructed and
classified into six classes and five classes, respectively, three NLS classes of which
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possess a mixed type nonlocality involving all three reflection coordinates. Conclud-
ing remarks are given in the final section.

2 Little History and Driving Force

One popular example of nonlocal dynamics is pantograph modeling [6], which has
a long history in pantograph mechanics and pantograph transport [7]. Particularly,
in 1821, the eidograph was invented to improve upon the practical utility of the pan-
tograph [8]. In theoretical physics, two-place physics [9] is an inspiring example of
nonlocal theories, which aims to explain the correlated natural phenomena happened
at two different spaces and/or times [10].

Furthermore, cryptographic theories, for example, the RSA cryptographic system,
involve public keys and private keys, applying data mining algorithms, which are
essentially nonlocal problems [11]. The notion of non-locality in quantum mechan-
ics, a property of the universe that is independent of our description of nature, was
introduced in the context of the EPR controversy on the phenomenon of entangle-
ment between quantum systems [12]. Unsupervised machine learning in artificial
intelligence actually deal with a nonlocal superposition concept as well [13].

Recently, it has been found that PT symmetric potentials in quantum mechanics
can guarantee that the energy spectrum is real and that time evolution is unitary
[14]. The importance of nonlocal integrable equations stems from an observation
that a nonlocal integrable nonlinear Schrédinger equation can be viewed as a linear
Schrodinger equation, in quantum mechanics, with a PT symmetric nonlocal poten-
tial [15]. The classical nonlinear Schrodinger equation describes waves in nonlinear
dispersive media under the first-order perturbation with respect to wave number, one
principal application of which is to the propagation of light in nonlinear optical fibers.
The modified Korteweg-de Vries equation corresponds to the second-order pertur-
bation theory of water waves, waveguides, etc., and it is also generalized to nonlocal
situations [4], being PT symmetric. The study of nonlocal integrable equations [16]
is primarily driven by these two kinds of integrable equations.

3 What to Do?

One fundamental problem in mathematical theories of nonlocal differential equations
is: how can we determine solutions to nonlocal ODEs, for example, to an nth-order
nonlocal homogeneous linear ODE:

YO + ey D) + - ey (@) + (=0 =0, ap = %1, 1 <i <n—1,

(1
with constant coefficients ¢;, 1 <i < n — 1? Itis clear, however, that the first-order
nonlocal equation
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y = cy(—t), ¢ = const. # 0, 2)
has an elementary function solution:
7r } 0
y(t) = cos(ct — Z) or sin(—ct — Z),
and the second-order nonlocal equation
y" = cy(—t), ¢ = const. # 0, 3)
has two linearly independent elementary function solutions:
y(t) = sinwt, coshwt, when ¢ = W2,

and

y(t) = coswt, sinhwt, when c = —w?.

A more general example is
Y+ (=) +y@2t) =0, “4)

for which any good idea to solve should be of great importance. Nonlocal ODEs may
define novel special functions that could have important applications in many areas
of mathematics and physics.

A second interesting problem is: what can we say about the well-posedness of
initial-value and/or boundary-value problems for nonlocal PDEs? For example, how
about the Cauchy problem for the spacetime reverse heat equation

Uy = Uy (—x, —1)? &)

Does its Cauchy problem have a unique solution? The maximum principle does not
hold for this nonlocal equation, which is used to show the uniqueness of a solution to
the Cauchy problem of the local heat equation. Interestingly, this nonlocal problem
can be solved by separation of variables and Fourier series. The solution to a Cauchy
problem of this nonlocal equation (5) for —m < x < 7 is given by

o0
u(x, 1) = % +v2 [-a, sin(n’t - g) cos nx + b, cos(n’t — %) sinnx], (6)

n=I1

where a, and b, are the Fourier coefficients of an initial displacement:

1 [ (7
ap = — f(x)cosnxdx, n>0, b, = — f(x)sinnxdx, n > 1.
™

—T —T
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There exists the same well-posedness problem for nonlocal integrable equations. It
is known that the inverse scattering transform has been used to formulate the solution
to the Cauchy problem for the space reverse integrable nonlinear Schrodinger equa-
tion [17], and Dabrboux transformation, the Hirota bilinear method and Riemann-
Hilbert problems are also successfully applied to construction of soliton solutions
to a few other nonlocal integrable equations (see, e.g., [16, 18-21]). Nevertheless,
the existence and the uniqueness of solutions to initial value problems and/or bound-
ary value problems still remain open. The questions are even harder to answer for
mixed type nonlocal integrable nonlinear Schrodinger equations, some paradigmatic
examples of which are

iu; =y, + [uu(x, —t) + u(—x, Hu(—x, —t)lu, (7
iy = Uy, £ [un*(—=x,t) +u(—=x, —Hu*(x, —t)]u, 8)

and
iU, = Uy, £ [wu*(—x,t) +ulx, —Hu*(—x, —1)]u, 9)

where u* is the complex conjugate of u (see the next section for details).

Mathematical theories of nonlocal differential equations provide a powerful tool
for modeling and analyzing complex physical phenomena and have the potential to
lead to new discoveries and insights in mathematical physics. Related research is
ongoing. We are committed to continual innovation to better understand and finally
know how to solve nonlocal differential equations, including nonlocal integrable
ones.

4 Classification Under Pairs of Group Reductions

We would like to present a classification of nonlolcal integrable NLS equations
and mKdV equations, associated with the (1+1)-dimensional AKNS matrix spectral
problems, by taking group reductions in pairs.

A common general scheme for constructing integrable equations is the zero curva-
ture formulation (see, e.g, [22, 23]). Let u and A denote the potential and the spectral
parameter, respectively. Consider a Lax pair of matrix spectral problems:

—ipy=U¢, —igy =V, (10)

where U = U(u, \) and V = V(u, \) are given spatial and temporal spectral matri-
ces, respectively, and ¢ is a matrix eigenfunction. An integrable equation is deter-
mined by the associated zero curvature equation
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which is the compatibility condition of (10). Let m, n be two arbitrary natural num-
bers, and assume that

u=u(p,q), p=Pjt)i<j<m, t<k<n> 4 = (qrj)1<k<n, 1<j<m- (12)

=Kk=n, 1=)=

Foreachr € Nand two pairs of arbitrary constants, vy, ap and 3y, 32, where a; # ap
and 3; # [B,, we formulate a pair of spectral matrices as follows:

0p
U=AA\+ Pu), A =diag(al,,, xx1,), P = |: 0:| , (13)
q

and
VIt =XQ+ 0" u, \), Q= diag(Bi1, 31,), (14)

where I} is the identity matrix of order k, and Q! is traceless and deg) Q"1 < r — 1.
Leta = a) — ap, 8 = 01 — (»and 1, , = diag(l,,, —1I,). Particularly, upon tak-

ing
07 =2ap - 21,7 iy, (15)
o o

the corresponding zero curvature equation gives the matrix integrable NLS equations:

B B
Pt = __zl(pxx +2pgp), ¢ = _zl(%cx +249pq), (16)
o o
and upon taking
ot =xep - %Mm,n(zﬂ +iPy) — %(i[P, P+ P +2P%, (17
o o o

the corresponding zero curvature equation presents the matrix integrable mKdV
equations:

B 8,
pr = —5(13m +3pgp. +3p:qp), q: = _JZ(QXXX +3q.pq +3qpq.). (18)

For the spatial spectral matrix U, determined by (13), we can conduct possible
group reductions generated from using a constant invertible matrix C of the form:

o
C‘[ocz]’ (19)

where C; and C; are invertible square matrices of order m and n, respectively, and
Hermitian when the conjugate transpose is involved or symmetric when only the
transpose is involved. The key is to keep the corresponding zero curvature equation
to hold after a group reduction.
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For the matrix integrable NLS equations (16), local reductions come with the case
of replacing A\: A — A\*. The complex local group reduction is

U'(x,t,\*) = CU(x,t, \)C7!, (20)
and the corresponding local potential reduction reads
q(x.1) =C;'p'(x,1)C). 21

Nonlocal reductions come with the cases of replacing A\: A — —\*, —A, A. The
reverse-space, reverse-time and reverse-spacetime group reductions are

Ul(=x,t,=\*) = —CU (x,t, \)C ", (22)
UT(x,—t,—=\) = =CU(x, 1, \)C~", (23)
UT(=x,—t,\) = CU(x,t,\)C!, (24)

respectively, and the corresponding nonlocal potential reductions read

q(x,1) = —C5'pl(—x,1)Cy, (25)
qx, 1) =—C;'pT(x, —1)Cy, (26)
qx,t) = C5'p" (=x, —1)C\. 27)

For the matrix integrable mKdV equations (18), local reductions are associated
with the cases of replacing \: A — \*, — X\ (see, e.g., [24, 25]). The complex and
real local group reductions are

UT(x, 1, \*) = CU(x,t, \)C!, (28)
UT(x,t,=\) = —CU(x,t, \)C', (29)

and the corresponding local potential reductions read
qx,1)=C;'plx,nCy, (30)

qx,t) =Cy'pT(x,0)Cy. (31)

Nonlocal group reductions are associated with the cases of replacing A\: A — —\*, A.
The complex and real reverse-spacetime group reductions are

Uf(—x, —t, =\ = —=CyU (x, 1, \)C ™!, (32)
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U'(—x,=1,) = GU(x, 1, )C™, (33)

and the corresponding nonlocal potential reductions read
q(x, 1) = =Cy'p'(=x, =1)Cy, (34)
g 1) = C;'p' (=x, =1)C1. (35)

We will discuss about how to reduce the matrix integrable NLS and mKdV equa-
tions and classify the reduced nonlocal integrable counterparts, by conducting pairs
of group reductions of the associated matrix spectral problems.

4.1 Pairs of Group Reductions Yielding Nonlocal Integrabe
Equations

Let us conduct a pair of group reductions as follows:
UG, i, £\ or UT (X, 7, £\) = 22U (x, 1, V71, (36)

and
UG, 7, £\ or UT (&, 7, £)) = £AU(x, 1, )AL, (37)

where (%, f) could be any of the three reflection coordinates, (—x, t), (x, —t) and

(—x,—t), and
> 0 A O
Y = , A= s (38)
0 22 0 AZ

with X1, A and X,, A, being invertible square matrices of orders m and n, respec-
tively, and Hermitian when the conjugate transpose is involved or symmetric when
only the transpose is involved (see, e.g., [26-33]).

For the matrix integrable NLS equations (16), we can have six pairs of group
reductions, which yield nonlocal integrable NLS equations. Those six pairs of local
and nonlocal reductions correspond to types (A*, —A*), (A*, =), (A", A), (=A%, =)),
(=X*, A) and (— A, A). All six pairs of group reductions lead to the nonlocal potential
reductions:

g, ) =3, p'x, Oy, q(x, 1) = —A; ' pi(—x, DA,
g, 1) =5 p(x, O, qx, 1) = =25 pT(x, =) Ay,
q(x, 1) =3 pT(x, Oy, qlx, 1) = A pT(=x, —1) Ay,
qx, 1) = =27 pi(=x,O%1, q(x, 1) = —A;' pT(x, =) Ay,
g, ) = =2 pf(=x, 0Ty, q(x, 1) = A pT(—x, =) Ay,
qlx,t) = —Ez_lpT(x, -1, glx,t) = Az_lpT(—x, —Ay,

(39)
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respectively, and the associated temporal spectral matrices satisfy

(VEY (e, 1,0 = VBRI, 1, V2L (VY (=, 1, =2 = AVE(x, 1, ) AT,

(VEY (e, 1,0 = VR, 1, VE-L (VY (0, —1, —0) = AVEI(x, 1, HATL,

(VEY (e, 1,0 = ZVERIx, 1, VE=L (VYT (—x, —1,0) = AVEI(x, 1, HATL,

(VYT (—x, £, =) = 2VE(x, 6, VETL (VY (x, —1, —0) = AVE(x, 1, M AT,

(VY (—x,t, =) = 2VE(x, 0, VE1 (VEY (—x, =2, ) = AV (x, 1, A~

(VN (x, 2, =) = 2V, 1, VL (VEDT (—x, —1, ) = AVEI(x, 1, ) A1,

(40)

respectively, so that the corresponding zero curvature equation holds true under each
of the six pairs of group reductions.

For the matrix integrable mKdV equations (18), we have one pair of local group
reductions, corresponding to type (A*, —\), which leads to Sasa-Satsuma type equa-
tions [34], and five pairs of local and nonlocal group reductions, corresponding to
types (A%, =A%), (A%, A), (=, =A%), (—A, A) and (—A*, ). All five pairs of local
and nonlocal group reductions yield the nonlocal potential reductions:

q(x,1) = ' pf(x, 21, q(x, 1) = —A;' pl(—x, =) A,

g, ) =3, ' pl, D1, g, 1) = A pT(—x, =) A,

qx,0) = =33 pT(x, 21, q(x, 1) = —A; ' pl(—x, =) A, 1)
q(x,t) = —Ez_lpT(x, HNX, glx,t) = Az_lpT(—x, —A,

q(x,t) = —Ez_lpT(—x, -1, q(x,t) = Az_lpT(—x, —1)A,

respectively, and the associated temporal spectral matrices satisfy

(VBY (x, 1, 3% = =VBI(x, ¢, V=1 (VB (—x, =1, =X*) = —AVBI(x, 1, VAT,

VB (x, 1, 3 = VB, 1, V=L, (VBY (—x, =1, ) = AVBl(x, 1, )AL,

VBHT (x, 1, =) = =2 VBI(x, r, V=71, (VBY (—x, =, =X*) = —=AVBl(x, 1, )AL,

VBT (x, 1, =0 = TVBI(x, 1, V=~ (VBHT (—x, =1, ) = AVBI(x, 1, )AL,

(VB (—x, =1, =X*) = =2 VBl(x, 1, V=1 (VBYT (—x, —t, A) = AVBl(x, 1, VAL,

(42)

respectively, so that the corresponding zero curvature equation holds true under each
of the five pairs of group reductions.

4.2 Examples in the Caseof m = 1andn = 2

Let us set m = 1 and n = 2 and consider two choices of pairs of group reductions

with
_ 0 _ 09
21:1,221:[‘80]A1:1,A21=[50]; 43)

and
¥ =1, 2;‘:[2"],A1=1, A;‘:[‘SO] (44)
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where o and & are real constants satisfying o> =42 =1, ie., (0,6) =
(I, D, A, =1, (=1, or (=1, -1).

4.2.1 Reduced Spatial Spectral Matrices

We point out that if the first choice leads to a reduced spatial spectral matrix

atA p1 f(p1)
U=|gp)xr 0 |, 45)
h(p1)) 0 A

then the second choice gives another reduced spatial spectral matrix

aA p1 f(p)
U= | h(p) axA 0 , (46)

gpy) 0 aA

where the (2,1)th and (3,1)th entries are exchanged with the (3,1)th and (2,1)th entries
of the previous spatial spectral matrix, respectively. Therefore, we will only list the
reduced spatial spectral matrices under the first choice (43).

Considering the matrix integrable NLS equations (16), we have the following six
reduced spatial spectral matrices.
(a) Type (\*,—A\%):

aA p1 —odpi(—x,1)
U= op; A 0 . a7
—opi(=x,1) O s\
(b) Type (A*,—A):
aX  pi —odpi(x.—1)
U = op} s\ 0 . (48)
—6pi(x,—t) O A
(c) Type (A", \):
aA p1 odpi(—x, —t)
U= opy as 0 . 49)
5P1(_x» _t) 0 OZZ)\

(d) Type (=A*,—=A):
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arA p1 0opi(—x, —1)
U= | —opj(—x,1t) ap\ 0 . (50)
—6pi(x,—t) O as

(e) Type (=", )):

aA p1 —oépi(x, —t)
U= | —opj(—x,1) A 0 . oy
opi(=x,—1) 0 as )\

(f) Type (=, N):

arA p1 —o0pi(=x, —t)
U=| —opi(x,—t) axA 0 . (52)
opi(—x,t) O ar A

Considering the matrix integrable mKdV equations (18), we have the following
five reduced spatial spectral matrices.
(a) Type (A*,—A%):

aA p1 —odpi(—=x, —t)
U= opy a A 0 . (53)
—opi(=x,—t) 0O s\

(b) Type (A*,A):
a A p1 0dpi(—x, —t)
U= op} s\ 0 . (54)
opi(=x,—1t) 0 asA

(c) Type (—=A,—A"):

aX  pi odpi(—x, —1)
U= —op asA 0 . (55)
—opi(=x,—t) 0O arA

(d) Type (=A\):
arA Pi —05p1(—X,—t)
U= —op A 0 . (56)
op1(—x,—t) 0 arA

(e) Type (—=A*,\):
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a1 p1 —oép}
U= | —opj(—=x,—t) axA 0 . &)
opi(—=x,—t) 0 oA

Note that the reduced spatial spectral matrices of type (A*, A) in both cases of the
matrix NLS and mKdV equations are the same. Therefore, the resulting type (\*, )
nonlocal integrable NLS equations and mKdV equations come from one integrable
hierarchy, associated with that reduced spatial spectral matrix.

4.2.2 Scalar Nonlocal Integrable NLS and mKdV Equations

The six classes of pairs of local and nonlocal group reductions in two choices generate
the following six couples of scalar nonlocal integrable NLS equations.
(a) Type (A*, —\*) scalar nonlocal integrable NLS equations are

Pl = _gi[pl,xx +20(p1p] + pi1(=x, ) pi(=x, ) p1], (58)
P == 5ilP1a — 20(p1pi(=x,1) + pypi(=x, 1)) p1]. (59)
(b) Type (\*, — ) scalar nonlocal integrable NLS equations are
pl,t - _El[pl,xx + 2U(p1p1 + pl(xa _t)pl (-xv _l))pl]v (60)
Pl = _El[pl,xx —26(pipi(x, —t) + pipi(x, =) p1l. (61)
(c) Type (\*, X) scalar nonlocal integrable NLS equations are
Pl = _El[pl,xx +20(p1p] + p1(—x, =) pi(—x, —1)) p1], (62)
P = _&l[pl,xx +20(p1pi(=x, =1) + pipi(—=x, —1)) p1]. (63)
(d) Type (—A*, —)) scalar nonlocal integrable NLS equations are
PLe= —;l[m,m —20(p1pi(=x,1) + pi(x, =) py(—x, =1)) p1], (64)

Py = —%i[m,“ —20(p1p1(x, =) + pi(=x, ) pi(—=x, =1)) p1]. (65)

(e) Type (—\*, A\) scalar nonlocal integrable NLS equations are
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Pl = —%i[m,m —20(p1pi(=x,1) + pi(=x, =) pT (x, =) p1], (66)

P = —%i[pl,xx +20(p1p1(=x, =1) + pi(=x, ) pi(x, =) p1]. (67)

(f) Type (— A, A) scalar nonlocal integrable NLS equations are

Dl = —%i[m,m —20(p1p1(x, —t) + p1(=x, ) p1(—x, —=1)) p1], (68)

Pl = —%i[pm +26(p1pi1(—x,t) + pi(x, =) p1(—x, —1)) p1]. (69)

The last three couples of nonlocal integrable NLS equations have the mixed type
nonlocality involving all reflection coordinates, (—x, ¢), (x, —t) and (—x, —t), in
(1+1)-dimensions, which is a completely new phenomenon.

The five classes of pairs of local and nonlocal group reductions in two choices
generate the following five couples of scalar nonlocal integrable mKdV equations.
(a) Type (\*, —\*) scalar nonlocal integrable mKdV equations are

g .
pri=——[PLo + 60|p1*prx + 30 pi(—x, =) (p1p1(—x, =), (70)

Pl = —%[m,m —6dp1pi(—=x, =) p1x —36pi(pip1(—=x, —=1)].  (71)

(b) Type (A\*, A) scalar nonlocal integrable mKdV equations are

p
[P1awe + 601p11* pic + 30 pi(—x, =) (p1pi(—x, =D, (72)

P =——=
()é3

b [Plaxx +60p1p1(—x, —0)p1x + 30 pf(p1pi(—x, —)):].  (73)

Pt =—"3
Ol3

(c) Type (—A, —\*) scalar nonlocal integrable mKdV equations are
— 6 2 * *
Pi:r = —5[1?1,)(“ - 60P1P1,x - 30171 (—.X, —f)(P1P1 (—x, _t))x]v (74)
_ 6 * *
Pri = =S [Pree = 00p1pi(—x. =D p1s = 30p1(prpi(=x. =D)l. - (75)
(d) Type (—A, \) scalar nonlocal integrable mKdV equations are

p
Pre=="5Proex — 60pip1x — 30 pi(—x, =) (pipi(—x, —1),], (76)
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Dl = —%[pl,m +66pipi(—x, —t)p1x +30(pipi(—x, =) p1l.  (77)

(e) Type (—A*, A\) scalar nonlocal integrable mKdV equations are

p .
Pl = —g[m,m — 60 p1pi(=x, —=)p1x — 3opi(=x, =)(Ip11H):],  (78)

Dt = _g[pl,xxx +63p1 pi(—x, =) p1x + 30p;(—x, =) (Ip11)].  (79)

All those nonlocal integrable equations of lower orders come from the ten non-
local integrable hierarchies associated with the ten reduced spatial spectral matrices
generated from the ten pairs of group reductions (see, e.g., [26-33]). They provide
significant integrable models for analyzing complex physical phenomena that involve
nonlocal effects and nonlocal interactions, and have the potential to lead to new dis-
coveries and insights in various areas of science and technology, and are an active
area of research in mathematical physics.

5 Concluding Remarks

This article provided a little history of nonlinear dynamics and discussed about prob-
lems of nonlocal differential equations, particularly nonlocal integrable equations, in
soliton theory. A thorough classification of nonlocal integrable NLS equations and
mKdV equations, associated with the AKNS matrix spectral problems, was achieved
via conducting group reductions in pairs. All resulting nonlocal integrable equations
consist of six classes of NLS equations and five classes of mKdV equations. Three
classes are mixed-type nonlocal integrable NLS equations, each of which involves
all three reverse-space, reverse-time and reverse-spacetime nonlocalities. Illustra-
tive examples of scalar nonlocal integrable models were explicitly computed in a
particular case with four potential components.

The theory of solitons to nonlocal integrable equations, generated from taking one
group reduction, has been carefully formulated via Riemann-Hilbert problems very
recently [5]. A large task in nonlocal theories, however, still needs to be done. It is of
particular importance to explore soliton solutions systematically by combining dif-
ferent approaches, including the Darboux transformation, the Hirota direct method
and the Wronskian technique (see, e.g., [18-21, 35-40]). Breathers and algebro-
geometric solutions, being other interesting and important solutions, are worth further
studies, too. Two-place (or multiple-place) nonlocalities bring difficulty for estab-
lishing global existence of solutions or more generally, the well-posedness theory.

It should also be an extremely rewarding experience to look for novel nonlocal
integrable equations, associated with other interesting or significant matrix Lie alge-
bras [41]. In the non-semisimple case, group reductions of matrix spectral problems
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yield nonlocal integrable couplings (see, e.g., [42]), about which very little is known.
We just started the job. There is a long way to go. Definitely, we need new ideas, new
research and new tools that will enable us to address problems on nonlocal differ-
ential equations in mathematics and their applications in physical and engineering
sciences.

Overall, nonlocal integrable equations are a fascinating research area in mathe-
matical physics that has led to important mathematical discoveries and continue to
be a rich source of inspiration for new mathematical research.
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Multiple Lump and Rogue Wave )
Solutions of a Modified Benjamin-Ono L
Equation

Solomon Manukure and Yuan Zhou

Abstract In this chapter, a (2+1)-dimensional modified Benjamin-Ono (MBO)
equation is introduced. Multiple lump (M-lump) and rogue wave solutions are
obtained for the equation with the aid of the Hirota bilinear method. The equation
is first studied in two parts: an integrable and a nonintegrable part. The noninte-
grable part is found to possess 1-lump and line rogue wave solutions whereas the
integrable part has only 1-lump solutions. Furthermore, the MBO equation is found
to posses both multiple lump and rogue wave solutions. By fixing parameter values,
the dynamics of the solutions are studied with 3D and density plots.

Keywords M-lump solutions - Rogue waves - Hirota bilinear form - Benjamin
Ono equation

MSC codes 37KO05 - 35Q53
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1 Introduction

Nonlinear partial differential equations (NLPDEs) and their solutions play an impor-
tant role in the study of nonlinear interactions between physical processes. Evi-
dently, the search for exact solutions to NLPDEs has, in recent times, become a
very important exercise in nonlinear science, especially in the area of mathemati-
cal physics. The importance of NLPDEs transcends theoretical boundaries. In areas
such as physics, engineering, economics, chemistry, biology, finance and many oth-
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ers, NLPDEs have been used to study many practical problems [1]. For example, the
nonlinear Schrédinger equation (NLSE), which possesses solitary wave solutions,
are used to describe wave propagation in fluids and nonlinear media, such as optical
fibers [2].

It is well known that many NLPDEs possess soliton solutions, which have been
a major focus of research in mathematical physics for many years. Their discov-
ery which dates back to the 19th century has led to many new research areas and
directions. In addition to solitons, several other solutions such as lump solutions
have also attracted a lot of attention in recent times. Lump solutions are rational
function solutions that are analytic and localized in all directions in space [3-5].
Like solitons, they also have many important applications such as the description of
nonlinear patterns in plasma and nonlinear optic media [6]. They were first derived
from multi-soliton solutions of the KPI equation by Mankov et al. [7, 8], but have
recently been observed for many other NLPDEs in higher dimensions such as the
higher dimensional counterparts and extensions of the BKP equation [9, 10], the Ito
equation [11], the Hirota-Satsuma-Ito equation [12], the Sawada-Kotera equation
[13], the Davey-Stewartson II equation [14], the Ishimori equations [15, 16], and the
Hietarinta equation [17, 18]. There are also multiple lump waves which have been
observed for many equations [10, 19, 20].

Another interesting class of solutions that have also attracted enormous research
attention in recent times are rogue waves. These are often lump-type waves [21], that
are localized not only in space but also in time [22]. Such waves have been used to
describe nonlinear wave phenomena in the ocean [23, 24] and in nonlinear optics [25,
26] and have also been observed in optical fibers [27-29] and plasma [30]. A unique
feature of rogue waves is that they appear from nowhere and disappear without a trace
[31]. Thus, they arise from constant (or uniform) backgrounds, grow significantly
in height or amplitude and recede back into the constant background [32]. Many
NLPDESs such as the NLS equation, the Davey-Stewartson equations, the Boussinesq
equation and many others have been found to possess rogue wave solutions. It is also
important to remark that rogue waves that arise from non-uniform backgrounds have
also been reported in literature [33, 34]. In this article, we investigate the existence
of M-lump and rogue wave solutions to a novel (2+1)-dimensional extension of the
Benjamin-Ono equation by means of the Hirota bilinear method [35]. We will first
find 1-lump and line rogue wave solutions to two reductions of this equation.

The Benjamin-Ono equation is the (1+1)-dimensional integrable system:

g+ 3 )xx + they =0 ey

with a bilinear form given by
(D} + DY) f - f =0. @)
The equation arises in the study of long internal gravity waves in deep stratified fluids

[36, 37]. It is a completely integrable equation which passes the Painléve test and
possesses multi-soliton solutions and other integrability-related properties such as
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the Béckland transformation, infinitely many conserved quantities and symmetries
(see, [38, 39)).
In this project, we study the following extended MBO equation

ity + 37 + Uyx + By + Upx + Yty — Uty =0 3)
whose bilinear form under the transformation
u=2(nf),, 4)
is given by
(@D} + D} + BD2 + DD, +yD,Dy — D) f - f =0, (5)
where D,, D, and D, are Hirota bilinar derivatives. and «, 8, y, are arbitrary con-
stants.

For any nonnegative integers n, m and differentiable functions f, g, we define the
Hirota bilinear operator as

0 ol
Di(f-g) = (5 - W) f) - g(x) (6)
or more generally,
"o 0 a\" [0 a\" .
Dth(f'g)=<a—g> (5—5) fx,0)-glx, 1) (7

When f = g, we have the bilinear partial derivative expression,

I m n v m n i m—j 3 n—k (i)j (E)k
bybif f—ZZ( b ’ <j><k)<8x) (az) f ax at 1

j=0k=0

n n!
0‘mm—w’

We remark that Eq. (3) is generally not integrable (It is integrable for some fixed
parameters). To find lump and rogue wave solutions, we will consider two reductions
of the MBO equation. First, for the case where g = 0, we have;

where 0 < k < n, is the binomial coefficient.

ouy + 3(u2)xx + Uxxxx + Uy + VUy — Uy = 0 ®)

which is also nonintegrable. The starting point in constructing lump solutions is to
find positive quadratic function solutions to Hirota bilinear equations. According
to [3], any positive quadratic function solution to a Hirota bilinear equation in the
variables ¢, x, y can be expressed in the form
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f =f12+f22+a77
fi =aix +ay + ast, 9)
f2 asx + asy + aet.

where a;, 1 <i <7 are real constants and a; > 0. When f; and f, are linearly
dependent, the function f can be simplified to

f=aff+a (10)

for some real constant ¢; > 0. Then, we have

uzmwsz?ﬁ. (11)

The above solutions satisfy the conditions that,

lim u#0 (12)
x2+y?—00
for any fixed ¢, and
tlim u#0. (13)
—00

These solutions are degenerate. We will consider the case where f; and f; are linearly
independent.

2 Lump Solutions

We now find lump solutions to Eq. (8). Suppose fi and f, are linearly independent
and

rank (al az) =2. (14)
ay as
This is equivalent to the determinant condition
A = ajas — aras = dr a2 # 0. (15)
ay ds

Then, substituting f in (9) into (5), a direct computation determines the solutions
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3 2 2 2 2 2
_oa; + aazag + yaras + yara; — ayas — 2aasag + asas

a) =
a? + a? ’
2 3 2 3158 5 2
aazag + aag + yazas + yasag + ayag — 2arazas — asag (16)
a4 = — s
a? +a?
) 3 6
3
a; =

b
(aras — azas)*(a3 + a?)

where

.= a2a§ + 2a2a§aé + azag + 2ayaga; + 2ocya2a3aé + 2aya§a5a(, + 2aya5a2 + yza%a% + J/za%ag
+ yzagag + yzagag — 2aa%a§ + 2aa%aé — 8aarazasag + 20{(1%(1% — 2aa§a§ — 2ya§a3 — 2ya§a5a6

— 2ya2a3a§ — 2ya53a6 + a; + 2a§a52 + a;‘,

and q; fori = {2, 3, 5, 6} are free parameters. For the function in (4) to be analytic,
we require
a7 >0, arag — azas # 0. a7

From (16) we know that, a; > Oifand only if ¢ # 0 and ayag — azas # 0. Condition
(15) is a necessary condition for the second condition in (17) since

(arag — a3a5)(aa§ + aaé + a% + asz)

ajas — aras =
a% +a§

(18)

We need free parameters to satisfy ¢ # 0, axag — azas # 0, and a(a3 + a?) + a3 +
a52 # 0. Consequently, through the transformation (4), we obtain the following class

of solutions data fr + day f
a a
U= 42 1 l’ (19)
S
where fi and f, are are given by,
3 2 2 2_ 2 2
aa; + aaza; + yaras + yaxa; — asaz — 2axasag + azaz)
fi =—x—2 e 2 2+62 Z 2+ taz + yas,
aa2a6 + aa’ + ya2a5 + ;izwza?l- a2a6 — 2apazas — a2a6 (20)
Hho=—x— & 2 5 62 2 22+ tag + yas.
az +ag
These solutions satisfy
lim u(x,y,t)=0 21
x2+y2—00

for any fixed ¢, and are therefore localized in all directions in space. They form a
class of lump solutions to Eq. (8).
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2.1 Illustrative Example

Choosing the parameters,
a) = 1,(13 =2,a5 = —2,616: —1,0[ = —1,)/ = 1,

we obtain

(=Y s 2+ L 2+3721 (22)
- sETY st 15

and
12(38¢t — 61x + 25y)

u= . (23)
75¢%2 — 228tx + 120ty + 183x2 — 150xy + 75y% + 3721

It could be easily verified that u decays in all spacial directions, i.e., for any fixed ¢,

lim  u(x,y,t)=0. (24)

x24y2—>o00
Fort = —2, 0 and 2, we have,

12(—76 — 61x + 25y)

w=- : (25)
183x2 — 150xy + 75y2 + 456x — 240y + 4021
12(—-61 25
183x% — 150xy + 75y2 + 3721
and 12(76 — 61 25

 183x2 — 150xy 4 75y2 — 456x + 240y + 4021

respectively, which are depicted by 3D and contour plots below (Figs. 1, 2 and 3).

3 Rogue Waves
We now find rogue wave solutions to Eq. (8). Suppose again that f| and f; are linearly

independent and
rank (“1 "2) <2. (28)
ay ds

Let & = a;x + a,y. Then, we have
fi=§+ast, f»=c§+aet,

for some ¢ € R. Then, we can rewrite f in the form



Multiple Lump and Rogue Wave Solutions ... 273

Fig. 1 Wave profile of
solution (25)

(b) Contour plot

[ =&+’ +at’ +a,
where ¢, c3 are nonzero constants. The corresponding solutions u = 2(In f), satisfy

lim u(t,x,y) =0, (29)
|t|]—>o0

for (x, y) € R? uniformly and are called line rogue waves.
The above rank condition (28) is equivalent to the condition
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Fig. 2 Wave profile of
solution (26)

-20 -fo /(/1'0 20
0
20

®) C;uou: plot

(arae — a3a5)(aa§ + aaé + a% + ag) .

ajas — aras = 0. 30
1as — axds g (30)
This implies that
aa%—i—aaé—i—a%—i—a? =0, a3
due to condition (17). Consequently,
_ a% + a§ (32)

2 2°
az +ag
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Fig. 3 Wave profile of
solution (27)

e
TeossT

-20
(b) Contour plot

Since a3 + a2 > 0, a3 + a? > 0, we must have o < 0. In other words, when & > 0
we cannot expect rogue waves. Consequently, we obtain a class of analytic solutions
that satisfy condition (29).
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3.1 Illustrative Example

If we choose parameters

a2=17“3225615:_25‘16:_17)/:1’

then, « = —1, and we obtain we obtain
f 2t—+—3 + 2+ t 6 2 2—1—27 (33)
= —X — — —Xx — —,
577 577 TS
and
12(4¢ + 3x + 5y) (34)
u= .
25¢2 + 24tx + 40ty + 9x% + 30xy + 25y% + 27
The above solution satisfies condition (29) and
lim u(t,x,y) =0, 35)

x24+y2+12—>00

unless 3x + 5y = ¢ for any fixed ¢ € R. For t = —10, t =0, r = 10 and 20, we

have,
12(—40 4 3x + 5y)

U= (36)

9x2 4+ 30xy + 25y% — 240x — 400y + 2527

123 5
u = (3x +5y) (37)
9x? 4+ 30xy + 25y% 4 27
12(40 4+ 3x + 5y) (38)
u =
9x2 + 30xy + 25y% + 240x + 400y + 2527
and 12(80 + 3x + 5y)

+ 3x +Jy (39)

T 9x2 1 30xy + 25y2 + 480x + 800y + 10027

respectively, which are depicted by 3D and contour plots below (Figs. 4, 5, 6 and 7).

4 Integrable Case

Now, let us consider another reduction of (3). When o = y = 0, we obtain the
integrable equation;

3(u2)xx T+ Uyyx + .Buxx + U — Uyy = 0. (40)
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Fig. 4 Wave profile of
solution (36)

||||?||l|if|1|1-|.

1

m
(a) 3D plot

Fig. 5 Wave profile of
solution (37)

! ||||?||l|if|111-l.

2
(a) 3D plot

This equation has been shown to be Painlevé integrable [40].
Again, substituting (9) into (5), the corresponding solutions under the condition
a =y =0, is given by

3 2 2 2
_,3‘11 + ﬂa1a4 —aya; +ajas — 2asaqas

asz =
a’ +a2 ’
2 3 ! 4 2 2
_ Bajas + Bay — 2a1axas5 + asa4 — asa; @l
ag = — 2 2 5
ay +a
2 2\3 ! 4
_ 3(ay +ay)
as

© (a1as — aras)*’
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Fig. 6 Wave profile of
solution (38)

Fig.7 Wave profile of
solution (39)

20
(a) 3D plot

where a; fori = {1, 2, 4, 5} are free parameters. To guarantee the analyticity of the
function (4), we require
a; >0, ajas —azay #0 (42)

which is a direct consequence of the rank condition. We illustrate some solutions
below.
If we choose parameters
a)==2,ap=-2,a4=—1l,as =1,8=2,

18 2 /21 2 375
=|—=t—2x-2 —t — —, 43
f (5 x y)+(5 x+y)+16 (43)

we obtain
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and

64(57t — 25x — 15y)
u = .
2443812 — 18241x — 480ty + 400x% 4 480xy + 400y + 1875

(44)

It could be easily verified that u decays in all spacial directions, i.e., for any fixed ¢,

lim u(x,y,t)=0. 45)

x2+yr—00
Fort = —2, 0 and 2, we have,

64(—114 — 25x — 15y)

=— , 46
400x2 + 480xy 4 400y2 + 3648x + 960y + 11667 (46)
64(—25x — 15
"y (—25x y) @7
400x2 4 480xy + 400y2 + 1875
and 64(114 — 25x — 15y)
u= _ ) (48)

© 400x2 + 480xy + 400y2 — 3648x — 960y + 11667

respectively, which are depicted by 3D and contour plots below (Figs. 8, 9, 10).

We remark that no line rogue waves were found for the integrable version of the
MBO equation.

S M-lump Solutions

Now, we consider multiple lump solutions of the MBO Eq. (3). Inspired by [41], we

define

1
M:@, n=12,....

We expect multiple lumps for M =1, 3, 6, 10, 15, - - - . We consider two cases.

5.1 Inthe Caseof X =x + ayt

Let X = x 4+ a;t, and consider

M-k

M
fay, ) =FX, ) =Y > a;X*y. (49)
k=0 j=
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Fig. 8 Wave profile of
solution (46)

pl}
(a) 3D plot
201
104
-.;.D J 2h -lll‘.i 6:3 BIU
¥
-1p
=204
(b) Contour plot

When n = 1, we have M = 1. This is exactly 1-lump solutions.
Let fi(x,y,t) = X* 4+ a3y* + a, be a solution of (5). By symbolic computation
we get one class of solutions with

3
aj =07a2=__9a3=_ﬂ‘

Therefore 3
fitx,y, ) = x* — By* — B



Multiple Lump and Rogue Wave Solutions ... 281

Fig. 9 Wave profile of
solution (47)

-20
(b) Contour plot

When 8 < 0, we have f; > 0 and

u(x,y, 1) =2(n fi); = T (50)

Obviously, the above function u is a static lump solution with the property

Iim u(x,y,t)=0.

x24y?—00
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Fig. 10 Wave profile of
solution (48)

-80

(a) 3D plot

-80 -60 -40

(b) Contour plot

Setting B = —1, we depict the wave profile in Figs. 11, 12 and 13.
When n = 2, we have M = 3. Let
foy. 1) = X0+ (a2 + a3y?)X* + (a4 + asy® + agy") X? + a7 + agy* + agy* + ajoy®

be a solution of (5). By symbolic computation we get a solution with
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3D plot

Fig. 11 Wave profile of solution in Eq. (50) with f2=-1

Contour plot

Fig. 12 Wave profile of solution in Eq. (50) with f2=-1
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-30
density plot

Fig. 13 Wave profile of solution in Eq. (50) with 12=-1

25 125
aj _Ova2=__9a3 3,3’04 __’05—909
,32
1875 475
a6=3ﬁ2,a7=—7,a8=—7,a9=—17,3, ap = —p°. (51)

As a result, we have

25 125 1875 475
S, yo0) =20+ (38y? = Zxt + G 40057 — o) — i — —y? - 17pyY - B

It is easy to see that f, > O when 8 < 0, for all x, y. The corresponding solution

20627 +4x*(=38y" — ) +2x (37" +90y% — )]

VAC ) (52)

u(x, y, 1) =2(n folx,y,0) =

is a 3-lump solution. We depict the solution for § = —1 in Figs. 14, 15 and 16.
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3D plot

Fig. 14 Wave profile of solution in Eq. (52) with f2=-1

Contour plot

Fig. 15 Wave profile of solution in Eq. (52) with f2=-1
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=20
density plot

Fig. 16 Wave profile of solution in Eq. (52) with f2=-1

When n = 3, we have M = 6. Let

S0y, = X2 4 (@ +a3y) X0 + (a4 + asy® + agyH) XE + (a7 + agy? + agy® + aj0y®) X©
+ (ann +any? +aizy* +a1ay® +aisy) XA+ (@16 + a17y? + argy* + aroy® + azoy®
+ a1y OX% + ax + ax3y? + azay* + agsy® + azey® + azgy'? + azgy '

be a solution of (5). By symbolic computation we get a solution with

98 35 75460

a1=0.a2 = =, a3 = 68,43 = 7, as = 690,a6 = 156, a7 = — 55~
18620 3 5187875 220500

@ =-—3 a9 = —15408, ajp = —208°, a; = — 3pT 9T T
159786550 565950

ar3 = 37450, 14 = 146087, a15 = 15B, ar = ———— an = ——55—.
14700 878826025

aig = ——. a1g = —354208, axo = ~5708°, ap; = —68%, azm = — =,

B 98
300896750 16391725 798980
Y e v 43358%, ay = 58B*, ang = B°.

Consequently, we obtain
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Fig. 17 Wave profile of
solution in Eq. (53) with
f2=-1

3D plot

8 735
flayn=x"%+ (—% —68yH)x'" + (158%y* + 690y” + ?)xs +(=208%y5 — 15408y*

220500 , 5187875 4
X

18620 , 75460
T T 5 - 132 y 3,34

p T

14700 565950 159786550
—687y'10 — 5708%y® — 354208y° 4_ 2_ 2

+(=68"y By By” + 57 FER 35

798980 16391725 300896750 , 878826025

3 v+ 352},4 + 3,54 o+ 9,56

x84+ (158%y® + 146082 y0 + 37450y* +

+ BOy12 4+ 588410 + 4335628 +

It is easy to check that f3 > 0 when 8 < 0, for all x, y. The corresponding solution
is given by
2f 3x (X ’ y ’ t )

u(x’ y7t) =2(1nf3(x’ yvt))x = f3(x y t) )

(53)

where

98 735
File,y, 1) = 12x" + 10x9(—g —6By%) + 8x7(158%y* + 690y% + ?) + 6x° (=208 y° — 15408y*

18620 , 75460 220500 , 5187875

)+ 4x3 (1584 + 146082y° + 37450y* +

AT g )
14700 565950 159786550
+ 2x(—=68°y10 — 5708%y8 — 354208y° + 3 - 7 y2 - 35

This is a 6-lump solution. We depict the solution for 8 = —1 in Figs. 17 and 18
(Fig. 19).
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Fig. 18 Wave profile of solution in Eq. (53) with I2=-1

20

220
density plot

Fig. 19 Wave profile of solution in Eq. (53) with 12=-1
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5.2 Inthe Caseof X =x + ayy

Now we assume X = x + a;y and consider

M M—k

Oy ) =FX, =Y > a;X*. (54)

k=0 j=0

Let fi(x,y,t) = X? 4 a3t?> + a, be a solution of (5). By symbolic computation
we get a solution with

1 3y? By —1
a=——,0)=—",0a03 = ————.
: y Br:—1"" y2a

It follows that

1-By?, 3y?
y2a 1—By?

Flay ) =(x—2)
Y

We need a; > 0,a3 > 0 for f > 0. So we have
y #0,1—By?>0,a <0. (55)

A lump solution can, thus, be constructed:

4(x — %)

_ Yy _ 1-By2 0 3y?
V) y2a o+ 1-8y?

u(x,y, 1) =2(Inf), = (56)

Evidently, the function u possesses the property

lim u(x,y,t)=0.

x24y2—o00

We depict the solution in Figs.20, 21, 22 and 23, fora = —1,8 = -1,y = 1.
When n = 2, we have M = 3. Let

Py, 0 = X0+ (a2 + a3tH X* + (as + ast® + agt*) X? + a7 + agt* + agt* + ajot®

be a solution of (5). By symbolic computation we get a solution with



290 S. Manukure and Y. Zhou

Fig. 20 Wave profile of
solution in Eq. (56) with I+ =
v =av1,B=1

Fig. 21 Wave profile of
solution in Eq. (56) with I+ =
vl =avl,B=1
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Fig. 22 Wave profile of
solution in Eq. (56) with I+ =
v, =av1,B=1

Fig. 23 Wave profile of
solution in Eq. (56) with I+ =
L =av1,B=1

1 252 3By — 1) 125y 90
aqg=—-——th=—a3=——" @4=——, a5 = ——,
S v Y B -1 T

3(By? — 1) 1875y6 4752 17(1 — By?)
6= T W= T A8 = Ay =
acy (I=8y?) a(By=—1) acy
e By*-1)°
10 013)/6 .

Consequently, we obtain
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Fig. 24 Wave profile of
solution in Eq. (57) with [+ =
vl 2=av1,B=1

3(By* — D2 25y2
f2(-x1 y7t) :(_x—X)G—i—I: (IBV 2 )t Y 2}('x—z)4
4 Yo 1 - By Y
3By — D% 90 , 125y* Yo,
R T
By>—13%° 1701 — By>H)t* 475y%12 1875y°
adys a?y? a(By?—1) (1 —pyH3>

We denote

3(By? — Di? 25y?
y2a 1—By?

3(By? — 1 90, 125y* ' (58)
ayd o (By? — 1)?

F(x, y, 1) =6(x — gy)s +4(x — %)3 [ } (57)

+2(x—1)[
y

Again, itis easy to see that f, > 0, when (55) is satisfied. The corresponding solution

20 fox(x, y, )]

u(x,y, 1) =2(n fo(x, y, 1))y =
? ! Hx,y, 1)
is a 3-lump solution. The wave profile is shown in Figs.24, 25, 26 and 27, for
a=—-1,=—-1,y =1.
When n = 3, we have M = 6. Let
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Fig. 25 Wave profile of
solution in Eq. (57) with I+ =
a1, Pr=4a"1,B=1

Fig. 26 Wave profile of
solution in Eq. (57) with I+ =
vl 2=a"1,B=1
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Fig. 27 Wave profile of
solution in Eq. (57) with I+ =
L, Pr=4a"1,B=1

falx,y, 1) = x4 (ay + a3t2)X10 + (a4 + a5t2 + a6t4)X8 + (a7 + agt2 + agt4 + a10t6)X6

8

+ (a1 +a12t2 +a13t4 +a14t6 +a15t8)X4 + (a16 +a17t2 +a18t4 +a19t6 + axot

+ a1 X? + agp + an3t? + apar* + apst® + azet® + azgyt!® + apgt!?

be a solution of (5). By symbolic computation we get a solution with

1 98y2 6(By:—1) 73594 690
TR T T YT T T e
15(8y% — 1)? 75460y ° 18620y2 1540(1 — By?)
T Tt T Ra- s B T e - YT T ey
20(8y% —1)3 51878758 2205004 37450
ao = 0{34)/6"111 = _msal2 = —m,an = P
1460(1 — By?)? 15(1 — gy>)* 159786550y 10 565950y °
B R 7 LT/ I e
1470052 35420(8y2% — 1) 570(1 — By?)3 6(8y% —1)°
M= 2T @3y2 1420 = ahy6 T T s
878826025y 12 300896750y 8 16391725y*
2T 00—y P T T3aByr — )P T 3a2(8yr - )2
798980 4335(8y2 — 1)? 58(By2 — 1)* (By? —1)°
azs = — 303 > ad26 = ahy ’a27=_a54y8’a28= W-

With X = x — %, we obtain
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2 2 2 2 2.4 2 4
Fey t)=X12+[6(,By — Dt 98y ]X10+|:15(ﬂy - DXt 6902 735y }Xg

ay? 1 —By? aly o By?—1?
N {20(;37/2 —1)3° N 1540(1 — ByH)t*  18620y242 N 75460y ° ]X6
ady® aly? a(By?—1)  3(1-By?)?
151 — By2)*® 146001 — By®)%® 37450t 220500p4r> 51878758 1,
{ ST oyt T @ e -1 A fﬂyz)“}
N |:6(f3y2 — 1110 57001 — By N 35420(8y* — D1° 14700y %1%
O[S},IO 0(4),6 053)/2 aZ(ﬂVZ _ 1)

565950y%:% 159786550y 107 ,
+
a(By? -1 3(1-By?)
N (By? — D012 58(By? — 1)*10 N 4335(By% — )23 798980 16391725y %+*
0(61,12 a5y8 114}/4 303 30[2(}3]/2 _ 1)2
300896750812 878826025y 12
3a(By? — 1) 91 — ByH)®

After some computation, we can verify that f3 > 0 when (55) is satisfied. The result-
ing solution is given by

2f3x (X, Y, t)
M(X,)’,t):z[lnfB(x,y,t)]x:7, (59)
flx,y, )
where
6(By? — r* 98y?
f3x(x,y,t):12X”+10X9|: (By . w9y 2]
ay 1—By
+8x7 15(8y% — 1)%t* 69012 735y4
aZyt o By?—1)?
+6x5 20(By? — 1)3° N 1540(1 — ByH)r*  18620y212  15(By? —1)2
aly® a?y? a(By? -1 alyt
+ax3 15(1 — ByH)*® 1460(1 — By2)21°  37450r*  220500y%%  5187875y8
aty® adyt o? aBy? =12 31— pyH?
6(By2 — 12110 570(1 — By?)3r®  35420(8y% — 1% 14700y %1%
+2x (By )t n (1 =Byt n (By )t Yt
0[5),10 (X4}/6 0!3)/2 aZ(ﬂVZ _ 1)

565950y 012 N 159786550y 10
a(By? —1)» 3(1 = By?)

This is a 6-lump solution. We depict the solution in Figs.28, 29, 30 and 31, for
a=—-1,=—-1,y=1.
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Fig. 28 Wave profile of
solution in Eq. (59) with I+ =
v =av1,B=1

Fig. 29 Wave profile of
solution in Eq. (59) with I+ =
vl r=av =1

-20°
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Fig. 30 Wave profile of
solution in Eq. (59) with I+ =
v =av1,B=1

Fig. 31 Wave profile of
solutipn in Eq.A(59) with [+ =
L Pr=4a"1,B=1

6 Concluding Remarks

In this chapter, we have introduced a new (2+1)-dimensional equation from the
well-known Benjamin-Ono equation and studied its multiple lump and rogue wave
solutions by means of the Hirota bilinear method. Two reductions were particularly
considered: an integrable equation and a nonintegrable one. The nonintegrable equa-
tion was found to possess both lump and line rogue wave solutions, whereas the
integrable equation was found to posses only lump solutions.
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Furthermore, we also found multiple lump solutions to the new equation. For
this type of solutions, we considered two cases: X = x +a;t and X =x +a;y. In
the first case, we observe multiple lump solutions with multiple peaks and troughs
D,

The second case yields multiple lump solutions that are actually rogue waves with
multiple line profiles.

corresponding to the order M of the solution, where M =
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On the Inclination of a Parameterized )
Curve i

John McCuan

Abstract Given a plane curve I" parameterized by arclength s on an open interval
I C R by a function y : I — R? with twice continuously differentiable component
functions and an initial inclination angle 6y € R satisfying (s¢) = (cos 8y, sin 6)
for some sy € I, we show there exists a unique function ¢ € C'(I) with (s) =
(cos 1(s), sine(s)) forall s € I and 1p(sg) = . Similar results holding for a param-
eterized curve defined on a compact interval are stated in many differential geometry
texts. These results are usually based on a path lifting result for continuous maps
into the circle S'. Our result differs from these treatments both in that the interval
I is taken to be open and that the techniques used to obtain the result are via a
direct treatment of a system of ordinary differential equations. The system of ordi-
nary differential equations differs from those usually considered in that it contains
first order equations of singular type. Such systems seem to have independent inter-
est and the approach presented should have broader application. We give one other
related example of a similar singular system of ordinary differential equations, and
we strongly suspect the development of a general axiomatic theory of such singu-
lar systems should be possible, though we are unaware of such a development. We
also discuss the topological approach and offer a version of the path lifting lemma
for paths defined on open interval (or any interval). Finally, we discuss applications
of our result to the construction, classification, and analysis of plane curves and in
relation to structure theorems for plane curves.

Keywords Inclination - Universal cover + Plane curve

Let / be an open interval in R with sg € I.Let : I — R? have coordinate functions
v = (71, 72) withy; € C*(I) for j = 1, 2 satisfying 47 + 43 = 1 (parameterization
by arclength) where

dy;j
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We will prove the following:

Theorem 1 (global solution of singular system of ordinary differential equations)
If 0y € R satisfies
{ cos 0o = 1 (so) )
sin o = Y2(s0),

there exists a unique function ) € C'(I) satisfying the system of ordinary differential
equations
—sing =5, sel
COSQ/)1/.):"}'/2,SEI 2)
P(so) = bo.

Theorem 2 (globally defined differentiable inclination) If 6y € R satisfies (1) then
there exists a unique function vy € C'(I) satisfying the system of algebraic equations

cosp =7, s €l
siny) =, s €1 3)
P (so) = bp.

We obtain Theorem 2 first as a corollary of Theorem 1 and the following assertion
of equivalence:

Theorem 3 (equivalence) Given v : I — R? as above:

(a) Ify € C'(I) satisfies the transcendental system of algebraic equations (3) then
1 is the unique solution of the singular system of ordinary differential equations
(2).

(b) If+) € C'(I) satisfies the singular system of ordinary differential equations (2)
then 1) is the unique solution of the transcendental system of algebraic equations

(3).
We also obtain Theorem 2 as a corollary of the following topological lifting result:

Theorem 4 (topological lifting) If I is any interval in R and v : I — S! has coordi-
nate functions v = (vi, v2) withv; € CO(I) for j = 1,2 and v(sg) = (cos by, sin f)
for some 0y € R and some sy € 1, then there exists a unique function 1 € C°(I) for
which

cosyp =vy, s €l

siny) =uv,, s el “)

Y(so) = bo.

The lifting condition (4) is usually formulated as p o 1) = v where p : R — S! by
p(0) = (cos b, sin 0) is the universal covering map of S'.

The organization of the paper is as follows: We begin with a discussion of the
construction of plane curves of prescribed curvature. We then prove Theorems 1, 2,
and 3 in Sect. 1. Section 2 contains a proof of Theorem 4 and some related discussion
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of topological lifting. In Sect.3 we state two structure theorems for plane curves
directly in terms of inclination angle, and in Sect.4 we give two examples of curves
to which the above discussion applies and finally another example of a singular
system of ordinary differential equations (ODEs).

Remarks on the Construction of Plane Curves

The assertion of Theorem 2 is useful in the construction, classification, and analysis
of plane curves having prescribed curvature. Say, for example, we wish to classify
all C? curves in the x, y-plane with signed curvature k satisfying k = y at each point
(x, y) on the curve. The usual formulation for v : I — R? defined on an interval I
is given by an initial value problem

oAt = i i =12, v(s0) = (X0, Yo),  Y(s0) = Vo (5)

where 5o € I and vy € S' = {v € R? : ||v|| = 1}. These curves are called elastic
curves. They were first (and famously) classified by Euler [5], and the usual procedure
for their classification is to trade in the complicated second order equation in (5) for
the simple first order system of equations in the initial value problem

= cos 9, 1(0) = xo
Yo = sing, 72(0) = yo (6)
Y=,  YO)=6

where it is observed that specification of the initial unit tangent vy determines some
initial angle 6y up to an additive multiple of 27 by

cos By = Y1(s0)
{ sin p = J2(s0)- )

The introduction of the inclination angle % in (6) is based also on the observation
that the signed curvature k is given by the formula

dy
k= I ®)
Both this observation and the formulation of (6) rely on some result like Theorem 2.
Of course, this would be a much more interesting paper if there existed some solutions
of (5) which were somehow singular with respect to the inclination angle so that they
were missed by a classification of solutions of (6). As it is, Theorem 2 guarantees no
such singular elastic curves exist and thus Theorem?2 and all discussion associated
with it may be viewed as a technical detail.



304 J. McCuan

On the other hand, itis convenient to have a global result like Theorem 2. A careful
look at doCarmo’s classical text on differential geometry [3, pp. 23, 36-39] reveals
that the formula (8) is only introduced and considered locally and basically with the
assumption that v is differentiable. Similarly Stoker [14, pp. 21-22] addresses the
question by considering the version

cos ¢ = i (s)
{ sin g = () ®

of (7) locally. Theorem 2 provides a foundation for the treatments of both doCarmo
and Stoker, and this is especially important for Stoker who uses (8) to define curvature.
It is interesting that Stoker returns to the topic [14, p. 27] in the context of a
structure theorem for plane curves and offers a kind of global definition with differ-

entiability built in:
P(s) = Oy + / k(o)do. (10)

50

The function ¢ defined in (10) is a clearly globally defined continuously differentiable
function depending of course on the definition of curvature (which can be done
without v as given for example in (5)), but most importantly the formula (10) lacks
the original connection (3) with the tangent vector to the curve.'

In summary, one may find the assumption, but not the justification for the asser-
tion, that the inclination angle is a globally well-defined differentiable function of
arclength. It seems to me that one natural global formulation for the existence of 1
is in terms of the singular first order system of ODEs (2). There is a good existence
and uniqueness theory for regular first order systems, and there is extensive analy-
sis associated with singular linear ODEs with isolated singular points like Bessel’s
equation, which can be cast in terms of linear systems. This is the approach taken in
Sect. 1 below.

Returning to the construction of curves of prescribed curvature, one may consider

1 = cos 1, 11(0) = xo
Y2 = siney, 12(0) = yo
Y= P(0) =06y

in a variety of contexts where the function f = f(v, 1, s) prescribes the curva-
ture. All such constructions again assume the curve one wishes to parameterize
admits/determines a differentiable inclination angle. The Euler elastica mentioned
above for which the signed curvature is proportional to the height y =, are
approached in this way in [11, (2.2) p. 48], [8, p. 3871, [9, p. 71, [1, 10]. The approach
is used to classify and analyze the meridians of axially symmetric surfaces of

I A very similar development is given by Spivak [13, pp. 21-24] obtaining a specifically continuous
inclination angle ¢ and then freely differentiating ¢/ without further comment to obtain (10). In [3]
doCarmo gives (10) in his treatment of the four vertex theorem.
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Fig. 1 The inclination angle of a planar curve

prescribed mean curvature. For constant mean curvature (Delaunay surfaces) see
[2] or [4]. For capillary surfaces with mean curvature an affine function of height,
see [6, (2.2) p. 17] or [15, (2.2) p. 425]. For more exotic axially symmetric surfaces
with prescribed mean curvature see [4, 7, 16]. In view of the structure theorem for
planar curves which states that every such curve is essentially determined by the
value k(s) = f of the signed curvature as a function of arclength along the curve,
it can be said that every regular C? plane curve is an example. The curve in Fig. |
was numerically computed with the signed curvature equal to the arclength along
the curve with f(s) = s.

I have used this approach for constructing and classifying various special curves
numerous times without reflecting either on the fact that the existence of a smooth
inclination angle was being assumed or the fact that I did not know a reference where
that existence was justified.

Preliminary Remarks Concerning Theorems 2 and 4

Associated with an arclength parameterization y : I — R? as introduced above, the
function¥ : I — S!illustrated in Fig. 1 is familiar from differential geometry. In this
context, the inclination angle is usually defined informally as the angle between
the tangent vector  and the positive horizontal direction. The following heuristic
discussion is explained in detail in Sect.2 below.

Having assumed -y is an arclength parameterization, we have for each s € I that
4(s) € S'. Each such point (s) in a circle determines a family of angles by the
algebraic relations

cos f = 1 (s)
{sin&:ﬁz(s). an
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a=0—7 ty O+ 7

p(fy — )

Fig. 2 Covering map of the circle S'.

If 6 is one solution of (11), then all the other solutions are given by 6 + 27 for
Jj €{0,£1, £2, £3, ...} so that each differs from the others by an integer multiple
of 27r. Exactly one of these angles lies in any given interval of length 27. For example,
ifa € R then there is a unique angle 6 in the interval [a, a + 2) for which (11) holds.
Given a curve as in the theorems stated above, the relations (11) restrict the possible
choices of the initial angle 8y appearing in (1).

On the other hand, if p is the universal covering map of the circle mentioned in
Theorem 4, the restriction p, : [a, a + 27) — S! of that map is one-to-one and onto,
and the inverse p;1 :S! — [a, a + 27) is well-defined, continuous, and intrinsically
differentiable except at p,(a) = (cos(a), sin(a)) € S'. See Fig.2. Thus, given any 6
satisfying (1) we can take a = 6y — 7 to obtain some 54, sp € R withsa < 59 < s
and a function ¢ € CO%Gsa, sB) given by

U(s) = p; () (12)

satisfying p o ¥ (s) = (cos ), siny) = Y(s) and ¢)(sg) = 6. Therelation p o Y (s) =
4(s) may be assumed to hold and determine 1) uniquely for s4 < 59 < sp as long as
A(s) € {(cos B, sinf) € S' : |§ — By| < m} for each arclength s in the same interval
(sa, sg). Under this assumption, the interval (s4, s5) may be written as a union of
subsets

Ny = {s € (sa,sp) 1 ¥(s) # (£1,0)}
Ny = {s € (sa,s8) : 7(s) # (0, £1)}

with disjoint complements. At least one of these open sets will contain sy, and on
some subinterval one can obtain a unique analytic expression for 1 in terms of some
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branch of an inverse trigonometric function applied to one of the functions ~; or ;.
We will obtain such expressions below.

In principle the formulas we will obtain (and the existence/applicability of one of
them) do not depend on the twice differentiability of -y, but if the appropriate function
of y; for j = 1or j = 2isdifferentiable andvy; € C 2(I), then the applicable formula
can be differentiated to obtain an analytic formula for 1) and one can conclude P is
locally continuously differentiable. We will return to the consideration of situations
in which 4 is only assumed to be continuous and the structure of C' curves in Sects. 2
and 3 respectively.

1 Direct Proof of Theorem 2

We begin with a local version of Theorem 1 with arbitrary initial condition at a point
s* e I.This result and its proof are important because they represent an extension of
the standard local existence and uniqueness techniques from ODEs to the singular
system (2).

Lemma 1 If0* € R satisfies

{ cos 0 = 4 (s%) (13)

sin 6% = A, (s¥),

there exists some € > 0 and a unique function 1 € C'(I*) where I* = (s* —
€*, s* + €*) such that
—sinz/;z/} =%,sel*
coszﬂ&:%,sel* (14)
P(s*) = 6*.

Moreover, we may also assume the solution ) satisfies

cosp =7, s € I*
{sindJ:%, s el (5)
Proof We know sin 0* + cos? 6* = 1, so either

(i) sin6* # 0 or
(ii) cosO* £ 0.

Overall then, we consider these two cases, but we will consider the first case in detail.
If sin 6* # 0, there is some ¢ > 0 for which

sinf#0 for 0*—e<0 <0 +e (16)
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In this case we focus on the first ODE in (14). Specifically the initial value problem

—siny ¢ =¥
{ D™ = (17)

is nonsingular at (s*, 8*) € (s* — €, s* + €) X (0* — ¢, 0* + €). By the existence and
uniqueness theorem for ODEs, there is some €* > 0 for which (17) has a unique
solution ¢ € C'(I*) defined for s € I* = (s* — €*, s* + €*) C I. Without loss of
generality, we may assume

0" —e <(s) <0 +¢ forsel” (18)
so that according to (16)
siny(s) #0 for s el*. (19)

The function 1) also happens to satisfy the first relation in (15) because

cos Y (s) = cos (s*) + /S[— sin(o) ¥ (o)) do

ok

= cos 6* +/A Y1 (o)do

= cos 0" + §1(s) — 71 (s")
=J(s). (20)

It remains to show the consistency of the second ODE in (14), i.e., that the function
1) satisfies cos i ¢ =, fors € I*.

This will follow immediately if the second relation in (15) holds. We can show this
in different ways, but the following way uses techniques from ODEs. The function
y = 4, — sin ) satisfies y € C'(I*) and the initial condition y(s*) = 0. We proceed
to find a first order ODE satisfied by y. Differentiating we find

dy

d—=y=§2—cosw¢. (21)
s

Since 7 is parameterized by arclength, we can differentiate the relation 47 + 43 = 1
to obtain

N+ 2% =0. (22)
This relation may be used to replace 7, in (21) as long as we know 7, # 0. Since

A (s*) = sin 6% #£ 0, (23)
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we know there is some 77 > 0 for which 4, (s) # Ofors € J = (s* —n, s* +n). Let
n* =sup{n € (0,€]: y2(s) #0, s* —n<s <s* +n} (24)

and J* = (s* — n*, s* +n%).
Returning to (21) this means

cos .

siny) ¢ — cos i h = — 5 (Y2 —siny) ¢

cos v
Y2

. .l . M
y=—7—71 —cosyp =
72

for s € J*. Thus, the function y = 4, — sint) € C!(I*) satisfies

y = _co‘sw y forse J*
"2
y(s*) = 0.

The unique solution of this problem is y = 4, — sin = 0. In particular, 4, = sin ¢
for s € J*. We claim finally that n* = €*, so that J* = I'* and our discussion of the
first case is complete. In fact, if we assume n* < €*, then by continuity

Fa(s* £ %) = sin(s* £ 7*) £ 0.

This gives an immediate contradiction of the definition (24) of n*. Thus we have (15)
and consequently (14).
The second case is very similar and leads to the same conclusion(s). [l

We next turn our attention to the proof of the equivalence result Theorem 3.

Proof of Theorem 3 part (a) Here we assume ) € C'(I) satisfies (3). Given that
v is twice differentiable, it clearly follows that 1) is a solution of (2). Thus, it only
remains to show uniqueness.

Let ¢ € C'(I) be any other solution of (2). Setting y = ¢ — 1) € C'(I) we see

A={s el :P(s)=1(s)) (25)

is a nonempty closed set. Given any s* € A, we may apply Lemmal with 8* =
1[1(s*) = 1(s™*) to obtain some ¢* > 0 for which (14) has a unique solution on I* =
(s* — €*, s* + €*). It follows that 1[)(s) = 1(s) for s € I"* and that A is open. Since
the only nonempty subset of the open interval / which is both closed and open is the
interval [ itself, we conclude A = [ and  is unique. ([

Proof of Theorem3 part (b) Here we assume 1 € C'(I) satisfies (2). Applying
Lemma 1 at s* = 59 with 8* = 6, we obtain some ¢; > 0 for which

¢o=1/)|
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is the unique solution of

—sing ) =51, 5 € Iy
cosy P =, s € I (26)
P(s0) = bo

where Iy = (so — €9, So + €p), and we know

coso =1, s € Iy
{sim/)o =", s € Iy. @7)

Setting
B ={s el :cosy(s) = (s)and siny(s) = Y,(s)},

we have by continuity that B is a closed subset of / containing /. For any s* € B,
we can apply Lemma 1 with 8* = 1 (s*) to obtain some €* > 0 for which (15) holds
on [* = (s* — €, s* 4+ €*). In particular, /* C B, and B is open. Again since any
nonempty subset of I that is both closed and open is the interval [ itself, we know
B = I, and we have shown existence of a solution of the algebraic system (3).

If 1[) € C'(1) is any other solution of (3), then noting that any solution of (3) is a
solution of (2), the uniqueness shown using the set A from (25) in the proof of part
(a) above applies here directly. (]

The following corollary is an immediate consequence of Theorem 3.

Corollary 2 (existence implies uniqueness) If J is any open interval with sy € J C
I, and +p € C'(J) satisfies
cosyp =4, s €J
siny) =",, s € J (28)
P (so) = o,

then ) is the unique function in C' (J) satisfying (28). Similarly, ifp € C'(J) satisfies

—sinwiz%, seJ
cos ) =5, s €J (29)
P(so) = by,

then 1 is the unique function in C'(J) satisfying (29).

Proof If 1) solves (28), then differentiation gives that ¥ solves (29). But then part
(b) of Theorem 3 implies 1) is the unique solution of (28). Similarly, if ¥ solves (29),
then part (b) of Theorem 3 implies ¢ is the unique solution of (28) and is a solution

of (28) in particular. But then part (a) of Theorem 3 implies %) is the unique solution
of (29). O

Proof of Theorem 1 We can apply Lemma 1 with s* = sy and * = 6, to obtain
some interval Iy = (so — €9, So + €9) and some vy € C'(Iy) for which 1)y is the
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unique solution in C! (1) for the problem (26) above and for which we also know
(27) holds.
Consider the family F of intervals J = (inf J, sup J) for which

infl <infJ <s9—€p <so+€ <supJ <supl (30)

and there exists a unique ) € C 1(J) for which (28) above holds. Notice (30) is
equivalent to the condition Iy C J C I. We consider

u=|JJ.

JeF

Since U is a union of intervals each containing the interval [y, we know
U = (inf U, sup U) is a nonempty open interval. We make two claims:

Claim 1: There exists a unique function ¢» = 1) € C'(U) for which

cos =4, s €U
siny =%, s €U 31
P (so) = 0o,

and consequently U € F.
Claim 2: There holds inf U = inf 7 and sup U = sup [ so that
U=1¢€eF,
and since C! solutions of (3) are solutions of (2) the assertion of Theorem 1 follows.
Proof of Claim 1 We attempt to define a function ¥ € C'(U) by the formula
W(s) =(s) whenevers € J € F (32)

and 1) is the unique solution of (28) associated with J.

Foreacho € U,thereisatleastone J € F forwhicho € J,sowe can assign some
value to W (o). On the other hand, if J;, J, € F witho € J1 N Jp,then J = J, N J,
is an open interval with Iy C J C I, and by Corollary 2 we see

1/11| E%’

is the unique solution of (28) where v; is the solution associated with J; € F for
Jj =1, 2. In particular, ¥, (c) = 1, (0). This shows W is well-defined by (32), and
it follows immediately that ¥ € C!'(U) and we have shown existence for a solution
of (31). Again, we know by Corollary 2 that existence implies uniqueness, so this
completes the proof of Claim 1.
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Proof of Claim 2 Set s, = inf U and sz = sup U.Let ¥ € C'(U) continue to denote
the unique solution of (31) from Claim 1.

Let us assume by way of contradiction that s, > inf /. It follows that s, € I with
inf I <s4 <s59— €.

Since + is defined on all of I and (31) holds, we know the limits

li\m cosW(s) =%(s4) and li\m sin W(s) = Y2(s4) (33)
SN\SA SN\SA

exist as well-defined real numbers in [—1, 1]. It cannot be the case, furthermore, that
both of these numbers are zero or that both of these numbers have absolute value 1.
We now apply another result familiar from the theory of ODEs (or calculus):

Lemma 3 Given
(i) a,b e Rwitha < b,
(ii) y € C'(J) where J = (a, b), and
(iii) f e CO(y(J) x ),
if y is a solution of

{j}:f(y,t) forteJ
y(to) = yo

for some ty € J then the following hold:

(a) If
li\r‘n f(y(@),t) =L exists as a well-defined real number L € R,
N\a
then
li\r‘n y() =y, exists as a well-defined real number y, € R.
1\a
®) If
li/% f(@),t) =M exists as a well-defined real number M € R,
t
then

li/n}} y() =y, exists as a well-defined real number y, € R.
t

If 41 (s4) # 0, then we can take some ¢ > 0 for which cos W(s) = Oforsy < s <
sa + € and consider the ODE in Lemma 3 to be
Y2
cos y

y =

with solution y = W on the interval (a, b) = (sa, 54 + €). We conclude from part
(a) of Lemma 3 in this case that
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04 = li\m W(s) exists as a well-defined real number. (34)

The ODE is different, but the conclusion (34) is the same if 7 (s4) = 0.
Consequently, we may apply Lemmal at s* = 54 with 6* = 64 to obtain some
€* and a unique solution ¢, € C'(I*) of the problem (15), that is

cosyp =", s € I*
siny) =4, s € I'* (35)
P(sa) =04

where I* = (s4 — €*, 54 +€*) C (inf I, s + €p) C 1.
We wish next to show W (s) = 14 (s) fors in the intersectioninterval (s4, s4 + €*).
We start by defining W, : [* = (s4 — €%, 54 + €*) —> Rby

wA(S)v N SSA
W(s), § > sa.

Wu(s) = {

Observe that W, (s4) = 64 and in view of (34) we know ¥4 € C°(I*). Furthermore
W, is differentiable on /*\{s4} and (35) holds for ¢y = W4 atevery s € I*.
If 4(sa) # (£1, 0), then there is some ¢ > 0 for which
sinW(s) #0 forsy <s <s*+9.

In particular, sin @4 = sin Wy (s4) # 0, and for s4 < s < s* + § we can write

Wals) = Walsa)  W(s)—04 . _
= =Wy(o) = ————
S — 84 S — Sx sin W4 (o)

for some o with s4 < o < s. Since

Ylo)  Fi(sa)
oNsa sinW (o)  sinfy’

we see W4 has a right derivative at s, with value

; 1(s4)
Wy(sh) = — ) 36
A (SA ) sinf, (36)
Taking the derivative from the left in this case, we find
. . 1(s4)
Y =1 = — . 37
Alsy) Jim Pa(o) sin 6, 37

In view of (36) and (37) we conclude that when 4/(s4) # (&1, 0), ¥4 € C'(I*) with
derivative at s4 the common value



314 J. McCuan

1(s4)
sinf,

Wy (sa) = —

Similarly, If Y(s4) # (0, £1), then cos(f4) # 0, and

F(sa)
cos(f4)

Wy(sa) =

We have shown that in all cases W, (s4) exists and W4 € C1(I*). By uniqueness we
conclude W, = 1,4 as desired. Thus, setting

| Wals), ser”
Y(s) = {lll(s), sSA4 < S < Sg,

we obtain a function W, € C'(J) for J = (s4 — €, sp) satisfying (28). By Corol-
lary 2 we know W, is the unique function satisfying (28) and hence J € F contra-
dicting the definition of s4. Therefore, s4 = inf 1.

We find similarly that sz = sup I, so that U = (s4, sg) = I and the proof of
Theorem 1 is complete. (]

Theorem 2 is now immediate.

Proof of Theorem 2 The hypotheses of Theorem 2 are the same as those of Theorem 1,
so by Theorem 1 there exists a solution ¢ € C!(I) of the singular system (2). By
part (b) of Theorem 3, the function v is the unique solution of (3), and this is the
conclusion of Theorem 2. (]

2 Topological Lifting

The existence of the topological lifting asserted in Theorem4 above may be viewed
as fairly standard. Technically, however, it is normally assumed that the domain of
v is a compact interval, and compactness is used in the proof. A standard reference
for such a version of the result is given in Lemma 4.1 (p. 337, Chap. 8) of [12].
Proposition 5 on page 22 of [13] also assumes the domain of v is a compact interval
though the proof does not use compactness explicitly, and it may be possible to adapt
Spivak’s argument to prove Theorem4. I am going to present a different approach
which I think expresses more clearly the underlying structure of Theorem4 and the
special structure of the universal covering map p : R — S! in particular. It should
be emphasized that in many of the constructions of curves of prescribed curvature
mentioned above, the domain of definition is, or turns out to be, the entire real line
I = R which is decidedly noncompact.
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Circle Covering and Branches of the Inverse

Our proof of the topological lifting result Theorem4 depends on a unified or stan-
dardized view of the branches of p~!' where p : R — S! by p(#) = (cos 8, sin 6) is
the universal covering map of the circle S'. We identify four standard nonsingular
branches of p~' denoted p; ', g5, p;'. q; " from which a family

(Pa ez U gy ez U {podiidrez U (a5 ez

of nonsingular branches is derived. These depend in turn on four standard nonsingular
branches of arccosine and arcsine. Thus, we begin with the familiar real principal
branches of arccosine and arcsine as illustrated in Fig.3. The principal branch of
arccosine here is the inverse of

cos [0, 7] = [—1, 1]

[0.7]

which we will denote arccos : [—1, 1] — [0, 7] and satisfies arccos € C'(—1, 1) N
C[—1,1]. Similarly, the restriction

sin| =7/2,7/2] —> [—1, 1]
[_

7/2,7/2]

has an inverse arcsin € C!'(—1, 1) N C°[—1, 1] as indicated in Fig.3.

Fig. 3 Real principal branches of arccosine and arcsine
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2.1 Decompositions
It will be useful to have appropriate decompositions of the domain R and codomain
S! of the covering map p : R — S!. For the real line we start with open intervals

(,7r T . 7T> ((. 1)7r G 1)7r) for i € 7.
V. = + ) = — 1= +1)— or
/ 12 2’12 2 / 2’ J 2 /

as indicated in Fig. 4. It is readily seen that

Vi=R, Vy=(kr— = kn+2). keZ
jLe-% j 2 ( 2 2)

and

UV2k=R\|(2k+1)3] with Vo N Vo, = 6, m % n.
ez 2 Jken

For reasons that should become clear below, we give the intervals V; for j € Z
alternate names setting U; = V4 as indicated in Fig.5. The intervals {U;} <z are
of course still an open cover of R. In this instance we observe

Ui = Vopy1 = (kmr, (k + D7),

V_o Vo Va Vi
o o o
—37/2 —m/2 w/2 3m/2 R
-7 0 m 2m
o
V73 V—l V1 V3
Fig. 4 Overlapping decomposition of the real line into intervals of length 7.
U_3 U_, U1 Us
o
—3n/2 —m/2 m/2 3m/2 R
-7 0 m 27
o O 0
U74 U72 U() UQ

Fig. 5 Renamed overlapping decomposition of the real line by open intervals
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Fig. 6 Overlapping decomposition of the circle S! into compass semicircles

and
U =R\ {knhiez  with  Upy NUsy =6, m#n.
keZ

We next consider an overlapping decomposition of S! by open compass semicir-
cles

E={(x,y)eS": x>0}
N={(xyeS:y>0
W={(x,y)eS':x <0}
S={(x,y)eS':y<0}
as indicated in Fig. 6. Finally, we decompose the complement of the compass points

{(1,0), (0, 1), (=1, 0), (0, —1)} in the circle S' into open quarter circles in the quad-
rants in the usual manner setting

I={(x,y)eS':x,y>0=ENN
MN={(x,y)eS':x<0<y}=NNW
M= {xyeS:x,y<0l=wns§s
IV={(x,y)eS':y<0<x}=SNE.
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2.2 Restrictions and Inverses

For ¢ € 7Z, consider the following restrictions of sine and cosine to the intervals in
the decomposition sets defined in the previous section:

Singy = sin|v4l Ve — (=1, 1), 38)
COSy¢ = COS Uy — (—1,1), 39)
Uy
Singey 1 = SiI1|VM+2 2V — (=1, 1), (40)
COSp¢4+1 = COS tUgprr = (=1, 1). 41
Vaey2

It will be noted that siny, and cosysy; are increasing while cosy, and sinpe4
are decreasing. In particular, the inverse of sing is the restriction of the princi-
pal branch of arcsine mentioned above to the open interval (—1, 1). When we
have written arcsin € C!(—1, 1) above, it is technically the nonsingular restriction
sing '€ C'(~1, 1) to which we refer. We denote the particular nonsingular principal
branch sin, ' : (—1, 1) — (—=7/2,7/2) = V, by

sinal =sin'.
More generally if the index j of the open interval V; in Fig.4 satisfies j = 4£ for
some ¢ € Z, then

sing (<1, 1) > Vi = (2157r - g 207 + g) by sing)y=2er+sin"'y (42)
as indicated in Fig. 7. We emphasize sin, ! = sin~! with graph near the middle of the
illustration is the principal nonsingular branch of arcsine, and all of the functions
sin;' satisfy

sin;' e C'(=1,1).

Before briefly discussing some details of the other nonsingular branches of arcsine
and arccosine, we pause to record the formulas in one place for easy reference as we
recorded the restrictions in (38)—(41). Including (42) we have for £ € Z

sinz_g1 (—1,1) = Vg by sinz_g1 y=2m+sin"y 43)

Cosz_gl (=1,1) = U by COSZ_KI x =201 +cos ! x (44)

siny)y ;1 (=1, 1) = Vigpa by siny,, vy = Q0+ Dr—sin"'y  (45)

cosz_el+1 :(=1,1) > Ugeyr by (:OSZ_K'Jrl x=20l+Dr—cos'x (46)
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2 , 52
cos_y sin”]  cos_;

1 1 1
- / =]
\ _ 3w
\ :

Fig. 7 Real branches of inverse sine and cosine

-1

with
™ T
Vi = (2& — 2. 2em+ E) (47)
Uy = Q2lm, 2L+ )m) (48)
3
Viers = <ze7r n % 2 + ;) (49)
Useyo = (204 D7, 20+ 2)7) . (50)

We denote by cos,, ! or simply cos ™, the inverse of the restriction

€0Sp = COS

(0,m)
We have then cos; "'=cos™' € C'(~1,1) and we call this the principal nonsin-
gular branch of arccosine. Similarly we obtain decreasing nonsingular branches of
arccosine cosz_z1 e C!(—1, 1) for £ € Z given by (44).

Taking the principal nonsingular branches sin~! and cos~! as the first two standard
nonsingular branches of arcsine and arccosine respectively, we consider two more
standard nonsingular branches

T 37

siny ' i (=1, 1) — Vo = (5, 7) and  cos;':(=1,1) = Uy = (m,2m)

which are the inverses of the restrictions sin; and cos; defined in (40) and (41) and
are given by
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1

P S - -1 1
sinj y=m—sin" y and  cos]

x =27 —cos  x

respectively. These also fall into a family of nonsingular branches given in general
by the formulas in (45) and (46) above.

It is also natural to consider at this point certain restrictions of the covering map
p : R — S! with their inverses. For example consider

Vo=(-5.5) > E

= N =\—-=, = —

Po P|V0 0 )

where V) is illustrated in Fig.4 and E is the eastern compass semicircle in S' illus-
trated in Fig.6. The function pg is a bijection with inverse p, 'Y E — V, given
by

"(x,y) =sin""x.

Yo

pot G, y) =)

We record the general restrictions and inverses in one place for easy reference:

Pu=7p Vo > E (51)
Vae
D2+1 = P| Vi > W (52)
Vaet2
G = P| 2Ugy — N (53)
Uge
Gre+1 = P’ 2 Uspq2 > S (54)
U2
with
p|_l E— Vg by pil (x,y) = sinz_z1 y=2n+sin"y (55)
Vag
p|_' W — Vyin by p{zlﬂ(x, y) = sinz_el+1 y=Q20+r—sin"'y
Va2
(56)
p|_1 N — Uy by qz_[1 (x,y)= cosz_[l x =2m+cos 'x 67
Uge
s Useo by qz_le(x, y) = cosz}u_1 x =20+ Hm — cos ! x

d
Use2

(58)

We are also now in a position to prove the following result giving a family of com-
pass inverses of the covering map p whose useful formulas depend on the nonsingular
C! inverse trigonometric formulas given above:
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Proposition 1 (compass inverse branches of p~!) For each € € Z, the restrictions

Py = p| (20 — D7, 2 + D) — SN\ {(—1,0)},

(2e—=1)m,2e+1)1)

s 3w 1
Oy =p | 28m — =, 2m+ — ) = S\{(0, -1)},
|((2@7|)ﬂ+g.(25+1>7+%) 2 2

Py =p :(2em, (20 4+ 2)7) — S'\{(1, 0)}, and

(2¢m,(2¢+2)m)

Qa1 = p)  (2tm+ 3. Qe+ + 2 ) > S\((O, 1)

Qer+ 5,27+ %)
are bijections with unique well-defined continuous inverses given as follows:

(E) szzl :SN\{(=1,0)} = ((2¢ — D, (2¢ + 1)7) by

siny y =27 +sin”'y, (x,y) € E
Pyl (x,y) = { cosy) x =2¢m4cos'x, (x,y) €N

c0syy x = 20w —cos~!x, (x,y) € S.
(N) 3
Q;el S\, =1)} — (ZKW — g, 20 + ;)
by
sinz_g1 y=20r+sin"'y, (x,y) € E
05, (x,y) = { cos; x = 2¢m + cos ' x, (r.y) €N

sing), vy = €+ Dr —sin~'y, (x,y) € W.
(W) Pyl SN\{(1,0)} — (2¢m, 2¢ +2)7) by

cos,, x = 20w 4+ cos™! x, (x,y)eN
Pzglﬂ(x, y) = sin;,zl+l y=Q20+ )m — sin~! y, (x,y)eW
cosy) x =2(€+ Dm —cos™!x, (x,y) € S.

(S)
-1 .ql E I
054, - SN0, D} — (2E7r + 3. QU+ + 2)
by
Sin;@i] y=Q¢+Dr—sin"ly, (x,y)€E

Q;ZI_H(x, y) = sinz_lﬂrz y=Q20+2)m+ sin~! y, (x,y)eW
cosy), ¥ =2(€ + D —cos™' x, (x,) € 5.
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In particular, the functions Py, Qz¢, Pay1, and Qv for € € 7 are homeomor-
phisms of their respective domains onto compass semicircles in S'.

Remark(s) on the proof: Since each of the expressions above is continuous and
in fact C! with respect to the independent variable appearing in the formula for a
particular compass semicircle, the most important part of the proof is showing the
given formulas agree on overlapping semicircles so that the inverse functions are
well-defined.

Consider for example the formula for Qz_ll (x,y)andapoint (x,y) e ENN =1
The fact that (x, y) € I'tellsus x, y > 0 and

x=+1-=y=
We also know,
siny, v € (2¢m, 2¢m + 3 ) € @r, L+ 1)) = Use,
the last set being the domain of the restriction

COSp¢ = COS
Usge

Therefore,

cos(siny, y) = cos(sin™! y)

= /1 —sin?(sin"' y)

I—y
= X.

. [ R | . . . 1
This means cos;, x = sin,, y as required in the first two formulas defining Q5,

when applied on the intersection EN N = 1.
If(x,y)e NNW =1, thenx <0 < y and

r= T2
In this case we have
sinzyy v € (267 + Z e+ D7) © @er, Q€+ 1)m) = Uy
Then

cos(siny,, ; y) = cos(m — sin~" y)

= —cos(sin"! y)
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—/ 1= sin®(sin™! y)
= —4/ 1 — y2

= X.

Again this means cos;,' x = sin;}Jrl y as required in the second and third formulas
defining Qz_el when applied on the intersection N N W = II.

The many verifications of the formulas in the proposition follow from similar cal-
culations using the definitions of the overlapping partition intervals and the standard
nonsingular inverse trigonometric functions defined above. (]

Proposition 2 (general maximal inverse branches of p~!) Given §* € R, the restric-
tion
pf=p S (0 =, 0* + 1) — SN\ {(cos 0, sin %)}

(0* —7,0% +m)

is a bijection admitting a well-defined continuous inverse
(p")~' : S"\{(cos 6%, sin 0")} — (#* — m, 6* + 7).
In particular, p* is a homeomorphism.

I omit the proof of this result, though it may be useful in some applications to write
down explicit formulas for (p*)~! in terms of the standard trigonometric inverses
depending on the location of p(#*) € S! or alternatively the location of §* among
the overlapping partition intervals U; and V; in R.

2.3 Proof of Theorem4

As in the proof of Theorem I, we begin again with a local version of Theorem4
with arbitrary initial condition at a point s* € I. This result also generalizes the
introductory discussion above and an attempt is made to capture in this result and its
proof the essential structure of the universal covering map of the circle as mentioned
in the introduction.

Lemmad Ifv: 1 — S'ands* € I satisfy v(s*) = p(0*), that is,

{cosﬂ* = v1(s%) (59)

sin 0* = vy (s™)

for some 0* € R, then there exists some €* > 0 such that setting I'* = (s* — €*, s* +
€*) there exists a unique function ¢ € C°(I*) for which
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- I* e

Fig. 8 Continuous mapping into a semicircle

cosyp=vy, sel*
siny) =v,, serl* (60)
P(s*) = 0%,

Proof By continuity, there exists some €* > 0 for which

v(I*) C Bi(v(s®) = {x e S' 1 |x = v(s)|| < 1} C S"\{(— cos 6*, —sin %)}
(61)
where I* = (s* — €*, s 4 €*) as in the statement of the lemma. See Fig. 8.
We recall the universal covering map p : R — S! with

p(B) = (cos b, sin )
for which the restriction

pr=p C(0F =, 0F + 1) > SN\ {(— cos 6%, — sin 6%)}

(0% —m,0%+m)

is a homeomorphism, i.e., continuous bijection with continuous inverse.
Thus, setting v : I* — R by

Yp=(pH ' ov

we have 1 € C°(I*) and p o = v. Also, ¥(s*) = 6" so that (60) holds.
To see uniqueness, consider 1 € C°(I*) for which (60) holds. The set

A= (s €I":(s) = ¥(s))
is nonempty and closed by the continuity of Y and ¢. If o € A, then

Do) =P(0) = (p)~ o V(o) € (0% — T, 0% + ).
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By the continuity of QZ, there is some § > 0 for which @(s) e (0* — 7, 0* + m) for
0 — 0 < s < o+ 6. Therefore, we have

P(s) = (pH) o poibs) = (p*) o v(s) = (s)

forc —§ < s < o+ 6. This shows (o — §,0 + ) C A, and A is open. Since the
only nonempty subsets of /* which are both open and closed are the open interval
I'* itself, we have shown A = I*, and ¢ = . O

Note: An alternative proof of Lemma4 may be given avoiding the direct use of
Proposition 2 along the following lines: We start with the observation that

R=]JVv.
JEZ

so there is some j € Z for which 8* € V;. At this point, one considers various cases.
If j is even, then either j =4¢ or j = 4¢ 4 2 for some ¢ € Z, and the value £ is
unique because Vy,, N V,, = ¢ form # n. If j = 4¢, then

v(s*) = P| (s+) € E.

Vae

Since the compass semicircle E is open in S', there exists some ¢* > 0 for which
v(s) € E and

poplovis)=po P{El ov(s) =v(s) fors*™—¢e" <s<s*+¢€.

Vae

In particular, setting

PY(s) = P{Zl ov(s) fors™—e" <s <s*+¢€,
wehave ) € CO(I*)and p o 9(s) = v(s) fors € I'*. There also holds P(s*) = 6%, 0
the existence claim of the proposition is established. As for uniqueness, if ) € C°(I*)

and ~
pow(s) =v(s) forseI*,

then since v(s) € E, we have
P(s) = Py o pod(s) = Py,  ov(s) =t(s) fors e I*.

Thus, the case 6* € Vy, leads to the conclusion of the lemma. The cases 0* € V2
and 0* € V1 = Uy for some k € Z are handled similarly.

Proof of Theorem4 Applying Lemma4 at s* = sy with 6* = 6, we obtain ¢y > 0
and a unique function ¢y € C (1) for which v(s¢) = 6 and
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v(s) = poiy(s) fors el

where Iy = (so — €9, So + €p).
Let F be the family of open intervals J = (inf J, sup J) for which

infl <infJ <sog—¢€y <so+¢€ <supJ <supl
and for which there exists a unique 1) = 1); € C°(J) with

v(s) = poiy(s), se€,
that is, there exists a well-defined, unique continuous lifting of the restriction

V|.
J

Setting
sqa = inf (inf J) and  sp = sup(supJ),
= JeF
as usual, we make two claims:

Claim 1: There exists a unique function ¢ = W € C%(sy, s) with ¢(so) = 6, and

v(s) = pot(s), s € (sa, sB),
that is, W is a unique continuous lifting, and (s4, sp) € F.
Claim 2: There holds s4 = inf 7 and s = sup I so that

(sa,58)=1¢€F.
The second claim gives the assertion of the theorem.
Proof of Claim 1 We define ¥ : (s4, sg) — R by
W(s) =1(s) whenevers € J € F and ¢ = 1.

We need to show W is a well-defined, unique continuous lifting of v. Since continuity
is local and (s4, sp) is open, continuity follows if W is well-defined.
Since it is clear by definition that

U 7 = Gassw),

JeF

we have for each o € (54, sg) at least one J € F with o € J and at least one value
Yy (o) which may be assigned to W (o). Assume o € J; N J, for some J; € F, and
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let ¢; denote the continuous lifting on J;, for j = 1, 2. Note that J; N J; is an open
interval and
Iy CC={seiNJ:ii(s) =1a(s)}

Since 1, and 1), are continuous, C is a closed set. If s* € C, then we can apply
Lemma4 at s* with 0* = ¢ (s*) = ¥, (s*) to obtain some €* > 0 for which I'* =
(s* — €%, s* + €*) C J; N Jp, and there is a unique continuous lifting ¢ : I* — R of

v (62)

1%

with ¢ (s*) = 0*. Since

@) and ()

I* *

are both continuous liftings of the restriction (62) satisfying 1; (s*) = 0" for j = 1, 2,
we conclude

W) =)

I*

’
I*

and s* € I* C C. This means C is open as well. Since the only nonempty subset
of the open interval J; N J, which is both closed and open is the interval J; N J,
itself, we conclude C = J; N J; and ¢;(0) = 11 (o) in particular. This establishes
existence of the continuous lifting W : (s4, sp) — R with W(sg) = ¥o(s9) = 6p. It
remains to show uniqueness.

If i € CO(s4, sp) is a lifting of

v (63)

(sA.5B)

with @(so) = 6, then for each o € (s4, sp), there is some J € F witho € J.If v,
is the lifting associated with the interval J € F, then since

d

J

is a continuous lifting with ¥ (s0) = 0o, we know by the uniqueness of ¢/; that
$(0) =1y (0) = W(0).

Thus, W is unique and Claim 1 is established.

Proof of Claim 2 Let ¥ e C°(U) denote the unique continuous lifting on

U = (s4, sg) obtained in the proof of Claim 1 above. If we assume sg < sup /,

then sg € I and v(sp) is a well-defined point in S!. In fact, v(sg) is an element of
(at least) one of the open compass semicircles, E, N, W, or S. Consider the case

v(sg) € E = [(cosﬁ, sinf) : —g <0< g} c st
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Because v is continuous and W is a lifting,
li W(s) =l = .
Jim p o (s) Jim v(s) = v(sp)
In particular, for some e > 0, there holds
poVW¥(s)e E for sp—e<s <sp. (64)

From this we know

W(s) e p'E =V
Lel

Leto € (sp — ¢, sp) be fixed. Since Vy,, N V4, = ¢ for m # n, there exists a unique
£ € Z for which W (o) € V4. For any other s € (sp — €, sp) we know similarly that
W (s) € Vg, forsome m € Z.If m < £, then

dm <dm +2 <40 —2 < 44,

and it follows from the continuity of W that there is some s* € (s — €, sg) between
s and o for which
W(s*) € Viy_a.

Consequently, v(s*) = p o W(s*) € W which contradicts (64). If £ < m we obtain
a similar contradiction. From this we conclude

W(s) € Vap = <2€7r - g 2+ g) (6 — D, 20+ 1)m)  for s € (s5 — €, 5B).

Therefore,
Y(s) = szzl opoW(s) = Pz_zl ov(s) for s € (sp—e¢,sp),
and there exists a well-defined value

. B - -
0p = .sh/T?B W(s) = P5,' ov(sp) € [2€7r — 5 20w + 5] .

Note that W : (s4, sg] > Rby

Wp(s) = {;1;@), po

satisfies Wg € C%(s4, sg]. Furthermore, we can now apply Lemma4 at s* = sp with
6* = 0 to obtain some €* > 0 and a unique continuous lifting ) € C°(I*) on I* =
(sp —€",sp+€*) C (spg —€,58 +¢€) C I.Thus, weconsider W* : (54, sg + €*) —
R by
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* W(s), s € (sa,Sp)
Y= {wm, s € [sp,sp +€%).
Since ¥(s*) = 0z = Wp(s*), we know W* € C%(sy, s5 + €*). Also, W* satisfies p o
U*(s) = v(s) fors € (sa, s + €), so W* is a lifting of v. It remains to show W* is
the unique such lifting. _ 5

If ¥ € COsy, s + €°) with ¢)(so) = 0y and p o 9(s) = v(s) for s € (s4, S +
€*), then first of all,

P v

(54.5B)

due to the uniqueness of W. This implies
U(sp) = lim W(s) = Wg(sp) = Op.
s,/'sp

And this implies

(4

(8

(sp—€*.sp+e¥)

due to the uniqueness of the local lifting 1) at s* = sp. This shows 1Z = VU* and
W* is unique. This contradicts the definition of sg, and we conclude sg = sup [ as
claimed.

There are various other cases to consider. First of all, we are still working under the
assumption that v(sg) € E. The cases v(sg) € N,v(sg) € W,and v(sp) € S all lead
to similar contradictions and the conclusion s = sup /. Then the assumption s4 >
inf I leads to similar cases and similar contradictions. We conclude U = (s4, sg) = I
and the theorem holds. [l

Remark: It is also straightforward to allow certain more general possibilities in the
argument(s) above. For example, if / is assumed to be a half-closed interval of the
form [min 7, sup /) where min / € R with sy € I, = (min /, sup /) and 6, given as
in Theorem 4, then it can be shown that

lim (s) = 0

exists where s4 = min / and % is the continuous lifting of

v

Ix

It follows that ¢/ can be extended to a unique continuous lifting of v: I — S!.
The situation when v(sg) = p(6) is specified at an endpoint so = min / can also
be considered separately in this case using a variant of the argument above. As a
consequence, we can state the following general version of Theorem4.
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Lemma5 Let I CR be any interval, open, closed, or half-open/closed. If
v = (v, v2) : I — S'is continuous and there are values sy € I and 6y € R with

COS 90 =V (SQ)
{ sin 0y = v2(s0), (63)
then there exists a unique function 1 € C°(I) such that
poyp=v and Y(sg) = bp. (66)

2.4 Second Proof of Theorem 1

We can apply Theorem 4 with v = + to obtain a continuous lifting 1. € C°(1) with

J=pote and  e(so) = fo.

Since the condition ¢ = 1), € C'(I) can be verified locally. We observe that all
the local expressions for 1. are given in terms of standard nonsingular (C') inverse
trigonometric functions of the coordinate functions v; and/or v,. Furthermore, if we
know 1, v, € C%(I), then we know the coordinate functions v; = #; and v, = 4,
are in C'(I). Thus, the local compositions are in C'(I) and Theorem 1 follows. [J

3 Structure of Plane Curves

Theorem 1 may be applied to the construction of plane curves of prescribed curvature
to obtain the following structure theorem for plane curves:

Theorem 5 (structure theorem for C? curves) If I is an open interval with
() so€l,
(ii) xo € R?,
(iii) vy € S', and
k € C(I), then there exists a unique curve v : I — R?* parameterized by arclength
and satisfying ~(so) = Xo, Y(S0) = Vo and

. .. d
¥ (=Y, M) = d_¢ =k
s

is the signed curvature associated with v and where 1) € C'(I) is the inclination
angle determined by v and any value 6y € R with (cos 0, sin 6y) = vy.

Theorem 4 may be applied to obtain the following structure theorem for C! plane
curves:
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Theorem 6 (structure theorem for C! curves) If I is an open interval with

() so€l,
(ii) xo € R? and

v=(v,v): 1 — S'with v; € CO(I)forj =1, 2, then there exists a unique curve
v : I — R? parameterized by arclength and satisfying v(so) = Xo, and

4 = (cos®, siny) = v

where 1y € CO(I) is the inclination angle determined by ~y and any value 6y € R with
(cos By, sin Gy) = v(sp).

4 Examples

Here we give examples of two plane curves to which the main result Theorem 1
applies and another example of a singular system of ODEs to which the techniques
of the first proof of Theorem 1 apply.

4.1 Example Curves

The examples of curves are both counterclockwise spirals. Consider « : (0, c0) —
R? by

1
a(t) = " (cost,sint).

When parameterized by arclength, a natural arclength interval is R with v(0) = «/(1)
and signed curvature given by

2
T PP+ DY
The curve has infinite length as it spirals for # > 1 and also for 0 < t < 1 where it

is asymptotic to the line y = 1 as indicated on the left in Fig. 9.
As a second example, consider o : R — R? by

1
a(t) = —(cost, sint).
e

Here
1

N
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s(t) >Int, t > 1

Fig. 9 Curves with prescribed curvature and natural arclength domains given by open intervals:
v : R — R? (left) and ~y : (—o0, +/2) — R? (right)

This curve also spirals around the origin infinitely many times but has length in the
spirals starting from (1, 0) given by /2 < oco. Thus, the natural arclength domain is
(—00, 4/2) as indicated in Fig.9.

4.2 Another Singular System

Giveny € C*(I — R?) as above, a technically different singular system of ordinary
differential equations sharing the same singular/nonsingular character displayed by
(2) and indeed an alternative for analytically defining the inclination ¢ € C (I
determined by  is )
Y ="%.s€l
NY="%,s€l (67)
¥(so) = bo.

We make two simple observations about the system (67).
First, in view of the condition

Py =1 (68)

at least one of the ordinary differential equations in (67) is nonsingular ateach s € I.
It will be recalled that this is a feature shared with the singular system (2). Proceeding
as with the system (2) we may consider the case 7, (sg) 7# 0 so that on some interval
the first equation in (67) determines a unique function ) locally.

Letting 1) denote the solution of (2) given by Theorem 1, we can then write locally

d N Moo
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since it was established that the second equation in (3) namely “, = sin )y holds
for v)y. This implies the solution of (67) is locally identical to the solution of (2) as
expected, and this reasoning can clearly be extended to the global assertion ¥ = .
As implied, the global existence of the solution 1) € C'(/) and the fact that this
solution satisfies (3) may also be established along these lines.

Finally, we note the question of “consistency” for the system (67), that is for
example showing the second relation 1/) = 4, of (67) holds on an interval where
the first relation —+, = 41 holds and is nonsingular, is straightforward. This is
in contrast to the slightly delicate argument arising in the proof of Lemmal in
connection with the second equation in (15) for the system (2). To see this, for
example, we can differentiate the relation (68) and use —+;, 1/) = 4, to obtain directly

0= 5 +%%=—nt+%%

which implies 4, = 7 .
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Localized Waves on the Periodic )
Background for the Derivative Nonlinear <&
Schrodinger Equation

Lifei Wu, Yi Zhang, Rusuo Ye, and Jie Jin

Abstract The localized waves based on the plane, periodic and double-periodic
backgrounds for the derivative nonlinear Schrédinger equation are constructed in
this paper. Especially, we give a determinant representation of the semi-degenerate
Darboux transformation by using the Taylor expansion technique. Additionally, by
changing the amplitude of seed solution and the value of the spectral parameters,
energy conversion occurs between the localized waves and different backgrounds,
resulting in different dynamic behaviors.

Keywords Periodic background - Rogue wave * Darboux transformation - Taylor
expansion

1 Introduction

As far as we know, rogue wave and the breather are two kinds of nonlinear localized
waves, which have attracted great attention in Bose—Einstein condensates, capillary
wave, hydrodynamics and other fields [ 1-5]. Breathers, which are localized in time or
space, produced by instability of small amplitude disturbances, [6—8]. The Peregrine
soliton as the prototype of the rogue wave appears while the period of the breather
tends to infinity [9—11]. On the one hand, compared with the breather, rogue wave
is localized in time and space. On the other hand, compared with the strong stability
of soliton, rogue wave is unstable and unpredictable. Based on the above facts, it is
valuable to research the interaction solutions among the breathers, rogue waves and
solitons [12-14].

Because of the strict integrability of the nonlinear Schrédinger (NLS) type equa-
tion, the interaction solutions for the NLS-type equation can be studied by some
specific methods. Such as, the dark-bright semi-rational solitons for the higher-order
coupled NLS equation have been derived by using Darboux transformation (DT)
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[15]. Based on the extended generalized DT, the hybrid rogue wave and breather for
the NLS equation have been studied [16]. In addition, the variety of nonautonomous
complex wave solutions for the (2 4+ 1)-dimensional NLS equation and the bright
and dark solitons for the fifth-order NLS equation with variable coefficients have
been studied by the (G’/G)-expansion method and the new optical solitons to the
time-fractional integrable generalized (2 + 1)-dimensional NLS equation have been
obtained by three different methods [17-19].

The purpose of the current research is to study the interaction solutions between
different nonlinear localized waves for the derivative NLS equation (DNLS) which
has been widely applied in nonlinear optics, finance and plasma physics [20-22], as
follows

iq — qex +i(qlql?), = 0. (D

In recent years, the interaction solutions and several interesting results for (1) have
been extensively studied by using DT [23-26]. The Peregrine soliton can be generated
by the interaction between the phase solution and the breather solution. In addition,
through numerical verification, when the modulation of the periodic wave is unstable,
rogue wave can maintain the space-time localization. On the contrary, the rogue wave
degenerates into the soliton and periodic wave [27].

Different parameters also have important influence on the interaction between
localized waves. By adjusting shift parameters, higher-order rogue waves with differ-
ent structures and the formation process of higher-order rogue waves can be obtained
[28, 29]. It should be noted that the effect of spectral parameters on the interaction
solutions among the breathers, rogue waves and periodic backgrounds for (1) have
not been reported before.

Furthermore, by improving the interaction and degeneracy of breathers and rouge
waves solutions, the semi-degenerate DT is constructed. Thus, the breather and rogue
wave on the periodic background [30], the interaction solutions between different
types of breathers and rogue waves can be found by using semi-degenerate DT
[31]. In our present work, in order to further study the interaction solution between
the rogue wave and the breather, one use Taylor expansion technique to obtain a
determinant representation of the semi-degenerate DT for (1). Localized waves on
different backgrounds for (1) have been given by the semi-degenerate DT. In addition,
we make a detailed dynamic analysis of the important influence of spectral parameters
on the interaction solution between rogue waves and the breather. It is worth noting
that by changing the conditions satisfied by the spectral parameters A, we obtain
the interaction solutions of rogue waves, periodic backgrounds and breathers. As far
as we know, the process of the first-order rogue wave evolving into the interaction
solution of the breather solution and the rogue wave for (1) has not been obtained.

This paper is structured as follows. In Sect.2, the semi-degenerate DT for (1)
can be given by using the modified Taylor expansion technique. In Sect. 3, based
on the explicit expression and the influence of different parameters, we can get the
dynamics of interaction among the breather, rogue waves, and periodic backgrounds.
Our conclusions are given in Sect. 4.
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2 The DT for the DNLS Equation

Starting from KN system

re—ire —(r’q), =0, )
g +iqex — (rg®), = 0. (3)
Equation 1 can be obtained under reduced condition » = —¢g* and the Lax pair can

be derived by

Dy =UP = (JN + Q\) D,

O =VO = (2JA+20X + VaA? + Vi) D, @

where ® = (¢, )7 is a column vector, ) is the spectral parameter and

(i 0 _(0gq _ 0  —igi+gq’r _
J_<O—i>’Q_<r0>’V]_<irx+r2q 0 Vo= Jgr.

Under the compatibility condition U, — V, + [U, V] = 0 of Lax pair (4), (2) and (3)
are equivalent. According to the gauge transformation

ol =710, (5)

the Lax pair (4) can be converted to
o, =Mo" v = (1, + TU) T, (6)
olll, = villoM vl = (1, + TV) T~ (7)
After detailed calculation, it can be found that once the matrix 7 is found, UM, vt
and U, V will have the same form. In this way, (6) and (7) can be invariant under the

gauge transformation (5).
In fact, the N-fold Darboux matrix T of (1) have been given in [23], as follows,

n
T, = Z ),
=0

VAT 0 fizn
F, = ’ €D, F,_1 = ; €A,
< 0 f22,n ! f21,n—1 0

FieD= <f(1)1 ng) (if I — n is even),

with

where
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F,eA:(

0 fi
fa O

) (if I — n is odd).

Here f11, fi2, f21, f22 are complex functions with x and ¢.
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Let ®; = (gb I j)T be the solutions of system (4) with the spectral parameters

Aj,j=1,2, .-+, n.Then, g can be derived by

with

(1) when n = 2k

O =

O =

(2) whenn =2k + 1

7 011012
[n] __ 11 .
= U0 ,
G !

N e X201 Xy
Ao A AT
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In order to construct the determinant representation of semi-degenerate DT, we
adjust the specific process of Taylor expansion. In what follows, we choose the seed
solution ¢ = de'“* 0k = —wd? + w?, and w, d are two real constants.

Theorem 1 Assuming Ao = % (V —d?+2w—i d), the spectral parameters satisfy
the conditions Ayj—1 = Ao + €% (Ayj = =\;+¢€%),e > 0, for j =1,2, -+ ,land
A = Qu + 10, for 2L+ 1 <m <n, where «,, and (,, are real numbers. The
Bdcklund transformation for (1) can be given by the following formula:

&% 011612
= 5 +2 ’
=BT,

€))

where 6;; (i, j = 1, 2) will be presented below.

Proof When n = 2k, take determinant ®;, for example, give the concrete process
below:
@A) Set A\; = Mg +€> (N = =5+ €2), elements which in the first and second
rows of determinant ®;; are expanded by Taylor series of order 4 around
¢ = 0, and then the coefficients of €2 are extracted.
(i) Set A3 = Mg+ > (\y = =y + €2), elements which in the third and fourth
rows of determinant ®;; are expanded by Taylor series of order 6 around
¢ = 0, and then the coefficients of * are extracted.
(iii) Set Ay—1 = Ao + &2 (A\y = — X} + £%), elements which in the (2/ — 1)th
and 2/th rows of determinant ®;; are expanded by Taylor series of order
2] + 2 around ¢ = 0, and the coefficients of €% are extracted.
(iv) The (2 + 1)th and (2 + 2)th rows of determinant ®; is unchanged
(Il=j<k-=1.
Thus, ®; can be written as

oll,n—=1,1]1¢[1,n—=2,1] p[l,n—3,1]--- ¢[1,1,1] ¢[1,0,1]
ol2,n—1,1]1¢[2,n —2,1] p[2,n —3,1] --- ¢[2,1,1] ¢[2,0,1]
oll,n—=1,2] ¢[1,n —2,2] p[l,n —3,2]--- ¢[1,1,2] ¢[1,0,2]
wl2,n—1,2] ¢[2,n —2,2] p[2,n —3,2] --- ¢[2,1,2] ¢[2,0,2]

@[17’1_1’ 7n_271] @[1,’1_3,1] e §0[15171] ¢[17071]

11 ¢[1
o = pl2,n— 1,11 ¢[2,n —2,1] p[2,n—3,1] --- »[2,1,1] ¢[2,0,1]|’
X;,;i L P2U+1 /\gﬁé D21 AZ,;? LP2UF1 e A1+l Dot
NP2 Mysndu MNyp@usa o AuaPuse G
Nhomer Nphiomor Nl @me1 o Ako19a-1 Gt
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where the first 2/ rows of the determinant §;, constructed in steps (i—iii), are rational
functions, and the remaining elements are still exponential functions. For ®;, and
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Fig. 1 The first-order rogue wave on the periodic background by choosing: w =1,d =1, f3 = %

®;1, similar steps lead to new determinant representations of d;, and d,;, which have
similar forms to ;.

Taking the similar procedure as above, one can obtain the new determinant form
of 811, 012 and 8, whenn = 2k + 1. O

3 Interaction Behaviours of the Localized Waves

We obtain localized waves on different backgrounds and discuss the influence on
them for different parameters in this section.

3.1 Localized Waves on the Periodic Background

Whenn =3, \| = 7”0122%_"‘1, A2 = —A7,and A3 = i3;. It shows that the values of
d, 5 affect the interaction solution between rogue waves and periodic background.
Setting w = 1, and takingd = 1, 83 = é, the first-order rogue wave on the periodic
background can be derived, see Fig. 1. Since the value of w has no significant influence
on the solution, here we only discuss the values of d and [35. Take it as the control
group, the values of d and (35 are adjusted respectively, and other parameters remain
unchanged. Thus from the following two cases to consider:

Case 1. Adjust the value of d

Firstly, we can see in Fig.2a that when d = ﬁ, it is a periodic wave, and the
2

amplitude is Woé. The middle of the periodic wave begins to swell when the value of

d increases. Whend = 1—(1)0, the amplitude of periodic wave at uplift position reaches
21

%5» While the other part drops to % in Fig.2b. Whend = %, the amplitude of uplifted
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Fig. 2 Solution for interaction among the the breather, periodic background and rogue wave by
choosing: w =1, 3 = %,ad: ﬁ;bd: ﬁ;cdz %;ddz l—lo;edz %;fdz

(Sl

periodic wave reaches %, and the uplift area becomes narrower than that of d = Wlo’

see Fig. 2c. This is a process of periodic wave energy conversion. As the value of d
continues to increase, the energy of the periodic wave converges, making the breather
appear on the periodic background in Fig. 2d. With the value of d increases from %
to %, the period and amplitude of the breather have been changed, see Fig.2d—f.
The above description shows that with the increase of d, the periodic wave energy
converges and gradually forms the breather, which is a process of breather formation.
When d = 1, the breather interact with the periodic wave, and the energy converge
into a rogue wave, see Fig. 1.

Case 2. Adjust the value of 33

With the decrease of the value of (33, the period of the periodic background becomes
larger, the amplitude changes, and wave surface fluctuation of periodic background
tends to be gentle from intense. Meanwhile, the amplitude of the rogue wave also
changes. It means that the value of (35 affects the energy conversion of periodic
background. As the value of (35 increases, the energy of the periodic background is
converted into a rogue wave, see Fig. 3.
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Fig. 3 Solution for interaction between the periodic background and rogue wave by choosing:
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Fig. 4 Two rogue waves on the double-periodic background: w =1,d =1, a3 =0, 53 = %,
ag =0, 04 = %

3.2 Localized Waves on the Double-Periodic Background

Whenn =4, \| = —V_dzgz‘”—id, A2 = =}, and A3 = i35, Ay = i 3,. Different from
n=3,setw=1,andtaked =1, 35 = %, B4 = %, one can obtain two rogue waves
on the double-periodic background, see Fig. 4. Take it as the control group, the values
of d, B3 and 3, are adjusted respectively, and other parameters remain unchanged.
We also consider the following two cases:

Case 1. Adjust the value of d

Firstly, when the value of d is very small, it is a double-periodic wave. As the
parameter d increases, the double-periodic wave energy converges. After that, the
breather appears. The period, size and width of the breather increase with the increase
of the value of d, and the amplitude of the double-periodic background increases, see
Fig.5. Finally, when d = 1, the energy, which is the interaction of the breather with
the double-periodic wave, converges to form two rogue waves on the double-periodic
background, see Fig.4.
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Fig. 6 Two rogue waves on the double-periodic background by choosing: w = 1,d =1, a3 =0,
a=0f=3afk=45bfk=1ch=q;

Case 2. Adjust the value of 33

When the value of (35 decreases, two rogue waves interact with the double-periodic
wave, simultaneous variation of amplitude of rogue wave and double-periodic wave,
see Fig. 6.

3.3 Localized Waves on the Plane Wave Background

For n =4, Ay = Y=F2=id )\, — X\t and \3 = a3 + i3, A = —A}. We can

derive three types of second-order semi-rational solution by setting different spectral
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(b)
Fig. 7 The semi-rational solutions by choosing: aw =1,d =1, \; = § — Li, \p = =1 — 1i,
=3 _3; —_3_3; — — -3 _3; -_3_3 =1 _1; —
)\31_51 51,)\43_ 3 ;5”bw2_1;d_1’&2_43 41,)\21_ 34 41,)\31_22 70, A =
—yTabtw=sd=3 =5l =5l A= osh M=—5 -5

parameter values in Fig.7. Here, we should remark that, the recent paper [29] also
reported the three types of second-order semi-rational solution and proposed that if
Im (A3) > 0, one cannot derive the second-order rogue wave.

However, in our present work, one can find that the first-order rogue wave trans-
forms to two rogue waves and a breather as the value of Im ()\3) increases. Firstly,
when Im (A\3) = 0, it is the first-order rogue wave. When Im (\3) = %, the periodic
solution appears and the peak of rogue wave becomes smooth. With the increase
of Im (\3), the energy of periodic solution increases. When Im (\3) = %, there is a
small amplitude of breather, and the rogue wave changes from single peak to double
peak, but it is not completely separated. As the value of Im (\3) increases from %
to %, the rogue wave gradually separates with the increase of the amplitude of the
breather. Until Im (A\3) = 1/2, the two peaks of the rogue wave are completely sep-
arated, generating two first-order rogue waves. At the same time, the period of the
breather decreases and the amplitude increases. Obviously, Im (A3) also affects the

propagation direction of the breather, as shown in Fig. 8.

4 Conclusion

This paper presents the dynamic behavior of different types of solutions, including the
first-order rogue wave on the periodic background, two rogue waves on the double-
periodic background and the interaction solution between the second-order rogue
wave and the breather for Eq. (1) in detail. In addition, we conclude that different
parameters have different effects on the dynamic behavior of solutions. On the one
hand, parameter d affects the energy conversion of periodic waves. The periodic
solution is generated by the energy convergence of periodic waves. With the increase
of the value of d, the energy continues to gather, and the periodic solution is gradually
transformed into the breather. The period and amplitude of breather increase with
the value of d, and finally form the rogue wave. On the other hand, the interaction
solution between the periodic wave and rogue waves is affected by the imaginary part



Localized Waves on the Periodic Background for the Derivative ... 345

N\ 3
3 | 3 LY 3 My
2 2 2
=4 - 0 =4 \\ 20 =4 . \\ 20
0 0 0
.20 0 -20 \ 0 -20 ) 0
0 0 0
' 20 -20 v I 20 -20 20 -20 T
(a) (b) (c)
; |
i
A ‘.‘ e | \
5 Ik )\ L
2 3 L 20 2
=y . 20 2 ’.\ = T+ ll. 20
-2% "\ ‘11 Y -2?1 R
: 0 2 v - . 0
0 :
209 -20 T " 20 20 ° ¢ 20 -20
(d) (e) (f)
Fig. 8 Solution for interaction between rogue waves and the breather by choosing: w =1, d =
Lh=3—-3i=—3-3ian=3M=-3bhu=3+giu=-3+iichs=

3yl N, 3yl a3 B3N, 3 By L3y 2y 3y 2y
§+§t,/\4— g—5-?t,d>\3—5-l-mt,>\4— stiises=35+35i =—35+s5i5f 3=
§+§l,A4=*§+jl

of \. Besides that, spectral parameters also affect the interaction solution between
rogue waves and the breather. For instance, when n = 4, if the spectral parameters A3
and )4 satisfy the relation A3 = —Aj and Ay = —\}, two rogue waves are generated
on the double-periodic background. If they satisfy Ay = — A}, the second-order rogue
wave with the breather will be generated on the plane wave background. Particularly,
if Im (A3) > 0, the first-order rogue wave will interact with the plane wave to form the
breather, and the rogue wave will be separated into two rogue waves as the value of
Im ()\3) increases. Meanwhile, it also changes the direction of breather propagation.
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I? Solution to the Initial Value Problem )
of the Discrete Nonlinear Schrodinger L
Equation with Complex Potential

Guoping Zhang and Ghder Aburamyah

Abstract In this paper we study the time-dependent discrete nonlinear Schrodinger
equation with complex, not necessarily bounded potential and sufficiently general
nonlinearity on a multidimensional lattice with a weighted /” initial value. Under
natural assumptions, we prove the global well-posedness in weighted /7 spaces.

Keywords Discrete nonlinear Schrodinger equation + Semigroup - Initial value
problem - Lipschitz continuous + Complex potential - [” solution
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1 Introduction

The discrete nonlinear Schrodinger equation (DNLS) is a mathematical model that
describes the dynamics of wave propagation in discrete systems, where the wave’s
behavior is governed by nonlinear effects. It is a discrete analog of the famous
nonlinear Schrodinger equation, which describes the behavior of wave packets in
continuous media.

The DNLS equation is commonly used to study various physical phenomena
in a wide range of fields, including condensed matter physics, optics, and Bose-
Einstein condensates. It arises in systems such as nonlinear optical waveguides,
coupled oscillators, and discrete lattices.

In general the one-dimensional DNLS equation is written in the following form:

wn

+Oﬂpn +ﬁ|¢n| wn +'7(wn+1 +wn 1) = O
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where 1), represents the complex-valued amplitude of the wave at site n, and ¢ is
time. The coefficients «, 3, and -y determine the properties of the system, such as the
dispersion and nonlinearity. The first term on the left-hand side represents the tem-
poral evolution of the wave, while the second term accounts for any linear potential
acting on the system. The third term describes the nonlinear self-interaction of the
wave, which depends on the amplitude squared |, |*>. The fourth term represents the
coupling between neighboring sites, with ¢, and ,,_; denoting the amplitudes at
the adjacent sites.

Solutions of the DNLS equation can exhibit a wide range of interesting phenom-
ena, including soliton formation, nonlinear wave propagation, and energy localiza-
tion. These phenomena are a consequence of the interplay between the linear and
nonlinear terms in the equation.

The DNLS equation is usually studied numerically due to its nonlinear nature.
Various numerical techniques, such as finite difference methods, spectral methods,
or split-step methods, are employed to simulate and analyze the dynamics of wave
packets governed by the DNLS equation.

Understanding the properties and dynamics of the DNLS equation is crucial for
gaining insights into the behavior of discrete wave systems and exploring nonlinear
effects in different physical systems. For instance, we mention nonlinear wave trans-
mission in discrete media, propagation of localized pulses in coupled waveguides
and optical fibers, and modeling Bose-Einstein condensates (see, e.g., [6, 9, 10] and
references therein).

Research activity in this area mainly focuses on the so-called “breathers,” which
are standing waves. The profile function of such a wave solves an appropriate sta-
tionary DNLS equation. Most works in this direction deal with (discrete) translation-
invariant DNLS on a one-dimensional lattice and employ perturbation techniques,
two-dimensional discrete-time dynamical systems, and numerical simulation (see,
e.g., [4-6] and references therein).

On the other hand, the series of papers [2, 13—17, 20-24] applies the theory of
critical points of smooth functionals to the study of breathers for DNLS with various
types of nontrivial potentials. In this context, we also mention the remarkable paper
[19].

In [25] we investigated the weighted /2 solution of the following initial value prob-
lem for the time-dependent d-dimensional discrete nonlinear Schrodinger equation

it = —Au+ Wu — f(n,u) + b(t,n), (D)
u(0,n) = u’(n), 2
where the potential W = V 4 i is a complex function of
n=(my,ny,...,ng) VAR

u stands for the time derivative and —A is the d-dimensional discrete Laplacian
defined by
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Au(n) =u(mn; —1,ny, ..., ny) +u(ng,no—1,..., ng) +---+u(ny,na, ..., ng—1)
—2du(ny, ny, ..., nq)
+u(ny+1,n,..., ng) +u(m,ny+1,..., ng) +---+uy,ng, ..., ng + 1),

Note that if §(n) is negative for all n € Z?, the part § of the potential represents
dissipation effects. Additionally, our Assumption (iii) below allows the nonlinear-
ity to contain a dissipative term. This DNLS (1) is the space discretization of the
nonlinear Schrodinger equation in continuous media.

Only a few papers [7, 8, 11, 12] are devoted to equations of the form (1). The
paper [12] focuses on the initial value problem for the DNLS with a zero potential
and power nonlinearity on a one-dimensional lattice with weighted /? initial value.
The main result provides global well-posedness in weighted /> spaces with power
weights. In [7, 8], the authors consider the DNLS with V = 0 and 6 = const. The
main results are global well-posedness in the conservative (6 = 0) and dissipative
(6 < 0) cases, as well as the existence of attractors in weighted /% spaces in the
conservative case, on one-dimensional and multidimensional lattices, respectively.
In the paper [11], the well-posedness in weighted spaces is studied for the DNLS
on a one-dimensional lattice in the case when W = V is a general real potential and
b=0.

In [25], we extended those results to the multidimensional case, allowing a suffi-
ciently general, not necessarily bounded potential W with weighted /2 initial value.
In this paper, we will investigate the initial value problem for the DNLS with a
weighted /7 initial value.

To the best of our knowledge, no other mathematician has investigated the initial
value problem for the DNLS with a weighted [? initial value. Since [? is no longer
a Hilbert space like /> when p # 2, we cannot use the features of a Hilbert space to
prove our main results on /” global solutions. Instead, we use the integral equation
defining the mild solution of the DNLS in [25] to prove our major results on /7 global
solutions by leveraging the existing /%> global solutions obtained in [25].

The organization of this paper is as follows: For readers’ convenience, we provide
a reminder of some preliminaries on the semigroup theory of abstract differential
equations in Sect. 2. The local weighted [” well-posedness result is proved in Sect. 3.
Section 4 is devoted to the existence of weighted /” global solutions.

2 Semigroup Theory and Abstract Initial Value Problem

We treat (1) as an abstract differential equation of the form

= Au+ N, u) 3)
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in a complex Banach space. We always assume that A is a closed operator in a
Banach space E with the domain D(A), and N : [0, o0) x E — E is continuous.
Let us provide a reminder of some elementary facts related to such equations.

A family U(t), t € [0, 00), of bounded linear operators in E is a strongly con-
tinuous semigroup of operators if

(1) U(t)v is a continuous function on [0, oo) with values in E for every v € E;
(2) U(0) = I is the identity operator in E;
B U@E+s)=U@)U(s) forallz,s € [0, 00).

If the family U (¢) is defined for all r € R and satisfies (1)—(3) above on the whole
real line, we say that U (¢) is a strongly continuous group of operators.
If U(¢) is a strongly continuous semigroup of operators, then its generator A is
defined by
Av = tli% YU (1) — D, 4)

where the domain D(A) consists of those v € E for which the limit in (4) exists.
The following result is well known (see, e.g., [3, 18]).

Proposition 2.1 If A is a generator of a strongly continuous semigroup in a Banach
space E and B is a bounded linear operator in E, then A + B is a generator of a
strongly continuous semigroup.

If A is a bounded linear operator, then it generates a one-parameter group e'4. In
general, if A is a generator of a strongly continuous semigroup, we still use the same
exponential notation ¢4 for the semigroup generated by A.

Now we discuss the abstract initial value problem for Eq. (3), with initial data

u©0) =u’ € E. (5)

If A is a bounded operator, then it is sufficient to consider classical solutions, i.e.
continuously differentiable functions with values in E that satisfy (3) and (5). In
general, when the operator A is unbounded, we consider mild solutions to (3) and
(5).

A continuous function u on [0, T'] with values in E is a mild solution of the initial
value problem (3) and (5) if it satisfies the following integral equation

u(t) = eAul + / e(’ﬂ)AN(s, u(s))ds. (6)
0

In the case when the operator A is bounded, these are classical solutions.
We need the following well-known result (see. e.g., [1, 18]).

Proposition 2.2 Let A be a generator of a strongly continuous semigroup in a
Banach space E, and N(t,u) : [0,00) X E — E be continuous in t and locally
Lipschitz continuous in u with Lipschitz constant being bounded on bounded inter-
vals of t. That is, for any T > 0 and R > 0, there exists C = C(T, R) > 0 such
that



[? Solution to the Initial Value Problem ... 353

max [N, w) = N, w)]| < Cllw — | )
=i=

whenever |w| < R and ||w'|] < R.

(a) For every u® € E, there exists a unique local mild solution of the initial value
problem (3) and (5) defined on the maximal interval [0, Ty )-

(b) If Tmax < 00, then limy »,,, . |lu(t)]| = oo.

(c) The solution u(t) depends continuously on u® in the topology of uniform con-
vergence on bounded closed subintervals of [0, Tyax)-

(d) Assume, in addition, that the map N :[0,00) x E — E is locally Lipschitz
continuous, i.e., forany T > 0 and R > 0, there exists C = C(T, R) > 0 such
that

[N, w) = N, w)| < C(|t —t'| + [lw — w'|]) ®)

whenever t € [0,T], t' € [0, T], |w|l < R and |w'|| < R. If u® € D(A), then
the mild solution of the initial value problem (3) and (5) is a classical solution.

Remark 2.1 Assumption (7) implies automatically that N is bounded on bounded
sets.
Remark 2.2 If N(t, u) is globally Lipschitz continuous in u, i.e. there exists a

constant C = C(T) > 0 such that

max [N (t,w) = N, w)]| < Clw —w'll, Yw,w'€E, €))

0<t<T

then the initial value problem (3) and (5) possesses a unique global mild solution
defined on [0, 0o). Moreover, the solution u(z) depends continuously on #° in the
topology of uniform convergence on bounded closed subintervals of [0, 00).

Remark 2.3 Let N(z, u) be of the form
N, u)=Nwu)+ f(@).

Then assumption (8) holds if and only if N and f are locally Lipschitz continuous
on E and [0, 00), respectively.

3 Local Solution to the Initial Value Problem of the DNLS
Equation

In this section, we consider Eq. (1) under the following assumptions:

(i) The complex potential W = V + i4 is such that both V and ¢ are real-valued
functions on Z¢, and
8 = sup{d(n)|n € Z%} < 00.
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(ii) The nonlinearity f : Z¢ x C — C satisfies the following conditions:
(1) f(n,0)=0,
(2) f(n,z) =o0(z) as z — 0 uniformly with respect to n € Z¢,

(3) f is uniformly locally Lipschitz continuous, that is, for every R > 0, there
exists a constant C = C(R) independent of n € Z¢ such that

|f(n,2) = f(n,2)] < Clz = 2|

for all n € Z¢ whenever |z| < R and |Z/| < R.

(iii) The nonlinearity f(n, z) is of the form f(n, z) = g(n, |z|)z, where g(n,r) is a
function and its imaginary part is nonnegative. Examples of nonlinearities that
satisfy Assumptions (ii) and (iii) are as follows.

e Power nonlinearity

f(n,2)=wlzl" 'z, p>1,
e Saturable nonlinearities such as

|z|P~ 'z

n?Z = ny . 1
fn,2) Qg

p>1,

and .
f(n,z) =y (1 — ez a, >0,

We are interested in finding solutions to Eq. (1) in weighted /”-spaces. Let
O = (0,)neze be a sequence of positive numbers (weights). The space [§) (Z4
consists of all two-sided sequences of complex numbers such that the norm

where Im~y, > O foralln € Vi

laellyy, = O a7/

nez
is finite. We notice that u € [5(Z?) if and only if u® € [7(Z?) and
lully = lu®l.
Therefore for 1 < p < g < oo we have
Neellyg < llullye

and
15z c1d(@z.
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Remark: The weighted [ space with weight sequence © in [25] is the same as
the space lé, »(Z%) defined above with the same weight sequence ®.

We always assume that the weight ® is regular in the sense that:
(iv) The sequence ® is bounded below by a positive constant, and there exists a
constant ¢g > 1 such that

(7
-1 < n+e; <
Co = 9,, = Co
foralln € Z?andi =1, ..., d, where ¢; € Z¢ has 1 at the i-th component and
0 elsewhere.
From Assumption (iv), we obtain
lullrzey < Collulle, (10

which implies that /5 (Z%) is densely and continuously embedded into /7 (Z%). Setting
Oy as the constant weight with unit components, we have that

15,(Z%) = 1"(Z%)

From the perspective of functional analysis, Assumption (iv) means that the space
l(’; (Z%) is translation invariant. More precisely, let S; and 7; be the operators defined
by

Siw)n) =wrn —e), (Lw)n)=wh+e), i=1---.,d

Indeed, Assumption (iv) holds if and only if for alli =1,...,d, both S; and T;
are linear bounded operators in /5 (Z). It’s worth noting that S; and 7; are mutually
inverse operators. However, the translation invariance of the space /5 (Z%) doesn’t
imply that the norm || - ||e is translation invariant.

The most important examples of regular weights satisfying Assumption (iv) are

e Power weight:
0, = (1+1n)* X >0

e Exponential weight:
6, =" a>0.

More generally, the weight 6, = e"” o > 0 satisfies Assumption (iv) if and only
if0<fg<1.

To understand the Eq. (1) in the framework of evolution equations, we can interpret
it as an evolution equation of the form (3), where A = —i H and H is the Schrédinger
operator defined as

H=—-A+W (11)

and the operator N is given by
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N, u)(n) =i f(n,u(t,n)) —ib(t, n). (12)

To establish a precise interpretation, we need to analyze certain properties of the
Schrédinger operator H in the space I§(Z). First, we observe that the operator
(of multiplication by) —iW = —iV 4§ is a diagonal operator. Since V is real and
8(n) < dforalln € Z4, the operator —i W generates a strongly continuous semigroup
in 5 (Z) given by

€™ uy(n) = e VD OD (), neZt.
The domain of this operator in lg (Z%) is defined as
Do = {u € 15(Z%) : Wu e 15(Z%)}. (13)

where we use the notation D to represent the domain of the operator W in [7(Z4). It
is clear that Dg C D.

Next, we consider the discrete Laplacian operator — A, which is a bounded oper-
ator in [J (Z4). The Laplacian can be represented as

d d d
—A==) ViVi==)ViIVe =) (v -V,
i=1 i=1 i=1
where

Vium) =um) — Sju(n), V?u(n) =Tiun)—un), i=1,...,d,

and S; and T; are the shift operators defined previously.
By Assumption (iv), we can establish the boundedness of the shift operators S;
and T; in [5(Z4).

ISully = O lu@n = ebal)'? = O [u@m)|P6},,)"" < collullyg.

neZd neZd
and
1 Tiulz = O lu@+e)0, M) = O u@)?65_,)""" < collullyz.
neZd neZd
which imply
IV ully < (co+ Dllullg. 1V ully < (co+ Dllullys

Thus, both V;’ and V; are bounded operators in lg (Z%), hence so is —A. Therefore,
we have the inequality:
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Il = Aully < 2d(co + Dlluls. (14)

Based on Proposition 2.1, we can derive the following lemma.

Lemma 3.1 The operator A = —i H is a generator of strongly continuous group
e' in the space lg 7Z%). Moreover, there exist two constants M > 1 and w such that
forallt >0

le" || < Me™. (15)

This lemma establishes the generator property of A and provides an estimate on
the growth of the group ¢’# in the space I5 (Z¢).
We define the operator N (¢, u) as follows

N(t,u)(n) =if(n,u(n)) —ib(t,n).

Then the Eq. (1) can be expressed in the form of Eq. (3). Our well-posedness result
is the following.

Theorem 3.1 (1) Under Assumptions (i), (ii) and (iv), if b € C([0, 00), l(’f)(Z‘l)),
then for every u® € 15 (Z%), problem (1) and (2) has a unique local mild solution
ue C(0, 7], l(‘g(Zd))for some T > 0.

(2) The mild solution u(t) € C([0, T], lg (Z4)) of problem (1) and (2) obtained in
part (1) is a classical solution if one of the following conditions holds
(a) u® € 15(Z) and W is bounded;
) u® € D(A) = Dg and b : [0, c0) — l(’;(Zd) is locally Lipschitz continuous.

The basic property of the operator N is given in the following lemma.

Lemma 3.2 Assume that assumptions (i), (ii) and (iv) are satisfied and b €
C([0, 00), I5(Z%)). Then the operator N(t,u) : [0, 00) x I5(Z4)) — I5(Z%)) is
continuous in t and locally Lipschitz continuous in u with Lipschitz constant being
independent of t. Moreover, if the nonlinearity f (n, z) is uniformly globally Lipschitz
continuous, i.e. there is a constant C > 0, independent of n, such that

|f(n,2) — f(n,2)| <Clz—72|, Vz,7 €C, (16)
then forallt > 0

IN(t,w) = N, w)llp < Clw —w'llp. Yw, w' € 15(Z%.

Proof Suppose that |wll;z < R and ||w’[l;; < R. Due to the continuous embedding
lg(Zd) C IP(Z9), we see that lwllppzey < R and ||w'||;pzey < R’, withsome R” > 0.
By the property of 7 (Z%) we have

lwllzezay < llwllir(zay, (17)
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which implies ||w||;ezsy < R" and [|w'||;zey < R’. Now assumptions (i) and (ii)
imply that for all + > 0

[N, w)— N(, w/)llfg) = Z |f(n, w(n)) — f(n, w'(m)|"07
nezd
< C(R) Z lw(n) —w'(n)|P0F = C(R)|w — w/ll;z-

neZd
The second statement of the lemma is trivial. |

Remark 3.1 Itis easily seen that any mild solution of (1) in lg (Z%) is a mild solution
in 17(Z4).

Proof of Theorem 3.1. (1) The existence of a unique local mild solution in
C(0, T], l(’; (Z%)) for some T > 0 just follows from Lemmas 3.1 and 3.2 and Propo-
sition 2.2.

(2) If W is bounded, then the generator A is bounded in l(f; (Z?) which implies
that each mild solution is actually a classical solution.

Part (b) follows from Proposition 2.2 (d) and Remark 2.3.

4 Existence of Global Solutions

To investigate the existence of global /” solutions, we consider twocases: 1 < p < 2
and 2 < p < o0.

4.1 Casel:1<p<?2

In this case, since we have the inclusion lg)(Zd) C lé (Z%), we can establish the
existence of a global /? solution by applying Theorem 3.1 in [25]. Utilizing this
result, we can prove the following theorem.

Theorem 4.1 (1) Under assumptions (i), (ii), (iii), and (iv), if 6 <0 and b €
C([0, 00), IE(Z4)) M L1 ([0, 00), I*(Z%)), then for every u® € 15(Z%), problem
(1) and (2) has a unique global mild solution u € C ([0, 00), ZS(Z")) which
continuously depends on u® in the topology of uniform convergence on bounded
closed subintervals of [0, 00). Moreover, for any t > 0

lu@ iy < Au’lly + Bw + CM, 1)+, (18)

where



[? Solution to the Initial Value Problem ... 359

t
B+ CM.0 = [ e o) ds,
0

C is the Lipschitz contant independent of t, w and M are the constants in Lemma
3.1.

(2) The global mild solution u(t) € C([0, 00), l([_; (Z%) of problem (1) and (2)
obtained in (1) is a classical solution if one of the following conditions holds
(@) u® € lg (Z%) and W is bounded;
) u® € D(A) = Dg and b : [0, 00) — lg(Zd) is locally Lipschitz continuous.

In order to prove Theorem 4.1 we need the following lemmas.

Lemma 4.1 Assume that assumptions (i), (ii) and (iii) are satisfied and b €
C([0, 00), I(ZY)). If u® € I*(Z?)), then by Theorem 3.1 in [25], the global solu-
tion u(t) € C([0, 00), I*(Z%)) satisfies

lu@lle < 110l + B(@0))e’ (19)
where .
B(1) = / e |1b(s) |l 2ds.
0
Furthermore ifg <0andb € L'([0, 00), [2(Z%)), then
lu@lp < lu’llp +b=R (20)

where

b= / 16()lr2ds.
0

Proof Firstly we consider u® € D(A), by Theorem 3.1 in [25] u(¢) is a classical
solution and satisfies

in(t) = (—A+Wyu@) — f(n,u(t)) + b(t,n)
u(t) = —i(—A+W)u+if(n,u) —ib
@@),u@) =(—i(—A+W)u,u) + (Gf(n,u),u) — (ib,u)

W =V +id, —A + V is self-adjoint on [?, therefore ((—A + V)u, u) is real

RHS = —i((—A + V)u,u) + (du, u) +i(Re(g)u, u) — (Im(g)u, u) —i(b, u)
Re(RHS) = (bu,u) — (Im(Q)u, u) + Im(b, u)
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By assumption (i) and (iii) we obtain

1d =
Eallu(t)lllzz < Sllu@7 + 6@ e llu(@) e

Since u(t) is a classical solution, by chain rule we have

d _
IIM(I)IIIZEIIM(I)III2 <Slu@®Ip + 16@ 2 llu@)e
We set

w(r) = llu(@®)llr

then we have J
< w6l

By Gronwall’s inequality, we obtain

lu@®lle < (1]l + B@))e™

P
B = [ e P Ibe)leds
0
If b € L'([0, 00), [*(Z%)), we denote

_ o
b:/ I1b(s)||2ds < o0
0

lu@le < 1’z +b = R.

For u” € I?, we can choose a sequence {u{},} € D(A) which converges to u* in />,
We have

gy @2 < (ludylle + B()e™

Let kK — oo we obtain the estimate (19).
From the assumption (ii) we can define the optimal Lipschitz constant

C(r):Sup sup If(n’z)_f(nsz)|

n |z—7|<r |Z - Z"
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Notice that C(r) is a nondecreasing function of » and f (n, 0) = 0 implies for any

neZand|z| <r

|f(n,2)| < C(r)lzl.

Lemma 4.2 Assume that assumptions (i), (ii ), (iii) and (iv) are satisfied and
b e C([0, 00), lg)(Zd)) M L' ([0, 00), I>(Z4)). If § < 0, then for any u® € l(‘;(Zd) -
12(Z%), the global I* solution satisfies the following estimate: for all t > 0

IN@, u)lz < CRu@ iy + 161z

Proof N(t,u(t,n)) =if(n,u(t,n)) —ib(t,n). By Lemma 4.1
lu(t, n)| < lu@®lli= < lu@®llz < R, Vi, n.

which implies that
|f(n,u(t,n))| < C(R)|u(t,n)|

and
ILf(n,u(t, m)llp < CR)Nu()];z.

Therefore we have

IN@ u@)lz < CRu@) iy + 161z

Proof of Theorem 4.1. (1) We define

t
B(w,1) = / e 1b)llg ds
0

From the integral equation (6) and using Lemma 3.1 we obtain

t
lu@)lly < Me [u®l;z + M / e I|N (s, u)l|zds
0
Then by Lemma 4.2 we have
IN (s, u(s)Hllp = CRNu) Nz + 110z

e

We denote C as C(R) in the following calculations.

t t
e u@lly < MIlully + M / e |b(s) ]y ds + CM / e lus)lly ds
0 0
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We set
w(t) = e~ u@z,

then
t
w(®) < M ([u’ll;g + Bw, 1) + CM/ w(s)ds
0
By Gronwall’s inequality, we obtain

t
w(t) < M([u’l;p + Bw, D) + CM? / Ml + Bw, 5)ds
o
CM(t—s)

—-CM

t

t
= M(lluolllg + Bw, 1) + Cleluolllg ¢ ot CM?eCM! / e~ M B(w, s)ds
o o 0

t
= M(luly +Bw. ) +M [u’];p M —1) + MM / e M B(w, s)ds
° X 0

t
= M(eCMtlluolllg + B(w, 1)) + CM?* M / e~ M B(w, s)ds
o 0

t t s
/ e Ms Bw, s)ds = / e CMs f e T | b(T) |l;p dT ds
0 0 0 ©

t t
=/ e b(r) |l / e~ Ms g
0 o Jr

1 t
| 1@ e (e ey gy
; :

1 t t
—(w+CM)T _ ,—CMt —wt )
il ] e Il = e [* e by dr )

1
= o [B@+CM, D) — e M Bw, 1)1

e u®ly = w) < Me™ [ u’lly + Bw+CM,1)]
lu@llyy < M M w4+ Bw+CM, 1) ]

Therefore we proved the estimate (22) from which we can conclude the existence of
global weighted /? solution by a standard argument by contradiction.

(2) If W is bounded, then the generator A is bounded in /{) (Z?) which implies
that each mild solution is actually a classical solution.
Part (b) follows from Proposition 2.2 (d) and Remark 2.3.

Remark 4.1 When we take ® = ®, we obtain the regular global /? solution u and
moreover we have



[? Solution to the Initial Value Problem ... 363

u € C([0, 00), 17(Z*)) (") L™(10. 00), I*(Z%))

4.2 Case2:2 < p < o0

In this case, the relationship 15 (Z?) C 12 (Z?) fails, and we cannot obtain a global
1% solution using Theorem 3.1 in [25]. However, for some special weight functions
such as power weights and exponential weights, we can still prove the existence of
global weighted [? solutions.

The following lemma supports our additional assumption on weight functions in
the theorem.

Lemma 4.3 (1) The power weight ¥* = {(1 + |n|)* : n € Z% is regular if and
only if \ > 0, and WV~ € 19 if and only if \q > d.

(2) The exponential weight ®* = {e“" : n e Z4} is regular ifand only if o« > 0,
and ®~“ el forany 1 < q < ocoifa > 0.

Theorem 4.2 (1) Under assumptions (i), (ii), (iii), and (iv), if 6 <0, b€
C([0, 00), I5(Z4)) M L1 ([0, 00), I*(Z%)), and in addition

1 q — i
O 'ecll, g=2+ , 21
p—2

then for everyu® € 15 (Z%), problem (1) and (2) has a unique global mild solution
u € C([0, 00), lg)(Zd)) which continuously depends on u° in the topology of
uniform convergence on bounded closed subintervals of [0, 0c0). Moreover, for
anyt >0

lu@ iy < Au’lly + Bw + CM, 1)+, (22)

where

t
Bw+CM,1) :/ e~ “FESb(s) ||z ds,
0

C is the Lipschitz contant independent of t, w and M are the constants in
Lemma 3.1.

(2) The global mild solution u(t) € C([0, oo),lg)(Zd)) of problem (1) and (2)
obtained in (1) is a classical solution if one of the following conditions holds
(a) u® € 15(Z) and W is bounded;
) u® € D(A) = Dg and b : [0, 0c0) — lg(Zd) is locally Lipschitz continuous.

Proof Combining the condition (21) and Holder inequality we obtain
0 0 ~1 4
u”lle < Nu"Olp 1O M, q¢=2+—
p—2

-1
= lluolliz 1O~ [l < 00



364 G. Zhang and G. Aburamyah

which implies #° € /> and Lemmas 4.1 and 4.2 hold. O
By a similar argument as in the proof of Theorem 4.1 we can prove Theorem 4.2.

Remark 4.2 (1) When we take ©® = W*, by Lemma 4.3 the condition (21) becomes
1 1
A>d(z ——).
> (2 p)

(2) When we take ® = ®“, by Lemma 4.3 the condition (21) is automatically true
if @ > 0 and no additional assumption is needed.
(3) We cannot obtain the regular global /” solution as a special case of Theorem 4.2.
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Darboux Transformations for )
Bi-integrable Couplings of the AKNS ek
System

Yu-Juan Zhang and Wen-Xiu Ma

Abstract We construct Darboux transformations for bi-integrable couplings of soli-
ton equations. Then we apply the resulting theory to a kind of bi-integrable couplings
of the AKNS systems. Particularly, we present exact one-soliton-like solutions for
the bi-integrable couplings of the nonlinear Schrodinger equations.

Keywords Non-semisimple Lie algebra - AKNS bi-integrable couplings -
Nonlinear Schrédinger equation + Soliton-like solutions

1 Introduction

Integrable systems usually possess linear representations, e.g., Lax representations
associated with matrix loop algebras. Simple matrix loop algebras generate inte-
grable systems, and semisimple matrix loop algebras generate separated integrable
systems. Integrable couplings [1, 2] are a kind of integrable systems which are
associated with non-semisimple matrix loop algebras [3]. Particularly, by enlarging
semisimple matrix loop algebras to non-semisimple matrix loop algebras, we obtain
Lax pairs for integrable couplings. This is based on a fact that every non-semisimple
Lie algebra possesses a semi-direct sum decomposition of a semisimple Lie algebra
and a solvable Lie algebra [4], i.e., let g denote a non-semisimple Lie algebra.

g=g9g & g, g-semisimple, g. - solvable, (1)

where the subscript ¢ indicates a contribution to the construction of coupling systems.
The notion of semi-direct sum means that the two Lie subalgebras g and g, satisfy
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(9, 9.1 € g, 2)

where [g, g.] = {[A, B]| A € g, B € g.}, with [+, -] denoting the Lie bracket of g.
Obviously, g, is an ideal Lie sub-algebra of g.
An integrable coupling of a given integrable system

u = K (u) 3)

is a triangular integrable system of the following form [1, 5, 6]:

{ut = K@), @

Uy = T(u,uyp).

Let A} and A, be square matrices of the same order. Then the 2 x 2 block matrices

(&)

Mi(A, Ay) = [Al AZ]

0 A

define an enlarged Lie algebra g with the following semidirect sum decomposition:

g=g€g., g9={M(A,0}, gc={M(Q0, A}, (6)

which can be used to generate integrable couplings. Moreover, the variational identity
is applied to construct the Hamiltonian structures of integrable couplings [5, 7].

A bi-integrable coupling [8] of a given integrable system (3) is an enlarged trian-
gular integrable system of the following form:

u, = K(u),
ur; = Ti(u,uy), @)
ur; = To(u, uy, uy).

Similarly, let Aj, A, and A3 be square matrices of the same order. Then the 3 x 3
block matrices of the following type:

Ay Ay Aj
My(Ay, A2, A3)=| 0 A Ay |, (®)
0 0 A
define an enlarged Lie algebra g = g € g, with

g ={M:(A1,0,0)}, g ={M2(0, Az, A3)}, €))

which can be used to generate bi-integrable couplings.
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Furthermore, a tri-integrable coupling [6, 9] is of the form:

ut = K(“)v
uy,; = Ti(u, uy), (10)
ur; = To(u, uy, uz),
us; = To(u, uy, us, uz).
The 4 x 4 block matrices
A Ay As Ay
| 0 A Ay A
M3(Ay, Ay, A3, Ay) = 00 A A | (11)
00 0 A

defining an enlarged Lie algebra g = g € g. with
g= {M3(A170’ 07 O)}, gc = {M3(O, AZ’A37A4)},

produce Lax pair matrices for tri-integrable couplings.

There are many approaches for solving integrable systems, for example, the homo-
geneous balance method [10], the Hirota bilinear method [11], the bilinear neural
network method [ 12—15], the transformed rational function method [16], the Darboux
transformation [17-19] and the inverse scattering transformation [20]. The Darboux
transformation is a pretty systematic and direct approach, and it relies on Lax pairs
involving a spectral parameter.

Darboux transformations for integrable couplings have been solved in [21]. In
this paper, we construct Darboux transformations for bi-integrable couplings. This
paper is organized as follows: In Sect. 2, we present a procedure for constructing Dar-
boux transformations for spectral problems associated with bi-integrable couplings,
thereby giving a formula of Darboux transformations of bi-integrable couplings. In
Sect.3, we apply this formula to a kind of bi-integrable couplings of the AKNS
hierarchy, and compute exact solutions for the bi-integrable coupling system of the
nonlinear Schrédinger equations. At the end, we will give a concluding remark.

2 Darboux Transformations of Bi-integrable Couplings

To define the spectral problems of bi-integrable couplings, we denote u =
(™, ul,ul)" as the potential functions, where u, u;,u, being N dimensional
column vectors. Set U and V!"! being elements in a non-semisimple matrix loop
algebra defined by
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U, ) Up(ug, A) Us(uz, N

U@ N=| 0 U@ U, |, (12)
0 0 Uu, )
i VI e, N) VI g, N VI, M)
VU@, z) = 0 Vi, )y VM u,n | (13)
0 0 VI, X

in which U, Uy, U, are N x N matrices depending on the spectral parameter . Set
¢ =T, T, ¢T)T as the enlarged eigenfunction, with y, 1, ¢ being N dimensional
column vectors. Then the spectral problems of bi-integrable couplings (7) are defined
as:

{qu = U(ii, M), 04

bn, = V(@ o,
where m is a positive integer, indicating the hierarchy. Furthermore, we assume
U=XJ+P, U=N;+P, i=12,

where J and J; being N x N diagonal matrices, P and P; being N x N matrices con-
sisting of dependent variables, which have zero diagonal elements, V", Vl['"], Vz[m]
being N x N polynomial matrices of A:

m

ylml — ivj}\m*j, V[m] ZV A J, i=1,2.

To construct a Darboux transformation for (14), we rewrite the spectral problems
(14) as follows:

ox=Uo=(N+P)o. (15)
¢, = lml¢=ZT=OVJ)\’"7/¢
where
) J I ) ) P PP B Vi Vij Vo
J=|losn|, P=loPp|, vi=|0 vV, v,|. a6
00 J 00 P 00 Vv

Assume that D = D(x, t, A) is a Darboux matrix, that is to say, (5’ = l_)¢? satisfies
the same form as the spectral problems (15), i.e.,

&, —0¢3

ZWERe. (17)
¢r,” = ¢ = Zj:() j)\m_](bv
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where P’ is the new potential matrix. Therefore ¢ — ¢, P — P’ form a Darboux
transformation of the spectral problems (14).

In particular, we consider a Darboux matrix of the form l_)()\) =M — S, where
I =dia g(1, 1, 1), with I being the N x N identity matrix. A similar calculation as
in [21] shows that A/ — § is a Darboux matrix of the enlarged spectral problems (14)
if and only if S satisfies

S, =[JS+P,3], (18)
S, =1)_V;5",3. (19)
j=0

P =P+1[J,8], (20)

where

P,

7

S1 8

i P P
SS|, P=|0oPP 1)
0 00

B S
S=10
0

%)

Introduce S = H AH ! as in the general Darboux transformation theory [17], where

] H H, H, Ta00
AH=|0HH/|, A=|04a0], (22)
00 H 004

with A, H, H 1 H, being all N x N matrices. Then substitute these choices into the
expression of S in (21), we obtain

S=HAH™!,
Sy =—HAH'H H '+ HAH!, (23)
S =HAH'HIH'HH'—HAH'"HHH ' —HAH 'H,H ' + HyAH™!,

ie.,
S=HAH™,
Sy =—-SHH '+ HAH™, 24)
S =—-SHH'—SH,H'+ HbAH™".
Now let us introduce N eigenvalues Ay, - -+, Ay, and set A = diag(A1, -+, An).
Denote the corresponding eigenfunctions by (¢V, - - - , ¢™), where ¢ = (T,

pOT ¢OTYT j =1 ... N.¢W satisfies the spectral problems (14), and thus
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X = 4 P)x? + O+ PO + (Ma + Py)p?,

VP =+ Py + Wi+ P,

¢ =\ + P,

Xi, = 2o VINTIXD 4 Y Vi O 4+ 3T Vo A0,
@ Zm V =i @ Z "o Vi A i,

Iy

= 2o ViAo,

wherei =1,---, N. Now set

H = [(b(l)» ) ¢(N)]’ Hl = [w(l)s R w(N)L H2 = [X(l)’ R X(N)]v (25)

where H, H;, H, satisfy

H.,=JHA+ PH,

H,=JHA+PH +J HA+ P H, (26)
Hy=JH,A+ PH, + JiHA+ P H, + LHA + P,H;

H, =37 ViHA",

Hy, =Y 7 g ViHW A" + 3" VijH A, 27)
Hy,, =Yg ViHy A"+ 30 VigH AT 370 Vo H A

Sum up the above discussions, we obtain the following theorem:

Theorem 1 Let H and A be defined by (22). Then H lS invertible if and only if
H is invertible. When H is invertible, then S = HAH™" can be represented as in
(21) with S, Sy, S» defined in (23), then D = M — § is a Darboux matrix of the
enlarged spectral problems (14), which leads to the Biicklund transformation for the
bi-integrable coupling (7):

P = PO [, 5],
P = PO L1, 811+ [J1, S], (28)
P“] P[O] + [, $21 + [J1, Sil + [, S1,

where P, P][O] and PZ[O] are a giving seed solution.

Proof As we did in the Darboux transformation for the integrable coupling case in
Ref. [21], we need to prove that for this choice of H, the two conditions (18) and
(19) are satisfied.

First, let us prove the Eq. (18). It is equivalent to prove

Sy =[JS+ P, S],
Six =[S + 1S+ P, SI+ IS+ P, Sy, (29)
Sox =S +NI1S1+ DS+ P, SI+[JS1 + 1S+ P, S11+ IS+ P, S
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From Eq. (24), we obtain

Sy = HeAH ' —HAH 'H.H !,
Six=—SxHIH ' —SH H '+ SHHH 'HH~' + H|, AH™!
—H\AH VHH™ !, (30)
Soy = —SicHiH ' —S1H,H ' + SiHIH "H H™' — S, HyH™! — SHy, H~!
+SHyH 'H,H ' + Hyy AH ' — HyAH 'H H™!,

by using (26). Then a tedious calculation can show that the right hand sides of (30)
are equal to the right hand sides of (29), respectively. Thus we proved Eq. (18).
Second, let us prove Eq.(19). We compute that

[ Tm,
s"=10ST7T, |, 31
00 S
where
n—1 n n
M, =12+ L8 L= =310, 1@ =3"1P. (32)
k=1 k=1 k=1
Tn(kl) — Sn—kSl Sk_l, T;l(]f) _ Sn_kSQSk_l, (33)
which tell
1 2
V=5, 17 =5$. (34)

Equation (19) is equivalent to
S, =Y _[V;5"71. 3], (35)
j=0

and thus, we need to prove

St = 2oV S, 8],

Su, = 2oLV, S+ [Vi; 8", S]

+IV;Tu-j, SD, (36)
8o, = Z;":O([Vjsm_j, S+ [ViTuej, SI1+[V1; 8™, 8]
+H[V,M™ I ST+ [Vy;jTuej, ST+ [Va; 8™, SD).
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From Eq. (24), we obtain

S, = H, AH' — HAH 'H, H™!,

Sy, = =S, HiH ' — SHy,, H™' + SH{H'H, H™' + Hy,, AH!
—HAH'H, H™!, (37)

Sy, = =Sy, HTH™' — S1H;, H' + SSHHH'H, H~' — S, HyH™!
—SHy, H '+ SHyH 'H, H™ ' + Hy,, AH™' — HhLAH™'H, H™!,

by using (27). Then a tedious calculation can show that the right hand sides of (37)
are equal to the right hand sides of (36), respectively. Thus we proved Eq. (19).
Finally, a simple computation
[J, ST, Sl + [J1, ST, Sol + [, Sl + [z, S]
[/,81=] © A [/, Sil+ 11, §]
0 0 [/, S]
Therefore, P’ and P + [J_ .S ] have the same matrix form, which tells the transforma-

tion (20),i.e., P’ = P + [J, S]. The proved transformation (20) generates Backlund
transformation presented in (28). This completes the proof. (I

Specially, for the AKNS systems, we have N = 2, so that all the sub-matrix in
(12)and (13),aswellas J, J;, J, and P are 2 x 2 matrices. We assume J; = J, = J,

and
_ |10 _|0g 0@ 0
J‘[o 1] P—[ro]’ Pl_[rlo] PZ‘[QO] (38)

x=Knx)" Y=L, o= (o1, ), (39)
u=(q.n"', u=(@q.r)", u=(q.nrn)". (40)

Take two arbitrary constants A; and ), and denote ¢ = ¢;(Ai), Yjx =
Y (M), Xjk = Xj (M), j, k= 1,2, and set

A1 0 11 912 Y11 Y12 X11 X12
A= H = H| = H, = . 41
[0 )\2]’ [¢21 ¢22]’ : |:1/121 1022]’ : |:X21 Xzz] @D
Then we obtain the associated Backlund transformation

g"'=P[1,2], M= PO 1],
g = P21, A =Pl2, 1, (42)
gt = P21, A= PR, 1
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concretely,
[ _ 0] P11012(A\1—A2) [11 _ .[0] $21020 (A1 —A\2)
7 =q"+2 Mon—ond T =T +2 Pr11dn—012¢21°

(1 0] , 20u0=X)(é11%012022—d112d12¢n+011% ¢t =11 6127 ¢21+11 0122021 — 127 621¢11)

Q=g Tt ($11602—¢12621)* ’
[ _ 0] , 20—=X) (1102192 +h11622° Y21 —d12¢21° dm2—d12021 ¥+ 621 > pmahin— 621622 11) 43)
ry=r + 2 P
(@11022—12¢21)
1y _ 0] 2Q1=2)G A 100 2Q1=2)¢
@ =D (P11602—¢12621)° rp=rnot (P11602—p12621)°

with

G = Xudndn eaudn — X112 21’ — X12611°622% + 126112012021 022 — X21611° 127622
FX21011012° P21 + X201 P12022 — X201120122021 — D117 P126227 + D117 D120 Y2
112 P1200? — 1170 12 + d11  dnintn + 2112 b1 2102 — 11l b1 da1vn
—o112 0122020101 + 2 011201220102 + 112 d12d21622U12 + D11 d12¢21 Y 12Yn
—2 117 b1200v12v21 — d112d2160vn” — pr1d12°da1” + G11612° a1
—p11012° 0012 + 1161222102011 — 2 P110122 2111902 + dr1 P12 P11
+2 d11012021602911Y12 — P12 P21 %11 + b2 oo — G122 da1 i ?,

G = X11611021022° — X1012621° 6227 — X126110217 0227 + X12012021 D22 — X21 0117 22>
+X21011612621 6227 + X201012621° 022 — X220127D21” — D117 0216227 — d112 b2
+2 0110120212027 + G110120217 0¥ — Pr16126021° Y20 + G11P12021 922721
+2 G11012021 62292192 — P11912022° Y217 — D110217 022 Y12 + 116212 P19
+o11021022° Y11 — 2dn1d2100 1o + d1192° V11 — G127 dar do — d12? a1 U
+o12621° D012 + Pr2d21° Y12tar — d126212 02 Y11 — 2 drado*dnni v
+h12021 622711021 — a1 P2 + 2 a12 o nia — a1 daa i’

i.e.,
g =g + 20206y, 6y, U =100 4 20020 6065
gl = g 4 2(>‘\1H|2>\2) €= Cra)y A= 0y 2(A|}ﬂzAz) (€3 — C1a) » -
@ =g} - 2("\},|/\2) (Ca1 + G2 + (3 + Q4)
= — 2(]\}”5\2) (G5 + Co6 + o7 + C28) »
with
én 0 0 0 ¢ 0 0 0
0 ¢ ¢u 0O 0 ¢ ¢ O

G = 0 —Y12 ¢12 P12’ G2 = 0 =11 d11 Pl
0 0 Y odn 0 0 o1 o
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¢ 0 0 O ¢ 0 0 O
s = 0 ¢ ¢n 0 Cra = 0 ¢ ¢21 O
0 —o1 ¢21 P21 |’ 0 —vp ¢ ¢’
0 0 9 én 0 0 %n2on
1 0 0 0 0 O 1 0 0 0 0 O
0 o111 0 21 @21 P2 0 o1y 0 0 O
oy = 0 0 ¢ o 0 O o = 0 0 ¢ 0 0O ¢
0 0 —%Y1dnn¢n 0 0 0 x2%12 0 0 |’
0 ¢12 0 22 @22 P2 0 0 0 ¢11 ¢ 290
0 0 0 x2 ¢ 92 0 o2 Y12 ¢12 P20 2922
¢ 0 0 0 0 O ¢6p 0 0 0 0 O
0 ¢ 0 2 @22 P2 0 ¢2¢11 0 0 O
(o3 = 0 0 ¢ ¢2 0 O 10 0 ¢11 0 0 ¢
B0 0~ g 0 G = 0 0 xuyn 0 0 |7
0 ¢11 0 o1 ¢21 92 0 0 0 ¢ ¢ 2¢n
0 0 0 x2 ¢21 Yo 0 12 Y11 d11 P 242
¢ 0 0 0 0 O ¢ 0 0 0 0 O
0 ¢ 0 Y2 o2 0 ¢t 0 0 O
Cos = 0 0 ¢ ¢ 0 O Co = 0 0 ¢ 0 O on
0 0 —vo1 ¢21 21 O |7 0 0 x21%21 O 0 |’
0 ¢ 0 1 o1 o 0 0 0 ¢n én2vyn
0 0 0 xuénvn 0 @21 Y21 921 b1 2911

¢ 0 0 0 0 0
0 ¢1 0 1 o1 o
(o7 = 0 0 ¢ ¢21 0 O

0 0 —vY» ¢ ¢n 0
0 ¢ 0 212 d12
0 0 0 xnénvn

1 0O 0 0 0 O
¢ ¢ 0 0 O
0 ¢ 0 0 ¢n2
0 xX2vn 0 0
0 0 ¢ ¢1 2¢n
Ya1 Yo ¢ P12 2912

G =

OOOOO;%

To obtain the second Darboux transformation, we do this procedure again. Precisely,
we derive new eigenfunctions from the first Darboux transformation:

M-S Sl Sz X
M=¢ =Dp=0—-8¢= 0 M-S & 0
0 0 M-S||o
A = 8)x + 1Y+ $¢ XM
= A =8P+ Si19 = | |, 45)
(A = 8)¢ ot!

which is the new eigenfunction we need to use in the second Darboux transformation.
Slmllarly XM, ! ¢l are two component vectors which we denoted by y!!! =

ATl = @ 7T ol = (i1 g7 Assume A3 and A, are another
two arbitrary constants which are different from A; and \,, and denote
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(P o1 (W) Y 1 ()
$e) = <¢2k> N (¢2()\k)> » YO0 = <1/J2k> (wz()\k)) , (49

o xw ) xaCw) .
X()\k)—(XZk)—(XZO\k)), k=3,4. 47

Set
- X0

A = (6109), 61 0w) = (al = HP0a), Mal = o)),
Ay = (0w, viloy)
= (31 = $)P(A3) + $10(A3), Al = ) Y(A\4) + S1¢6(\g)) »
i = (XM 0w) A ow) )
= ((A31 = S)x(A3) + $19(A3) + $20(A3), (AT — $)x (A1) + S19(\4) + $20(A\4)) -

Then

Ol (50)

Starting from the first DT solutions P!, P!V and P!!, we obtain the second Darboux
g 1 2

transformation solutions:

P2l = pM 41y, 8], PP =P (s, 811414, 5], (51)
PP = PV [, 81+ [0, Si] + [ s, S). (52)



378 Y.-J. Zhang and W.-X. Ma

3 Applications to Bi-integrable Couplings of the AKNS
System

In this section, we construct a hierarchy of AKNS bi-integrable couplings and then
apply the resulting Darboux transformation theory to the construction of the one-
soliton-like solutions of the AKNS bi-integrable coupling system, particularly, we
present the one-soliton-like solution of the bi-integrable couplings of the nonlinear
Schrodinger equation.

3.1 A Hierarchy of the Bi-integrable Couplings of the AKNS
System

First, we construct a hierarchy of AKNS bi-integrable couplings. We assume
that o = (x7, 7, ¢™)T = (x1, X2, Y1, V2, b1, ¢2)T is the eigenfunction, and i =
(q,7,q1,71, g2, )7 is the potential. The spatial spectral problem is defined in the
first equation of (14) and the Eq. (12), with J, = J; = J, and

van =[] v =[] sy =[ %] o

where we denote u = (¢, r)", u; = (q1, )7, u» = (g2, r2)". In addition, we intro-
duce

B W, A) Wiu, ur, A) Walu, uy, uz, A)
W, ) = 0 W(u, \) Wi(u, uy, A) , (54)
0 0 W, \)

_|a b e f _ _ e f
W, ) = [C _a} Wi, N) = [g _e} L Wali N) = [g, _e} .(55)
Then the stationary zero curvature equation W, = [U, W] results in
W, =[U, W], (56)
Wi = [U, W]+ [Uy, W], (57)
Wor = [U, Wa] + [Uy, Wi] + [Uz, W] (58)

ie.,
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a, =qc —rb,

by, = =2\b — 2qa,

¢y =2Xc¢ +2ra;

ex =qg —rf +qic—nb,

fx = =2\f —2qe —2)\b — 2qa,

gx = 2Ag + 2re + 2Xc + 2ra;

e, =q9 —rf +q19—rf +qc—nb,

fi= —2\f —2ge —2\f —2g1e — 2\b — 2qpa,
g; =2\g +2re +2\g+2rie +2\c + 2ra.

Assume that m is a positive integer, and set

W=y war =3[4T

i=0 i=0

=Y mat =Y [0 5 ]
i>0 i>0

Wo=D Waid =3 [2 % ] A
i>0 i>0 f f

379

(59)

(60)

(61)

(62)

(63)

(64)

Substituting them into the Eqs. (56), (57) and (58), and comparing the coefficients

of )\, we obtain the recursion relations:

apg = «Q, b():O, C()ZO,
aix =qc; —rb;,

biy1 = —3bix —qa;,

Cit1 = %Ci,x —ra;,

eo=0, fo=0, go=0,
eix =49 —rfi +qici —rib;,

fiy1 = =5 fix —qei —qra; — bij,
Ji+1 = %gi,x —rei —ra; —Ciyi,

i>0;

=" fo=0, gy=0,
e, . =qg;, —rfi +q19i — rifi + qaci — b,
fir1= _% ix—qe —qiei — qai — fiy1 — biy,

: o
9it1 = 39ix —T€ — 1€ —1ai — gi+1 — Citl,

i>0.

(65)

(66)

(67)

where «, § and ~ are arbitrary constants, real or complex numbers. In addition,

choose the constants of integration to be zero:
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Ailu=0 =0, €lwup=0=0, €luu,unp=0=0, i>1 (68)

This way we can define b;, ¢;, fi, gi, fi/, 91 and q;, ¢;, e; from (65), (66) and (67)
uniquely.

Now, take into account the temporal spectral problem defined in the second equa-
tion of (14) and the Eq. (13), with

[ qlml plml m
(m] _ = (\" — o\l >0
v clml _glml ( W)+ X(; Wi o M=
.~ 1=
[ elml f[m] m
[m] __ _ym _ \m—i
xq—gwdm—uwm—2m¢ . m=0,
L i=0
[ elm) f[ml’ m ‘
Vz[m] = , = (/\m W2)+ = Z Wz,,‘)\mil, m > 0.
g[m] —elml P

Then the enlarged zero curvature equations: U,, — V" +[U, V"] =0, i.e.,

U, — v [u,vim=o, (69)
U, — VI + U, V"™ + [U), V"] = 0, (70)
Uy, — VI (U, VI + Uy, V™ + [U,, V™ = 0, (71)

together with the recursion relations (65), (66) and (67), generate the enlarged hier-
archy of AKNS bi-integrable couplings:

q _2b1n+l
r 2emt1
— q1 > - _z(fm-H + bm+1)
=K, (t) = 72
w= @ 21 + i) 72
q2 _2(.2(;”4.1 + fm+1 + bm+1)
L) . 2(9m+1 + Gmt1 + Cmt1)
—2b 2aq
2c —2ar
_Gm =2(f1 +b1) _ Gm 2(Bq + aq1)
=" agtey |5 2@r+arny |0 7P
—2(fy + fi+bD) 2(vq + Bq1 + ag2)
2(g, + 91 +c1) =2(yr + fBr1 + ar)
where the enlarged hereditary recursion operator @ reads
. P 0 0
d=| - @ 0|, (714)

G — D D —D D
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with @, @ and @, being defined by
= —%6 +q07'r q07g
- —ro~'r %8 —ro7'q |’

o — | ©0'r+q0"'n @107'q+q0"'q
Y= =07 r + 107 ') —(r07 g +ro7q) |’

& — @O 'r+ 107 +q07 'y @07 g+ q107 g1 +q0 '
P00 107 ) =0T g 0T i+ 10 ) |

The first few equations are computed as follows:

—ag,
—ary
O YO B e N
—Y4x — ﬁ(‘hx —q) — algax — q1x)
—Vrx — ﬁ(rlx - rx) - Oé(l’zx - rlx)
B aky 7]
—akKj 1
_ BK2,1 + (K22 —2K21)
iy = Ko () = —pKy1 —« <122,2 - 2122,1) . (76)
VK21 4 B (K22 — 2K2,1) + (K23 — 2K22 + K2,1)
i —vK21 — (152,2 - 21%2,1) -« (152,3 —2Ky + 152,1) )

with
1 2 1 2
KZ,IZE‘]xx_q r, K2,2=5611xx—qu—24”11,

1
Ky3 = 3 q2x — q°ry = 2qrqs — qir — 2q1114;

Ky = T —qr’, Ky = 3T = riq) — 2qrr,

~ 1
K3 = 72 —r2qy —2qrry — riq — 2qinr;
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iy, = K3(@)
B aKj T
OZIZ3,1
BK31 + (K32 —3K3))
= BKs1+a (123,2 - 31%3.1) - an
YK31+ B (Ksp —3K31) + o (Ksz —3K3 +3K31)
K31+ <1€3,2 - 3123.1) +a (123,3 —3Ks,+ 3123.1)

1 3 1 3 3
K3,1 - ~xxx + ~9rqx, K3 2 = —~{qlxxx + ~qrqix + —(6]1" + qu)qm

4 2 ’ 4 2
K33 = Al‘_q2xxx + zq rgx + 5 (qzr +ar+qr)gc+ 5 (q1r +4qr)qix,
K3 = 1Vxxx+361rrx, I%32:_lrlxxx+§qrr1x+_(q1r+qu)rx,
’ 4 2 ’ 4 2
Ks3 = irzxxx + ;qrrzx + -(qr +qr2+qr)r: + = (611" +qrori.

3.2 One-Soliton-Like Solutions to the Bi-integrable
Couplings of the Nonlinear Schrodinger Equation

Let us consider the K, system, i.e., we set m = 2 in the AKNS bi-integrable coupling
hierarchy (73). The corresponding integrable coupling system (73) of the nonlinear
Schrodingier (NLS) equations reads as follows:

qi =C¥(%%x —6]2’),
't = _Of(%rxx - r251>7
qir = 11(%611” - qzrl —2qrq1 — qxx +2‘[2r> +ﬁ<%‘hx - q2r>7
rie = _a<%r1xx _rqu —2qrr1 — I'xx +2qr2> _ﬁ<%rxx _qu)’ (78)
= o Lgax —q*rs —2qrqy — g?r —2 - 2¢%r1 4 4 g — 42
q2t = X\ 792xx — 412 qrq2 —4qir q1r1q — qixx +2q9°r1 +4qrq1 + 5qxx — q°r
+6(%q1“ —q°r1 —29rq1 — qux + 2q2r) +v(%qm - qzr).
roy = —aftro —riqy —2 —r?qg -2 — 2r? 4 Yree —qr?
' 372xx q> —2qrry —riq = 2qirr —rixx +2r°q1 +4qrr1 + 3rxc — qr
ﬁ( Flxx — 7T 111—261”1—Vxx+261r ) ’7(%’xx_qr2>-
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Starting from the zero seed solution, by solving the corresponding linear systems in
(14), we obtain the eigenfunctions:
X1 = % A (62)\3t2 —2B8Ntx + 2y Mt + Ax? — 2x) eh(@M=x)
X2 =1 A (BN = 2BN1x — 2y At + Ax? 4 2x) e MOV, 7
1= A BN =) O gy = X\ (BA - x) e NN,
by = NON=D g e=MaN—x),

Substituting (79) into the associated Béacklund transformation (43), we obtain the
one-soliton-like solution of the integrable coupling system defined by (78):

2 2
g = -\ — )\Z)ea(ku +X )t_(/\'+/\2)XSCCh§,

2,42
r=0 — )\2)6—00\1 +X2 )H—(Al-‘r)\z)xseché7

1
g1 =—5 1 = X)p sech’¢,

1
n=-50 -\ sech?¢,

1
= =7 = D)ps sech®¢,

1
=200 = X)ps sech’¢,
where

€= (A1 = M)A + At — x],
pr = (26Xt — 2ax + DM ONTI 4 2BA 21 — 2 jx + DR,
p2 = (26Nt — 2x — D)e MO L QBN — 20 x — D)e PRONTY),
p3 = (1 +61) & 4 (1 +62) T + (61 — py + & — pp + 4+ 8v) e,

ps = (1 — 01) e T 4 (1 — ) e G 4 (=6 — g — & — i + 4+ 8v)
e—(€|+€2),

with

Wi = Zﬁz)\i4l2 — 45)\,-3xt + 2)\,’2)62 +1, 6 = Zﬁ)\[zl + 2’Y>\izl —4)\x,
€ = Oz)\izl —Ax, i=1,2,
v = AN — BN daxt — A A xr 4+ A ox?
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4 Conclusion and Comments

‘We have successfully constructed a kind of Darboux transformation for bi-integrable
couplings. An application was made to the presented bi-integrable couplings of the
AKNS system of integrable models. In particular, exact solutions were generated
for the bi-integrable couplings of the nonlinear Schrodinger equations. The Darboux
transformation for tri-integrable couplings can be similarly constructed. It is expected
that physical applications could be presented to these integrable couplings of soliton
equations in the future.

The work was supported in part by National Natural Science Foundation of China
under Grant No. 61807025, and the Fundamental Research Funds for the Central
Universities ZYTS23049.
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