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ARTICLE INFO ABSTRACT

Keywords: In this work, the closed-form analytical solutions have been generated for the complex coupled Higgs field
Analytical methods equation through newly two efficient techniques, namely the auxiliary equation method and the extended Sinh-
Complex coupled Higgs field equation Gordon expansion approach. The equation under consideration introduces a quantum field, often referred to as

Symbolic computation work
Closed-form solutions
Solitons

the Higgs field, to elucidate the mechanism responsible for generating mass in gauge bosons. The approaches
used achieve an extensive variety of solutions, including rational functions, hyperbolic functions, exponential
functions, trigonometric functions, and Jacobian elliptical functions. Moreover, to understand the properties
of the attained solutions, combined 3D-graphics and contour plots are demonstrated for specified parametric
values. In particular, it has been extensively discussed that wave position and category changes with respect
to different parameters for some solutions. Various attractive soliton-like solutions have been extracted, such
as bell-shaped, travelling waves, periodic solitary waves, singular kink-shaped solitons, and many others. All
derived solutions are substituted into the original model to ensure their accuracy. The derived solitons can be
employed to investigate numerous complex phenomena associated with this model. Soliton-like solutions and
travelling waves are incredible phenomena seen in a variety of domains of physics, including nonlinear waves,
nonlinear optics, nonlinear dynamics, quantum physics, dusty plasma physics, engineering physics, and other
nonlinear sciences fields.

1. Introduction

In recent years, soliton-like solutions and travelling waves of the nonlinear partial differential equations (NPDEs) have become popular subjects
in the disciplines of physical engineering and nonlinear sciences because of their potential applications. Exact closed-form solutions can take
numerous forms, including travelling wave solutions, solitons, solitary waves, and many others.'~” In the study of many scientific and technological
fields such as fluid dynamics, engineering physics, nonlinear optics, biology, plasma physics, nonlinear physical science, condensed matter physics,
applied mathematics, etc., nonlinear partial differential equations (NPDEs) are of great significance. Therefore, a deep investigation of PDEs
and the construction of new methods®'* to find closed analytical solutions are essential for many scientific and technological advancements.
Expertise in solving PDEs helps practitioners develop the latest technologies, make predictions, and design new experiments. Consequently,
in recent decades, numerous advanced methodologies have been developed, extended, and employed effectively by many researchers. In this
direction few proposed approaches'>1© and mathematical tools include, the direct algebraic approach,'” the Jacobi elliptic function expansion
approach,'&2° the < -expansion method,?! the bifurcation method,?* the generalized auxiliary equation approach,?® the simplest equation
method,?* the generalized Kudryashov method,?>2° the Bicklund transformation method,?” the generalized Riccati equation method,?%2° Hirota’s
bilinear method,*° the generalized exponential rational function method,' the inverse scattering method,>? F-expansion technique,>’ Lie-symmetry
reduction approach,®-3¢ and many others.
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Fig. 1. Visual representation illustrating the structure of the paper.

In the article, we consider the nonlinear complex coupled Higgs field equation (NLccHF) which is associated with the classical Klein-Gordon
equation.’” The NLccHF equation incorporates a quantum field, often referred to as the Higgs field, to elucidate the mechanism by which mass is
generated for gauge bosons. This equation can be expressed in the following form:

b — s — ad + Bl P — 2¢y =0
Wi + Wy — Bl = 0. o))

Understanding the Higgs mechanism is essential for grasping the theory that explains how gauge bosons acquire mass in the conventional
framework of particle physics. In the mechanism, quantum field theory is used to construct physical models of subatomic particles. The masses
of W* and Z weak gauge bosons are generated through electroweak symmetry breaking. Because of the significance and notable uses of the
nonlinear complex coupled Higgs field Eq. (1), a lot of work has been done by researchers on the solutions of this model using various tactics.
This equation was first investigated by Tajiri®>® in 1983. Salam Subhaschandra Singh derived soliton solutions of the Coupled Higgs Field Equation
via the Trial Equation Method.>® Kumar et al.*’ reported symmetry reductions and exact solutions for the Higgs equation and the Hamiltonian
amplitude equation. Abdelkawy et al.*! utilized the Tanh method to investigate several coupled nonlinear evolution equations in the complex
domain, such as the generalized complex Higgs field equations. B. Talukdar et al.*> converted the coupled Higgs equations into Hamiltonian form
and further examined the resulting equation using dynamical system theory.

Considering the context provided earlier, we have applied the auxiliary equation method (AEM) and the extended sinh-Gordon equation
expansion method (shGEEM) to the specified model, both of which have not been utilized on the stated model in previous literature. These methods
are based on the transformation of the PDEs into ODEs using the travelling wave transformation. Afterwards, the trial solutions of the obtained ODE
are considered as per the choice of method. We derive a set of algebraic equations that can be solved using a variety of computational resources
currently available. As a result, we attain the precise travelling wave solution for the model under consideration. Employing the described methods,
we have generated a considerable number of solitary wave and periodic wave solutions. Additionally, we have discovered solutions expressed in
terms of Jacobian elliptic functions, exponential, trigonometric, hyperbolic, and rational functions, enhancing the effectiveness and novelty of our
work. Furthermore, we have skillfully depicted the dynamics of these solutions using 3D plots and combined 3D and contour plots, varying the
involved parameters and time values .

The paper is organized in the following pattern(see Fig. 1): An introduction for the nonlinear complex coupled Higgs field equation is given
in Section “Introduction”. In Section “Description of algorithms”, a brief introduction of the method used is given. In Section “Implementation
of methods”, we compute various analytical solutions to the considered model. In Section “Graphical illustrations of the solutions”, the obtained
solutions are graphically analysed in details. Some concluding remarks are given in the Section “Conclusion”.

2. Overview of algorithms

With two independent variables, x and ¢, consider the following general nonlinear PDE:

2(h, x> bp> brxr brtr by --) = 0, @

where X is a polynomial of ¢(x,) and its partial derivatives containing the highest order derivatives and nonlinear terms. The space and time
coordinates x and ¢ are combined by the following wave transformation Y,

¢, ) = DY), Y = px + ut, 3
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in order to transform equation (2) into ordinary differential equation as follows:
M@, @', @" @' ..)=0, 4)

where differentiation with regard to Y is shown by the prime(’).
2.1. Methodology of Auxiliary equation Method (AEM)
Step 1: In view of this method, the exact solutions of Eq. (4) is assumed in the following expansion form*®:

p
oY) =) Ba"Y, (5)
i=0
where B;, (i =0,1,2,..., p) are parameters to be acquired subsequently such that B, is non-zero and the homogeneous balance approach
determines the value of p between the highest order derivative and the nonlinear term. Here, h(Y) is the solution of following equation

In(@)h' (V) = pa™ ¥ + 6 + na"®. (6)

Step 2: Inserting Egs. (5) in association with (6) in Eq. (4) including the value of p obtained above, we will get an algebraic expression in powers
of "™,

Step 3: Upon solving this family of algebraic equations we derive the values for B;,(i =0, 1,2, ..., p) and the values of other needed constraints.
The some known solutions of Eq. (6) is publicized in Akbar et al..*

Step 4: Restoring the values of B;, o, p,n and A(Y) in solution (5), one can construct the wide spectrum of closed-form travelling wave solutions
of Eq. (2).

2.2. A method of generalized sinh-Gordon equation expansion approach
Step 1: The method explains how to solve Eq. (4) in the following form as Ref. 44

DY) = A+ Z[A,. sinh w(Y') + B; cosh w(Y)]', )

i=1

where the following equation is satisfied by w(Y")

w' = \/p+ gqsinh®(w). (€))

Deduction of Eq. (8) can be obtained from Ref. 44. In addition, the following multiple solutions of Eq. (8) are obtained for different unique
values of parameters p and g¢:

Case(i): Assuming p =0 and g = 1, Eq. (8) transforms into the following first order ODE:
w'(Y) = sinh(w(Y)), ©)]
which has the solutions
sinh(w(Y')) = xisech(Y) or cosh(w(Y)) = +tanh(Y), (10)
and
sinh(w(Y)) = +csch(Y) or cosh(w(Y)) = +coth(Y). 11
Case(ii): Assuming p =1 and g = 1, Eq. (8) get transformed to
w' (V) = cosh(w(Y)), 12)
which provides
sinh(w(Y)) = tan(Y’) or cosh(w(Y)) = +sec(Y) (13)
and
sinh(w(Y')) = —cot(Y) or cosh(w(Y)) = +csc(Y) (14
Case(iii): Assuming p=1-— m? and ¢ = 1, Eq. (8) transforms to
BN everproswam as
which gives
sinh(w(Y)) = es(Y, m) or cosh(w(Y)) = ns(Y', m). e)

Case(iv): By assuming p=¢g=1-— m?, Eq. (8) converted into

W)= \/ (1 = m?) sinh?(w(¥)) + 1, a7
which gives

sinh(w(Y)) = sc(Y, m) or cosh(w(Y)) = nc(Y', m). (18)



N. Mann et al. Partial Differential Equations in Applied Mathematics 10 (2024) 100733

Step 2: The parameter n is determined by balancing the dominant power of the nonlinear terms and the highest order derivatives in Eq. (4).

Step 3: Using Eq. (7) into Eq. (4) yields a nonlinear algebraic expression in w' (Y')sinh®(w(Y)) cosh’(w(Y))(r = 0,1;s = 0,1;¢ = 0, 1). On comparing
the coefficients of w"(Y) sinh® (w(Y)) cosh’(w(Y)) to zero separately, we shall acquire systems of equations.

Step 4: Then, using several packages of symbolic computing tools on the resulting set of algebraic equations, we determine the parameters values
Ag, Aj> By, ay, iy

Step 5: Upon reinstating the parameter values obtained from cases (i) to (iv) and reapplying the derived solutions, one can obtain the solution
for Eq. (2).

3. Implementation of methods

In this section, we investigate the novel and further generic travelling wave solutions of the governing equation (1) through the implementation
of the Auxiliary equation method. In order to accomplish this, we consider the transformation as

P(x, 1) = exp(i®)U(£) and w(x,t) = V(£), where £ = x + vt, and 0 = vrx + rt. 19
Then, Eq. (1) yields,
Pt —a—rHUE) + (v = DU () + BUE)® 20V () =0,

26U (@) +2pUEU" (@) — (1L + V)V () = 0. (20)
Integrating second part of Eq. (20) two times yields,
Ve = L—uver @D
ve+1

Substituting (21) in first equation of (20) yields
(V+1) (ma+ VP2 =) U@+ (V-1 UE> + (V- 1) (V+1) U@ =0. (22)
3.1. Application of new Auxiliary equation method(AEM) to the aforementioned equation
The homogeneous balance approach between the highest order derivative U” (¢) and the nonlinear term U3(¢) determines the value of p = 1.
Following the AEM approach, and using the value of p together with Eq. (5), the solution of (22) is of the form:
U(¢) = By + B d"®. (23)
We attain the following algebraic expression in the power of a"© by substituting Eq. (23) along with (6) into Eq. (22):
- aBlvzah(g) - aBlah(g) + 3ﬂBgBlv2ah(§) + 3ﬂBOB|2v2a2h(¢) + ﬂvazay‘@ - 3ﬂB§B1ah(‘§)
- 3ﬂBOB]2a2h(‘5) - ﬂBfa”’@ + B vieZah® 4 281v4n2a3h(5) - 231n2a3h(‘5) +2B vinpa®
+ 331v4n6a2h(‘5) - ZBlnpah(":) - 3Blmmzh(5) - Blazah@ + Blv4r2ah(5) - Blrzah(g)
— aByV? —aBy + ﬁBg 2 ﬁBS + B)v*po — B po + Byv*r? — Byr?. (24)
Equalizing the coefficient of like powers of a"© of Eq. (24) provides following system of algebraic equations:
—aByv? — aBy + fBIV? — BB} + Byv*po — By po + Byv'r? — Byr? =0,
— aBv? — aB; +3pB2B,v’ - 3B2B, + B\v*c? + 2B,v*np — 2B np + B\v*r* — B;r* — Bjo* =0,
3B, B2v? — 38ByB? + 3B,v*nc — 3B nc =0,
BB}V — BB} +2B,v*n® —2Bn* = 0.
Solving the above algebraic equation via MATHEMATICA, we attain
_i\/ﬁo B =_i\/§n\/v2+1 . V2a +v262 — 42np + 4np — 62 25)
Vi Vi Va1 |

We accomplish a number of exact closed-form solutions to the nonlinear complex coupled Higgs field equation (1) by using (25) as follows:
« When 6% —4pn <0 and n # 0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

1V2a +v262 —42np +4np — 62 vx\/2a +vZic? — 4vZinp + dnp — 2
¢1,1(x,t)=exp<i< v p y) N N > . >>

\/5\/\/2_1 \/5\/\/2—1
(1V2v2 5 1) <F (3 Vi) i>
ivvit+lo " "

VA Vi

i\/a\/vz—_‘_ln ( Vénp—o? tan(%\/4np—o’2(vt+x)) _ i) :

By =

)

B iVv2 + 1o n o
v (x, 1) = 3 - - i
S V7
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or
[ 1V2a 1262 —42np+4np — 62 vx\2a + 1262 — 4v2np + 4np — 62
¢2,1(X,t) =exp| i +
Vv -1 V2V -1
i\/zmn <_i B V4np—o2 co[(%\/4npfo'2(vt+x)) >
) 2n 2n
_ iVvZ+ 1o B
V2Vp VB
2
i\/zmn _% _ V4np—o? CO[(;\"/A‘"F 62(vt+x))>
v (e f) = B iVv2 + 1o
21, 1) = - -
v2+1 NN VB
« When 62 —4pn >0 and n # 0;
Using (25) into solution (23), we achieve the closed-form solution of considered Eq. (1) through (23) and (21) as follows:
[ 1V2a+1262 —42np+4np — 62 vx\2a + 262 — 4v2np + 4np — 62
¢3,1(x,t) =exp| i +
V2V -1 V2V -1
i\/zmn <_l B \/0'2—4nplanh(;\/62—4np(vt+x))>
. 2n 2n
A vZ+ 1o _
V2V VB
2
N 4 1 /e2=
i\/E\/‘ﬂ__l_ln <_% _ 62—4nptdnh(22n o2 4np(vt+x))>
e Gut) = B iVv2 + 1o
3,1(%,1) = - - B
T N Vi
or

[ 1V2a 1262 —42np+4np— 62 vx\2a + 1262 — 4v2np + 4np — 62
Pq1(x, 1) =exp| i +

V2V -1 AT
WV T In <__ ) mcmh(;m(v,m)>

2n

iVvvZ+ 1o

V2v/p G

B

2
62 —4np coth 7\/0‘2—4n (Vi+x)
V2V + ln< (2n )_ 2_>
B iVv2 + 1o
W (1) = - - :

vZ+1 \/E\/ﬁ \/ﬁ

Similarly, we can establish more solution by taking particular values in above two cases:

(i) For r = —p and r = p in solution (¢, ;(x, 1), 1 (x, 1)) and (¢, ;(x, 1),y 1 (x, 1)), four more solutions can be obtained.
(i) For r = —p and r = p in solution (¢; ;(x,1), w3 (x. 1)) and (¢, ; (x, 1), w4, (x, 1)) another four more solutions can be obtained.

« When ¢? = 4pn;
Using (25) into solution (23), we attain the closed-form solution of considered Eq. (1) through (23) and (21) as follows:
[ t\2a +1262 — 4v2np +4np—02  vx\2a +v262 —42np + 4np — 62
¢s1(x, 1) =exp| i
\/_\/ vz — \/5\/ vZ—1
(_i\/vz tlo  iVV+1ovi+x) - 2))
V2vB V2Bt + x)
2
p <_i\/v2 +lo iVvi+1(o(vt+x) - 2)>
vZ+1 ’

V2v/B V2v/B(vt + %)

e When pn<0,6=0and r #0;
Using (25) into solution (23), we achieve the solution of considered Eq. (1) through (23) and (21) as follows:

/ t\/Za —42np +4np vx\/Za — 42np +4dnp
61 (x,1) = —Etanh(\/—np(vt+x)) <—exp <z< + >>>
6,1 n \/E /V2 ] \/5 /_V2 1

ws(x, 1) =
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(d) Re(¥) (e) Tm(v)

Fig. 2. Graphical formation for solution ¢, (x,7) and w;,(x,7) with specified parameters value set at @ = 0.65, n=0.28, p = —-2.5, v=10.05 and f =0.8..

Bp tanh? (\/—np(vt + x))

(Vi+1)n

>

We (X, 1) = —

and

1V2a —42np +4np  vx\/2a — 4v2np + 4np
7, (x,t)=1/—£coth \/—np(vt + x) (—exp(i( + >>>,
7.1 n ( ) \/5,/‘,2_1 \/5‘/\/2—1
Bp coth? (\/—np(vt + x))

(v2+1)n

Yy (x,1) = —

o« When p=-nand o =0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

i\v2 [ 2 +1 —2n(vi+x) +1)e . t\/2a+4v2n2—4n2 + vx\,/2m+4v2n2—4n2
P (x t)——l\/_ st Jeo (e Ve
8,15 \/ﬁ (e—2n(vt+x) — 1) ’

o2 ( e—2nvi+x) 4 1)2

wg (X, 1) = — 3
(e—Zn(vt+x) _ 1)

e When p=n=0;
Using (25) into solution (23), we obtain the solution of considered Eq. (1) through (23) and (21) as follows:

A tV2a 41262 —062  vxV2a+ 1262 - 02
d)g,l(x, t)y=exp| i +
\/5\/\/2—1 \/5\/v2—1
B(sinh(a (vt + x)) + cosh(a (vt + x)))2
vZ+1 ’
e Whenp=0c=Kand n=0;
Using (25) into solution (23), we accomplish the solution of considered Eq. (1) through (23) and (21) as follows:

22 _ K2 2v2 _ K2
broGet) = (eK(vt+x)_ l)exp <i(t\/2a+K v2—K + vx\/2a+K vi—-K >>’
V2vhz -1 NV

6

>> (sinh(o (vt + x)) + cosh(o (vt + x))),

Wy 1 (x,1) =
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B (eK(vt+x) _ 1)2

W0 (x, 1) =
10l V2 +1

e Wheno=n=K and p =0;
Using (25) into solution (23), we obtain the solution of considered Eq. (1) through (23) and (21) as follows:

A tV2a+ K22 - K2 vxV2a+ K22 - K2
b1 (x, 1) =exp| i +
V2V -1 V2V -1

< iK\VV2 +1 i\/zK\/v2+leK(V’+X)>

ﬁ\/ﬁ \/ﬁ(l — Kt
ﬂ (_iK V2+1 i\/i[(\/v2+leK(vt+x) >2

vZ+1 B

\/Eﬁ \//_] (1 _ eK(vZ+x))

yi(x0) =

e Wheno=p+n;
Using (25) into solution (23), we achieve the solution of considered Eq. (1) through (23) and (21) as follows:

1V2a +V2(n+ p)? — 42np — (n + p)? + 4np
N
+ vxV2a +v2(n + p)? — 4v2np — (n+ p)2 + 4np >>
Vivesi
iVV2 4+ 1(n+ p) V2V + 1n (pelommi+0 — 1)
VB VB (1 et

2
B iVV2+ 1(n+p) i\/EVVZ + Ln (pelo=mi+x) _ 1)
vZ41 - \/5\/5 - \/ﬁ (] _ ne(p—n)(vt+x))

e When o =—(p+n);
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

WTTin=p_ WEVTT T (o= eomnire
V2B VB (n— elo=murx))
. p<< 1V2a +V2(—n — p)2 —4v2np — (—=n — p)? + 4np
xp| i
N
N vx\2a +V2(=n — p)2 —42np — (—n — p)? + 4np>>
\/5\/ v2—1 |
2
b iVvirin—p) V2V 10 (p— o)
V24l V2 N/} VB (n — elp=mwr+x))

¢12’1(x, 1= exp<i<

>

Wip1(x, 1) =

P13, (x, 1) =

w31 (%1 =

e When p =0;
Using (25) into solution (23), we observe the solution of considered Eq. (1) through (23) and (21) as follows:

b1a1(x,1) = exp (i (tm n VXm))
| V2V 1 Vive 1
<_i\/ Vv2+ 1o _ i\/z\/mm)'e"("’*"))
\/5\/5 \/E (] _ neo’(vl+x)) ’
B V2t 1o iV2VV2 + lnoeo®+o 2
vZ+1 <_ \/5\/73 - \/ﬁ(l—neﬁ(vtﬂ)) ) .

Wig (x, 1) =

e« Whenn=0c=p#0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

A 1V2a+126% —42n2 + 42 — 62 vx\2a +1262 — 42n2 + 4n? — 52
¢151(x, 1) =exp| i +
\/5\/\/2—1 \/5\/‘/2_1
iVt 1o i\/v2+1n(\/§tan<%\/§n(vt+x))—1)
Vivs Vavi

) V2 + 1o i\/v2+ln<\/§tan<%\/§n(vt+x))—l)
v+l \/E\/E \/5\/5

>

2

Vs (x, 1) =
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(e) Im(v)

Fig. 3. Graphical formation for solution ¢,s,(x,1) and s ,(x,t) with specified parameters value set at a = 1.65, n=0.2, p =02, 6 =0.2, v=2.55 and f =2.2.

e When p=0=0;
Using (25) into solution (23), we achieve the solution of considered Eq. (1) through (23) and (21) as follows:

i( Var . \/va)
b (xt)_i\/i\/v2+1e Vi2or i
115 VB + x) '
2
Viea(x.0) == (vi+x)?2°

e Whenn=pandoc=0;
Using (25) into solution (23), we obtain the solution of considered Eq. (1) through (23) and (21) as follows:

. 2 . t\/2¢1—4\/2r12+4n2 vx\/2a—4\/znz+4n2
t\/in\/v + 1 tan(n(vt + x)) exp <l < Voo + NV

7 :

b17.1(x,1) =~

yi7,1(x, 1) = —2n% tan®(n(vt + x)).
+ When n=0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

P : 26202 V2a+v262—52
iVv2+loexp|i 1V2ar202—0 + =
P \/E\/vz—l \/EVVZ—I

V2v/p

B

15,1 (x, 1) = —

2
()
) =—=.
w1g,1(x. 1) >
3.2. Application of extended sinh-Gordon equation expansion(shGEE) algorithm to the aforementioned equation

Applying the homogeneous balancing concept in Eq. (22), we obtain » = 1. By substituting n = 1 in (7), we begin solving as
Case 1:
U(&) = R, cosh(@(&)) + Ry + S sinh(w(&)). (26)

Substituting Eq. (26) into (22), the expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to obtain non-trivial
solutions to the governing equation.

Solution set 1.1:
2V-a—-2r2+4 2 _
Ry=0, Rl:\/—a—r-i-’ S, =0, V=L2. 27)
prz —2p r2=2
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From Eq. (27), (26) and (10), we get

[ rxVatr2-2 )
+rt T,
Vov-a -2+ 4el< = ) coth <’ a2 | x)

2
@1 o(x,1) = 2 s
pr=2p
28 (—a — 2% + 4) coth? <’—V\;+2iz‘2 + x>
Wia(xn) = — (28)

(22 +1) (pr2-2p)

Solution set 1.2:

W-a-27 -2 2
Ry=0, R, =0, Sl=‘/— el y=Yoetri+l (29)

Ny r2+1

From Eq. (27), (26) and (10), we get

. rxVat+r2+1
V2v-a-272 - 2el<n_ ﬁ+ >csch <x _ Wairhl )

Ven
(1) = r ,
VB +pr?
26 (~a—2r* —=2) csch? [ x — Vo2l
Va2to0 = a4l (30)
( PR 1) (ﬂ+ﬂr2)
Solution set 1.3:
g — 22 —a— 22 2 _
Ry=0, R =Y2Z2"+1 Sl:_\/“ 2241 V=\/2l1+2r ! )
V2pr2 - p V2B = 21
From Eq. (27), (26) and (10), we get
V—a —2r2 + 1 coth <—’\/m + x)
A rx\V2a+2r2 -1 Var—1
3o, ) =exp|i| ————+1t
2r2 —1 \V2pr2 =
V—a —2r2 + lesch <% + x> >
Vapr—p ’
- Vo221 ) Varaot .
P mcolh< Voo + ) _ mcsch< e 4 )
V26r=p Vb2 g
Vel = : 32)
’ 2a+2r2-1
2r2—1 +1
Case 2:
U (&) = R, cosh(w(&)) + Ry + S sinh(w(£)). 33)

Substituting Eq. (33) into (22), the implementing expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to
obtain non-trivial solutions to the governing equation.

Solution set 2.1:

A —q —2r2 2 _
ROZO’ R1:M7 S]:O, V:Ll_ (34)
pr: —p Vrz -1
From Eq. (38), (26) and (13), we get
[ rxVatr2-1
+rt
V2v—a-22+ 2el< 21 r> sec <’ (“:2_1 + x>
re—1
Pyp(x,1) = ,
pr2—p
28 (—a — 2% +2) sec? (’V‘”f” + x>
re—1
Wao(x, 1) = o (35)
(=2t +1) (2 -p)
Solution set 2.2:
2V-a—-2r2—4 2
Ry=0, R, =0, Sl=\/—‘/” ! o Yatr+2 (36)

Ve EaTo 212
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Im(y) ,

0 1l

Fig. 4. Graphical formation for the solution ¢;,(x,) and w;,(x,7) with specified parameters value set at « = 2.5, f =0.2 and r = 0.25.

From Eq. (38), (26) and (13), we get

V2v-a 22 - 4el( Vi t) tan (’V\j’;;b” + x)
re+2
Pso(x,1) = i s
V26 + pr?
28 (—a — 2? — 4) tan’ Watrd2 | o
Wso(x,1) = ) 37)
( 1242 1) (28 + pr2)
Solution set 2.3:
\—a =272 — N —a =272 — v/ 2
Ry=0, R, = a—2r 1, _ a—2r 1’ V= 2a + 2r +1. (38)
VB +2pr? VB +2pr2 V2rr +1
From Eq. (38), (26) and (13), we get
Va2 T (N )
A rxV2a+2r2 + 1 < 21241
¢6’2(X, t) =exp| ! ? +rt \/—2
2r2 +1 B+2pr
. V—a—2r? —1sec <’—"\2;;_22f:1 +x> )
VB + 2572 ’
2
, Va2 1) . Ve e (2222 1)
Vp+2pr2 Vp+2pr2
Voa(x.) = 2042241 9
et
Case 3:
U (&) = Ry sinh(w(&)) + R, + S; cosh(w(&)). (40)

Substituting Eq. (53) into (22) and the implementing expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to
obtain non-trivial solutions to the governing equation.

Solution set 3.1:

Ry=0, R, =0, S, =

Vava—2m? +22 -2

— 2 _ 2
a+m>—r-+1 1)

m?—r2+1

10
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(d) Re(¥) (e) Im(¥) () 1]

Fig. 5. Graphical formation for solution ¢,,(x,?) and y,,(x,1) with specified parameters value set at « = 2.58, f = 0.25 and r = 0.152.

(a) Re(¢)

(d) Re(¥) (e) Im(3) ) 1l

Fig. 6. Graphical formation for solution ¢,(x,7) and w;,(x,7) with specified parameter set at a = —2.22, = -0.25 and r = 1.18.

")

From Eq. (60), (53) and (16), we get

\/ﬁ A rxV—a+m?—r2+1 tVm2—r2—a+1
\/5 a—2m? +2r* —2exp <1 (—m +rt>>ns <x+ Vo

VB + pm? = pr?

Pra(x, 1) =

>

11
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2
o ' 42
w72(x,1) (—a+m2—r2+1 + 1) (ﬁ + pm? — ﬁr2) (42)
m2—r2+1
For m =0, we get
A rxV—amr241
’ +rt
\/5\/a+2r2—2e< Vi-2 >csc<’@+x>
Psa(x, 1) = = v )
— pr
o2 (55
ng(x’ n= ( —a—r2+1 1 ) 2 (43)
1-r2 + (ﬂ - ﬂr )
For m = 1, we get
i V=arZer
Vivaro =i ) o (52 )
Poo(x,1) = - ’
V26— pr?
2p (a +2r — 4) coth? (—'@ +x
Yo, (x, 1) = <_a_,z+2 N 1) 5 S )
2—r2 ( ﬂ_ﬂr )

Solution set 3.2:

Pr02(x,1) =

Ry=0, R = S, =0, v=-—
")
V=28 + pm? = B2 |

V=2p + pm? — pr? ’ m—r2 -2
From Eq. (60), (53) and (16), we get
2
2ﬁ(a—2m2+2r2+4)cs<x— % m>
. (46)

V2V —2m2 + 22 + dexp (i <rt— ’X—V_'”'”Z_’z_z>> cs (x— Wl rl a2
atmlor?=2 1) (=28 + pm? — pr?)

o —2m2 +2r2 + 4 \/— 2 _ 2
\/— a—2m=+2r- + a+m-—r 2. (45)
V2 Vo2
m2—r2=2

Wio2(x, 1) = (

For m =0, we get

\/5\/(1+2r2 +4exp <i <rt— —”‘m>> cot <x— Mﬁ)

briaGed) V=r2=2 V=r=2
X, = 5
11,2 YRy
26 (a +2r% +4) cot? (x - ’—V‘“"z‘z>
V-ri=2
Vi, 0 = 5 (47)
(=552 +1) (<28 - )
For m =1, we get
. rxV—a—r2-1 V—a—r2-1
, o \/E\/a+2r2+26Xp<l <rt—ﬁ>>csch<x—ﬁ>
122(x,1) = s
2f (@ +2r2 +2) esch? <x - ’—""’2’2]’1>
Vina(x) = — —. “48)
(==rt 1) (- pr2)

Solution set 3.3:

Va—-2m?2+2r2+1 Va—-2m?+2r2+1 V=2a+2m?-2r2 -1

Ry=0, Ry=—"Z_ "2 ° 5 = v= : (49)

VBt =27 B+ 2pm -2 om? — 22 — 1
")

From Eq. (60), (53) and (16), we get

Va2 v 2 1 s ( x4+ N2
A rxV=2a+2m? - 212 — 1 oo g * Vom2-2r2-1
¢13’2(x, t)=exp| i +rt
V=P +2pm? —2pr2

2m2 - 22 -1

Va—2m?+2r2 + 1cs x+—’m|m
( Vamr—22-1 )
V=B +2pm> - 282 '
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m)2

W Var? 272 2ac1
a—2m2+2r2+lns(x+’ 2m72r-—da Va—2m2 4272 +1cs| x4 Y2m2=2rf 2ol

s Vam2—2,2-1 Vam2-2/2-1
V=p+2pm2-2pr2 V=p+2pm2-2pr2
1= .
Wi32(x, 1) e 271 0
w1t

For m =0, we get

/ 22+ 1 1V =2a-2r2-1 >
Praa(x, ) =exp| i nV-2e-22 -1 Lo < T csc( Voo
142X, V=il ey

2
VaT T oo (V2
( V-2r2-1

Ny

2
—Da—2r2— o
a+2r2+lcsc<%+x> a+2r2+1mt<w x)

B Voar2on Voar2oy
V-p-2pr7 V=p-2pr7
WM’Z(X’ t) = —2a-2r2—1 1 (51)
2 T
For m =1, we get
—_— Va+2r2 - 1c0th<”_2L 2241 +x>
P1s50(x t)—exp<i< —2a -2+ 1 >>< 12
152X, 1) =
1- 2r2 \ B —2pr?
2 1V-2a=2r7+1 —2a—2r2+1
Va+2r2— 1csch< s +x>>
VB —2pr2
2
V22— coth ( Y=2e=22+1 o (17\/—21:—2%
ﬂ a+2r lcolh( oy +x> ~ a+2r2—1csch o +x>
T Vi-24r2
WlS,Z(xv n= —2a-2r2+1 1 ' (52)
22t
Case 4:

U(&) = R, sinh(@(&)) + Ry + S, cosh(w(&)). (53)

Substituting Eq. (53) into (22) and the implementing expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to
obtain non-trivial solutions to the governing equation.

Solution set 4.1:

\/_\/mz—l\/ot+4m2+2r2 2 V_\/a+2m2+r2—l

Ry=0, R =0, S, = = (54)
VBV2m2 412 — 1 V2m? +r2 -1
From Eq. (60), (53) and (16), we get

\/z\/m2 —1Va+4m2 +2r2 — 2exp <i <M +rt>> nc ( V2 4rttal ’ >

¢ (x t) _ 2m2+r2—1 m2+r2
162X, 1) =
VBV2m?2 + 12 — 1
2
2(m?-1) ((x+4m2+2r2—2)nc<x+M m)
(x t) _ V2m2+r2—1 (55)
Vie2(X, 1) = (2m2 412 — 1) <a+2m2+r2—1 i 1) '
2m2+4r2—1
For m =0, we get
rxVa+r2
v L ——
iV2Va +2r2 = 2e ( g t> sec (’ a+2r2—1 + x>
re—1
P172(x,1) = ,
VBV -1
2 (a+2r% - 2) sec? (’—‘Hf—l + x)
re—1

Wi72(X,1) = — (56)

Solution set 4.2:

V2vm: =1/ —a +2m2 — 272 — 4

Ry=0, R, = . 8§ =0 v=—Y"TH T2 (57)

\BVm2 =2 =2 m:—r2—2

13
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(d) Re() (e) Im(¥) ) 1l

Fig. 7. Graphical formation for solution u;s,(x,?) and vs,(x,r) with specified parameters value set at a = 2.22, § =2.25 and r = 0.18.

From Eq. (60), (53) and (16), we get

V2Vm2 = 1V/=a +2m? — 2% — dexp (i <rt— ’x—'_‘”’"z—rz_z)>sc<x— Wl r?a-2

")

o d) Vim2-r2—2 Vim2—r2—2
182X, 1) = ,
VBVm2 —r2 =2
2
2(m2— 1) (—a+2m2—2r2—4)sc<x— % m)
Yigo(x, 1) = 5 i . (58)
(m2 =2 =2) (=522 4 1)
For m =0, we get
i\/z\/m“p (i <rt - YT e —az—r22—2>) tan (x B e o __"_2’22_2>
Pr9n(x,1) = — - s
VBV-r2 =2
2(—a-2r*—4)tan® | x - Voari2
V-2
Yigo(x, 1) =— s (59)
(-2 -2) (=2 +1)
Solution set 4.3:
2 _ 2 2 2 _ 2 2
Ry =0, R1=\/m 1\/a+m +2r +1, S1=\/m 1\/a+m +2r +1’ (60)

VBVm2 +2r2 + 1 VBVm? +2r2 + 1
2 2
. V2a+ m? +2r +1. (61)

Vm?+2r2 +1
")

From Eq. (60), (53) and (16), we get

2 _ 2 2 tVm24+2r24+2a+1
\/m 1\/(x+m +2r +1nc<x+—\/m
VBVm2 +2r2 + 1
m) )

14

o rxV2a+m?2+2r2 +1
Pro2(x,1) =exp| i +rt
Vm? +2r2 +1

2 D) ) (Vm242r2420+1
m? —1Va+m?+2r>+ 1sc| x + ——————
\/ \/ ( Vm2+2r2+1

VBVm2 +2r2 +1

+

il
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")

Ny
\/mz—l\/a+m2+2r2+1nc<x+M

_ B Vim22r241 o
‘I’zo,z(X, n= 2a+m242r2+1 ) 5 ( )
e 1 VBVm? +2r2 + 1
Vm?2 = 1Va + m2 + 22 + 1sc x+—’mm 2
V2241
* NEreEa : ©63)
VBVm2 +2r2 +1
For m =0, we get
iVa+2r? + 1tan Va2l
rxV2a +2r2 + 1 Vel
poax=exp| i| —————+nrt
22 +1 VBV22 + 1
; ) 1V2a+2r2+1
iVa+2r-+ lsec<—Trz+1 +x>>
+ 9
VBV2r2 +1
——— Ny —— 2
iVat+2r2+1 m“(%ﬂf) iVa+2r2+1 sec(%wc)
rot + ro+
4 VBV2r2+1 VBV2r2 41
ynalon = 2a+2r2+1 : (64)
2 T

4. Graphical illustration of the solutions

In this part of the manuscript, we examine the obtained travelling wave solutions by presenting 3D and combined contour graphics and also
inferred their dynamical behaviour using different parametric values with the aid of Mathematica software.

We receive the anti-bell shaped soliton structure for the absolute value of solution ¢ (x,?) and g (x,f) with specified parameter values as
a=0.65n=0.28, p=-25,v=0.05and f = 0.8 with -8 < x <8 and —1 < < 1 as shown in Fig. 2(c) and (f). Fig. 2(a) and (b) demonstrates the
double-periodic wave like structure for real and imaginary value of solution ¢ ;(x,?), wherein in (d) and (e) we demonstrate the anti-bell shaped
soliton and plane structure for the real and imaginary value of solution g (x, 1) respectively.

We obtain the singular periodic solitary wave structure for the absolute value of solution ¢;5(x,?) and w5 (x,t) with specified parameters
value as « = 1.65, n = 0.2, p = 0.2, 0 = 0.2, v = 2.55 and f = 2.2 as shown in Fig. 3(c) and (f). Fig. 3(a) and (b) demonstrates the combined 3D
and contour graphics of real and imaginary values of solution ¢,5 ;(x,?), whereas 3(d) and (e) demonstrates real and imaginary values of solution
w15, (x, 1) showing periodic wave structure and constant plane structures.

We obtain the kink type solitons for the absolute value of solution ¢;,(x,t) and w3 ,(x,?) with the specified parameter values as « = 2.5, # =0.2
and r = 0.25 with —10 < x < 10 and -5 < ¢t < 5 as shown in Fig. 4(e) and (f). Fig. 4(a) and (b) demonstrates the corresponding combined 3D
and contour graphics of real and imaginary values of solution ¢;,(x, ), whereas 4(d) and (e¢) demonstrates real and imaginary values of solution
w15, (x, 1) showing solitary wave structures.

We receive interaction of kink and soliton wave profile for the solution phiy,(x,t) and w,,(x.f) with specified parameter values as a = 2.58,
#=0.25 and r = 0.152 with —10 < x < 10 and -5 < ¢ < 5 as shown in Fig. 5(c) and (f). Fig. 5(a) and (b) demonstrates the combined 3D and contour
graphics of real and imaginary values of the solution phi,,(x,1), whereas 5(d) and (e) represents graphics of real and imaginary values of solution
Wy (x,1)

We obtain the lump like structure for the absolute for solution ¢, (x,?) and yy ,(x, ) with specified parameters value as « = —2.22, f = —0.25 and
r = 1.18 as shown in Fig. 6(c) and (f). Fig. 6(a) and (b) demonstrates the corresponding 3D and contour combined graphics for real and imaginary
values of solution ¢ ,(x,t), whereas 6(d) and (e) represents graphics for real and imaginary values of solution ;g ,(x,1).

We receive interaction of plane-kink and soliton wave profile for the absolute value of solution ¢;5¢(x,#) and y5 ¢(x, t) with specified parameter
values as « = 2.22, § = 2.25 and r = 0.18 with —10 < x < 10 and -5 < 7 < 5 as shown in Fig. 7(c) and (f). Fig. 7(a) and (b) demonstrates
the corresponding combined 3D and contour plots for real and imaginary values of solution ¢5¢(x,7), whereas 7(d) and (e) demonstrates the
corresponding combined 3D and contour plots for real and imaginary values of solution s ¢(x, ).

5. Conclusion

In summary, the new auxiliary equation method and shGEEM are implemented for the first time in the (2+1)-dimensional NLccHF equation to
achieve effective, competent, and further novel soliton solutions. We have obtained numerous solutions in terms of Jacobian elliptic functions,
hyperbolic, trigonometric, exponential, and rational functions to the above-stated model with more parameters. The solutions obtained are
visually represented through graphs, highlighting their outcomes. Additionally, the study explores the impact of time evolution through combined
two-dimensional graphs. These graphical representations showcase diverse wave patterns, including irregular periodic solitons, singular bell-
shaped solitons, and anti-bell-shaped solitons, depending on different parameter values within the system. The findings emphasize the substantial
influence of free parameters on waveform behaviour, providing a versatile method to depict a plethora of unique and complex features observed
across scientific domains. Furthermore, the solutions were verified for accuracy using symbolic computational software applications. They were
incorporated into the main equations and confirmed to be correct, ensuring their reliability. This study affirms the trustworthiness and success of
the two applied techniques in evaluating the optimal approach for well-established mathematical models.
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