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A B S T R A C T

In this work, the closed-form analytical solutions have been generated for the complex coupled Higgs field
equation through newly two efficient techniques, namely the auxiliary equation method and the extended Sinh-
Gordon expansion approach. The equation under consideration introduces a quantum field, often referred to as
the Higgs field, to elucidate the mechanism responsible for generating mass in gauge bosons. The approaches
used achieve an extensive variety of solutions, including rational functions, hyperbolic functions, exponential
functions, trigonometric functions, and Jacobian elliptical functions. Moreover, to understand the properties
of the attained solutions, combined 3D-graphics and contour plots are demonstrated for specified parametric
values. In particular, it has been extensively discussed that wave position and category changes with respect
to different parameters for some solutions. Various attractive soliton-like solutions have been extracted, such
as bell-shaped, travelling waves, periodic solitary waves, singular kink-shaped solitons, and many others. All
derived solutions are substituted into the original model to ensure their accuracy. The derived solitons can be
employed to investigate numerous complex phenomena associated with this model. Soliton-like solutions and
travelling waves are incredible phenomena seen in a variety of domains of physics, including nonlinear waves,
nonlinear optics, nonlinear dynamics, quantum physics, dusty plasma physics, engineering physics, and other
nonlinear sciences fields.

1. Introduction

In recent years, soliton-like solutions and travelling waves of the nonlinear partial differential equations (NPDEs) have become popular subjects
in the disciplines of physical engineering and nonlinear sciences because of their potential applications. Exact closed-form solutions can take
numerous forms, including travelling wave solutions, solitons, solitary waves, and many others.1–7 In the study of many scientific and technological
fields such as fluid dynamics, engineering physics, nonlinear optics, biology, plasma physics, nonlinear physical science, condensed matter physics,
applied mathematics, etc., nonlinear partial differential equations (NPDEs) are of great significance. Therefore, a deep investigation of PDEs
and the construction of new methods8–14 to find closed analytical solutions are essential for many scientific and technological advancements.
Expertise in solving PDEs helps practitioners develop the latest technologies, make predictions, and design new experiments. Consequently,
in recent decades, numerous advanced methodologies have been developed, extended, and employed effectively by many researchers. In this
direction few proposed approaches15,16 and mathematical tools include, the direct algebraic approach,17 the Jacobi elliptic function expansion
approach,18–20 the 𝐺′

𝐺 -expansion method,21 the bifurcation method,22 the generalized auxiliary equation approach,23 the simplest equation
method,24 the generalized Kudryashov method,25,26 the Bäcklund transformation method,27 the generalized Riccati equation method,28,29 Hirota’s
bilinear method,30 the generalized exponential rational function method,31 the inverse scattering method,32 F-expansion technique,33 Lie-symmetry
reduction approach,34–36 and many others.
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Fig. 1. Visual representation illustrating the structure of the paper.

In the article, we consider the nonlinear complex coupled Higgs field equation (NLccHF) which is associated with the classical Klein–Gordon
equation.37 The NLccHF equation incorporates a quantum field, often referred to as the Higgs field, to elucidate the mechanism by which mass is
generated for gauge bosons. This equation can be expressed in the following form:

𝜙𝑡𝑡 − 𝜙𝑥𝑥 − 𝛼𝜙 + 𝛽|𝜙|2𝜙 − 2𝜙𝜓 = 0

𝜓𝑡𝑡 + 𝜓𝑥𝑥 − 𝛽(|𝜙|
2)𝑥𝑥 = 0. (1)

Understanding the Higgs mechanism is essential for grasping the theory that explains how gauge bosons acquire mass in the conventional
framework of particle physics. In the mechanism, quantum field theory is used to construct physical models of subatomic particles. The masses
of 𝑊 ± and 𝑍 weak gauge bosons are generated through electroweak symmetry breaking. Because of the significance and notable uses of the
nonlinear complex coupled Higgs field Eq. (1), a lot of work has been done by researchers on the solutions of this model using various tactics.
This equation was first investigated by Tajiri38 in 1983. Salam Subhaschandra Singh derived soliton solutions of the Coupled Higgs Field Equation
via the Trial Equation Method.39 Kumar et al.40 reported symmetry reductions and exact solutions for the Higgs equation and the Hamiltonian
amplitude equation. Abdelkawy et al.41 utilized the Tanh method to investigate several coupled nonlinear evolution equations in the complex
domain, such as the generalized complex Higgs field equations. B. Talukdar et al.42 converted the coupled Higgs equations into Hamiltonian form
and further examined the resulting equation using dynamical system theory.

Considering the context provided earlier, we have applied the auxiliary equation method (AEM) and the extended sinh-Gordon equation
expansion method (shGEEM) to the specified model, both of which have not been utilized on the stated model in previous literature. These methods
are based on the transformation of the PDEs into ODEs using the travelling wave transformation. Afterwards, the trial solutions of the obtained ODE
are considered as per the choice of method. We derive a set of algebraic equations that can be solved using a variety of computational resources
currently available. As a result, we attain the precise travelling wave solution for the model under consideration. Employing the described methods,
we have generated a considerable number of solitary wave and periodic wave solutions. Additionally, we have discovered solutions expressed in
terms of Jacobian elliptic functions, exponential, trigonometric, hyperbolic, and rational functions, enhancing the effectiveness and novelty of our
work. Furthermore, we have skillfully depicted the dynamics of these solutions using 3D plots and combined 3D and contour plots, varying the
involved parameters and time values .

The paper is organized in the following pattern(see Fig. 1): An introduction for the nonlinear complex coupled Higgs field equation is given
in Section ‘‘Introduction’’. In Section ‘‘Description of algorithms’’, a brief introduction of the method used is given. In Section ‘‘Implementation
of methods’’, we compute various analytical solutions to the considered model. In Section ‘‘Graphical illustrations of the solutions’’, the obtained
solutions are graphically analysed in details. Some concluding remarks are given in the Section ‘‘Conclusion’’.

2. Overview of algorithms

With two independent variables, 𝑥 and 𝑡, consider the following general nonlinear PDE:

𝛴(𝜙, 𝜙𝑥, 𝜙𝑡, 𝜙𝑥𝑥, 𝜙𝑥𝑡, 𝜙𝑡𝑡,…) = 0, (2)

where 𝛴 is a polynomial of 𝜙(𝑥, 𝑡) and its partial derivatives containing the highest order derivatives and nonlinear terms. The space and time
coordinates 𝑥 and 𝑡 are combined by the following wave transformation 𝛶 ,

𝜙(𝑥, 𝑡) = 𝛷(𝛶 ), 𝛶 = 𝑝𝑥 + 𝜇𝑡, (3)
2
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in order to transform equation (2) into ordinary differential equation as follows:

M(𝛷,𝛷′, 𝛷′′, 𝛷′′′,…) = 0, (4)

where differentiation with regard to 𝛶 is shown by the prime(′).

.1. Methodology of Auxiliary equation Method (AEM)

Step 1: In view of this method, the exact solutions of Eq. (4) is assumed in the following expansion form43:

𝛷(𝛶 ) =
𝑝
∑

𝑖=0
𝐵𝑖𝑎

𝑖ℎ(𝛶 ), (5)

where 𝐵𝑖, (𝑖 = 0, 1, 2,… , 𝑝) are parameters to be acquired subsequently such that 𝐵𝑝 is non-zero and the homogeneous balance approach
determines the value of 𝑝 between the highest order derivative and the nonlinear term. Here, ℎ(𝛶 ) is the solution of following equation

ln(𝑎)ℎ′(𝛶 ) = 𝜌𝑎−ℎ(𝛶 ) + 𝜎 + 𝑛𝑎ℎ(𝛶 ). (6)

Step 2: Inserting Eqs. (5) in association with (6) in Eq. (4) including the value of 𝑝 obtained above, we will get an algebraic expression in powers
of 𝑎ℎ(𝛶 ).

Step 3: Upon solving this family of algebraic equations we derive the values for 𝐵𝑖, (𝑖 = 0, 1, 2,… , 𝑝) and the values of other needed constraints.
The some known solutions of Eq. (6) is publicized in Akbar et al..43

Step 4: Restoring the values of 𝐵𝑖, 𝜎, 𝜌, 𝑛 and ℎ(𝛶 ) in solution (5), one can construct the wide spectrum of closed-form travelling wave solutions
of Eq. (2).

.2. A method of generalized sinh-Gordon equation expansion approach

Step 1: The method explains how to solve Eq. (4) in the following form as Ref. 44

𝛷(𝛶 ) = 𝐴0 +
𝑛
∑

𝑖=1
[𝐴𝑖 sinh𝑤(𝛶 ) + 𝐵𝑖 cosh𝑤(𝛶 )]𝑖, (7)

where the following equation is satisfied by 𝑤(𝛶 )

𝑤′ =
√

𝑝 + 𝑞 sinh2(𝑤). (8)

Deduction of Eq. (8) can be obtained from Ref. 44. In addition, the following multiple solutions of Eq. (8) are obtained for different unique
values of parameters 𝑝 and 𝑞:

Case(𝑖): Assuming 𝑝 = 0 and 𝑞 = 1, Eq. (8) transforms into the following first order ODE:

𝑤′(𝛶 ) = sinh(𝑤(𝛶 )), (9)

which has the solutions

sinh(𝑤(𝛶 )) = ±𝜄̇𝑠𝑒𝑐ℎ(𝛶 ) or cosh(𝑤(𝛶 )) = ± tanh(𝛶 ), (10)

and

sinh(𝑤(𝛶 )) = ±𝑐𝑠𝑐ℎ(𝛶 ) or cosh(𝑤(𝛶 )) = ± coth(𝛶 ). (11)

Case(𝑖𝑖): Assuming 𝑝 = 1 and 𝑞 = 1, Eq. (8) get transformed to

𝑤′(𝛶 ) = cosh(𝑤(𝛶 )), (12)

which provides

sinh(𝑤(𝛶 )) = 𝑡𝑎𝑛(𝛶 ) or cosh(𝑤(𝛶 )) = ± sec(𝛶 ) (13)

and

sinh(𝑤(𝛶 )) = −𝑐𝑜𝑡(𝛶 ) or cosh(𝑤(𝛶 )) = ± csc(𝛶 ) (14)

Case(𝑖𝑖𝑖): Assuming 𝑝 = 1 − 𝑚2 and 𝑞 = 1, Eq. (8) transforms to

𝑤′(𝛶 ) =
√

sinh2(𝑤(𝛶 )) + 1 − 𝑚2, (15)

which gives

sinh(𝑤(𝛶 )) = 𝑐𝑠(𝛶 ,𝑚) or cosh(𝑤(𝛶 )) = 𝑛𝑠(𝛶 ,𝑚). (16)

Case(𝑖𝑣): By assuming 𝑝 = 𝑞 = 1 − 𝑚2, Eq. (8) converted into

𝑤′(𝛶 ) =
√

(1 − 𝑚2) sinh2(𝑤(𝛶 )) + 1, (17)

which gives

sinh(𝑤(𝛶 )) = 𝑠𝑐(𝛶 ,𝑚) or cosh(𝑤(𝛶 )) = 𝑛𝑐(𝛶 ,𝑚). (18)
3
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Step 2: The parameter 𝑛 is determined by balancing the dominant power of the nonlinear terms and the highest order derivatives in Eq. (4).
Step 3: Using Eq. (7) into Eq. (4) yields a nonlinear algebraic expression in 𝑤′𝑟(𝛶 ) sinh𝑠(𝑤(𝛶 )) cosh𝑡(𝑤(𝛶 ))(𝑟 = 0, 1; 𝑠 = 0, 1; 𝑡 = 0, 1). On comparing

the coefficients of 𝑤′𝑟(𝛶 ) sinh𝑠(𝑤(𝛶 )) cosh𝑡(𝑤(𝛶 )) to zero separately, we shall acquire systems of equations.
Step 4: Then, using several packages of symbolic computing tools on the resulting set of algebraic equations, we determine the parameters values

𝐴0, 𝐴𝑖, 𝐵𝑖, 𝛼1, 𝜇1.
Step 5: Upon reinstating the parameter values obtained from cases (i) to (iv) and reapplying the derived solutions, one can obtain the solution

for Eq. (2).

3. Implementation of methods

In this section, we investigate the novel and further generic travelling wave solutions of the governing equation (1) through the implementation
of the Auxiliary equation method. In order to accomplish this, we consider the transformation as

𝜙(𝑥, 𝑡) = exp(𝑖𝜃)𝑈 (𝜉) and 𝜓(𝑥, 𝑡) = 𝑉 (𝜉), where 𝜉 = 𝑥 + 𝜈𝑡, and 𝜃 = 𝜈𝑟𝑥 + 𝑟𝑡. (19)

Then, Eq. (1) yields,

(𝜈2𝑟2 − 𝛼 − 𝑟2)𝑈 (𝜉) + (𝜈2 − 1)𝑈 ′′(𝜉) + 𝛽𝑈 (𝜉)3 − 2𝑈 (𝜉)𝑉 (𝜉) = 0,

2𝛽(𝑈 ′(𝜉))2 + 2𝛽𝑈 (𝜉)𝑈 ′′(𝜉) − (1 + 𝜈2)𝑉 ′′(𝜉) = 0. (20)

Integrating second part of Eq. (20) two times yields,

𝑉 (𝜉) =
𝛽

𝜈2 + 1
𝑈 (𝜉)2. (21)

Substituting (21) in first equation of (20) yields
(

𝜈2 + 1
) (

−𝛼 + 𝜈2𝑟2 − 𝑟2
)

𝑈 (𝜉) + 𝛽
(

𝜈2 − 1
)

𝑈 (𝜉)3 +
(

𝜈2 − 1
) (

𝜈2 + 1
)

𝑈 ′′(𝜉) = 0. (22)

3.1. Application of new Auxiliary equation method(AEM) to the aforementioned equation

The homogeneous balance approach between the highest order derivative 𝑈 ′′(𝜉) and the nonlinear term 𝑈3(𝜉) determines the value of 𝑝 = 1.
Following the AEM approach, and using the value of 𝑝 together with Eq. (5), the solution of (22) is of the form:

𝑈 (𝜉) = 𝐵0 + 𝐵1𝑎
ℎ(𝜉). (23)

We attain the following algebraic expression in the power of 𝑎ℎ(𝜉) by substituting Eq. (23) along with (6) into Eq. (22):

− 𝛼𝐵1𝜈
2𝑎ℎ(𝜉) − 𝛼𝐵1𝑎

ℎ(𝜉) + 3𝛽𝐵2
0𝐵1𝜈

2𝑎ℎ(𝜉) + 3𝛽𝐵0𝐵
2
1𝜈

2𝑎2ℎ(𝜉) + 𝛽𝐵3
1𝜈

2𝑎3ℎ(𝜉) − 3𝛽𝐵2
0𝐵1𝑎

ℎ(𝜉)

− 3𝛽𝐵0𝐵
2
1𝑎

2ℎ(𝜉) − 𝛽𝐵3
1𝑎

3ℎ(𝜉) + 𝐵1𝜈
4𝜎2𝑎ℎ(𝜉) + 2𝐵1𝜈

4𝑛2𝑎3ℎ(𝜉) − 2𝐵1𝑛
2𝑎3ℎ(𝜉) + 2𝐵1𝜈

4𝑛𝜌𝑎ℎ(𝜉)

+ 3𝐵1𝜈
4𝑛𝜎𝑎2ℎ(𝜉) − 2𝐵1𝑛𝜌𝑎

ℎ(𝜉) − 3𝐵1𝑛𝜎𝑎
2ℎ(𝜉) − 𝐵1𝜎

2𝑎ℎ(𝜉) + 𝐵1𝜈
4𝑟2𝑎ℎ(𝜉) − 𝐵1𝑟

2𝑎ℎ(𝜉)

− 𝛼𝐵0𝜈
2 − 𝛼𝐵0 + 𝛽𝐵3

0𝜈
2 − 𝛽𝐵3

0 + 𝐵1𝜈
4𝜌𝜎 − 𝐵1𝜌𝜎 + 𝐵0𝜈

4𝑟2 − 𝐵0𝑟
2. (24)

Equalizing the coefficient of like powers of 𝑎ℎ(𝜉) of Eq. (24) provides following system of algebraic equations:

− 𝛼𝐵0𝜈
2 − 𝛼𝐵0 + 𝛽𝐵3

0𝜈
2 − 𝛽𝐵3

0 + 𝐵1𝜈
4𝜌𝜎 − 𝐵1𝜌𝜎 + 𝐵0𝜈

4𝑟2 − 𝐵0𝑟
2 = 0,

− 𝛼𝐵1𝜈
2 − 𝛼𝐵1 + 3𝛽𝐵2

0𝐵1𝜈
2 − 3𝛽𝐵2

0𝐵1 + 𝐵1𝜈
4𝜎2 + 2𝐵1𝜈

4𝑛𝜌 − 2𝐵1𝑛𝜌 + 𝐵1𝜈
4𝑟2 − 𝐵1𝑟

2 − 𝐵1𝜎
2 = 0,

3𝛽𝐵0𝐵
2
1𝜈

2 − 3𝛽𝐵0𝐵
2
1 + 3𝐵1𝜈

4𝑛𝜎 − 3𝐵1𝑛𝜎 = 0,

𝛽𝐵3
1𝜈

2 − 𝛽𝐵3
1 + 2𝐵1𝜈

4𝑛2 − 2𝐵1𝑛
2 = 0.

Solving the above algebraic equation via MATHEMATICA, we attain

𝐵0 = − 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
, 𝐵1 = −

𝑖
√

2𝑛
√

𝜈2 + 1
√

𝛽
, 𝑟 =

√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1
. (25)

We accomplish a number of exact closed-form solutions to the nonlinear complex coupled Higgs field equation (1) by using (25) as follows:
∙ When 𝜎2 − 4𝜌𝑛 < 0 and 𝑛 ≠ 0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙1,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1
+
𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1

))

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

(

𝑖
√

2
√

𝜈2 + 1𝑛
)

(
√

4𝑛𝜌−𝜎2 tan
(

1
2

√

4𝑛𝜌−𝜎2(𝜈𝑡+𝑥)
)

2𝑛 − 𝜎
2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝜓1,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

⎛

⎜

⎜

⎜

⎜

⎜

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

𝑖
√

2
√

𝜈2 + 1𝑛

(
√

4𝑛𝜌−𝜎2 tan
(

1
2

√

4𝑛𝜌−𝜎2(𝜈𝑡+𝑥)
)

2𝑛 − 𝜎
2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

2

,

4

⎝ ⎠
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or

𝜙2,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1
+
𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1

))

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

𝑖
√

2
√

𝜈2 + 1𝑛

(

− 𝜎
2𝑛 −

√

4𝑛𝜌−𝜎2 cot
(

1
2

√

4𝑛𝜌−𝜎2(𝜈𝑡+𝑥)
)

2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝜓2,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

𝑖
√

2
√

𝜈2 + 1𝑛

(

− 𝜎
2𝑛 −

√

4𝑛𝜌−𝜎2 cot
(

1
2

√

4𝑛𝜌−𝜎2(𝜈𝑡+𝑥)
)

2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

.

∙ When 𝜎2 − 4𝜌𝑛 > 0 and 𝑛 ≠ 0;
Using (25) into solution (23), we achieve the closed-form solution of considered Eq. (1) through (23) and (21) as follows:

𝜙3,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1
+
𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1

))

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

𝑖
√

2
√

𝜈2 + 1𝑛

(

− 𝜎
2𝑛 −

√

𝜎2−4𝑛𝜌 tanh
(

1
2

√

𝜎2−4𝑛𝜌(𝜈𝑡+𝑥)
)

2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝜓3,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

𝑖
√

2
√

𝜈2 + 1𝑛

(

− 𝜎
2𝑛 −

√

𝜎2−4𝑛𝜌 tanh
(

1
2

√

𝜎2−4𝑛𝜌(𝜈𝑡+𝑥)
)

2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

,

or

𝜙4,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1
+
𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1

))

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

𝑖
√

2
√

𝜈2 + 1𝑛

(

− 𝜎
2𝑛 −

√

𝜎2−4𝑛𝜌 coth
(

1
2

√

𝜎2−4𝑛𝜌(𝜈𝑡+𝑥)
)

2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝜓4,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−

𝑖
√

2
√

𝜈2 + 1𝑛

(
√

𝜎2−4𝑛𝜌 coth
(

1
2

√

𝜎2−4𝑛𝜌(𝜈𝑡+𝑥)
)

2𝑛 − 𝜎
2𝑛

)

√

𝛽

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

.

Similarly, we can establish more solution by taking particular values in above two cases:

(i) For 𝑟 = −𝑝 and 𝑟 = 𝑝 in solution (𝜙1,1(𝑥, 𝑡), 𝜓1,1(𝑥, 𝑡)) and (𝜙2,1(𝑥, 𝑡), 𝜓2,1(𝑥, 𝑡)), four more solutions can be obtained.
(ii) For 𝑟 = −𝑝 and 𝑟 = 𝑝 in solution (𝜙3,1(𝑥, 𝑡), 𝜓3,1(𝑥, 𝑡)) and (𝜙4,1(𝑥, 𝑡), 𝜓4,1(𝑥, 𝑡)) another four more solutions can be obtained.

∙ When 𝜎2 = 4𝜌𝑛;
Using (25) into solution (23), we attain the closed-form solution of considered Eq. (1) through (23) and (21) as follows:

𝜙5,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1
+
𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛𝜌 + 4𝑛𝜌 − 𝜎2
√

2
√

𝜈2 − 1

))

(

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−
𝑖
√

𝜈2 + 1(𝜎(𝜈𝑡 + 𝑥) − 2)
√

2
√

𝛽(𝜈𝑡 + 𝑥)

)

,

𝜓5,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

(

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−
𝑖
√

𝜈2 + 1(𝜎(𝜈𝑡 + 𝑥) − 2)
√

2
√

𝛽(𝜈𝑡 + 𝑥)

)2

.

∙ When 𝜌𝑛 < 0, 𝜎 = 0 and 𝑟 ≠ 0;
Using (25) into solution (23), we achieve the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙6,1(𝑥, 𝑡) =
√

−
𝜌
tanh

(√

−𝑛𝜌(𝜈𝑡 + 𝑥)
)

(

−exp

(

𝑖

(

𝑡
√

2𝛼 − 4𝜈2𝑛𝜌 + 4𝑛𝜌
√ √

+
𝜈𝑥

√

2𝛼 − 4𝜈2𝑛𝜌 + 4𝑛𝜌
√ √

)))

,

5
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Fig. 2. Graphical formation for solution 𝜙6,1(𝑥, 𝑡) and 𝜓6,1(𝑥, 𝑡) with specified parameters value set at 𝛼 = 0.65, 𝑛 = 0.28, 𝜌 = −2.5, 𝜈 = 0.05 and 𝛽 = 0.8..

𝜓6,1(𝑥, 𝑡) = −
𝛽𝜌 tanh2

(√

−𝑛𝜌(𝜈𝑡 + 𝑥)
)

(

𝜈2 + 1
)

𝑛
,

and

𝜙7,1(𝑥, 𝑡) =
√

−
𝜌
𝑛
coth

(√

−𝑛𝜌(𝜈𝑡 + 𝑥)
)

(

−exp

(

𝑖

(

𝑡
√

2𝛼 − 4𝜈2𝑛𝜌 + 4𝑛𝜌
√

2
√

𝜈2 − 1
+
𝜈𝑥

√

2𝛼 − 4𝜈2𝑛𝜌 + 4𝑛𝜌
√

2
√

𝜈2 − 1

)))

,

𝜓7,1(𝑥, 𝑡) = −
𝛽𝜌 coth2

(√

−𝑛𝜌(𝜈𝑡 + 𝑥)
)

(

𝜈2 + 1
)

𝑛
,

∙ When 𝜌 = −𝑛 and 𝜎 = 0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙8,1(𝑥, 𝑡) = −
𝑖
√

2
√

𝜈2 + 1𝑛
(

𝑒−2𝑛(𝜈𝑡+𝑥) + 1
)

exp
(

𝑖
(

𝑡
√

2𝛼+4𝜈2𝑛2−4𝑛2
√

2
√

𝜈2−1
+ 𝜈𝑥

√

2𝛼+4𝜈2𝑛2−4𝑛2
√

2
√

𝜈2−1

))

√

𝛽
(

𝑒−2𝑛(𝜈𝑡+𝑥) − 1
)

,

𝜓8,1(𝑥, 𝑡) = −
2𝑛2

(

𝑒−2𝑛(𝜈𝑡+𝑥) + 1
)2

(

𝑒−2𝑛(𝜈𝑡+𝑥) − 1
)2

.

∙ When 𝜌 = 𝑛 = 0;
Using (25) into solution (23), we obtain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙9,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 𝜎2
√

2
√

𝜈2 − 1
+ 𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 𝜎2
√

2
√

𝜈2 − 1

))

(sinh(𝜎(𝜈𝑡 + 𝑥)) + cosh(𝜎(𝜈𝑡 + 𝑥))),

𝜓9,1(𝑥, 𝑡) =
𝛽(sinh(𝜎(𝜈𝑡 + 𝑥)) + cosh(𝜎(𝜈𝑡 + 𝑥)))2

𝜈2 + 1
.

∙ When 𝜌 = 𝜎 = 𝐾 and 𝑛 = 0;
Using (25) into solution (23), we accomplish the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙10,1(𝑥, 𝑡) =
(

𝑒𝐾(𝜈𝑡+𝑥) − 1
)

exp

(

𝑖

(

𝑡
√

2𝛼 +𝐾2𝜈2 −𝐾2
√ √

+ 𝜈𝑥
√

2𝛼 +𝐾2𝜈2 −𝐾2
√ √

))

,

6
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𝜓10,1(𝑥, 𝑡) =
𝛽
(

𝑒𝐾(𝜈𝑡+𝑥) − 1
)2

𝜈2 + 1
.

∙ When 𝜎 = 𝑛 = 𝐾 and 𝜌 = 0;
Using (25) into solution (23), we obtain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙11,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 +𝐾2𝜈2 −𝐾2
√

2
√

𝜈2 − 1
+ 𝜈𝑥

√

2𝛼 +𝐾2𝜈2 −𝐾2
√

2
√

𝜈2 − 1

))

(

− 𝑖𝐾
√

𝜈2 + 1
√

2
√

𝛽
−
𝑖
√

2𝐾
√

𝜈2 + 1𝑒𝐾(𝜈𝑡+𝑥)
√

𝛽
(

1 − 𝑒𝐾(𝜈𝑡+𝑥)
)

)

,

𝜓11,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

(

− 𝑖𝐾
√

𝜈2 + 1
√

2
√

𝛽
−
𝑖
√

2𝐾
√

𝜈2 + 1𝑒𝐾(𝜈𝑡+𝑥)
√

𝛽
(

1 − 𝑒𝐾(𝜈𝑡+𝑥)
)

)2

.

∙ When 𝜎 = 𝜌 + 𝑛;
Using (25) into solution (23), we achieve the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙12,1(𝑥, 𝑡) = exp
(

𝑖
(

𝑡
√

2𝛼 + 𝜈2(𝑛 + 𝜌)2 − 4𝜈2𝑛𝜌 − (𝑛 + 𝜌)2 + 4𝑛𝜌
√

2
√

𝜈2 − 1

+
𝜈𝑥

√

2𝛼 + 𝜈2(𝑛 + 𝜌)2 − 4𝜈2𝑛𝜌 − (𝑛 + 𝜌)2 + 4𝑛𝜌
√

2
√

𝜈2 − 1

))

⎛

⎜

⎜

⎝

−
𝑖
√

𝜈2 + 1(𝑛 + 𝜌)
√

2
√

𝛽
−
𝑖
√

2
√

𝜈2 + 1𝑛
(

𝜌𝑒(𝜌−𝑛)(𝜈𝑡+𝑥) − 1
)

√

𝛽
(

1 − 𝑛𝑒(𝜌−𝑛)(𝜈𝑡+𝑥)
)

⎞

⎟

⎟

⎠

,

𝜓12,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

⎛

⎜

⎜

⎝

−
𝑖
√

𝜈2 + 1(𝑛 + 𝜌)
√

2
√

𝛽
−
𝑖
√

2
√

𝜈2 + 1𝑛
(

𝜌𝑒(𝜌−𝑛)(𝜈𝑡+𝑥) − 1
)

√

𝛽
(

1 − 𝑛𝑒(𝜌−𝑛)(𝜈𝑡+𝑥)
)

⎞

⎟

⎟

⎠

2

.

∙ When 𝜎 = −(𝜌 + 𝑛);
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙13,1(𝑥, 𝑡) =
⎛

⎜

⎜

⎝

−
𝑖
√

𝜈2 + 1(−𝑛 − 𝜌)
√

2
√

𝛽
−
𝑖
√

2
√

𝜈2 + 1𝑛
(

𝜌 − 𝑒(𝜌−𝑛)(𝜈𝑡+𝑥)
)

√

𝛽
(

𝑛 − 𝑒(𝜌−𝑛)(𝜈𝑡+𝑥)
)

⎞

⎟

⎟

⎠

exp
(

𝑖
(

𝑡
√

2𝛼 + 𝜈2(−𝑛 − 𝜌)2 − 4𝜈2𝑛𝜌 − (−𝑛 − 𝜌)2 + 4𝑛𝜌
√

2
√

𝜈2 − 1

+
𝜈𝑥

√

2𝛼 + 𝜈2(−𝑛 − 𝜌)2 − 4𝜈2𝑛𝜌 − (−𝑛 − 𝜌)2 + 4𝑛𝜌
√

2
√

𝜈2 − 1

))

,

𝜓13,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

⎛

⎜

⎜

⎝

−
𝑖
√

𝜈2 + 1(−𝑛 − 𝜌)
√

2
√

𝛽
−
𝑖
√

2
√

𝜈2 + 1𝑛
(

𝜌 − 𝑒(𝜌−𝑛)(𝜈𝑡+𝑥)
)

√

𝛽
(

𝑛 − 𝑒(𝜌−𝑛)(𝜈𝑡+𝑥)
)

⎞

⎟

⎟

⎠

2

.

∙ When 𝜌 = 0;
Using (25) into solution (23), we observe the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙14,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 𝜎2
√

2
√

𝜈2 − 1
+ 𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 𝜎2
√

2
√

𝜈2 − 1

))

(

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−
𝑖
√

2
√

𝜈2 + 1𝑛𝜎𝑒𝜎(𝜈𝑡+𝑥)
√

𝛽
(

1 − 𝑛𝑒𝜎(𝜈𝑡+𝑥)
)

)

,

𝜓14,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

(

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−
𝑖
√

2
√

𝜈2 + 1𝑛𝜎𝑒𝜎(𝜈𝑡+𝑥)
√

𝛽
(

1 − 𝑛𝑒𝜎(𝜈𝑡+𝑥)
)

)2

.

∙ When 𝑛 = 𝜎 = 𝜌 ≠ 0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙15,1(𝑥, 𝑡) = exp

(

𝑖

(

𝑡
√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛2 + 4𝑛2 − 𝜎2
√

2
√

𝜈2 − 1
+ 𝜈𝑥

√

2𝛼 + 𝜈2𝜎2 − 4𝜈2𝑛2 + 4𝑛2 − 𝜎2
√

2
√

𝜈2 − 1

))

⎛

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−
𝑖
√

𝜈2 + 1𝑛
(
√

3 tan
(

1
2

√

3𝑛(𝜈𝑡 + 𝑥)
)

− 1
)

√

2
√

𝛽

⎞

⎟

⎟

⎟

⎠

,

𝜓15,1(𝑥, 𝑡) =
𝛽

𝜈2 + 1

⎛

⎜

⎜

⎜

⎝

− 𝑖
√

𝜈2 + 1𝜎
√

2
√

𝛽
−
𝑖
√

𝜈2 + 1𝑛
(
√

3 tan
(

1
2

√

3𝑛(𝜈𝑡 + 𝑥)
)

− 1
)

√

2
√

𝛽

⎞

⎟

⎟

⎟

⎠

2

.
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Fig. 3. Graphical formation for solution 𝜙15,1(𝑥, 𝑡) and 𝜓15,1(𝑥, 𝑡) with specified parameters value set at 𝛼 = 1.65, 𝑛 = 0.2, 𝜌 = 0.2, 𝜎 = 0.2, 𝜈 = 2.55 and 𝛽 = 2.2.

∙ When 𝜌 = 𝜎 = 0;
Using (25) into solution (23), we achieve the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙16,1(𝑥, 𝑡) =
𝑖
√

2
√

𝜈2 + 1𝑒
𝑖
(

√

𝛼𝑡
√

𝜈2−1
+

√

𝛼𝜈𝑥
√

𝜈2−1

)

√

𝛽(𝜈𝑡 + 𝑥)
,

𝜓16,1(𝑥, 𝑡) = − 2
(𝜈𝑡 + 𝑥)2

.

∙ When 𝑛 = 𝜌 and 𝜎 = 0;
Using (25) into solution (23), we obtain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙17,1(𝑥, 𝑡) = −
𝑖
√

2𝑛
√

𝜈2 + 1 tan(𝑛(𝜈𝑡 + 𝑥)) exp
(

𝑖
(

𝑡
√

2𝛼−4𝜈2𝑛2+4𝑛2
√

2
√

𝜈2−1
+ 𝜈𝑥

√

2𝛼−4𝜈2𝑛2+4𝑛2
√

2
√

𝜈2−1

))

√

𝛽
,

𝜓17,1(𝑥, 𝑡) = −2𝑛2 tan2(𝑛(𝜈𝑡 + 𝑥)).

∙ When 𝑛 = 0;
Using (25) into solution (23), we attain the solution of considered Eq. (1) through (23) and (21) as follows:

𝜙18,1(𝑥, 𝑡) = −
𝑖
√

𝜈2 + 1𝜎 exp
(

𝑖
(

𝑡
√

2𝛼+𝜈2𝜎2−𝜎2
√

2
√

𝜈2−1
+ 𝜈𝑥

√

2𝛼+𝜈2𝜎2−𝜎2
√

2
√

𝜈2−1

))

√

2
√

𝛽
,

𝜓18,1(𝑥, 𝑡) = −𝜎
2

2
.

3.2. Application of extended sinh-Gordon equation expansion(shGEE) algorithm to the aforementioned equation

Applying the homogeneous balancing concept in Eq. (22), we obtain 𝑛 = 1. By substituting 𝑛 = 1 in (7), we begin solving as

Case 1:

𝑈 (𝜉) = 𝑅1 cosh(𝜔(𝜉)) + 𝑅0 + 𝑆1 sinh(𝜔(𝜉)). (26)

Substituting Eq. (26) into (22), the expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to obtain non-trivial
solutions to the governing equation.

Solution set 1.1:

𝑅0 = 0, 𝑅1 =

√

2
√

−𝛼 − 2𝑟2 + 4
√

, 𝑆1 = 0, 𝜈 =

√

𝛼 + 𝑟2 − 2
√

. (27)
8

𝛽𝑟2 − 2𝛽 𝑟2 − 2
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From Eq. (27), (26) and (10), we get

𝜙1,2(𝑥, 𝑡) =

√

2
√

−𝛼 − 2𝑟2 + 4𝑒
𝑖
(

𝑟𝑥
√

𝛼+𝑟2−2
√

𝑟2−2
+𝑟𝑡

)

coth
(

𝑡
√

𝛼+𝑟2−2
√

𝑟2−2
+ 𝑥

)

√

𝛽𝑟2 − 2𝛽
,

𝜓1,2(𝑥, 𝑡) =
2𝛽

(

−𝛼 − 2𝑟2 + 4
)

coth2
(

𝑡
√

𝛼+𝑟2−2
√

𝑟2−2
+ 𝑥

)

(

𝛼+𝑟2−2
𝑟2−2 + 1

)

(

𝛽𝑟2 − 2𝛽
)

. (28)

Solution set 1.2:

𝑅0 = 0, 𝑅1 = 0, 𝑆1 =

√

2
√

−𝛼 − 2𝑟2 − 2
√

𝛽 + 𝛽𝑟2
, 𝜈 = −

√

𝛼 + 𝑟2 + 1
√

𝑟2 + 1
. (29)

From Eq. (27), (26) and (10), we get

𝜙2,2(𝑥, 𝑡) =

√

2
√

−𝛼 − 2𝑟2 − 2𝑒
𝑖
(

𝑟𝑡− 𝑟𝑥
√

𝛼+𝑟2+1
√

𝑟2+1

)

csch
(

𝑥 − 𝑡
√

𝛼+𝑟2+1
√

𝑟2+1

)

√

𝛽 + 𝛽𝑟2
,

𝜓2,2(𝑥, 𝑡) =
2𝛽

(

−𝛼 − 2𝑟2 − 2
)

csch2
(

𝑥 − 𝑡
√

𝛼+𝑟2+1
√

𝑟2+1

)

(

𝛼+𝑟2+1
𝑟2+1 + 1

)

(

𝛽 + 𝛽𝑟2
)

. (30)

Solution set 1.3:

𝑅0 = 0, 𝑅1 =

√

−𝛼 − 2𝑟2 + 1
√

2𝛽𝑟2 − 𝛽
, 𝑆1 = −

√

−𝛼 − 2𝑟2 + 1
√

2𝛽𝑟2 − 𝛽
, 𝜈 =

√

2𝛼 + 2𝑟2 − 1
√

2𝑟2 − 1
. (31)

From Eq. (27), (26) and (10), we get

𝜙3,2(𝑥, 𝑡) = exp

(

𝑖

(

𝑟𝑥
√

2𝛼 + 2𝑟2 − 1
√

2𝑟2 − 1
+ 𝑟𝑡

))

(

√

−𝛼 − 2𝑟2 + 1 coth
(

𝑡
√

2𝛼+2𝑟2−1
√

2𝑟2−1
+ 𝑥

)

√

2𝛽𝑟2 − 𝛽

−

√

−𝛼 − 2𝑟2 + 1csch
(

𝑡
√

2𝛼+2𝑟2−1
√

2𝑟2−1
+ 𝑥

)

√

2𝛽𝑟2 − 𝛽

)

,

𝜓3,2(𝑥, 𝑡) =

𝛽
⎛

⎜

⎜

⎝

√

−𝛼−2𝑟2+1 coth
(

𝑡
√

2𝛼+2𝑟2−1
√

2𝑟2−1
+𝑥

)

√

2𝛽𝑟2−𝛽
−

√

−𝛼−2𝑟2+1csch
(

𝑡
√

2𝛼+2𝑟2−1
√

2𝑟2−1
+𝑥

)

√

2𝛽𝑟2−𝛽

⎞

⎟

⎟

⎠

2

2𝛼+2𝑟2−1
2𝑟2−1 + 1

. (32)

Case 2:

𝑈 (𝜉) = 𝑅1 cosh(𝜔(𝜉)) + 𝑅0 + 𝑆1 sinh(𝜔(𝜉)). (33)

Substituting Eq. (33) into (22), the implementing expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to
obtain non-trivial solutions to the governing equation.

Solution set 2.1:

𝑅0 = 0, 𝑅1 =

√

2
√

−𝛼 − 2𝑟2 + 2
√

𝛽𝑟2 − 𝛽
, 𝑆1 = 0, 𝜈 =

√

𝛼 + 𝑟2 − 1
√

𝑟2 − 1
. (34)

From Eq. (38), (26) and (13), we get

𝜙4,2(𝑥, 𝑡) =

√

2
√

−𝛼 − 2𝑟2 + 2𝑒
𝑖
(

𝑟𝑥
√

𝛼+𝑟2−1
√

𝑟2−1
+𝑟𝑡

)

sec
(

𝑡
√

𝛼+𝑟2−1
√

𝑟2−1
+ 𝑥

)

√

𝛽𝑟2 − 𝛽
,

𝜓4,2(𝑥, 𝑡) =
2𝛽

(

−𝛼 − 2𝑟2 + 2
)

sec2
(

𝑡
√

𝛼+𝑟2−1
√

𝑟2−1
+ 𝑥

)

(

𝛼+𝑟2−1
𝑟2−1 + 1

)

(

𝛽𝑟2 − 𝛽
)

(35)

Solution set 2.2:

𝑅0 = 0, 𝑅1 = 0, 𝑆1 =

√

2
√

−𝛼 − 2𝑟2 − 4
√

, 𝜈 =

√

𝛼 + 𝑟2 + 2
√

. (36)
9

2𝛽 + 𝛽𝑟2 𝑟2 + 2
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Fig. 4. Graphical formation for the solution 𝜙3,2(𝑥, 𝑡) and 𝜓3,2(𝑥, 𝑡) with specified parameters value set at 𝛼 = 2.5, 𝛽 = 0.2 and 𝑟 = 0.25.

From Eq. (38), (26) and (13), we get

𝜙5,2(𝑥, 𝑡) =

√

2
√

−𝛼 − 2𝑟2 − 4𝑒
𝑖
(

𝑟𝑥
√

𝛼+𝑟2+2
√

𝑟2+2
+𝑟𝑡

)

tan
(

𝑡
√

𝛼+𝑟2+2
√

𝑟2+2
+ 𝑥

)

√

2𝛽 + 𝛽𝑟2
,

𝜓5,2(𝑥, 𝑡) =
2𝛽

(

−𝛼 − 2𝑟2 − 4
)

tan2
(

𝑡
√

𝛼+𝑟2+2
√

𝑟2+2
+ 𝑥

)

(

𝛼+𝑟2+2
𝑟2+2 + 1

)

(

2𝛽 + 𝛽𝑟2
)

(37)

Solution set 2.3:

𝑅0 = 0, 𝑅1 =

√

−𝛼 − 2𝑟2 − 1
√

𝛽 + 2𝛽𝑟2
, 𝑆1 =

√

−𝛼 − 2𝑟2 − 1
√

𝛽 + 2𝛽𝑟2
, 𝜈 =

√

2𝛼 + 2𝑟2 + 1
√

2𝑟2 + 1
. (38)

From Eq. (38), (26) and (13), we get

𝜙6,2(𝑥, 𝑡) = exp

(

𝑖

(

𝑟𝑥
√

2𝛼 + 2𝑟2 + 1
√

2𝑟2 + 1
+ 𝑟𝑡

))

(

√

−𝛼 − 2𝑟2 − 1 tan
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+ 𝑥

)

√

𝛽 + 2𝛽𝑟2

+

√

−𝛼 − 2𝑟2 − 1 sec
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+ 𝑥

)

√

𝛽 + 2𝛽𝑟2

)

,

𝜓6,2(𝑥, 𝑡) =

𝛽
⎛

⎜

⎜

⎝

√

−𝛼−2𝑟2−1 tan
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+𝑥

)

√

𝛽+2𝛽𝑟2
+

√

−𝛼−2𝑟2−1 sec
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+𝑥

)

√

𝛽+2𝛽𝑟2

⎞

⎟

⎟

⎠

2

2𝛼+2𝑟2+1
2𝑟2+1 + 1

. (39)

Case 3:

𝑈 (𝜉) = 𝑅1 sinh(𝜔(𝜉)) + 𝑅0 + 𝑆1 cosh(𝜔(𝜉)). (40)

Substituting Eq. (53) into (22) and the implementing expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to
obtain non-trivial solutions to the governing equation.

Solution set 3.1:

𝑅0 = 0, 𝑅1 = 0, 𝑆1 =

√

2
√

𝛼 − 2𝑚2 + 2𝑟2 − 2
√

, 𝜈 =

√

−𝛼 + 𝑚2 − 𝑟2 + 1
√

. (41)
10

𝛽 + 𝛽𝑚2 − 𝛽𝑟2 𝑚2 − 𝑟2 + 1
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Fig. 5. Graphical formation for solution 𝜙4,2(𝑥, 𝑡) and 𝜓4,2(𝑥, 𝑡) with specified parameters value set at 𝛼 = 2.58, 𝛽 = 0.25 and 𝑟 = 0.152.

Fig. 6. Graphical formation for solution 𝜙6,2(𝑥, 𝑡) and 𝜓6,2(𝑥, 𝑡) with specified parameter set at 𝛼 = −2.22, 𝛽 = −0.25 and 𝑟 = 1.18.

From Eq. (60), (53) and (16), we get

𝜙 (𝑥, 𝑡) =

√

2
√

𝛼 − 2𝑚2 + 2𝑟2 − 2 exp
(

𝑖
(

𝑟𝑥
√

−𝛼+𝑚2−𝑟2+1
√

𝑚2−𝑟2+1
+ 𝑟𝑡

))

ns
(

𝑥 + 𝑡
√

𝑚2−𝑟2−𝛼+1
√

𝑚2−𝑟2+1

|

|

|

|

𝑚
)

,

11

7,2 √

𝛽 + 𝛽𝑚2 − 𝛽𝑟2
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F

F

F

F

𝜓7,2(𝑥, 𝑡) =
2𝛽

(

𝛼 − 2𝑚2 + 2𝑟2 − 2
)

ns
(

𝑥 + 𝑡
√

𝑚2−𝑟2−𝛼+1
√

𝑚2−𝑟2+1

|

|

|

|

𝑚
)2

(

−𝛼+𝑚2−𝑟2+1
𝑚2−𝑟2+1 + 1

)

(

𝛽 + 𝛽𝑚2 − 𝛽𝑟2
)

. (42)

For 𝑚 = 0, we get

𝜙8,2(𝑥, 𝑡) =

√

2
√

𝛼 + 2𝑟2 − 2𝑒
𝑖
(

𝑟𝑥
√

−𝛼−𝑟2+1
√

1−𝑟2
+𝑟𝑡

)

csc
(

𝑡
√

−𝛼−𝑟2+1
√

1−𝑟2
+ 𝑥

)

√

𝛽 − 𝛽𝑟2
,

𝜓8,2(𝑥, 𝑡) =
2𝛽

(

𝛼 + 2𝑟2 − 2
)

csc2
(

𝑡
√

−𝛼−𝑟2+1
√

1−𝑟2
+ 𝑥

)

(

−𝛼−𝑟2+1
1−𝑟2 + 1

)

(

𝛽 − 𝛽𝑟2
)

. (43)

or 𝑚 = 1, we get

𝜙9,2(𝑥, 𝑡) =

√

2
√

𝛼 + 2𝑟2 − 4𝑒
𝑖
(

𝑟𝑥
√

−𝛼−𝑟2+2
√

2−𝑟2
+𝑟𝑡

)

coth
(

𝑡
√

−𝛼−𝑟2+2
√

2−𝑟2
+ 𝑥

)

√

2𝛽 − 𝛽𝑟2
,

𝜓9,2(𝑥, 𝑡) =
2𝛽

(

𝛼 + 2𝑟2 − 4
)

coth2
(

𝑡
√

−𝛼−𝑟2+2
√

2−𝑟2
+ 𝑥

)

(

−𝛼−𝑟2+2
2−𝑟2 + 1

)

(

2𝛽 − 𝛽𝑟2
)

. (44)

Solution set 3.2:

𝑅0 = 0, 𝑅1 =

√

2
√

𝛼 − 2𝑚2 + 2𝑟2 + 4
√

−2𝛽 + 𝛽𝑚2 − 𝛽𝑟2
, 𝑆1 = 0, 𝜈 = −

√

−𝛼 + 𝑚2 − 𝑟2 − 2
√

𝑚2 − 𝑟2 − 2
. (45)

From Eq. (60), (53) and (16), we get

𝜙10,2(𝑥, 𝑡) =

√

2
√

𝛼 − 2𝑚2 + 2𝑟2 + 4 exp
(

𝑖
(

𝑟𝑡 − 𝑟𝑥
√

−𝛼+𝑚2−𝑟2−2
√

𝑚2−𝑟2−2

))

cs
(

𝑥 − 𝑡
√

𝑚2−𝑟2−𝛼−2
√

𝑚2−𝑟2−2

|

|

|

|

𝑚
)

√

−2𝛽 + 𝛽𝑚2 − 𝛽𝑟2
,

𝜓10,2(𝑥, 𝑡) =
2𝛽

(

𝛼 − 2𝑚2 + 2𝑟2 + 4
)

cs
(

𝑥 − 𝑡
√

𝑚2−𝑟2−𝛼−2
√

𝑚2−𝑟2−2

|

|

|

|

𝑚
)2

(

−𝛼+𝑚2−𝑟2−2
𝑚2−𝑟2−2 + 1

)

(

−2𝛽 + 𝛽𝑚2 − 𝛽𝑟2
)

. (46)

or 𝑚 = 0, we get

𝜙11,2(𝑥, 𝑡) =

√

2
√

𝛼 + 2𝑟2 + 4 exp
(

𝑖
(

𝑟𝑡 − 𝑟𝑥
√

−𝛼−𝑟2−2
√

−𝑟2−2

))

cot
(

𝑥 − 𝑡
√

−𝛼−𝑟2−2
√

−𝑟2−2

)

√

−2𝛽 − 𝛽𝑟2
,

𝜓11,2(𝑥, 𝑡) =
2𝛽

(

𝛼 + 2𝑟2 + 4
)

cot2
(

𝑥 − 𝑡
√

−𝛼−𝑟2−2
√

−𝑟2−2

)

(

−𝛼−𝑟2−2
−𝑟2−2 + 1

)

(

−2𝛽 − 𝛽𝑟2
)

. (47)

or 𝑚 = 1, we get

𝜙12,2(𝑥, 𝑡) =

√

2
√

𝛼 + 2𝑟2 + 2 exp
(

𝑖
(

𝑟𝑡 − 𝑟𝑥
√

−𝛼−𝑟2−1
√

−𝑟2−1

))

csch
(

𝑥 − 𝑡
√

−𝛼−𝑟2−1
√

−𝑟2−1

)

√

−𝛽 − 𝛽𝑟2
,

𝜓12,2(𝑥, 𝑡) =
2𝛽

(

𝛼 + 2𝑟2 + 2
)

csch2
(

𝑥 − 𝑡
√

−𝛼−𝑟2−1
√

−𝑟2−1

)

(

−𝛼−𝑟2−1
−𝑟2−1 + 1

)

(

−𝛽 − 𝛽𝑟2
)

. (48)

Solution set 3.3:

𝑅0 = 0, 𝑅1 = −

√

𝛼 − 2𝑚2 + 2𝑟2 + 1
√

−𝛽 + 2𝛽𝑚2 − 2𝛽𝑟2
, 𝑆1 =

√

𝛼 − 2𝑚2 + 2𝑟2 + 1
√

−𝛽 + 2𝛽𝑚2 − 2𝛽𝑟2
, 𝜈 =

√

−2𝛼 + 2𝑚2 − 2𝑟2 − 1
√

2𝑚2 − 2𝑟2 − 1
. (49)

rom Eq. (60), (53) and (16), we get

𝜙13,2(𝑥, 𝑡) = exp

(

𝑖

(

𝑟𝑥
√

−2𝛼 + 2𝑚2 − 2𝑟2 − 1
√

2𝑚2 − 2𝑟2 − 1
+ 𝑟𝑡

))

(

√

𝛼 − 2𝑚2 + 2𝑟2 + 1ns
(

𝑥 + 𝑡
√

2𝑚2−2𝑟2−2𝛼−1
√

2𝑚2−2𝑟2−1

|

|

|

|

𝑚
)

√

−𝛽 + 2𝛽𝑚2 − 2𝛽𝑟2

−

√

𝛼 − 2𝑚2 + 2𝑟2 + 1cs
(

𝑥 + 𝑡
√

2𝑚2−2𝑟2−2𝛼−1
√

2𝑚2−2𝑟2−1

|

|

|

|

𝑚
)

√

)

,

12

−𝛽 + 2𝛽𝑚2 − 2𝛽𝑟2
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F

𝜓13,2(𝑥, 𝑡) =

𝛽

⎛

⎜

⎜

⎜

⎝

√

𝛼−2𝑚2+2𝑟2+1ns
(

𝑥+ 𝑡
√

2𝑚2−2𝑟2−2𝛼−1
√

2𝑚2−2𝑟2−1

|

|

|

|

|

𝑚

)

√

−𝛽+2𝛽𝑚2−2𝛽𝑟2
−

√

𝛼−2𝑚2+2𝑟2+1cs
(

𝑥+ 𝑡
√

2𝑚2−2𝑟2−2𝛼−1
√

2𝑚2−2𝑟2−1

|

|

|

|

|

𝑚

)

√

−𝛽+2𝛽𝑚2−2𝛽𝑟2

⎞

⎟

⎟

⎟

⎠

2

−2𝛼+2𝑚2−2𝑟2−1
2𝑚2−2𝑟2−1 + 1

. (50)

For 𝑚 = 0, we get

𝜙14,2(𝑥, 𝑡) = exp

(

𝑖

(

𝑟𝑥
√

−2𝛼 − 2𝑟2 − 1
√

−2𝑟2 − 1
+ 𝑟𝑡

))

(

√

𝛼 + 2𝑟2 + 1 csc
(

𝑡
√

−2𝛼−2𝑟2−1
√

−2𝑟2−1
+ 𝑥

)

√

−𝛽 − 2𝛽𝑟2

−

√

𝛼 + 2𝑟2 + 1 cot
(

𝑡
√

−2𝛼−2𝑟2−1
√

−2𝑟2−1
+ 𝑥

)

√

−𝛽 − 2𝛽𝑟2

)

,

𝜓14,2(𝑥, 𝑡) =

𝛽
⎛

⎜

⎜

⎝

√

𝛼+2𝑟2+1 csc
(

𝑡
√

−2𝛼−2𝑟2−1
√

−2𝑟2−1
+𝑥

)

√

−𝛽−2𝛽𝑟2
−

√

𝛼+2𝑟2+1 cot
(

𝑡
√

−2𝛼−2𝑟2−1
√

−2𝑟2−1
+𝑥

)

√

−𝛽−2𝛽𝑟2

⎞

⎟

⎟

⎠

2

−2𝛼−2𝑟2−1
−2𝑟2−1 + 1

. (51)

For 𝑚 = 1, we get

𝜙15,2(𝑥, 𝑡) = exp

(

𝑖

(

𝑟𝑥
√

−2𝛼 − 2𝑟2 + 1
√

1 − 2𝑟2
+ 𝑟𝑡

))

(

√

𝛼 + 2𝑟2 − 1 coth
(

𝑡
√

−2𝛼−2𝑟2+1
√

1−2𝑟2
+ 𝑥

)

√

𝛽 − 2𝛽𝑟2

−

√

𝛼 + 2𝑟2 − 1csch
(

𝑡
√

−2𝛼−2𝑟2+1
√

1−2𝑟2
+ 𝑥

)

√

𝛽 − 2𝛽𝑟2

)

,

𝜓15,2(𝑥, 𝑡) =

𝛽
⎛

⎜

⎜

⎝

√

𝛼+2𝑟2−1 coth
(

𝑡
√

−2𝛼−2𝑟2+1
√

1−2𝑟2
+𝑥

)

√

𝛽−2𝛽𝑟2
−

√

𝛼+2𝑟2−1csch
(

𝑡
√

−2𝛼−2𝑟2+1
√

1−2𝑟2
+𝑥

)

√

𝛽−2𝛽𝑟2

⎞

⎟

⎟

⎠

2

−2𝛼−2𝑟2+1
1−2𝑟2 + 1

. (52)

Case 4:

𝑈 (𝜉) = 𝑅1 sinh(𝜔(𝜉)) + 𝑅0 + 𝑆1 cosh(𝜔(𝜉)). (53)

Substituting Eq. (53) into (22) and the implementing expanded shGEE approach and symbolic computing with MATHEMATICA can be applied to
obtain non-trivial solutions to the governing equation.

Solution set 4.1:

𝑅0 = 0, 𝑅1 = 0, 𝑆1 =

√

2
√

𝑚2 − 1
√

𝛼 + 4𝑚2 + 2𝑟2 − 2
√

𝛽
√

2𝑚2 + 𝑟2 − 1
, 𝜈 =

√

𝛼 + 2𝑚2 + 𝑟2 − 1
√

2𝑚2 + 𝑟2 − 1
. (54)

rom Eq. (60), (53) and (16), we get

𝜙16,2(𝑥, 𝑡) =

√

2
√

𝑚2 − 1
√

𝛼 + 4𝑚2 + 2𝑟2 − 2 exp
(

𝑖
(

𝑟𝑥
√

𝛼+2𝑚2+𝑟2−1
√

2𝑚2+𝑟2−1
+ 𝑟𝑡

))

nc
(

𝑥 + 𝑡
√

2𝑚2+𝑟2+𝛼−1
√

2𝑚2+𝑟2−1

|

|

|

|

𝑚
)

√

𝛽
√

2𝑚2 + 𝑟2 − 1
,

𝜓16,2(𝑥, 𝑡) =
2
(

𝑚2 − 1
) (

𝛼 + 4𝑚2 + 2𝑟2 − 2
)

nc
(

𝑥 + 𝑡
√

2𝑚2+𝑟2+𝛼−1
√

2𝑚2+𝑟2−1

|

|

|

|

𝑚
)2

(

2𝑚2 + 𝑟2 − 1
)

(

𝛼+2𝑚2+𝑟2−1
2𝑚2+𝑟2−1 + 1

) . (55)

For 𝑚 = 0, we get

𝜙17,2(𝑥, 𝑡) =
𝑖
√

2
√

𝛼 + 2𝑟2 − 2𝑒
𝑖
(

𝑟𝑥
√

𝛼+𝑟2−1
√

𝑟2−1
+𝑟𝑡

)

sec
(

𝑡
√

𝛼+𝑟2−1
√

𝑟2−1
+ 𝑥

)

√

𝛽
√

𝑟2 − 1
,

𝜓17,2(𝑥, 𝑡) = −
2
(

𝛼 + 2𝑟2 − 2
)

sec2
(

𝑡
√

𝛼+𝑟2−1
√

𝑟2−1
+ 𝑥

)

(

𝑟2 − 1
)

(

𝛼+𝑟2−1
𝑟2−1 + 1

) . (56)

Solution set 4.2:

𝑅0 = 0, 𝑅1 =

√

2
√

𝑚2 − 1
√

−𝛼 + 2𝑚2 − 2𝑟2 − 4
√

√
, 𝑆1 = 0, 𝜈 = −

√

−𝛼 + 𝑚2 − 𝑟2 − 2
√

. (57)
13

𝛽 𝑚2 − 𝑟2 − 2 𝑚2 − 𝑟2 − 2
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Fig. 7. Graphical formation for solution 𝑢15,2(𝑥, 𝑡) and 𝑣15,2(𝑥, 𝑡) with specified parameters value set at 𝛼 = 2.22, 𝛽 = 2.25 and 𝑟 = 0.18.

From Eq. (60), (53) and (16), we get

𝜙18,2(𝑥, 𝑡) =

√

2
√

𝑚2 − 1
√

−𝛼 + 2𝑚2 − 2𝑟2 − 4 exp
(

𝑖
(

𝑟𝑡 − 𝑟𝑥
√

−𝛼+𝑚2−𝑟2−2
√

𝑚2−𝑟2−2

))

sc
(

𝑥 − 𝑡
√

𝑚2−𝑟2−𝛼−2
√

𝑚2−𝑟2−2

|

|

|

|

𝑚
)

√

𝛽
√

𝑚2 − 𝑟2 − 2
,

𝜓18,2(𝑥, 𝑡) =
2
(

𝑚2 − 1
) (

−𝛼 + 2𝑚2 − 2𝑟2 − 4
)

sc
(

𝑥 − 𝑡
√

𝑚2−𝑟2−𝛼−2
√

𝑚2−𝑟2−2

|

|

|

|

𝑚
)2

(

𝑚2 − 𝑟2 − 2
)

(

−𝛼+𝑚2−𝑟2−2
𝑚2−𝑟2−2 + 1

) . (58)

For 𝑚 = 0, we get

𝜙19,2(𝑥, 𝑡) =
𝑖
√

2
√

−𝛼 − 2𝑟2 − 4 exp
(

𝑖
(

𝑟𝑡 − 𝑟𝑥
√

−𝛼−𝑟2−2
√

−𝑟2−2

))

tan
(

𝑥 − 𝑡
√

−𝛼−𝑟2−2
√

−𝑟2−2

)

√

𝛽
√

−𝑟2 − 2
,

𝜓19,2(𝑥, 𝑡) = −
2
(

−𝛼 − 2𝑟2 − 4
)

tan2
(

𝑥 − 𝑡
√

−𝛼−𝑟2−2
√

−𝑟2−2

)

(

−𝑟2 − 2
)

(

−𝛼−𝑟2−2
−𝑟2−2 + 1

) . (59)

Solution set 4.3:

𝑅0 = 0, 𝑅1 =

√

𝑚2 − 1
√

𝛼 + 𝑚2 + 2𝑟2 + 1
√

𝛽
√

𝑚2 + 2𝑟2 + 1
, 𝑆1 =

√

𝑚2 − 1
√

𝛼 + 𝑚2 + 2𝑟2 + 1
√

𝛽
√

𝑚2 + 2𝑟2 + 1
, (60)

𝜈 =

√

2𝛼 + 𝑚2 + 2𝑟2 + 1
√

𝑚2 + 2𝑟2 + 1
. (61)

From Eq. (60), (53) and (16), we get

𝜙20,2(𝑥, 𝑡) = exp

(

𝑖

(

𝑟𝑥
√

2𝛼 + 𝑚2 + 2𝑟2 + 1
√

𝑚2 + 2𝑟2 + 1
+ 𝑟𝑡

))

(

√

𝑚2 − 1
√

𝛼 + 𝑚2 + 2𝑟2 + 1nc
(

𝑥 + 𝑡
√

𝑚2+2𝑟2+2𝛼+1
√

𝑚2+2𝑟2+1

|

|

|

|

𝑚
)

√

𝛽
√

𝑚2 + 2𝑟2 + 1

+

√

𝑚2 − 1
√

𝛼 + 𝑚2 + 2𝑟2 + 1sc
(

𝑥 + 𝑡
√

𝑚2+2𝑟2+2𝛼+1
√

𝑚2+2𝑟2+1

|

|

|

|

𝑚
)

√
√

)

,
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𝛽 𝑚2 + 2𝑟2 + 1



Partial Differential Equations in Applied Mathematics 10 (2024) 100733N. Mann et al.

4
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𝛽
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𝜓
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c

5

a
h
v
t
s
i
a
i
t

D

w

𝜓20,2(𝑥, 𝑡) =
𝛽

2𝛼+𝑚2+2𝑟2+1
𝑚2+2𝑟2+1 + 1

(

√

𝑚2 − 1
√

𝛼 + 𝑚2 + 2𝑟2 + 1nc
(

𝑥 + 𝑡
√

𝑚2+2𝑟2+2𝛼+1
√

𝑚2+2𝑟2+1

|

|

|

|

𝑚
)

√

𝛽
√

𝑚2 + 2𝑟2 + 1
(62)

+

√

𝑚2 − 1
√

𝛼 + 𝑚2 + 2𝑟2 + 1sc
(

𝑥 + 𝑡
√

𝑚2+2𝑟2+2𝛼+1
√

𝑚2+2𝑟2+1

|

|

|

|

𝑚
)

√

𝛽
√

𝑚2 + 2𝑟2 + 1

) 2

. (63)

For 𝑚 = 0, we get

𝜙21,2(𝑥, 𝑡) = exp

(

𝑖

(

𝑟𝑥
√

2𝛼 + 2𝑟2 + 1
√

2𝑟2 + 1
+ 𝑟𝑡

))

( 𝑖
√

𝛼 + 2𝑟2 + 1 tan
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+ 𝑥

)

√

𝛽
√

2𝑟2 + 1

+
𝑖
√

𝛼 + 2𝑟2 + 1 sec
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+ 𝑥

)

√

𝛽
√

2𝑟2 + 1

)

,

𝜓21,2(𝑥, 𝑡) =

𝛽
⎛

⎜

⎜

⎝

𝑖
√

𝛼+2𝑟2+1 tan
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+𝑥

)

√

𝛽
√

2𝑟2+1
+

𝑖
√

𝛼+2𝑟2+1 sec
(

𝑡
√

2𝛼+2𝑟2+1
√

2𝑟2+1
+𝑥

)

√

𝛽
√

2𝑟2+1

⎞

⎟

⎟

⎠

2

2𝛼+2𝑟2+1
2𝑟2+1 + 1

. (64)

. Graphical illustration of the solutions

In this part of the manuscript, we examine the obtained travelling wave solutions by presenting 3D and combined contour graphics and also
nferred their dynamical behaviour using different parametric values with the aid of Mathematica software.

We receive the anti-bell shaped soliton structure for the absolute value of solution 𝜙6,1(𝑥, 𝑡) and 𝜓6,1(𝑥, 𝑡) with specified parameter values as
= 0.65, 𝑛 = 0.28, 𝜌 = −2.5, 𝜈 = 0.05 and 𝛽 = 0.8 with −8 < 𝑥 < 8 and −1 < 𝑡 < 1 as shown in Fig. 2(𝑐) and (𝑓 ). Fig. 2(𝑎) and (𝑏) demonstrates the

double-periodic wave like structure for real and imaginary value of solution 𝜙6,1(𝑥, 𝑡), wherein in (𝑑) and (𝑒) we demonstrate the anti-bell shaped
soliton and plane structure for the real and imaginary value of solution 𝜓6,1(𝑥, 𝑡) respectively.

We obtain the singular periodic solitary wave structure for the absolute value of solution 𝜙15,1(𝑥, 𝑡) and 𝜓15,1(𝑥, 𝑡) with specified parameters
value as 𝛼 = 1.65, 𝑛 = 0.2, 𝜌 = 0.2, 𝜎 = 0.2, 𝜈 = 2.55 and 𝛽 = 2.2 as shown in Fig. 3(𝑐) and (𝑓 ). Fig. 3(𝑎) and (𝑏) demonstrates the combined 3D
nd contour graphics of real and imaginary values of solution 𝜙15,1(𝑥, 𝑡), whereas 3(𝑑) and (𝑒) demonstrates real and imaginary values of solution
15,1(𝑥, 𝑡) showing periodic wave structure and constant plane structures.

We obtain the kink type solitons for the absolute value of solution 𝜙3,2(𝑥, 𝑡) and 𝜓3,2(𝑥, 𝑡) with the specified parameter values as 𝛼 = 2.5, 𝛽 = 0.2
nd 𝑟 = 0.25 with −10 < 𝑥 < 10 and −5 < 𝑡 < 5 as shown in Fig. 4(𝑒) and (𝑓 ). Fig. 4(𝑎) and (𝑏) demonstrates the corresponding combined 3D
nd contour graphics of real and imaginary values of solution 𝜙3,2(𝑥, 𝑡), whereas 4(𝑑) and (𝑒) demonstrates real and imaginary values of solution
15,1(𝑥, 𝑡) showing solitary wave structures.

We receive interaction of kink and soliton wave profile for the solution 𝑝ℎ𝑖4,2(𝑥, 𝑡) and 𝜓4,2(𝑥, 𝑡) with specified parameter values as 𝛼 = 2.58,
= 0.25 and 𝑟 = 0.152 with −10 < 𝑥 < 10 and −5 < 𝑡 < 5 as shown in Fig. 5(𝑐) and (𝑓 ). Fig. 5(𝑎) and (𝑏) demonstrates the combined 3D and contour

raphics of real and imaginary values of the solution 𝑝ℎ𝑖4,2(𝑥, 𝑡), whereas 5(𝑑) and (𝑒) represents graphics of real and imaginary values of solution
4,2(𝑥, 𝑡)

We obtain the lump like structure for the absolute for solution 𝜙6,2(𝑥, 𝑡) and 𝜓6,2(𝑥, 𝑡) with specified parameters value as 𝛼 = −2.22, 𝛽 = −0.25 and
= 1.18 as shown in Fig. 6(𝑐) and (𝑓 ). Fig. 6(𝑎) and (𝑏) demonstrates the corresponding 3D and contour combined graphics for real and imaginary
alues of solution 𝜙6,2(𝑥, 𝑡), whereas 6(𝑑) and (𝑒) represents graphics for real and imaginary values of solution 𝜓6,2(𝑥, 𝑡).

We receive interaction of plane-kink and soliton wave profile for the absolute value of solution 𝜙15,6(𝑥, 𝑡) and 𝜓15,6(𝑥, 𝑡) with specified parameter
alues as 𝛼 = 2.22, 𝛽 = 2.25 and 𝑟 = 0.18 with −10 < 𝑥 < 10 and −5 < 𝑡 < 5 as shown in Fig. 7(𝑐) and (𝑓 ). Fig. 7(𝑎) and (𝑏) demonstrates
he corresponding combined 3D and contour plots for real and imaginary values of solution 𝜙15,6(𝑥, 𝑡), whereas 7(𝑑) and (𝑒) demonstrates the
orresponding combined 3D and contour plots for real and imaginary values of solution 𝜓15,6(𝑥, 𝑡).

. Conclusion

In summary, the new auxiliary equation method and shGEEM are implemented for the first time in the (2+1)-dimensional NLccHF equation to
chieve effective, competent, and further novel soliton solutions. We have obtained numerous solutions in terms of Jacobian elliptic functions,
yperbolic, trigonometric, exponential, and rational functions to the above-stated model with more parameters. The solutions obtained are
isually represented through graphs, highlighting their outcomes. Additionally, the study explores the impact of time evolution through combined
wo-dimensional graphs. These graphical representations showcase diverse wave patterns, including irregular periodic solitons, singular bell-
haped solitons, and anti-bell-shaped solitons, depending on different parameter values within the system. The findings emphasize the substantial
nfluence of free parameters on waveform behaviour, providing a versatile method to depict a plethora of unique and complex features observed
cross scientific domains. Furthermore, the solutions were verified for accuracy using symbolic computational software applications. They were
ncorporated into the main equations and confirmed to be correct, ensuring their reliability. This study affirms the trustworthiness and success of
he two applied techniques in evaluating the optimal approach for well-established mathematical models.
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