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Abstract In this article, we consider a (3 + 1)-
dimensional negative-order KdV–CBS equation which
represents interactions of longwavepropagationdynam-
ics with remarkable applications in the field of fluid
mechanics and quantum mechanics. We investigate
the integrability aspect of the considered model in the
framework of Hirota bilinear differential calculus, con-
struct infinitelymany conservations laws and formulate
a Lax pair. At first, we introduce the concept of Bell
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polynomial theory and utilize it to obtain the Hirota
bilinear form. We introduce a two-field condition to
determine the bilinear Bäcklund transformation. We
use the Cole–Hopf transformation in bilinear Bäcklund
transformation and linearize it to obtain the Lax pair
formulation. The existence of infinitely many conser-
vation laws has been checked through the Bell polyno-
mial theory. Moreover, we derive one-kink, two-kink
and three-kink soliton solution from the Hirota bilinear
form. We have successfully investigated the existence
of traveling wave solution for the (3+ 1)-dimensional
negative-order KDV–CBS equation and the conditions
for the existence of the solution are reported. The trav-
elingwave solutions are extracted in the formof incom-
plete elliptic integral of second kind and Jacobi elliptic
function. Particularly, the use of long wave limit yields
kink soliton solutions. Furthermore, we exhibit neces-
sary and sufficient condition for extracting lump solu-
tions of (3+1)-dimensional nonlinear evolution equa-
tions, which have few particular types of Hirota bilin-
ear form. The lump solutions are exploited by means
of well-known test function in the Hirota bilinear form.
Thismethod reduces the number of algebraic equations
to solve in deriving lump solutions of variety of NLLEs
in comparison with the previously available methods in
literature. Finally, two new forms of test functions are
chosen and lump-multi-kink solutions have been deter-
mined.
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1 Introduction

Nonlinear evolution equations (NEEs) play a pivotal
role across numerous fields of science and engineering
as they capture real-life phenomena observed in disci-
plines like fluid mechanics [1], oceanography [2], opti-
cal fibers, solid-state physics [3], geochemistry, plasma
physics [4], nonlinear optics [5] and wave propaga-
tion in shallowwater [6]. In recent decades, researchers
have been increasingly interested in finding exact solu-
tions to these NEEs. The integrability of NEEs has
emerged as a prominent research topic, as it guarantees
the existence of exact solutions. Several sophisticated
approaches are available to test the integrability of non-
linear evolution equations, including the inverse scat-
tering method [7], Hirota bilinear method [8], Darboux
transformation method [9,10], Painlevè analysis tech-
nique [11], Lie symmetry analysis [12], bilinear Bäck-
lund transformation method [13], bilinear neural net-
work method (BNN) [14–16] and bilinear residual net-
work method (RNN) [17]. BNN and RNN method can
be considered as general symbolic computing method
which is used to determine exact analytical solution of
a nonlinear partial differential equation. These meth-
ods give more accurate analytic solution than other
existing methods. Painlevè analysis technique is one of
the most complicated but efficient methods for inves-
tigating integrability characteristic of nonlinear par-
tial differential equations [18,19]. Salah et al [20]
employed discrete singular convolution algorithm and
obtained exact solution of five dimensional Fokas equa-
tion. While there is no definitive definition of integra-
bility for NEEs, indicators such as infinite conservation
laws, bilinear Bäcklund transformation, Hirota bilinear
form and Lax pair can characterize their integrability.
Among these techniques, the Hirota bilinear method
is the simplest approach to determine the integrability
of NEEs. This method involves a dependent variable
transformation that converts a NEE into Hirota bilin-
ear form. After obtaining Hirota bilinear form, soliton
solutions for theNEEcanbe easily derived.Gilson et al.
[21], Lambert and Springael [22,23] developed a revo-
lutionary method to derive the Hirota bilinear form of

NEEs usingBell polynomial theory.Using thismethod,
one can directly deduce the bilinear Bäcklund transfor-
mation and Lax pair from the Hirota bilinear form. E.
Fan [24] extended this method to derive infinite conser-
vation laws directly from the bilinear Bäcklund trans-
formation. Recently, many researchers have employed
these methods to assess the integrability of various
types of NEEs. For instance, Xu and Wazwaz [25]
examined the integrability of a new (n+1)-dimensional
generalized Kadomtsev–Petviashvili equation, obtain-
ing the Lax pair, Bäcklund transformation, infinite
conservation laws and deriving breather solutions, N-
soliton solutions, lump solutions and breather-soliton
mixed solutions. Mandal et al. [26] demonstrated that
the generalized (2 + 1)-dimensional Hirota bilinear
equation is completely integrable, deriving one, two
and three-soliton solutions, as well as invariant solu-
tions. Raut et al. [27] investigated the integrability of
the non-autonomousKadomtsev–Petviashvili equation
and calculated various types of periodic solutions.

On the other hand, utilization of traveling wave
solutions has become ubiquitous across various fields
of study. Numerous well-established methods have
been employed to obtain exact solutions for nonlinear
partial differential equations (NLPDEs). These meth-
ods include the Jacobi elliptic function method [28–
30], F-expansion method [31,32], Bäcklund transfor-
mation method [33], (G ′/G)-expansion method [34],
extended tanh method [35,36], new auxiliary equa-
tion approach [37] and the exp-function method [38],
among others. The exact traveling wave solutions pro-
vide better physical insight of the dynamical behavior
or the propagation dynamics of the concerned model.
Exact solutions of NEEs, particularly solitons, lumps,
breathers and rogue waves, have garnered increas-
ing attention from researchers due to their intrigu-
ing dynamical properties. As waves propagate through
nonlinear media, their amplitudes and widths undergo
fluctuations. However, in certain scenarios, the inter-
play between nonlinearity and dispersion can lead to
the formation of permanent and localizedwaves known
as solitons. There are only a few mathematical physics
techniques available for identifying solitons in nonlin-
ear dispersivemodels,with twonotable examples being
the Hirota bilinear method [8] and the inverse scat-
tering transform technique [7]. The Riemann–Hilbert
approach is considered as one of the most powerful
method in solving integrable models, especially for
constructing soliton solutions. A large variety of local
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and nonlocal integrable equations have been investi-
gated, and their soliton solutions are constructed via
Riemann–Hilbert approach in [39–42]. Lump waves
(or rogue waves) can be described within the frame-
work of integrable models, and they can explain a wide
range of nonlinear phenomena [43,44]. These waves
exhibit localization in all spatial directions and are
determined using rational function methods [45]. Gen-
eral rational function solutions are possessed by dif-
ferent integrable equations such as the KdV equation,
Toda lattice equation and the Boussinesq equation and
are obtained using the concept ofWronskian and Caso-
ratian determinant technique [46–48]. The concept of
rational functions was also applied to develop a power-
ful approach to accurate traveling wave solutions [49].
Generating positive quadratic function solutions in case
of Hirota bilinear equations constitutes an important
role in developing lump waves. Once the quadratic
function solutions are confirmed to be positive, log-
arithmic derivative transformations are employed to
generate lumpwaves [50]. Another approach to obtain-
ing lump solutions involves applying the long wave
limit to the soliton solution derived from the Hirota
bilinear form [51]. Chen and Lü [52] present a neces-
sary and sufficient condition for calculating lump solu-
tions for nonlinear partial differential equations, partic-
ularly thosewith specific types ofHirota bilinear forms.
They also demonstrate that if a lump solution is derived,
a lump-multi-kink solution can also be obtained. Chen
et al. also derive interaction between lump and multi-
strip solutions of (2+1)-dimensional nonlinearmodels
[53–55].

We consider non-dimensional classical KdV equa-
tion [56] in the form

ut + 6uux + uxxx = 0 , (1)

where x represents spatial coordinate and t denotes
temporal and u(x, t) represents thewaterwave velocity
in the shallowwater surface. TheKdVequation demon-
strates dynamical systems governed by weak quadratic
nonlinearity and weak dispersion, e.g., in the study
of long, negligible amplitudes, surface gravity waves
generated in shallow water, stratified internal waves,
plasma physics, ion-acoustic wave, lattice dynamics,
etc. It is well known that the KdV equation is com-
pletely integrable in terms of inverse scattering trans-
form, Painlevè analysis technique, etc.

We consider the (2 + 1)-dimensional Calogero–
Bogoyavlenskii–Schiff (CBS) equation [57]

ut + 4uuy + 2ux∂
−1
x uy + uxxy = 0 , (2)

which narrates the nonlinear interaction among Rie-
mann propagating wave along y-axis along with long
propagating wave along x-axis. Using the recursion
operator

φ = ∂2x + 4u + 2ux∂
−1
x , (3)

one can obtain the KdV equation and CBS equation as
follows

ut + φ(ux ) = ∂2x (ux ) + 4uux + 2ux∂
−1
x (ux )

= ut + uxxx + 6uux = 0 , (4a)

ut + φ(uy) = ∂2x (uy) + 4uuy + 2ux∂
−1
x (uy)

= ut + uxxy + 4uuy + 2ux∂
−1
x (uy) = 0 . (4b)

Extending Olver’s work in [59], Verosky [58] devel-
oped a new way to find a sequence of equations hav-
ing increasingly negative orders in negative direction.
According to Verosky [58], the evolution equations
have following hierarchy

ut + φ(vx ) = 0 , (5)

ut + φ(vy) = 0 , (6)

in the derivation of the KdV andCBS equations respec-
tively can be alternatively used in the negative-order
hierarchy in the form

ut + φ−1(ux ) = 0 , (7)

ut + φ−1(uy) = 0 , (8)

for the KdV and CBS equations, respectively. Wazwaz
implemented the negative-order hierarchy Eqs. (7)
and (8) and obtained the integrable negative-order KdV
equation and integrable negative-order CBS equation
as below

uxxxt + 4uxuxt + 2uxxut + uxx = 0 (9)

and

uxxxt + 4uxuxt + 2uxxut + uxy = 0, (10)

respectively. In article [59–61], Wazwaz proved that
the above two equations pass the Painlevè integrability
test. Also, the integrability of the equations is proved
by means of consistent Riccati expansion method. The
truncated Painlevè expansion and simplified Hirota’s
methods are utilized to verify the integrability char-
acteristics. Abundant solutions having different physi-
cal structure, e.g., multiple soliton solutions, kink solu-
tions, multiple complex soliton solutions and singular
solutions, are derived in explicit forms.
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Recently, Wazwaz [62] derived a new (3 + 1)-
dimensional negative-order KDV–CBS equation by
combining Eqs. (9) and (10) as

uxt + uxxxy + 4uxuxy + 2uxxuy

+λuxx + μuxy + νuxz = 0 , (11)

which represents interactions of long wave propaga-
tion dynamics with remarkable applications in the field
of fluid mechanics and quantum mechanics. When
μ = 0, ν = 0 Eq. (11) converts to a negative-order
KdV equation, and when λ = 0, ν = 0 Eq. (11)
converts to a negative-order CBS equation. It is also
examined that Eq. (11) passes the Painlevè integrabil-
ity test without any constraint on compatibility con-
dition. Additionally, Wazwaz et al. [63] obtained the
Hirota bilinear form, periodic wave, lump wave, rogue
wave and their interaction solution of the same model.
Maria [64] checked the integrability of Eq. (11) by Lie
symmetry analysis and obtained various kind of trav-
eling wave solutions. Singh and Saha [65] obtained
an integrable version of Eq. (11) by Painlevè analysis
and also obtained several types of analytic solutions
like exponential solution and rational function solution
using auto-Bäcklund transformation. We have noticed
that several other aspects of integrability for the above-
mentioned model are not studied yet. The concept of
Bell polynomial theory can be executed to obtain the
Hirota bilinear form, existence of infinite conservation
laws, Lax pair formulation and Bäcklund transforma-
tion which can be studied in view of the concerned
nonlinear evolution equation.

Main contexts of this paper are organized as follows.
In Sect. 2, basic introduction of multi-dimensional Bell
polynomial and the connection between Hirota bilin-
ear form and Bell polynomial are given. In Sect. 3,
we derive the Hirota bilinear form, Bäcklund trans-
formation and Lax pair formulation of Eq. (11). In
Sect. 4, infinitely many conservation laws of Eq. (11)
are constructed. In Sect. 5, one-, two- and three-kink
soliton solutions of the above equation are derived. In
Sect. 6, we explore the traveling wave solution in terms
of Jacobi elliptic function and obtain their long wave
limits. In Sect. 7, we construct lump and lump-multi-
kink solution of the above-mentioned equation. Finally,
in Sect. 8, we draw few conclusion of our work.

2 Multi-dimensional Bell polynomials

In this section, we briefly demonstrate the underlying
principles and expressions ofBell polynomials [21,22].
Let φ be aC∞ function of t ; then one-dimensional Bell
polynomial [21] is defined as

Ynt (φ) = Yn(φ1, φ2, ..., φnt )

= e−φ∂t
neφ, n = 1, 2, 3, ... . (12)

The following are few one-dimensional Bell polyno-
mials that can be obtained from the above statement.

Yt = φt , Y2t = φ2t + φt
2,

Y3t = φ3t + 3φtφ2t + φt
3, ... . (13)

We use the formula

Ynt (φ) =
∑ n!

a1!a2!...an !
(

φt

1!
)a1

(
φ2t

2!
)a2

...

(
φnt

n!
)an

, (14)

where the sum run over all partitions of n = a1+2a2+
... + nan and obtain the above expressions Eq. (13).
By assuming that φ = φ(t1, t2, ..., ts) as a C∞ multi-
variable function, we can expand the dimension of the
Bell polynomial and then the multi-dimensional Bell
polynomial can be described as follows

Yn1t1,...,ns ts (φ) ≡ Yn1,...,ns (φm1t1,...,msts )

= e−φ∂
n1
t1 ...∂

ns
ts eφ, (15)

where φm1t1,...,msts = ∂
m1
t1 ...∂

ms
ts φ,mi = 0, 1, ..., ni

and i = 1, 2, ..., s. Here Yn1t1,...,ns ts (φ) denotes
the multi-variable Bell polynomial with respect to
φm1t1,...,msts . Particularly, if we choose φ as a func-
tion of t and z, then corresponding few lowest order
two-dimensional Bell polynomials can be determined
as follows

Y2t (φ) = φ2t + φ2
t , Y3t (φ) = φ3t + 3φ2tφt + φ3

t ,

(16)

Yt,z = φt,z + φtφz,

Y2t,z(φ) = φ2t,z + φ2tφz + 2φt,zφt + φ2
t φz, ... (17)

According to the aforesaid Bell polynomials Eq. (15),
multi-dimensional binary Bell polynomials can be
described as follows

123



Integrability, bilinearization, exact traveling wave solutions 4731

Yn1t1,...,ns ts (h,g) = Yn1t1,...,ns ts (φ), (18)

where

φm1t1,...,msts

=
{
hm1t1,...,msts , m1 + ... + ms is odd,

gm1t1,...,msts , m1 + ... + ms is even.
(19)

The following are a few one-dimensional Bell polyno-
mials that can be obtained from the above statement:

Yt (h) = ht , Y2t (h,g) = g2t + h2
t ,

Yt,z(h,g) = gt,z + hthz,

Y2t,z(h,g) = h2t,z + g2thz + 2gt,zht + h2
t hz,

Y3t = h3t + 3g2tht + h3
t , ... (20)

With the help of the identity

(φψ)−1Dn1
t1 ...Dns

ts φ.ψ = Yn1t1,...,ns ts (h = ln φ/ψ,

g = ln φψ) , (21)

we can link the standard Hirota bilinear expression
Dn1
t1 ...Dns

ts φ.ψ and binary Bell polynomials, where the
D-operator is presented by Hirota [8] as

D
n1
t1

...Dns
ts φ.ψ = (∂t1 − ∂t ′1 )

n1 ...(∂ts − ∂t ′s )
nsφ

(t1, ..., ts ).ψ(t ′1, ...t ′s )|t ′1=t1,...,t
′
s=ts

.

In case when φ = ψ , the identity Eq. (21) becomes

(φ)−2Dn1
t1 ...Dns

ts φ.φ=Yn1t1,...,ns ts (h=0,g = 2 ln φ)

=
{
0, n1 + ... + ns is odd,

Pn1t1,...,ns ts (p), n1 + ... + ns is even.
(22)

where P-polynomials are the even-ordered Y -poly-
nomials and first few of them are as below

P2t (q) = q2t , Pt,z(q) = qt,z,

P3t,z(q) = q3t,z + 3qt,zq2t ,

P4t (q) = q4t + 3q2
2t . (23)

The binary Bell polynomial Yn1t1,...,ns ts (h,g) can be
written as a linear combination ofP-polynomials and
Bell polynomials Yn1t1,...,ns ts (h) as

(φψ)−1Dn1
t1 ...Dns

ts φ.ψ = Yn1t1,...,ns ts (h,g),

where h = ln φ/ψandg = ln φψ

= Yn1t1,...,ns ts (h,h + p),

where h = ln φ/ψ and q = 2 lnψ

=
n1∑

m1=0

...

ns∑

ms=0

s∏

i=1

(
ni
mi

)
Pm1t1,...,msts (p)

Y(n1−m1)t1,...,(ns−ms )ts (h) . (24)

Using Hopf–Cole transformation h = lnψ , binary
Bell polynomial can be expressed in the following form

Yn1t1,...,ns ts (h = lnψ) = ψn1t1,...,ns ts

ψ
, (25)

through which Eq. (24) can be reexpressed as

(φψ)−1Dn1
t1 ...Dns

ts φ.ψ

= ψ−1
n1∑

m1=0

...

ns∑

ms=0

s∏

i=1

(
ni
mi

)
Pm1t1,...,msts (q)

ψ(n1−m1)t1,...,(ns−ms )ts . (26)

The identity Eq. (26) offers the most straightforward
method for developing the related Lax pair of the
appropriate nonlinear evolution equation. The above-
mentioned concepts of Bell polynomial theory will
be utilized further to determine bilinear form, bilinear
Bäcklund transformation and the Lax pair formulation
of Eq. (11).

3 Bilinear form, bilinear Bäcklund transformation
and Lax pair

We consider the transformationu = qx in Eq. (11) and
integrate it which yield

E(q) = qxt + q3xy + 3q2xqxy + λq2x

+μqxy + νqxz = 0 . (27)

Additionally, we choose q = 2 log f and using the
connection betweenP-polynomial andHirota bilinear
form, we obtain the Hirota bilinear form of Eq. (11) as

(Dx Dt + D3
x Dy + λD2

x

+μDx Dy + νDx Dz) f. f = 0 . (28)

In order to construct bilinear Bäcklund transformation,
we consider q ′ = 2log f ′ as an another solution of
Eq. (11). Then the corresponding two-field condition
can be written as

E(q ′) − E(q) = (q ′ − q)xt + (q ′ − q)3xy + 3q ′
2xq

′
xy

−3q2xqxy + λ(q ′ − q)2x

+μ(q ′ − q)xy + ν(q ′ − q)xz = 0. (29)

Furthermore, we introduce two new variables W =
log f f ′, V = log f ′

f and consider λ = μ = ν = 1 and
rewrite Eq. (29) as

E(q ′) − E(q) = 2
[
Vxt + V3xy + 3(W2x .Vxy
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+V2xWxy) + V2x + Vxy + Vxz
] = 0,

= 2
∂

∂y
[Y3x (V,W ) + Yx (V )] + 2

∂

∂x
[Yt (V )

+Yz(V )] + 6Wronskian[Yxy(V,W )

+1

3
,Yx (V )] = 0 . (30)

We Decouple the above two-field condition and derive
three Y -polynomials as follows

Yxy(V,W ) + 1

3
− δYx (V ) = 0 , (31a)

Y3x (V,W ) + Yx (V ) − β = 0 , (31b)

Yt (V ) + Yz(V ) − γ = 0 . (31c)

Finally, with the help of Eq. (21), we have rewritten
Eq. (31) in the bilinear form as

( f ′ · f )−1
[
Dx Dy + 1

3
− δDx

]
( f ′ · f ) = 0 , (32a)

( f ′ · f )−1[D3
x + Dx − β]( f ′ · f ) = β , (32b)

( f ′ · f )−1[Dt + Dz − γ ]( f ′ · f ) = 0 , (32c)

which is bilinear Bäcklund transformation of Eq. (11).
Using the Cole–Hopf transformation V = logφ and

linearizing the above Bell polynomial system Eq. (31),
we formulate the Lax pair of Eq. (11) as

φxy + qxyφ + 1

3
φ − δφx = 0 , (33a)

φ3x + (1 + 3q2x )φx − βφ = 0 , (33b)

φt + φz − γφ = 0 . (33c)

4 Infinitely many conservation laws

To construct the conservation laws of the Eq. (11), we
have rewritten the two-field condition as

Wxy + VxVy + 1

3
− δVx = 0 , (34)

∂

∂t
[Yx (V )] + ∂

∂x
[Yy(V )] + ∂

∂y
[Y3x (V,W )]

+ ∂

∂z
[Yx (V )] = 0 . (35)

We introduce a new potential function ζ = q ′
x−qx
2 and

obtain

V = q ′ − q

2
, W = q ′ + q

2
, Vx = ζ,

Vy = ∂−1
x (ζy), Wx = qx + ζ. (36)

Substituting Eq. (36) into Eq. (35) yields a Riccati type
equation as

qxy + ζy + ζ∂−1
x (ζy) + 1

3
− δζ = 0 . (37)

We consider the form of ζ as

ζ =
∞∑

n=1

Jn(q, qx , q2x , ...)δ
−1 . (38)

Finally, we substitute Eq. (38) into Eq. (37) and equate
all the like powers of δ and we obtain the recursions
relations for the conserved densities as below

J1 = qxy + 1

3
= uy + 1

3
, (39a)

J2 = J1,y = uyy , (39b)

J3 = J2,y + J1∂
−1
x J1,y = u3y + (uy + 1

3
)(∂−1

x )uyy ,

(39c)

J4 = J3,y + (J1∂
−1
x J2,y + J2∂

−1
x J1,y) , (39d)

· · · · · ·

Jn = Jn−1,y +
n−1∑

i=1

Ji (∂
−1
x Jn−1−i,y) . (39e)

Substitution of Eq. (36) into Eq. (35) provides a
divergence-type equation

ζt + ∂

∂y

[
ζ2x + 3ζq2x + 3ζ ζx + ζ 3

]

+ζz + ∂

∂x

[
∂−1
x ζy

]
= 0 . (40)

Moreover, we substitute Eq. (38) into Eq. (40) and have
∞∑

n=1

Jn,tδ
−n + ∂y

[ ∞∑

n=1

Jn,2xδ
−n + 3

( ∞∑

n=1

Jnδ
−n

)

(
q2x +

∞∑

n=1

Jn,xδ
−n

)
+

( ∞∑

n=1

Jnδ
−n

)3
⎤

⎦

+∂x

[
∂−1
x

∞∑

n=1

Jn,yδ
−n

]
+

∞∑

n=1

Jn,zδ
−n = 0 . (41)

The conservation laws of Eq. (11) can be found from
Eq. (41) as

An,t + Bn,y + Cn,x + Dn,z = 0, n = 1, 2, 3, ...,(42)

where ,

B1 = J1,2x + 3q2x J1 = J1,2x + 3ux J1 , (43a)
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B2 = J2,2x + 3(J2ux + J1 J1,x ) , (43b)

B3 = J3,2x + 3(J3ux + J1 J2,x + J2 J1,x + J31 ) , (43c)
· · · · · ·
Bn = Jn,2x + 3

∑

i+ j=n

Ji I j,x + 3Jnux

+
∑

i+ j+k=n

Ji J j Jk , (43d)

Cn = ∂−1
x Jn,y and Dn = Jn , n = 1, 2, 3, ... . The val-

ues of Jn are given by the recursion relations Eq. (39) .

5 Soliton solutions

5.1 One-soliton solution

To construct one-soliton solution of negative-order
KDV–CBS equation Eq. (11), we choose the form of f
as

f = 1 + eς1 , (44)

where ς1 = k1(x + p1y + q1z + w1t) + ς0
1 and

k1, p1, q1, ς0
1 are arbitrary constants. Then we substi-

tute Eq. (44) into Eq. (28) and equate all the exponential
function to zero and obtain dispersion relation as below

w1 = −(1 + p1 + q1 + k21 p1) . (45)

Finally, substitution of Eq. (44) along with Eq. (45)
into Eq. (28) yields one-soliton solution of Eq. (11) as

u = 2k1 exp
[
k1

(−t
(
k21 p1 + p1 + q1 + 1

) + p1y + q1z + x
)]

exp
[
k1

(−t
(
k21 p1 + p1 + q1 + 1

) + p1y + q1z + x
)] + 1

. (46)

Particularly, when the parameters takes the values k1 =
3, p1 = 2, q1 = 1 and ς0

1 = 0 and extract the one-kink
soliton solution which is shown in Fig. 1a.

5.2 Two-soliton solution

Weconstruct two-soliton solution ofEq. (11) by assum-
ing the form of f as

f = 1 + eς1 + eς2 + A12 e
ς1+ς2 , (47)

where ςi = ki (x + pi y + qi z +wi t)+ ς0
i , (i = 1, 2)

and ki , pi , qi , ς0
i , (i = 1, 2) are arbitrary constants.

We substitute Eq. (47) into Eq. (28) and derive the dis-
persion relation and A12 as

wi = −(1 + p1 + q1 + k21 p1), (i = 1, 2) , (48a)

A12=− (k1−k2)[(k2 p1−k1 p2)+2(k1 p1 − k2 p2)]
(k1 + k2)[(k2 p1 + k1 p2) + 2(k1 p1 + k2 p2)] .

(48b)

Further, substituting Eq. (47) with Eq. (48) into
Eq. (28), we obtain the two-soliton solution of Eq. (11)
as

u = ∂x (1 + eς1 + eς2 + A12 eς1+ς2)

1 + eς1 + eς2 + A12 eς1+ς2
. (49)

For particular parametric values k1 = 1, k2 =
2, p1 = 3, p2 = 1, q1 = 1, q2 = 1 along with
ς0
i = 0, (i = 1, 2), we find two-kink soliton solu-

tion, which is shown in Fig. 1b.

5.3 Three-soliton solution

We construct three-soliton solution of Eq. (11) by
assuming the form of f as

f = 1 + eς1 + eς2 + eς3 + A12 e
ς1+ς2

+A23 e
ς2+ς3 + A13 e

ς1+ς3

+A123 e
ς1+ς2+ς3 , (50)

where ςi = ki (x+ pi y+qi z+wi t)+ς0
i , (i = 1, 2, 3)

and ki , pi , qi , ς0
i , (i = 1, 2, 3) are arbitrary con-

stants. We substitute Eq. (50) into Eq. (28) and derive
the dispersion relation and Ai j as follows

wi = −(1 + pi + qi + k2i pi ), (i = 1, 2, 3) , (51a)

Ai j = − (ki − k j )[(k j pi − ki p j ) + 2(ki pi − k j p j )]
(ki + k j )[(k j pi + ki p j ) + 2(ki pi + k j p j )] ,

(51b)

A123 = A12A23A13 . (51c)

Further, substituting Eq. (50) with Eq. (51) into
Eq. (28),weobtain the three-soliton solution ofEq. (11)
as
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u = ∂x (1 + eς1 + eς2 + eς3 + A12 eς1+ς2 + A23 eς2+ς3 + A13 eς1+ς3 + A123 eς1+ς2+ς3)

1 + eς1 + eς2 + eς3 + A12 eς1+ς2 + A23 eς2+ς3 + A13 eς1+ς3 + A123 eς1+ς2+ς3
. (52)

Taking the parametric values as k1 = −3, k2 =
−1, k3 = −2, p1 = −2, p2 = 4, p3 = 3, q1 =
1, q2 = 5, q3 = −1 and ς0

i = 0, (i = 1, 2, 3), we
have obtained the three-kink soliton solution, which is
shown in Fig. 1c.

6 Traveling wave solutions

In [64], the conservation laws are obtained for the
negative-orderKDV–CBSequation in (3+1)-dimension
and is used to determine a triple reduction to an ordinary
differential equation of second order, which yields trav-
eling wave solution and soliton solutions. The solution
are also obtained using the modified simple equation
method portrait via 3-D plot for particular parametric
values.

Here we consider the traveling wave transformation
in the form

u(x, y, z, t) = �(χ), χ = x + by + cz − at , (53)

where a, b and c are arbitrary constants and χ is a
traveling wave transformation.

Substituting Eq. (53) into Eq. (11), we obtain the
fourth-order nonlinear ordinary differential equation as

b�′′′′ + (6b�′ + λ + bμ + cν − a)�′′ = 0 . (54)

Integrating both sides of Eq. (54), we have

b�′′′ + 3�′2 + (λ + bμ + cν − a)�′ = C1 . (55)

Multiplying both sides of this resulting integrals by
2�′′ and integrating again, we derive a second-order
ODE as

�′′2 + 2�′3 +
(

μ + cν − a + λ

b

)
�′2

−2C2

b
�′ + 2C1

b
= 0 , (56)

where C1 and C2 are integration constants.
We consider the transformation �′(χ) = �(χ) and

then Eq. (56) reduce to

(�′)2 + 2�3 +
(

μ + cν − a + λ

b

)
�2

−2C2

b
� + 2C1

b
= 0 . (57)

Equation (57) can be reduced in standard form as

(�′)2 = −2�3 + A�2 + B� + C , (58)

where

A = −
(

μ + cν − a + λ

b

)
, B = 2C2

b
,

C = −2C1

b

Another transformation f (χ) = 2�(χ) yields
(
d f

dχ

)2

= − f 3 + α f 2 + β f + γ , (59)

where α = A, β = 4C2
b and γ = − 8C1

b
Assuming P( f ) = − f 3 + α f 2 + β f + γ be the poly-
nomial such that

− f 3 + α f 2 + β f + γ

= −( f − f1)( f − f2)( f − f3) , (60)

where f1, f2, f3 are the roots of P( f ) = 0.
From Eq. (60), we obtain

f1 + f2 + f3 = α , (61)

f1 f2 + f1 f3 + f2 f3 = −β , (62)

f1 f2 f3 = γ . (63)

To construct the solution of Eq. (59) via Jacobi elliptic
function, we choose a new variable transformation

z2 = f − f3
f2 − f3

. (64)

Then Eq. (59) ensures

dz

dξ
= η

√
(1 − z2)(1 − ζ 2z2) . (65)

Hence, applying the transformation in Eq. (64) the
solution of Eq. (59) is obtained as

f = f2 − ( f2 − f3)cn
2(η(χ − χ0), ζ ) , (66)

where cn(χ, ζ ) is the Jacobi elliptic function and the
roots f1, f2 and f3 are real with ordered relation f1 <

f2 < f3.
The obtained values of f1, f2 and f3 of Eq. (60) are

f1 = α

3
+ 4η2

3
(ζ 2 − 2) , (67)
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Fig. 1 Evolution of a one-kink soliton Eq. (46), b two-kink soliton Eq. (49) and c three-kink soliton Eq. (52)

f2 = α

3
+ 4η2

3
(1 − 2ζ 2) , (68)

f3 = α

3
+ 4η2

3
(1 + ζ 2) . (69)

The parameters η and ζ in this solution are given by

η = 1

2

√
f3 − f1, ζ =

√
f3 − f2
f3 − f1

. (70)

Using Eqs. (67), (69) and (70), we obtain the param-
eter η as

η = 1

2

(
α2 + 3β

ζ 4 − ζ 2 + 1

) 1
4

. (71)

Hence, the exact solution of Eq. (58) can be obtained
by using Eq. (66) with (0 < ζ < 1) as

�(χ) = f2
2

− ( f2 − f3)

2
cn2{η(χ − χ0), ζ } . (72)

Case 1: Periodic wave solution via Jacobi elliptic func-
tion cn(χ, ζ ) for the condition γ �= 0

The transformation �′(χ) = �(χ) leads to a family
of bounded periodic wave solutions of Eq. (11) as

u(x, y, z, t) = �χ + �(ζ 2 − 1)χ

+E[sn{η(χ − χ0), ζ }, ζ ] (73)

where E(χ, ζ ) is the incomplete elliptic integral of
second kind with 0 < ζ < 1 as f1, f2 and f3 are in
order f1 < f2 < f3. The parameters � = f2

2 and

� = − 1
2

( f2− f3)
ηζ 2

are given by

� = 1

6
{α + 4η2(1 − 2ζ 2)} and

� =
(

α2 + 3β

ζ 4 − ζ 2 + 1

) 1
4

. (74)

Case 2: The periodic solution via Jacobi elliptic func-
tion dn(χ, ζ ) for the condition γ �= 0

In this case, the bounded periodic wave solution of
Eq. (11) is given by

u(x, y, z, t) = �χ + �E[sn{η(χ − χ1), ζ }, ζ ] , (75)

where the parameters � = f1
2 and � = f3− f1

2η are as
follows

� = 1

6
{α + 4η2(ζ 2 − 2)}, � =

(
α2 + 3β

ζ 4 − ζ 2 + 1

) 1
4

.(76)

Case 3: Exact traveling wave solution for the condition
f1 = 0
When f1 = 0 (γ = 0), the exact solution Eq. (75)

reduces to

u(x, y, z, t) = � E[sn{η(χ − χ1), ζ }, ζ ] , (77)

where the parameters � = f3
2η and η are as below

� = 1

6η
(α + 8η2), η =

√
α

4(2 − ζ 2)
.

(78)

It is to be noted that the necessary condition for the exis-
tence of the above solutions areα > 0 andα2+3β > 0.
Particularly, when f1 = 0, the solution Eq. (73) does
not change, but due to the changes in the values of
� and � in Eq. (76), the solution Eq. (75) changes.
For different parametric values, the exact solutions are
depicted in Figs. 2 and3.
Case 4: Exact traveling wave solution for the condition
f1 = 0, f3 = 0
In case when f1 = 0 and f3 = 0, from

Eqs. (61), (62) and (63) we retrieve that β = γ = 0
and α = f2. A direct computation gives

u(x, y, z, t) = − 2κ

1 + eκ(χ+C3)
, (79)

where κ = √
α and C3 is the constant of integration.

The condition α > 0 is necessary for the existence
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Fig. 2 Homoclinic breather solution of Eq. (11) given by Eq. (73), when μ = 3.2, c = 0.3, v = 10, a = −0.5, λ = 1, b = −0.1, ζ =
0.9,C2 = 0 a 3-dimensional plot b Contour plot

Fig. 3 Homoclinic breather solution of Eq. (11) given by Eq. (77), when μ = 1, c = 0.92, v = 0.89, a = 0.51, λ = 1, b = 2, ζ =
0.65,C2 = 1 a 3-dimensional plot b Contour plot

of the solution. We choose the parametric values as
μ = −1.9, c = −1, v = 0.89, a = 1, b = 2, ζ =
0.4,C3 = 0.7 and λ = 1 and obtained one-kink soliton
solution which is depicted in Fig. 4.

In this section, we consider the long wave limit ζ →
1 corresponding to the solitary wave solutions Eq. (73)
and Eq. (75) in terms of Jacobi elliptic functions and
obtain the trigonometric function solutions of Eq. (11).

In the limiting case ζ → 1, the solution in Eq. (73)
with γ �= 0 reduces to

u(x, y, z, t) = �χ + 2η0[tanh(η0(χ − χ0))

+tanh(η0χ0)] , (80)

where the parameters η0 and � are

η0 = 1

2
(α2 + 3β)

1
4 , � = 1

6
(α − 4η20) .
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Fig. 4 Kink-type solution Eq. (79) of Eq. (11) when μ = −1.9, c = −1, v = 0.89, a = 1, b = 2, ζ = 0.4,C3 = 0.7, λ = 1 a
3-dimensional plot b Density plot

In case when β > 0, we have α2 + 3β > 0 and
� < 0. The parametric condition � < 0 in Eq. (80)
leads to a kink wave solution.

In this particular case, the roots of Eq. (60) are

f1 = α

3
− 4

3
η20, f2 = α

3
− 4

3
η20,

f3 = 1

3
(α + 8η20) , (81)

In the limiting case ζ → 1, the solution in Eq. (75)
becomes

u(x, y, z, t) = �χ − 2η0[tanh{η0(χ − χ1)}
+tanh(η0χ1)] , (82)

where

� = 1

6
(α + 8η20) . (83)

It is to be mentioned here that in limiting wave case
ζ → 1 and when the integration constant γ �= 0,
Eq. (81) reveals that f1 = f2 and f3 become arbitrary.
Moreover, γ �= 0 yields fi �= 0 (i = 1, 2, 3) which
implies α + 8η20 �= 0. Additionally, the parameter �

in the solution Eq. (82) is negative only when α < 0
otherwise � ≥ 0. We also observe that the condition
� = 0 refers to α < 0 which holds for the solution in
Eq. (82) leading to exact solution of Eq. (11) as kink-
type solution as shown in Fig. 5.

7 Lump solutions and lump-multi-kink solutions

The Hirota bilinear operators D [8] can be defined as

(Dn
x D

m
y D

p
z D

r
t ) f. f =

(
∂

∂x
− ∂

∂x ′

)n (
∂

∂y
− ∂

∂y′

)m

(
∂

∂z
− ∂

∂z′

)p (
∂

∂t
− ∂

∂t ′

)r

f (x, y, z, t)

f (x ′, y′, z′, t ′)|x=x ′,y=y′,z=z′,t=t ′ , (84)

where m, n, p and r are nonnegative integers.
The Hirota bilinear form of a general (3 + 1)-

dimensional nonlinear evolution equation can be con-
sidered as

G(Dx , Dy, Dz, Dt ) f. f = 0. (85)

We choose a dependent variable transformation u =
λ(logx)x or u = λ(logx)2x , where λ is a constant and
reexpresses Eq. (85)as a (3+1)-dimensional nonlinear
evolution equation as

H(u,ux ,uy,uz,ut ,uxx ,uxy, · · ·) = 0. (86)

Here u = u(x, y, z, t) and H is a polynomial of the
dependent variable u and its different partial deriva-
tives.
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(a) (b)

- 1

0

1

2

Fig. 5 Kink-type solution Eq. (82) of Eq. (11) when μ = 2, c = −1, v = 0, a = −1, b = −4, ζ = 0.99,C2 = 1, λ = 1 a
3-dimensional plot b Density plot

7.1 Lump solution

To generate the lump solution of Eq. (11), we have
considered the test function as

f = f 21 + f 22 + c1 , (87)

where

f1 = b1x + b2y + b3z + b4t + b5 ,

f2 = b6x + b7y + b8z + b9t + b10 .

The values of bm(m = 1, 2, ..., 10) and c1 > 0 are con-
stant and are to be calculated. The constants bm(m =
1, 2, 3, 6, 7, 8) satisfy the condition (b1, b2, b3) ∦
(b6, b7, b8).

Theorem 1 The test function in Eq. (87) originates
lump solutions of a (3+1)-dimensional nonlinear evo-
lution equations having the particular type of Hirota
bilinear form

Dx F(D) f. f = 0, (88)

where F(D) = λ1Dx + λ2Dy + λ3Dz + λ4Dt +
λ5D3

x+λ6D3
y+λ7D3

z +λ8D3
t +λ9D2

x Dy+λ10D2
x Dz+

λ11D2
x Dt and λi (i = 1, 2, ··· 11) are constants, under

the transformation u = λ(logx)x or u = λ(logx)2x , if
and only if

λ1 fx + λ2 fy + λ3 fz + λ4 ft = 0 , (89a)

λ5 f
2
2x + λ6 f2y fxy + λ7 f2z fxz + λ8 f2t fxt

+ λ9 f2x fxy + λ10 f2x fxz + λ11 f2x fxt = 0. (89b)

Proof Substituting the test function Eq. (87) into
Eq. (88), we have the following

f (λ1 f2x + λ2 fxy + λ3 fxz + λ4 fxt ) − fx (λ1 fx

+ λ2 fy + λ3 fz + λ4 ft )+
3(λ5 f

2
2x + λ6 f2y fxy + λ7 f2z fxz + λ8 f2t fxt

+ λ9 f2x fxy + λ10 f2x fxz + λ11 f2x fxt ) = 0

(90)

Comparing the coefficient of x2 from both sides of
Eq. (90), we obtain

λ1 f2x + λ2 fxy + λ3 fxz + λ4 fxt = 0 . (91)

Integrating Eq. (91) with respect to x , we have

λ1 fx + λ2 fy + λ3 fz + λ4 ft = ψ(y, z, t) , (92)

where ψ(y, z, t) is a function of y, z and t . Then
Eq. (90) takes the form

3(λ5 f
2
2x + λ6 f2y fxy + λ7 f2z fxz + λ8 f2t fxt

+λ9 f2x fxy + λ10 f2x fxz + λ11 f2x fxt )

− fxψ(y, z, t) = 0. (93)

Comparing the coefficient of x from both sides of
Eq. (93), we derive ψ(y, z, t) = 0, that is,

λ1 fx + λ2 fy + λ3 fz + λ4 ft = 0 , (94)

Then Eq. (93) becomes

3(λ5 f 22x + λ6 f2y fxy + λ7 f2z fxz + λ8 f2t fxt

+λ9 f2x fxy + λ10 f2x fxz + λ11 f2x fxt ) = 0.

(95)
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The test function Eq. (87) generates lump solutions
of (3 + 1)-dimensional nonlinear evolution equations,
having theHirota bilinear formEq. (88) under the trans-
formationu = λ(logx)x oru = λ(logx)2x , if and only
if Eqs. (94) and (95) are satisfied. ��
Theorem 2 The test function Eq. (87) originates lump
solutions of (3 + 1)-dimensional nonlinear evolution
equations having the particular type of Hirota bilinear
form

DyF(D) f. f = 0, (96)

under the transformation u = λ(logx)x or u =
λ(logx)2x if and only if

λ1 fx + λ2 fy + λ3 fz + λ4 ft = 0 , (97a)

3(λ5 f2x fxy + λ6 f
2
2y

+ λ7 f2z fyz + λ8 f2t + fyt )

+ λ9( f2x f2y + 2 f 2xy)

+ λ10( f2x fyz + 2 fxy fxz)

+ λ11( f2x fyt + 2 fxy fyt ) = 0. (97b)

Theorem 3 The test function Eq. (87) originates lump
solutions of (3 + 1)-dimensional nonlinear evolution
equations having the particular type of Hirota bilinear
form

DzF(D) f. f = 0, (98)

under the transformation u = λ(logx)x or u =
λ(logx)2x if and only if

λ1 fx + λ2 fy + λ3 fz + λ4 ft = 0 , (99a)

3(λ5 f2x fxz + λ6 f2y fyz + λ7 f
2
2z

+ λ8 f2t + fzt ) + λ9( f2x fyz

+ 2 fxy fxz) + λ10( f2x f2z + 2 f 2xz)

+ λ11( f2x fzt + 2 fxz fxt ) = 0. (99b)

Theorem 4 The test function Eq. (87) originates lump
solutions of (3 + 1)-dimensional nonlinear evolution
equations having the particular type of Hirota bilinear
form

Dt F(D) f. f = 0, (100)

under the transformation u = λ(logx)x or u =
λ(logx)2x if and only if

λ1 fx + λ2 fy + λ3 fz + λ4 ft = 0 , (101a)

3(λ5 f2x fxt + λ6 f2y fyt + λ7 f2z fzt + λ8 f
2
t t )

+ λ9( f2x fyt + 2 fxy fxt ) + λ10( f2x ftz + 2 fxt fxz)

+ λ11( f2x f2t + 2 f 2xt ) = 0. (101b)

Similar approach can be used to prove Theorems 2-4.

7.2 Application to the (3 + 1)-dimensional
negative-order KDV–CBS equation

We rewrite the previously obtained Hirota bilinear
form Eq. (28) of the (3 + 1)-dimensional negative-
order KdV–Calogero–Bogoyavlenskii–Schiff Eq. (11)
as below

Dx (Dt + D2
x Dy + λDx + μDy + νDz) f. f = 0(102)

Taking λ = μ = ν = 1 and applying Theorem 1, we
obtain the lump solution of Eq. (11) as

u = − 2

f

{
−b6b7

b2
f1 + 2b6 f2

}
, (103)

where

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 ,

f =
{
−b6b7

b2
x+b2y+

(
b6b7
b2

−b2 − b4

)
z + b4t + b5

}2

+ {6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2 .

7.3 Lump-multi-kink solutions

For the lump-multi-kink solution, we have considered
the two types of test functions as

(i) f = f 21 + f 22 + c1 +
n∑

i=1

eςi , (105)

(i i) f = f 21 + f 22 + c1 +
n∑

i=1

cosh ςi . (106)

We substitute Eq. (105) into Eq. (28) and find the rela-
tion between the parameters as

b1 = −b6b7
b2

, b3 = b6b7
b2

− b2 − b4,

b8 = −b6 − b7 − b9,
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Fig. 6 The propagation of lump solution of Eq. (11) given by Eq. (103) at a t = −150, b t = 0, c t = 150, d contour plot, e density
plot, when b2 = 3, b4 = 1, b5 = 2, b6 = 2, b7 = 2, b9 = 1, b10 = 1, c1 = 3.

wi = −(1 + pi + qi + k2i pi ), (i = 1, 2, 3) . (107)

The lump-multi-kink solution of Eq. (11) is found as

u = − 2

f

{
−2b6b7

b2
f1 + 2b6 f2 + ki

n∑

i=1

eςi

}
, (108)

with

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(109a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 , (109b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2

+ c1 +
n∑

i=1

eςi , (109c)

where ςi = ki (x+ pi y+qi z+wi t)+ς0
i , (i = 1, 2, 3)

and c1 > 0 is an arbitrary constant.
Similarly, substituting Eq. (106) into Eq. (28), we

obtain the same relation between the parameters as

Eq. (107) and the lump-multi-kink solution of Eq. (11)
is obtained as

u = − 2

f

{
−2b6b7

b2
f1 + 2b6 f2 + ki

n∑

i=1

sinh ςi

}
,

(110)

with

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(111a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 , (111b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2

+ c1 +
n∑

i=1

cosh ςi , (111c)

where ςi = ki (x + pi y + qi z + wi t) + ς0
i , (i = 1, 2, 3) and

c1 > 0 is an arbitrary constant.
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Fig. 7 The propagation of lump-one-kink solution of Eq. (11)
given by Eq. (112) at a t = 0, b t = 2, c t = 5, d contour plot at
t = 0, e contour plot at t = 2, and f contour plot at t = 5, when

b2 = 3, b4 = 1, b5 = 2, b6 = 2, b7 = 2, b9 = 1, b10 = 1, c1 =
3, k1 = −1, p1 = 1, andq1 = 1

7.4 Lump-multi-kink solutions using test function I

7.4.1 Lump-one-kink solution

We choose n = 1 in Eq. (108) and obtain lump-one-kink solu-
tion as

u = − 2

f

{
−2b6b7

b2
f1 + 2b6 f2 + k1e

ς1

}
,

(112)

where

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(113a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 ,

(113b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z

+ b9t + b10}2 + c1 + eς1 . (113c)

7.4.2 Lump-two-kink solution

We choose n = 2 in Eq. (108) and obtain lump-two-kink solu-
tion as

u = − 2

f

{
−2b6b7

b2
f1 + 2b6 f2 + k1e

ς1 + k2e
ς2

}
,

(114)

where

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(115a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 ,

(115b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2
+ c1 + eς1 + eς2 . (115c)
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Fig. 8 The propagation of lump-two-kink solution of Eq. (11)
given by Eq. (114) at a t = 5, b t = 7, c t = 11, d con-
tour plot at t = 5, and e contour plot at t = 7, f contour plot

at t = 11, when b2 = 1.5, b4 = 1, b5 = 3, b6 = −3, b7 =
4, b9 = −1, b10 = 1, c1 = 3, k1 = 0.5, p1 = 1, q1 = −3, k2 =
0.7, p2 = −2, andq2 = 0.8

7.4.3 Lump-three-kink solution

We choose n = 3 in Eq. (108) and obtain lump-three-kink
solution as

u = − 2

f

{
−2b6b7

b2
f1 + 2b6 f2 + k1e

ς1 + k2e
ς2 + k3e

ς3

}
,

(116)

where

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(117a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 ,

(117b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2
+ c1 + eς1 + eς2 + eς3 . (117c)

7.5 Lump-multi-kink solutions using test function II

7.5.1 Lump-one-kink solution

We choose n = 1 in Eq. (110) and obtain lump-one-kink solu-
tion as

u = − 2

f

{
−2b6b7

b2
f1 + 2b6 f2 + k1 sinh ς1

}
, (118)

where

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(119a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 ,

(119b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2
+ c1 + cosh ς1 . (119c)
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Fig. 9 The propagation of lump-three-kink solution of the
Eq. (11) given by Eq. (116) at a t = −2.7, b t = −1, c t = 0, d
t = 1, e t = 1.5, f t = 2, when b2 = 1.5, b4 = 1, b5 = .5, b6 =

2, b7 = 2, b9 = −1, b10 = 2, c1 = 1, k1 = −2, p1 = 1, q1 =
1.5, k2 = 1.3, p2 = −2, q2 = 0.8, k3 = −0.8, p3 = 2, q3 = 3

7.5.2 Lump-two-kink solution

We choose n = 2 in Eq. (110) and obtain lump-two-kink solu-
tion as

u = − 2

f

{
−2b6b7

b2
f1 + 2b6 f2 + k1 sinh ς1 + k2 sinh ς2

}
,

(120)

where

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(121a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 ,

(121b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2
+ c1 + cosh ς1 + cosh ς2 . (121c)

7.5.3 Lump-three-kink solution

We choose n = 3 in Eq. (110) and we have obtain lump-three-
kink solution as

u = − 2

f

{
− 2b6b7

b2
f1 + 2b6 f2 + k1 sinh ς1

+k2 sinh ς2 + k3 sinh ς3

}
, (122)

where

f1 = −b6b7
b2

x + b2y +
(
b6b7
b2

− b2 − b4

)
z + b4t + b5 ,

(123a)

f2 = b6x + b7y + (−b6 − b7 − b9)z + b9t + b10 ,

(123b)

f =
{
−b6b7

b2
x + b2y +

(
b6b7
b2

− b2 − b4

)
z + b4t + b5

}2

+ {b6x + b7y + (−b6 − b7 − b9)z + b9t + b10}2
+ c1 + cosh ς1

+ cosh ς2 + cosh ς3 . (123c)
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Fig. 10 The propagation of lump-one-kink solution of Eq. (11) given by Eq. (118) at a t = −10, b t = −.5, c t = 0, d t = 1.3, e
t = 2.2, f t = 4, when b2 = 3, b4 = 1, b5 = 3, b6 = −2, b7 = 4, b9 = 1, b10 = −1, c1 = 2, k1 = −1, p1 = 1, q1 = 1

Fig. 11 The propagation of lump-two-kink solution of Eq. (11) given by Eq. (120) at a t = −5, b t = −1, c t = 1.5, d t = 4, e t = 7,
and f t = 15, when b2 = 1, b4 = 1, b5 = 2, b6 = 3, b7 = 2, b9 = 1, b10 = .1, c1 = 4, k1 = 0.6, p1 = 1, q1 = 3, k2 = 0.4, p2 =
−3, andq2 = 2.5.
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Fig. 12 The propagation of lump-three-kink solution of Eq. (11)
given by Eq. (122) at a t = −1, b t = −0.3, c t = 1, d t = 2, e
t = 3, and f t = 4.5, when b2 = −2.9, b4 = 3, b5 = −2, b6 =

−9, b7 = 7, b9 = −1, b10 = 2, c1 = 2, k1 = 1.2, p1 = 1, q1 =
1.5, k2 = 0.8, p2 = 2, q2 = 0.8, k3 = 0.4, p3 = 2, andq3 = 3

8 Conclusion

In this current exposition, we have successfully delved into the
integrability features of the (3+1)-dimensional negative-order
KDV–CBS equation. Our investigation included a pivotal step,
where we identified the Hirota bilinear form through the uti-
lization of binary Bell polynomials. We also introduced some
fundamental concepts from the theory of binary Bell poly-
nomials, laying the foundation for deriving the Hirota bilin-
ear form by employing the notion of P-polynomials. Further-
more, we achieved a significant breakthrough by decoupling
two-field conditions to obtain a bilinear Bäcklund transfor-
mation. To illuminate our findings, we incorporated the Cole–
Hopf transformation into theBäcklund transformation process,
thereby linearizing it and establishing the Lax pair for the sys-
tem. This led us to rephrase the two-field conditions, from
which we deduced a divergence-type equation and a Riccati-
type equation using a novel potential function. Notably, when
we expanded this potential function into a series, we unveiled
an infinite sequence of conservation laws. The presence and
verification of the Lax pair, Bäcklund transformation, Hirota
bilinear form and the existence of conservation laws provide
undeniable evidence of the complete integrability of the model

under consideration. This significance is further underscored
by our discovery of one-, two- and three-kink solutions, as
visually represented in Fig. 1. The attainment of closed-form
analytic solutions, in the form of traveling waves, assumes
paramount importance as it offers valuable insights into the
dynamic behavior of the model. In the subsequent sections,
we delve into the existence of traveling wave solutions within
the (3+1)-dimensional negative-order KDV–CBS model. We
elucidate the conditions governing the existence of these solu-
tions and present a range of solitary wave solutions, includ-
ing homoclinic breather wave solutions (Figs. 2, 3), and kink
wave solutions (Figs. 4, 5) expressed in terms of Jacobi elliptic
functions and incomplete elliptic integrals of the second kind.
These solutions are not only significant but also exhibit a rich
and rigorous ability to describe various physical phenomena.
Within the realm of integrable models, we encounter lump
waves characterized by rational functions that are localized
in all spatial directions. In exploring the long wave limits of
soliton solutions, we unearth the potential for generating lump
wave solutions. Our approach builds upon the work of Chen
and Lü [52], who established a necessary and sufficient con-
dition for the existence of lump solutions in selected NLLEs
with specific Hirota bilinear forms. We expand upon this con-
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cept by introducing additional terms into the previously men-
tionedHirota bilinear form, thus demonstrating that lump solu-
tions can also manifest in these types of bilinear forms. Our
examination includes the incorporation of a quadratic form of
a test function into the Hirota bilinear form, leading to the
discovery of lump wave solutions (Figure 6). In an exciting
development, we introduce two novel forms of test functions,
enabling us to discern lump-multi-kink solutions. By adeptly
employing these test functions, we uncover and illustrate spe-
cific instances of lump-one-kink, lump-two-kink and lump-
three-kink solutions (Figs. 7, 8, 9) for the considered model.
This exploration extends to a second set of test functions,
yielding further insights into lump-one-kink, lump-two-kink
and lump-three-kink solutions (Figs. 10, 11, 12). Our future
research endeavors will focus on investigating higher-order
rogue waves, breather waves and hybrid solutions, exploring
their interactions within the framework of the concerned the-
ories. Additionally, we plan to apply the linear superposition
principle to the Hirota bilinear form in the context of complex
fields, with the aim of identifying complextions, resonant soli-
tons and other intriguing phenomena. In summary, our compre-
hensive study sheds light on the intricate integrability aspects
of the (3+1)-dimensional negative-orderKDV–CBS equation,
unveiling a wealth of novel solutions and paving the way for
further exploration in the field of nonlinear wave dynamics.
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