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Abstract In this article, we examine an extended (3 + 1)-dimensional Bogoyavlensky-Konopelchenko equation, which models the
interaction between a Riemann wave and a long wave in a fluid. This equation has significant applications in the study of shallow-
water waves, ion-acoustic waves, and water propagation in liquids. We explore the integrability of this model through various
approaches. First, we derive the Hirota bilinear form using the Bell polynomial theory. By decoupling the two-field condition, we
calculate the bilinear Bäcklund transformation. Subsequently, through the Cole–Hopf transformation and the linearization of the
Bäcklund transformation, we obtain the Lax pair. Additionally, we derive infinitely many conservation laws using Bell polynomial
theory. We compute one-, two-, and three-soliton solutions directly from the Hirota bilinear form and present their 3-D plot, density
plot and 2D plot graphically. We establish the Wronskian condition by employing the Plücker relation, ensuring that the N-soliton
solutions of the equation can be represented as Wronskian determinants. Additionally, the use of a suitable transformation and the
Wronskian determinant condition in our model establishes the widely known Wronskian solution to the (1 + 1)-dimensional KdV
equation. We derive a rational Wronskian solution by selecting a specific coefficient matrix in the resulting Wronskian formulation.
Furthermore, we calculate one-, two-, and three-soliton solutions in Wronskian form and visually depict their soliton dynamics using
Mathematica with appropriately chosen parameters. Additionally, we present a Grammian determinant solution, utilizing the Jacobi
relation. To obtain the lump solution, we employ a quadratic function as a test function within the Hirota bilinear form. Furthermore,
we calculate two sets of lump-multi-kink solutions employing two distinct test functions. We provide a visual comparison of the
evolutionary dynamics of the lump-multi-kink solutions corresponding to two distinct test functions.

1 Introduction

In recent decades, researchers worldwide have increasingly directed their focus towards nonlinear partial differential equations
(PDEs) rather than linear models, driven by major advancements in science and computer technology. A significant motivation for
studying nonlinear models lies in their ability to describe virtually every phenomenon encountered in daily life. Nonlinear evolution
equations (NLEEs) are particularly vital across numerous scientific and engineering domains, capturing real-life phenomena observed
in fields like oceanography [1], nonlinear optics [2], fluid mechanics [3], chemical physics, solid-state physics [4], geochemistry,
plasma physics [5] and wave propagation in shallow water [6]. The quest for exact solutions of nonlinear models is arduous yet
essential for accurately understanding their characteristics. The integrability of a nonlinear PDE holds immense importance as it
ensures the exact solvability of such equations. Over the past decades, various sophisticated methods have been devised for checking
the integrability of NLEEs, including the Inverse scattering transform method [7], Painlevè analysis [8], Hirotas bilinear method [9],
Lax pair, KP hierarchy reduction method, residual neural network method [10], Bäcklund transformation [11], Wronskian technique
[12], Darboux transformation [13], Lie symmetry analysis [14] and bilinear neural network method [15]. Notably, the Hirota bilinear
method distinguishes itself as both the most straightforward and the most efficient approach among them. To apply the Hirota bilinear
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method, the problem needs to be transformed into Hirota bilinear form, enabling the derivation of lump solutions, multi-soliton
solutions, Wronskian solutions, periodic solutions, breather solutions, Grammian solutions, rogue wave solutions, and various types
of rational solutions. Gilson et al. [16], Lambert and Springael [17] pioneered a revolutionary method for deriving the Hirota bilinear
form of NLEEs using Bell polynomial theory, allowing for the direct deduction of the bilinear Bäcklund transformation and Lax
pair from Hirota bilinear form. This method was extended by E. Fan to calculate infinitely many conservation laws directly from
the bilinear Bäcklund transformation [18]. Recently, researchers have checked the integrability of various NLEEs using this method
[19–22].The Wronskian technique also emerges as an uncomplicated and highly effective approach for determining exact solutions
of integrable systems. In 1979, Satsuma [23] pioneered the derivation of the N-soliton solution through the Wronskian expression,
followed by Freeman and Nimmo in 1983, who introduced a systematic methodology for confirming the existence of Wronskian
solutions for equations such as the Kadomtsev–Petviashvili (KP) equation and the Korteweg-de Vries (KdV) equation [12]. Hirota
et al. subsequently broadened the scope of Wronskian solutions to discrete systems by substituting the Wronskian determinant with
the Casorati determinant [24]. Several nonlinear evolution equations, such as, the KdV equation, sine-Gordon equation, Boussinesq
equation, KP equation, and mKdV equation have been demonstrated to exhibit solutions through the Wronskian formalism [12,
25]. In recent years utilizing this method, researchers have derived a range of solutions including rational solutions, solitons,
complexitons, positons, and negatons [26–30]. Researchers have increasingly explored the fascinating dynamical properties of exact
solutions to NLEEs, with a particular emphasis on phenomena such as rogue wave, soliton, breather wave, and lump wave. When
waves travel through nonlinear media, their amplitudes and widths typically fluctuate. Nevertheless, under certain conditions, a
balance between nonlinearity and dispersion can lead to the formation of stable, localized waves known as solitons. Lump waves
are a class of rational function solutions that display localization in all spatial directions. They were initially discovered in 1977 by
Manakov et al. [31] and have since been observed in various research areas such as soliton theory, optical media, plasma, and shallow
water waves [32–34]. Several methods, including the long wave limit of N-soliton solutions [35], inverse scattering transformation
[7], Darboux transformation [36], Lie symmetry method [37], and Bäcklund transformation [38] have been employed to derive
exact lump solutions of NLEEs. In 2015, Ma [39] introduced an innovative approach to computing lump waves. This technique
has enabled researchers worldwide to derive effective lump solutions for various NLEEs. The exploration of the dynamic interplay
among lump solutions and other exact solutions, such as rogue waves and solitons, breathers, stripes, kinks etc., has opened up new
frontiers in our understanding of wave phenomena [40–44]. Recently, Mandal et al. [45] introduced a comprehensive criterion for
identifying lump and lump-multi-kink solutions of NLEEs manifesting a special type of Hirota bilinear form. Additionally, Mandal
et al. [46] presented the interaction phenomena of kink waves with higher-order breather waves for an extended B-type KP equation.

A (2 + 1)-dimensional Bogoyavlensky-Konopelchenko equation [47] can be written as

𝓊xt + a1𝓊4x + a2𝓊3xy + a3𝓊x𝓊2x + a4𝓊x𝓊xy + a5𝓊2x𝓊y � 0, (1)

which is the generalized form of (2 + 1)-dimensional KdV equation and have practical applications in elucidating the dynamics of
internal waves within deep water. A generalized (2 + 1)-dimensional Bogoyavlensky-Konopelchenko equation can be present as

𝓊xt + a1𝓊4x + a2𝓊3xy + a3𝓊x𝓊2x + a4𝓊x𝓊xy + a5𝓊2x𝓊y + p1𝓊2x + p2𝓊xy + p3𝓊2y � 0. (2)

Equations (1) and (2) have been extensively explored in the literature [48–50], with investigations into Lie symmetry analysis,
conservation laws, soliton solutions, and lump solutions provided.

Recently, Wazwaz et al. extended Eq. (2) into a novel (3 + 1)-dimensional Bogoyavlensky-Konopelchenko equation [51]

𝓊xt + 𝓊yt + 𝓊xxxx + 𝓊xxxy + 6𝓊x𝓊xx + 3𝓊x𝓊xy + 3𝓊xx𝓊y + α𝓊xy + β𝓊xz + β𝓊yz + γ1𝓊xx + γ2𝓊yy � 0, (3)

which describes the three-dimensional interaction of a long wave and a Riemann wave in nonlinear media. The equation holds
significance across a multitude of scientific domains, encompassing plasma physics, nonlinear optics, fluid dynamics, biological
systems, and even differential geometry. In [51], the authors demonstrated that Eq. (3) successfully passes the Painlevè integrability
test and obtained lump and multi-soliton solutions.

However, we observe that aspects of integrability such as the Hirota bilinear form, bilinear Bäcklund transformation, Lax pair,
infinitely many conservation laws, Wronskian solution and various types of exact solutions like kink solution, lump solution and
their interactions have not been explored yet. This observation has motivated our investigation into these aspects in the present
article.

The structure of our article is as follows. In Sect. 2, a brief introduction of the multi-dimensional Bell polynomials is given. In
Sect. 3, we extensively investigate the Hirota bilinear form, bilinear Bäcklund transformation and the related Lax pair formulation
for the model under consideration, utilizing Bell polynomial theory respectively. Section 4 is dedicated to deriving an infinite array
of conservation laws. Section 5 delves into the computation and visual representation of one-, two-, and three-soliton solutions. In
Sect. 6, we thoroughly investigate the Wronskian condition, Wronskian rational solution, and multi-soliton solutions in Wronskian
form. Section 7 is dedicated to deriving the Grammian determinant solution. Section 8 focuses on investigating the lump solution.
Section 9 is devoted to computing two sets of lump-multi-kink solutions. In Sect. 10, the obtained solutions are presented, with a
thorough discussion of their propagation and their nonlinear interaction with other solutions. Finally, in Sect. 11, conclusions are
drawn based on the findings.
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2 Multi-dimensional Bell polynomials

In this section, we present a concise overview of the fundamental principles and representations of Bell polynomials [16, 17]. Let’s
assume that ϕ is a C∞ function of x. The one-dimensional Bell polynomial [16] can be represented as

Ynx (ϕ) � Yn(ϕ1, ϕ2, . . . , ϕnx ) � e−ϕ∂x
neϕ , n � 1, 2, 3, . . . . (4)

The definition above leads to a variety of one-dimensional Bell polynomials

Yx � ϕx , Y2x � ϕ2x + ϕx
2, Y3x � ϕ3x + 3ϕxϕ2x + ϕx

3, . . . . (5)

The one-dimensional Bell polynomials described in Eq. (5) can be obtained using the following formula

Ynx (ϕ) �
∑ n!

a1! a2! ...an!

(ϕx

1!

)a1
(ϕ2x

2!

)a2
...
(ϕnx

n!

)an
, (6)

where the sum run over all partitions of n � a1 + 2a2 + · · · + nan . Assuming ϕ � ϕ(x1, x2, . . . , xs) as a C∞ multi-variable
function, we have the opportunity to expand the dimension of the Bell polynomial, allowing for a more comprehensive and powerful
representation. This extension results in the multi-dimensional Bell polynomial, which can be elegantly expressed as follows

Yn1x1,...,ns xs (ϕ) ≡ Yn1,...,ns (ϕm1x1,...,ms xs ) � e−ϕ∂n1
x1

...∂nsxs e
ϕ , (7)

where ϕm1x1, ...,ms xs � ∂
m1
x1 ...∂

ms
xs ϕ, mi � 0, 1, . . . , ni (i � 1, 2, . . . , s). Here Yn1x1, ..., ns xs (ϕ) denotes the multi-variable Bell

polynomial with respect to ϕm1x1, ...,ms xs . In the specific case where we choose a function ϕ(x , y), the associated lower-order
two-dimensional Bell polynomials can be obtained through the following derivation.

Y2x(ϕ) � ϕ2x + ϕ2
x , Y3x(ϕ) � ϕ3x + 3ϕ2xϕx + ϕ3

x , (8)

Yx ,z � ϕx ,z + ϕxϕz , Y2x ,z(ϕ) � ϕ2x ,z + ϕ2xϕz + 2ϕx ,zϕx + ϕ2
xϕz , . . . (9)

From the previously mentioned one-dimensional Bell polynomials in Eq. (7), we can also represent multi-dimensional binary Bell
polynomials in the following way.

Yn1x1,...,ns xs (𝒻,ℊ) � Yn1x1,...,ns xs (ϕ), (10)

where

ϕm1x1,...,ms xs �
{
𝒻m1x1,...,ms xs , m1 + · · · + ms is odd,
ℊm1x1,...,ms xs , m1 + · · · + ms is even.

(11)

Two-dimensional binary Bell polynomials that can be derived from the previously mentioned statement include

Yx (𝒻) � 𝒻x , Y2x (𝒻,ℊ) � ℊ2x + 𝒻2
x , Yx ,z(𝒻,ℊ) � ℊx ,z + 𝒻x𝒻z ,

Y2x ,z(𝒻,ℊ) � 𝒻2x ,z + ℊ2x𝒻z + 2ℊx ,z𝒻x + 𝒻2
x𝒻z , Y3x � 𝒻3x + 3ℊ2x𝒻x + 𝒻3

x , . . . (12)

By leveraging the identity

(ϕψ)−1Dn1
x1

...Dns
xs ϕ.ψ � Yn1x1,...,ns xs (𝒻 � ln ϕ/ψ , ℊ � ln ϕψ) , (13)

a relationship can be established between the conventional Hirota bilinear expression Dn1
x1 ...Dns

xs ϕ.ψ and binary Bell polynomials.
Here, the D-operator is elucidated by Hirota [9] as follows

Dn1
x1

...Dns
xs ϕ.ψ � (∂x1 − ∂x ′

1
)n1 ...(∂xs − ∂x ′

s
)nsϕ(x1, . . . , xs).ψ(x ′

1, . . . x ′
s)|x ′

1�x1,...,x ′
s�xs . (14)

The identity Eq. (13) becomes in the scenario where ϕ � ψ

(ϕ)−2Dn1
x1

...Dns
xs ϕ.ϕ � Yn1x1,...,ns xs (𝒻 � 0,ℊ � 2 ln ϕ) �

{
0, n1 + · · · + ns is odd,
Pn1x1,...,ns xs (𝓅), n1 + · · · + ns is even.

(15)

Here, even-ordered Y -polynomials are represented by P-polynomials. Below are a few of the lower-order Y -polynomials.

P2x (𝓅) � 𝓅2x , Px ,z(𝓅) � 𝓅x ,z , P3x ,z(𝓅) � 𝓅3x ,z + 3𝓅x ,z𝓅2x , P4x (𝓅) � 𝓅4x + 3𝓅2
2x . (16)

A linear combination of P-polynomials and Bell polynomials Yn1x1, ..., ns xs (𝒻) is employed to express the binary Bell polynomial
Yn1x1, ..., ns xs (𝒻, ℊ) as

(ϕψ)−1Dn1
x1

...Dns
xs ϕ.ψ � Yn1x1,...,ns xs (𝒻,ℊ), where 𝒻 � ln ϕ/ψ and ℊ � ln ϕψ

� Yn1x1,...,ns xs (𝒻,𝒻 + 𝓅), where 𝒻 � ln ϕ/ψ and 𝓅 � 2 ln ψ
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�
n1∑

m1�0

· · ·
ns∑

ms�0

s∏

i�1

(
ni
mi

)
Pm1x1,...,msxs (𝓅) Y(n1−m1)x1,...,(ns−ms )xs (𝒻). (17)

Utilizing the Hopf-Cole transformation 𝒻 � ln ψ , the binary Bell polynomial can be expressed as follows

Yn1x1,...,ns xs (𝒻 � ln ψ) � ψn1x1,...,ns xs

ψ
, (18)

which enables us to rewrite Eq. (17) as

(ϕψ)−1Dn1
t1 ...Dns

ts ϕ.ψ � ψ−1
n1∑

m1�0

...

ns∑

ms�0

s∏

i�1

(
ni
mi

)
Pm1x1,...,ms xs (𝓅) ψ(n1−m1)x1,...,(ns−ms )xs . (19)

The methodology outlined in Eq. (19) furnishes the most straightforward and systematic framework for the explicit construction of
the corresponding Lax pair associated with the relevant nonlinear evolution equation.

3 Hirota bilinear form, bilinear Bäcklund transformation and Lax pair

A new potential field 𝓅 is introduced by setting

𝓊 � 𝓅x (20)

to achieve the Hirota bilinear form of Eq. (3). After replacing Eq. (20) to Eq. (3) and integrating with regard to x, we get

E(𝓅) � 𝓅xt + 𝓅yt + 𝓅4x + 𝓅3xy + 3𝓅2
2x + 3𝓅2x𝓅xy + α𝓅xy + β𝓅yz + γ1𝓅2x + γ2𝓅2y � 0 , (21)

Furthermore, by setting 𝓅 � 2 log 𝒽, we obtain the Hirota bilinear form of Eq. (3) employing the relationship between the
P-polynomial and the Hirota D-operator as described in Eq. (15) as

(Dx Dt + DyDt + D4
x + D3

x Dy + αDx Dy + βDx Dz + βDyDz + γ1D
2
x + γ2D

2
y)𝒽 · 𝒽 � 0. (22)

To calculate bilinear Bäcklund transformation, we take 𝓅′ � 2 log 𝒽′ as another solution of Eq. (3). Additionally, we introduce two
new variables ν � 𝓅′−𝓅

2 and ω � 𝓅′+𝓅
2 . Consequently, the two-field condition can be written as

E(𝓅′) − E(𝓅) � 2

[
νxt + νyt + ν4x + ν3xy + 6ν2xω2x + 3(ω2xνxy + ν2xωxy) + ανxy + β(νxz + νyz) + γ1ν2x + γ2ν2y

]
� 0

� 2

[
∂

∂x

{
Yt (ν) + αYy(ν) + βYz(ν) + γ1Yx (ν) + Y3x (ν, ω)

}
+

∂

∂y

{
Yt (ν) + Y3x (ν, ω)βYz(ν) + γ2Yy(ν)

}]

+ 6 Wronskian [Y2x ,Yx ] + 6 Wronskian [Yxy ,Yx ] � 0 . (23)

Finally, the bilinear Bäcklund transformation of Eq. (3) can be derived by decoupling the two-field condition in Eq. (23) as

Yt (ν) + αYy(ν) + βYz(ν) + γ1Yx (ν) + Y3x (ν, ω) − c1 � 0 , (24a)

Yt (ν) + βYz(ν) + γ2Yy(ν) + Y3x (ν, ω) − c2 � 0 , (24b)

Y2x (ν, ω) + δYx (ν) � 0 , (24c)

Yxy(ν, ω) + ηYx (ν) � 0 . (24d)

Bilinear Bäcklund transformation Eq. (24) can also be expressed in terms of the Hirota D-operator as follows

(𝒽′ · 𝒽)−1[Dt + α Dy + βDz + γ1 Dx + D3
x − c1](𝒽′ · 𝒽) � 0 , (25a)

(𝒽′ · 𝒽)−1[Dt + β Dz + γ2Dy + D3
x − c2](𝒽′ · 𝒽) � 0 , (25b)

(𝒽′ · 𝒽)−1[D2
x + δDy](𝒽′ · 𝒽) � 0 , (25c)

(𝒽′ · 𝒽)−1[Dx Dy + ηDx ](𝒽′ · 𝒽) � 0 . (25d)

By employing the Cole–Hopf transformation 𝓋 � log λ and linearizing the Bell polynomial system in Eq. (24), we successfully
establish the Lax pair for Eq. (3) as outlined below.

λt + β λz + α λ + λx (γ1 + 3𝓅2x ) + λ3x − c1λ � 0 , (26a)

λt + βλ + γ2λ + 3λ𝓅2x + λ3x − c2λ � 0 , (26b)
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λ2x + λ𝓅2x + δλx � 0 , (26c)

λxy + λ𝓅xy + ηλx � 0 . (26d)

4 Infinitely many conservation laws

In order to establish infinite conservation laws of Eq. (3), we take η � δ and rewrite the two-field condition Eq. (23) as

ω2x + ν2
x + ωxy + νxνy + 2δνx � 0 (27)

∂

∂t
[νx + νy] +

∂

∂x
[ανy + γ1νx + ν3x + 3ω2xνx + ν3

x ] +
∂

∂y
[ν3x + 3ω2xνx + ν3

x + γ2νy] +
∂

∂z
[βνx + βνy] . (28)

We introduce a novel potential function σ � 𝓅′
x−𝓅x

2 , which yields

νx � σ , νy � ∂−1
x (σy), νz � ∂−1

x (σz), ωx � 𝓅x + σ. (29)

Substituting Eq. (29) in both Eq. (27) and Eq. (28) results

𝓅xx + σx + σ 2 + 𝓅xy + σy + σ∂−1
x (σy) + 2δσ � 0 , (30)

∂t [σ + ∂−1
x (σy)] + ∂x [α ∂−1

x (σy) + γ1σ + σ2x + 3(𝓅2x + σx )σ + σ 3] + ∂y[σ2x + 3(𝓅2x + σx )σ + σ 3 + γ2 ∂−1
x (σy)]

+ ∂z[βσ + ∂−1
x (σy)] � 0 . (31)

We adopt the infinite series form of σ as

σ �
∞∑

n�1

Ln(𝓅,𝓅x ,𝓅2x , . . .)δ−n . (32)

By substituting Eq. (32) into Eq. (30) and equating all similar powers of δ, we derive the recursion relations that govern the conserved
densities as

L1 � −1

2
(𝓅2x + 𝓅xy) , (33a)

L2 � −1

2
(L1,x + L1,y) � 1

4
(𝓅3x + 2𝓅2xy + 𝓅x2y) , (33b)

L3 � −1

2
{L2,x + L 2

1 + L2,y + L1 ∂−1
x (L1,y)} , (33c)

· · · · · ·

Ln+1 � −1

2

{
Ln,x +

n∑

k�1

Lk Ln−k + Ln,y +
n∑

k�1

Lk ∂−1
x (Ln−k)

}
. (33d)

Again, replacing Eq. (32) into Eq. (31) yields

∂t

[ ∞∑

n�1

Lnδ
−n + ∂−1

x

( ∞∑

n�1

Ln,yδ
−n

)]
+ ∂x

[
α ∂−1

x

( ∞∑

n�1

Ln,yδ
−n

)
+ γ1

( ∞∑

n�1

Lnδ
−n

)
+

( ∞∑

n�1

Ln,2xδ
−n

)

+3

(
𝓅2x +

∞∑

n�1

Ln,xδ
−n

)( ∞∑

n�1

Lnδ
−n

)
+

( ∞∑

n�1

Lnδ
−n

)3
⎤

⎦ + ∂y

[ ∞∑

n�1

Ln,2xδ
−n + 3

(
𝓅2x +

∞∑

n�1

Ln,xδ
−n

)

( ∞∑

n�1

Lnδ
−n

)
+

( ∞∑

n�1

Lnδ
−n

)3

+ γ2 ∂−1
x

( ∞∑

n�1

Lnδ
−n

)⎤

⎦ + ∂z

[
β

{( ∞∑

n�1

Lnδ
−n

)
+ ∂−1

x

( ∞∑

n�1

Ln,yδ
−n

)}]
� 0 . (34)

Finally, we compare the coefficient of all similar powers of δ from Eq. (3) to obtain the conservation rules for Eq. (34).

Xn,t + Un,x + Zn,y + Wn,z � 0, (35)

where,

X1 � L1 + ∂−1
x (L∨∞⇔†) � −1

2
(𝓅2x + 2𝓅xy + 𝓅2y) , (36a)
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X2 � L2 + ∂−1
x (L∨∈⇔†) � 1

4
(𝓅3x + 3𝓅2xy + 3𝓅x2y + 𝓅3y) , (36b)

· · · · · ·
Xn � Ln + ∂x−1Ln,y , (36c)

U1 � α∂−1
x (L1,y) + γ1L1 + L1,2x + 3L1𝓅2x (37a)

� −1

2

{
α(𝓅xy + 𝓅2y) + γ1(𝓅2x + 𝓅xy) + 𝓅4x + 𝓅3xy − 3𝓅2

2x + 3𝓅2x + 3𝓅2x𝓅xy

}
, (37b)

U2 � α∂−1
x (L2,y) + γ1L2 + L2,2x + 3L1L1,x + 3L2𝓅2x , (37c)

· · · · · ·
Un � α ∂−1

x (Ln,y) + γ1Ln + Ln,2x + 3
∑

i+ j�n

LiL j ,x + 3Ln𝓅2x +
∑

i+ j+k�n

LiL jLk , (37d)

Z1 � L1,2x + 3L1𝓅2x + γ2∂
−1
x L1,y (38a)

� −1

2

{
L4x + L3xy + 3(𝓅2

2x + 𝓅xy𝓅2x ) + γ2(𝓅xy + 𝓅2y)
}

, (38b)

Z2 � L2,2x + 3L1L1,2x + 3L2𝓅2x + γ2∂
−1
x (L2,y), (38c)

· · · · · ·
Zn � Ln,2x + 3

∑

i+ j�n

LiL j ,x + 3Ln𝓅2x +
∑

i+ j+k�n

LiL jLk + γ2∂
−1
x Ln,y (38d)

and

W1 � βL1 + β∂−1
x (L1,y) � −β

2
(𝓅2x + 2𝓅xy + 𝓅2y) (39a)

W2 � βL2 + β∂−1
x (L2,y), (39b)

· · · · · ·
Wn � βLn + β∂−1

x (Ln,y) . (39c)

The values of Ln are given via recursion relations Eq. (33).

5 Soliton solutions

5.1 One-soliton solution

To calculate one-soliton solution of Eq. (3), we adopt the following expression for 𝒽

𝒽 � 1 + eχ1 , (40)

where χ1 � a1(x +b1y + c1z +w1t) +χ0
1 and a1, b1, c1, χ0

1 are arbitrary constants. By substituting Eq. (40) into Eq. (22) and setting
each exponential function to zero, we derive the dispersion relation as

w1 � −a2
1 + a2

1b1 + αb1 + β(b1 + c1) + γ1 + γ2b2
1

1 + b1
. (41)

Finally, the one-soliton solution for Eq. (3) is obtained by substituting Eq. (40) along with Eq. (41) into Eq. (22) as

𝓊 � 2
[

log (1 + eχ1 )
]
x . (42)

In Fig. 1, we present 3-dimensional plot, density plot and 2-dimensional plot of one-soliton solution Eq. (42), corresponding to
parametric values as α � β � γ1 � γ2 � 1, a1 � 1, b1 � 1.2, c1 � 1.3, χ0

1 � 0.

123



Eur. Phys. J. Plus         (2025) 140:389 Page 7 of 23   389 

Fig. 1 The one-soliton solution of Eq. (3), represented by Eq. (42) a 3D surface plot, b density map, c 2D projection

Fig. 2 The two-soliton solution of Eq. (3), represented by Eq. (45) a 3D surface plot, b density map, c 2D projection

5.2 Two-soliton solution

To derive the two-soliton solution for Eq. (3), we consider 𝒽 in the following form

𝒽 � 1 + eχ1 + eχ2 + C12e
χ1+χ2 , (43)

where χi � ai (x + bi y + ci z + wi t) + χ0
i , (i � 1, 2) and ai , bi , ci , χ0

i , (i � 1, 2) are arbitrary constants. Substitution of Eq. (43)
into Eq. (22) yields dispersion relation and C12 as

wi � −a2
i + a2

i bi + αbi + β(bi + ci ) + γ1 + γi b2
i

1 + bi
, (i � 1, 2) (44a)

C12 �

⎡

⎢⎢⎢⎢⎣

(a1w1 − a2w2)(a1 − a2 + a1b1 − a2b2) + (a1 − a2)4 + (a1 − a2)3(a1b1 − a2b2) + α(a1 − a2)(a1b1 − a2b2)

+β{(a1 − a2)(a1c1 − a2c2) + (a1b1 − a2b2)(a1c1 − a2c2)} + γ1(a1 − a2)2 + γ2(a1b1 − a2b2)2

(a1w1 + a2w2)(a1 + a2 + a1b1 + a2b2) + (a1 + a2)4 + (a1 + a2)3(a1b1 + a2b2) + α(a1 + a2)(a1b1 + a2b2)

+β{(a1 + a2)(a1c1 + a2c2) + (a1b1 + a2b2)(a1c1 + a2c2)} + γ1(a1 + a2)2 + γ2(a1b1 + a2b2)2

⎤

⎥⎥⎥⎥⎦
. (44b)

Again substituting Eq. (43) with Eq. (44) into Eq. (22), we have obtained two-soliton solution of Eq. (3) as

𝓊 � 2
[

log (1 + eχ1 + eχ2 + B12e
χ1+χ2 )

]
x . (45)

Figure 2 illustrates a 3-dimensional plot, a density plot, and a 2-dimensional plot of the two-soliton solution given by Eq. (45),
corresponding to parametric values as α � β � γ1 � γ2 � 1, a1 � 1, a2 � 2, b1 � 1.2, b2 � 2.4 c1 � 1.3, c2 � 2.5,
χ0
i � 0 (i � 1, 2).

5.3 Three-soliton solution

Following a similar approach, we can derive the three-soliton solution of Eq. (3) by selecting 𝒽 in the following form

𝒽 � 1 + eχ1 + eχ2 + eχ3 + C12e
χ1+χ2 + C13e

χ1+χ3 + C23e
χ2+χ3 + C123e

χ1+χ2+χ3 , (46)
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Fig. 3 The three-soliton solution of Eq. (3), represented by Eq. (92) a 3D surface plot, b density map, c 2D projection

where χi � ai (x + bi y + ci z + wi t) + χ0
i , (i � 1, 2, 3) and ai , bi , ci , χ0

i , (i � 1, 2, 3) are arbitrary constants. Substituting Eq.
(46) into Eq. (22), we derive dispersion relation and Ci j as

wi � −a2
2 + a2

2b2 + αb2 + β(b2 + c2) + γ1 + γ2b2
2

1 + b2
, (i � 1, 2, 3) , (47a)

C12 �

⎡

⎢⎢⎢⎢⎣

(aiwi − a jw j )(ai − a j + aibi − a jb j ) + (ai − a j )
4 + (ai − a j )

3(aibi − a jb j ) + α(ai − a j )(aibi − a jb j )

+β{(ai − a j )(ai ci − a j c j ) + (aibi − a jb j )(ai ci − a j c j )} + γ1(ai − a j )
2 + γ2(aibi − a jb j )

2

(aiwi + a jw j )(ai + a j + aibi + a jb j ) + (ai + a j )
4 + (ai + a j )

3(aibi + a jb j ) + α(ai + a j )(aibi + a jb j )

+β{(ai + a j )(ai ci + a j c j ) + (aibi + a jb j )(ai ci + a j c j )} + γ1(ai + a j )
2 + γ2(aibi + a jb j )

2

⎤

⎥⎥⎥⎥⎦
, (47b)

C123 � C12C13C23. (47c)

Finally substituting Eq. (46) with Eq. (47) into Eq. (22), we derive three soliton solution of Eq. (3) as

𝓊 � 2
[

log (1 + eχ1 + eχ2 + eχ3 + B12e
χ1+χ2 + B13e

χ1+χ3 + B23e
χ2+χ3 + B123e

χ1+χ2+χ3 )
]
x . (48)

In Fig. 3, we illustrate three soliton solution Eq. (48) graphically, corresponding to the parametric values as α � β � γ1 � γ2 � 1,
a1 � 1, a2 � 2, a3 � 3.5, b1 � 1.2, b2 � 2.4, b3 � 4, c1 � 1.3, c2 � 2, c3 � 3.3, χ0

i � 0 (i � 1, 2, 3).

6 Wronskian solution

To achieve N th order Wronskian solution for Eq. (3), firstly, we adopt the N th order Wronskian determinant notation proposed
by Freeman and Nimmo [12, 25] as follows

W � W (φ1, φ2, . . . , φN ) �

∣∣∣∣∣∣∣∣∣∣

φ
(0)
1 φ

(1)
1 · · · φ

(N −1)
1

φ
(0)
2 φ

(1)
2 · · · φ

(N −1)
2

...
...

. . .
...

φ
(0)
N φ

(1)
N · · · φ

(N −1)
N

∣∣∣∣∣∣∣∣∣∣

�| ̂N − 1 | (49)

where N ≥ 1, an arbitrary integer and φ � (φ1, φ2, . . . , φN )T , a sequence of smooth polynomial functions defined as φ
(0)
i �

φi , φ
( j)
i � ∂ jφi

∂x j , 1 ≤ i ≤ N , 0 ≤ j ≤ (N − 1).
Employing the Hirota operator mentioned in Eq. (14) into the bilinear form Eq. (22), the Hirota bilinear form can be expressed

as

𝒽(𝒽xxxx + 𝒽xxxy + γ1𝒽xx + γ2𝒽yy + α𝒽xy + β𝒽xz + β𝒽yz + 𝒽xt + 𝒽yt ) − 4𝒽x𝒽xxx + 3𝒽2
xx − 𝒽xxx𝒽y − 3𝒽x𝒽xxy

+ 3𝒽xx𝒽xy − γ1𝒽2
x − γ2𝒽2

y − α𝒽x𝒽y − β𝒽x𝒽z − β𝒽y𝒽z − 𝒽x𝒽t − 𝒽y𝒽t � 0 (50)

A sufficient condition that the bilinear equation Eq. (50) of the (3 + 1)-dimensional extended BK equation Eq. (3) has Wronskian
determinant solutions is mentioned below.
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Theorem A: Consider a set of functions φi � φi (x , y, z, t), 1 ≤ i ≤ N that meet the subsequent linear partial differential
conditions

φi ,xx �
N∑

j�1

λi jφ j , (51a)

φi ,y � A φi ,x , (51b)

φi ,z � Bφi ,xxx , (51c)

φi ,t � Cφi ,xxx , (51d)

where

A �
(

−α ±√α2 − 4γ1γ2

2γ2

)
, C � −4 − βB, 2γ2 − α ±

√
α2 − 4γ1γ2 �� 0 (52)

and B is a free parameter. Then, Wronskian determinant 𝒽 � 𝒽N � W (φ1, φ2, . . . , φN ) yields a solution 𝓊 � 2[log𝒽]x to the
extended BK equation Eq. (3).

Before starting the proof, we introduce some lemmas to achieve the result.
Lemma A.1: For Wronskian determinant, the Plücker relation [9] is defined as follows

| P ,𝒶,𝒷 || P ,𝒸,𝒹 | − | P ,𝒶,𝒸 || P ,𝒷,𝒹 | + | P ,𝒶,𝒹 || P ,𝒷,𝒸 |� 0 , (53)

where P is an N × (N − 2) matrix and 𝒶, 𝒷, 𝒸, 𝒹 represents the column vectors of N -dimension.
Lemma A.2: Let φi in the Wronskian determinant fulfill the condition specified in Eq. (51a), then the following equalities [52]

hold

N∑

j�1

λ j j (t) | ̂N − 1 |�| ̂N − 2,N + 1 | − | ̂N − 3,N − 1,N | , (54)

⎛

⎝
N∑

j�1

λ j j (t)

⎞

⎠
2

| ̂N − 1 |�| ̂N − 5,N − 3,N − 2,N − 1,N | − | ̂N − 4,N − 2,N − 1,N + 1 |

− | ̂N − 3,N − 1,N + 2 | +2 | ̂N − 3,N ,N + 1 | + | ̂N − 2,N + 3 | . (55)

By virtue of these identities the following equality holds

| ̂N − 1 |
N∑

j�1

λ j j (t)

⎛

⎝
N∑

j�1

λ j j (t) | ̂N − 1 |
⎞

⎠ �
⎛

⎝
N∑

j�1

λ j j (t) | ̂N − 1 |
⎞

⎠
2

. (56)

Proof: Utilizing the differential conditions Eq. (51) and the properties of the determinant, we are able to derive the following results

𝒽N �| ̂N − 1 | , (57a)

𝒽N ,x �| ̂N − 2,N | , (57b)

𝒽N ,y � A𝒽N ,x , (57c)

𝒽N ,z � B{| ̂N − 4,N − 2,N − 1,N | − | ̂N − 3,N − 1,N + 1 | + | ̂N − 2,N + 2 |} , (57d)

𝒽N ,t � C {| ̂N − 4,N − 2,N − 1,N | − | ̂N − 3,N − 1,N + 1 | + | ̂N − 2,N + 2 |} , (57e)

𝒽N ,xx �| ̂N − 3,N − 1,N | + | ̂N − 2,N + 1 | , (57f)

𝒽N ,xy � A𝒽N ,xx , (57g)

𝒽N ,yy � A 2𝒽N ,xx , (57h)

𝒽N ,xz � B{| ̂N − 5,N − 3,N − 2,N − 1,N | − | ̂N − 3,N ,N + 1 | + | ̂N − 2,N + 3 |} , (57i)

𝒽N ,yz � A𝒽N ,xz , (57j)

𝒽N ,xt � C {| ̂N − 5,N − 3,N − 2,N − 1,N | − | ̂N − 3,N ,N + 1 | + | ̂N − 2,N + 3 |} , (57k)

𝒽N ,yt � A𝒽N ,xt , (57l)

123



  389 Page 10 of 23 Eur. Phys. J. Plus         (2025) 140:389 

𝒽N ,xxx �| ̂N − 4,N − 2,N − 1,N | +2 | ̂N − 3,N − 1,N + 1 | + | ̂N − 2,N + 2 | , (57m)

𝒽N ,xxy � A𝒽N ,xxx , (57n)

𝒽N ,xxxx �| ̂N − 5,N − 3,N − 2,N − 1,N | +3 | ̂N − 4,N − 2,N − 1,N | +3 | ̂N − 3,N − 1,N + 2 | (57o)

+ 2 | ̂N − 3,N ,N + 1 | + | ̂N − 2,N + 3 | , (57p)

𝒽N ,xxxy � A𝒽N ,xxxx , (57q)

Combining the bilinear form Eq. (50) with Eq. (57) and using the Lemma A.1 and Lemma A.2 we obtain

𝒽N (𝒽N , xxxx + 𝒽N , xxxy + γ1𝒽N , xx + γ2𝒽N , yy + α𝒽N , xy + β𝒽N , xz + β𝒽N , yz + 𝒽N , xt + 𝒽N , yt ) − 4𝒽N , x𝒽N , xxx

+ 3𝒽2
N , xx − 𝒽N , xxx𝒽N , y − 3𝒽N , x𝒽N , xxy + 3𝒽N , xx𝒽N , xy − γ1𝒽2

N , x − γ2𝒽2
N , y − α𝒽N , x𝒽N , y − β𝒽N , x𝒽N , z

− β𝒽N , y𝒽N , z − 𝒽N , x𝒽N , t − 𝒽N , y𝒽N , t

� 12(1 + A )[| ̂N − 3, N − 2, N − 1 || ̂N − 3, N , N + 1 |
− | ̂N − 3, N − 2, N || ̂N − 3, N − 1, N + 1 | + | ̂N − 3, N − 1, N || ̂N − 3, N − 2, N + 1 |]

� 0 .

This demonstrates that 𝒽N �| ̂N − 1 | resolves the bilinear extended BK Eq. (20). In the consequence, 𝓊 � 2[log𝒽N ]x is a
solution of Eq. (3).

Reflecting the transformation

t ′ � t

2
+

z

2β
(58)

into Eq. (3) delivers

𝓊xt ′ + 𝓊yt ′ + 𝓊xxxx + 𝓊xxxy + 6𝓊x𝓊xx + 3𝓊x𝓊xy + 3𝓊xx𝓊y + α𝓊xy + γ1𝓊xx + γ2𝓊yy � 0 (59)

and transforms Hirota bilinear form Eq. (22) into

(Dx Dt ′ + DyDt ′ + D4
x + D3

x Dy + αDx Dy + γ1D
2
x + γ2D

2
y)𝒽 · 𝒽 � 0. (60)

Equation (60) is the Hirota bilinear form of the (2 + 1)-dimensional combined equation (3.10) presented in [53] corresponding to
the specific values a1 � 1, a2 � 1, a3 � γ1, a4 � α, a5 � γ2. By considering the polynomial P(x , y, t ′) � xt ′ + yt ′ + x4 + x3y +
αxy + γ1x2 + γ2y2 associated with the bilinear equation Eq. (60), it can be demonstrated that Eq. (60) satisfies Hirota’s N-soliton
condition [53].

Further, by employing the condition Eq. (51b) into the Wronskian determinant solution 𝒽 � 𝒽N � W (φ1, φ2, . . . , φN ), we
perceive that

𝒽y � ∂

∂y
W (φ1, φ2, . . . , φN)

�
N∑

i�1

|φ1, φ2, . . . , φi ,y . . . , φN|

�
N∑

i�1

|φ1, φ2, . . . ,A φi ,x . . . , φN|

� A

N∑

i�1

|φ1, φ2, . . . , φi ,x . . . , φN|

� A𝒽x . (61)

Consequently, Eq. (60) with the help of Eq. (61) and Eq. (52) reduces to

(Dx Dt ′ + D4
x )𝒽 · 𝒽 � 0 , (62)

the Hirota bilinear form of the (1 + 1)-dimensional KdV equation and the solution presented in Theorem A reduces to a well-known
solution of the KdV equation [54]. A broad set of sufficient conditions for the Wronskian determinant solution of the Korteweg-de
Vries equation and various type of exact solutions including rational solutions, solitons, positons, negatons, breathers, complexiton
are briefly discussed in [27]. By choosing the polynomial P(x , t ′) � xt ′ + x4 associated with the bilinear equation Eq. (62), it can
be shown that Eq. (62) satisfies Hirota’s N-soliton condition [55]. This demonstrates the validity of our obtained result.
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6.1 Wronskian rational solution

In the subsequent discussion, we are going to explore lower-order rational Wronskian solutions to the extended (3 + 1)-dimensional
BK equation Eq. (3) through the revealed Wronskian formulation. We are familiar if a similar transformation is used on the coefficient
matrix J ,

J �

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎦

N ×N

, (63)

the soliton equations have identical Wronskian solutions. So for erecting Wronskian rational solution to the equation Eq. (3), we
only emphasize different states of the coefficient matrix J . We denote the Wronskian solution 𝓊 � 2[ log W (φ1, φ2, . . . , φN )]x

corresponding to each 𝓀 ≥ 1, in relation to the Jordan block

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎦

‖×‖

as a rational Wronskian solution of order

𝓀 − 1. To attain Wronskian rational solutions for Eq. (3), we presume λi � 0 in Eq. (51) which yields the condition

φ1,xx � 0, φi+1,xx � φi , φi ,y � A φi ,x , φi ,z � Bφi ,xxx , φi ,t � Cφi ,xxx , i ≥ 1 . (64)

In the subsequent discussion, we will reveal several rational Wronskian solutions of lower order for the generalized (3+1)-dimensional
BK equation Eq. (3).

6.1.1 Zero order

Taking φ1 � c1(x +A y)+c2, we obtain associated Wronskian determinant as 𝒽 � W (φ1) � c1(x +A y)+c2 and the corresponding
rational solution of Eq. (3) as

𝓊 � 2[logW (φ1)]x � 2c1

c1(x + A y) + c2
. (65)

More specifically, considering φ1 � x + A y produces Wronskian solution of Eq. (3) as 𝓊 � 2
x+A y .

6.1.2 First order

Setting φ1 � 1, a direct computation leads to φ2 � x2

2 + A xy + A 2 y2

2 . Then the associated first order Wronskian determinant is
𝒽 � W (φ1, φ2) � x + A y and the corresponding first order Wronskian rational solution of Eq. (3) is given by

𝓊 � 2[log(W (φ1, φ2)]x � 2

x + A y
. (66)

Next taking φ1 � x + A y, we arrive at φ2 � x3

6 + A x2 y
2 + A 2xy2

2 + A 3 y3

6 + Bz + C t . Therefore, the corresponding first order
Wronskian determinant and it′s associated Wronskian rational solution of Eq. (3) is presented respectively by 𝒽 � W (φ1, φ2) �
x3

3 + A x2y + A 2xy2 + A 3 y3

2 − Bz − C t and

𝓊 � 2[logW (φ1, φ2)]x � 2(x2 + 2A xy + A 2y2)
x3

3 + A x2y + A 2xy2 + A 3 y3

2 − Bz − C t
. (67)

6.1.3 Second order

As the choice of φ1 � 1 yields φ2 � x2

2 + A xy + A 2 y2

2 and by a direct computation gives φ3 � x4

24 + A x3 y
6 + A 2x2 y2

4 + Bxz + C xt ,

the second order Wronskian determinant 𝒽 � W (φ1, φ2, φ3) � x3

3 + A x2y + A 2xy2 + A 3 y3

2 − Bz − C t and associated second
order Wronskian rational solution is expressed as

𝓊 � 2[logW (φ1, φ2, φ3)]x � 2(x2 + 2A xy + A 2y2)
x3

3 + A x2y + A 2xy2 + A 3 y3

2 − Bz − C t
. (68)
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Moreover, the choice of φ1 � x + A y delivers φ2 � x3

6 + A x2 y
2 + A 2xy2

2 + A 3 y3

6 + Bz + C t which offers

φ3 � x5

120 + A 5 y5

120 + A x4 y
24 + A 4xy4

24 + A 2x3y2

12 + A 3x2 y3

12 + A 2B y2z
2 + A 2C y2t

2 + B x2z
2 + C x2t

2 + ABxyz + A C xyt . This offers the
third order Wronskian determinant

𝒽 � W (φ1, φ2, φ3) � x6

45 + A 6y6

45 + 2A x5 y
15 + 2A 5xy5

15 + A 2x4 y2

3 + A 4x2 y4
3 + 4A 3x3 y3

9 − B x3z
3 − C x3t

3 − A 3B y3z
3 − A 3C y3t

3 −B2z2 −
C 2t2 − ABx2yz − A C x2yt − A 2Bxy2z − A 2C xy2t − 2BC zt and corresponding third order Wronskian rational solution

𝓊 � 2[logW (φ1, φ2, φ3)]x � 2

𝒽3

[
2x5

15
+

2A x4y

3
+

2A 5y5

15
+

4A 2x3y2

3
+

2A 4xy4

3
+

4A 3x2y3

3
(69)

−Bx2z − C x2t − 2ABxyz − 2A C xyt − A 2By2z − A 2C y2t
]
. (70)

6.2 Soliton solutions

To construct soliton solutions, it is imperative to select precise forms of φ′
i s within N th-order analytic solutions. Considering the

special form of λi j � 	i in Eq. (51), where 	i ’s are real constants,

φi ,xx � 	2
i φi , φi ,y � A φi ,x , φi ,z � Bφi ,xxx , φi ,t � Cφi ,xxx , 1 ≤ i ≤ N . (71)

These partial differential conditions concede the solutions such as

φi � exp
ϑi
2 +(−1)i+1 exp− ϑi

2 , ϑi � 	i x + A 	i y + B	3
i z + C	3

i t , 1 ≤ i ≤ N (72)

and simply written as

φi � cosh(	i x + A 	i y + B	3
i z + C	3

i t), i odd ; (73a)

φi � sinh(	i x + A 	i y + B	3
i z + C	3

i t), i even . (73b)

6.2.1 One-soliton solution

For i � 1, we obtain the Wronskian determinant as 𝒽 � W (φ1) � cosh(	1x + A 	1y + B	3
1z + C	3

1t) and related one soliton
solution of Eq. (3)

𝓊 � 2[logW (φ1)]x � 2	1 tanh(	1x + A 	1y + B	3
1z + C	3

1t) . (74)

6.2.2 Two-soliton solution

i � 2 provides the Wronskian determinant 𝒽 � W (φ1, φ2), in presence of φ1 � cosh(	1x + A 	1y + B	3
1z + C	3

1t), φ2 �
sinh(	2x + A 	2y + B	3

2z + C	3
2t) and corresponding two soliton solution of Eq. (3)

𝓊 � 2[log(W (φ1, φ2))]x . (75)

6.2.3 Three-soliton solution

In case of i � 3, φ1 � cosh(	1x + A 	1y + B	3
1z + C	3

1t), φ2 � sinh(	2x + A 	2y + B	3
2z + C	3

2t) and φ3 � cosh(	3x +
A 	3y + B	3

3z + C	3
3t), delivers the three soliton solution of Eq. (3)

𝓊 � 2[log(W (φ1, φ2, φ3)]x (76)

accompanied by the Wronskian determinant 𝒽 � W (φ1, φ2, φ3).

7 Grammian solution

In this section, we present a Grammian condition for Eq. (3) and derive its N -soliton solution in terms of a Grammian determinant.
For that, at first we define Grammian determinant[9] as follows

𝒽N � det(𝒶i j ), 1 ≤ i , j ≤ N , 𝒶i j � 𝒸i j +
∫ x

𝓇i𝓈 j𝒹x ,

𝓇i � 𝓇(x , y, z, t) , 𝓈i � 𝓈(x , y, z, t) and 𝒸i j � constant . (77)

A sufficient condition for the existence of the Grammian solution is given below
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Fig. 4 a Wronskian one- soliton Eq. (74), b Wronskian two- soliton Eq. (75) and c Wronskian three- soliton Eq. (76)

Fig. 5 Lump solution of Eq. (3) at different time frames a t � −1.5, b t � 0, c t � 1.5, d contour plot, e density plot

Theorem B: If both 𝓇(x , y, z, t) and 𝓈(x , y, z, t) fulfil the conditions mentioned below

𝓇i ,y � A 𝓇i ,x , 𝓇i ,z � B𝓇i ,xxx , 𝓇i ,t � C𝓇i ,xxx , 1 ≤ i ≤ N , (78a)

𝓈 j ,y � A 𝓈 j ,x , 𝓈 j ,z � B𝓈 j ,xxx , 𝓈 j ,t � C 𝓈 j ,xxx , 1 ≤ j ≤ N , (78b)

where

A �
(

−α ±√α2 − 4γ1γ2

2γ2

)
, C � −4 − βB, 2γ2 − α ±

√
α2 − 4γ1γ2 �� 0 (79)
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and B is free parameter, then the Grammian determinant Eq. (77) provides a solution for the bilinear form Eq. (50) and solution for
Eq. (3) is obtainable as 𝓊 � 2(log𝒽N )x .

Proof For simplicity, at first we recast 𝒽N as a Pfaffian in which i and j are integers and to distinguish j and j∗, we employ the
superscript ∗

𝒽N � (1, 2, . . . ,N ,N ∗, . . . , 2∗, 1∗) � (•) , (80)

(i , j∗) � 𝒶i j � 𝒸i j +
∫ x

𝓇i𝓈 j𝒹x , (i , j) � (i∗, j∗) � 0 , (81)

in conjunction with the Pfaffian entries defined by

(𝒹n , j∗) � ∂n𝓈
∂xn

, (𝒹m ,𝒹∗
n) � 0, (𝒹∗

n , i) � ∂n𝓇
∂xn

, (𝒹n , i) � (𝒹∗
m , j∗) � 0, (82)

where 𝒹n and 𝒹m are Pfaffian characters and the derivatives of 𝒶i j are articulated as

∂

∂x
𝒶i j � 𝓇i𝓈 j � (𝒹0,𝒹∗

0, i , j∗) , (83)

∂

∂y
𝒶i j � A

∫ x

(𝓇i ,x𝓈 j + 𝓇i𝓈 j ,x )𝒹x � A 𝓇i𝓈 j � A (𝒹0,𝒹∗
0, i , j∗) , (84)

∂

∂z
𝒶i j � B

∫ x

(𝓇i ,xxx𝓈 j + 𝓇i𝓈 j ,xxx )𝒹x � B(𝓇i ,xx𝓈 j − 𝓇i ,x𝓈 j ,x + 𝓇i𝓈 j ,xx )

� B[(𝒹2,𝒹∗
0, i , j∗) − (𝒹1,𝒹∗

1, i , j∗) + (𝒹0,𝒹∗
2, i , j∗)], (85)

∂

∂t
𝒶i j � C

∫ x

(𝓇i ,xxx𝓈 j + 𝓇i𝓈 j ,xxx )𝒹x � C (𝓇i ,xx𝓈 j − 𝓇i ,x𝓈 j ,x + 𝓇i𝓈 j ,xx )

� C [(𝒹2,𝒹∗
0, i , j∗) − (𝒹1,𝒹∗

1, i , j∗) + (𝒹0,𝒹∗
2, i , j∗)] . (86)

To begin the proof, we will consider some lemmas as follows. �

Lemma B.1: For Grammian determinant, the Jacobi relation [9] defined as follows

(𝒹1,𝒹∗
1,𝒹0,𝒹∗

0, •)(•) − (𝒹1,𝒹∗
1, •)(𝒹0,𝒹∗

0, •) + (𝒹1,𝒹∗
0, •)(𝒹0,𝒹∗

1, •) � 0 . (87)

Lemma B.2: By leveraging the properties of determinants, we can easily derive the following identity

2(𝒹1,𝒹∗
1,𝒹0,𝒹∗

0, •)(•) + (𝒹3,𝒹∗
0, •)(•) + (𝒹0,𝒹∗

3, •)(•) − (𝒹1,𝒹∗
2, •)(•) − (𝒹2,𝒹∗

1, •)(•) � [(𝒹1,𝒹∗
0, •) − (𝒹0,𝒹∗

1, •)]2 .

(88)

Computing various states derivatives of the Grammian determinant 𝒽N � 𝒶i j regarding the variables x, y, z, t as listed below

𝒽N � (•) , (89a)

𝒽N ,x � (𝒹0,𝒹∗
0, •) , (89b)

𝒽N ,y � A𝒽N ,x , (89c)

𝒽N ,z � B[(𝒹0,𝒹∗
2, •) − (𝒹1,𝒹∗

1, •) + (𝒹2,𝒹∗
0, •)] , (89d)

𝒽N ,t � C [(𝒹0,𝒹∗
2, •) − (𝒹1,𝒹∗

1, •) + (𝒹2,𝒹∗
0, •)] , (89e)

𝒽N ,xx � (𝒹0,𝒹∗
1, •) + (𝒹1,𝒹∗

0, •), (89f)

𝒽N ,xy � A𝒽N ,xx , (89g)

𝒽N ,yy � A 2𝒽N ,xx , (89h)

𝒽N ,xz � B[(𝒹0,𝒹∗
3, •) − (𝒹1,𝒹∗

1,𝒹0,𝒹∗
0, •) + (𝒹3,𝒹∗

0, •)] , (89i)

𝒽N ,yz � A𝒽N ,xz , (89j)

𝒽N ,xt � C [(𝒹0,𝒹∗
3, •) − (𝒹1,𝒹∗

1,𝒹0,𝒹∗
0, •) + (𝒹3,𝒹∗

0, •)] , (89k)

𝒽N ,yt � A𝒽N ,xt , (89l)

𝒽N ,xxx � (𝒹0,𝒹∗
2, •) + 2(𝒹1,𝒹∗

1, •) + (𝒹2,𝒹∗
0, •), (89m)

123



Eur. Phys. J. Plus         (2025) 140:389 Page 15 of 23   389 

𝒽N ,xxy � A𝒽N ,xxx , (89n)

𝒽N ,xxxx � (𝒹0,𝒹∗
3, •) + 2(𝒹1,𝒹∗

1,𝒹0,𝒹∗
0, •) + 3(𝒹1,𝒹∗

2, •) + 3(𝒹2,𝒹∗
1, •) + (𝒹3,𝒹∗

0, •), (89o)

𝒽N ,xxxy � A𝒽N ,xxxx . (89p)

By combining Eqs. (89) and (50), along with the support of the Lemma B.1 and Lemma B.2,

𝒽N (𝒽N , xxxx + 𝒽N , xxxy + γ1𝒽N , xx + γ2𝒽N , yy + α𝒽N , xy + β𝒽N , xz + β𝒽N , yz + 𝒽N , xt + 𝒽N , yt ) − 4𝒽N , x𝒽N , xxx

+ 3𝒽2
N , xx − 𝒽N , xxx𝒽N , y − 3𝒽N , x𝒽N , xxy + 3𝒽N , xx𝒽N , xy − γ1𝒽2

N , x − γ2𝒽2
N , y − α𝒽N , x𝒽N , y − β𝒽N , x𝒽N , z

− β𝒽N , y𝒽N , z − 𝒽N , x𝒽N , t − 𝒽N , y𝒽N , t

� 12(1 + A )[(𝒹1, 𝒹∗
1, 𝒹0, 𝒹∗

0, •)(•) − (𝒹1, 𝒹∗
1, •)(𝒹0, 𝒹∗

0, •) + (𝒹1, 𝒹∗
0, •)(𝒹0, 𝒹∗

1, •)]

� 0 .

This indicates the function hN given by Eq. (77) is a Grammian determinant solution for the bilinear equation Eq. (50) and
consequently, 𝓊 � 2[log(1, 2, . . . , N , N ∗, . . . , 2∗, 1∗)]x is a solution of Eq. (3).

Upon incorporating the condition Eq. (84) into the solution for the Grammian determinant 𝒽 � 𝒽N � det(𝒶i j ), 1 ≤ i ,
j ≤ N , we can discern that

𝒽y � ∂

∂y
det(𝒶i j ) �

∑

1≤i , j≤N

∂

∂y
𝒶i j�i j , �i j is the cofactor of 𝒶i j

�
∑

1≤i , j≤N

A 𝓇i𝓈 j�i j � A
∑

1≤i , j≤N

𝓇i𝓈 j�i j � A
∑

1≤i , j≤N

∂

∂x
𝒶i j�i j � A

∂

∂x
det(𝒶i j )

� A𝒽x (90)

Utilizing the relation Eq. (90), along with Eq. (79) in previously obtained Hirota bilinear form of (2+1)-dimensional combined Eq.
(60), we obtain

(Dx Dt ′ + D4
x )𝒽 · 𝒽 � 0 , (91)

the Hirota bilinear form of the (1 + 1)-dimensional KdV equation.

8 Lump solution

To determine the lump solution [39, 51] of Eq. (3), we consider the test function in the following quadratic form

𝒽 � h2
1 + h2

2 + m1, (92)

where

h1 � p1x + p2y + p3z + p4t + p5, (93a)

h2 � p6x + p7y + p8z + p9t + p10, (93b)

where m1, pi , (i � 1, 2, . . . , 10) are arbitrary constants that to be calculated later and the constants pi (i � 1, 2, 3, 6, 7, 8) satisfy
the condition (p1, p2, p3) ∦ (p6, p7, p8). By setting γ1 � γ2 and substituting Eq. (92) into Eq. (22), then equating coefficients of
different powers of xa ybzctd to zero, we form a system of equations. Solving this system yields the following constraint between
the parameters.

p2 � − p6 p7

p1
, p3 � p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)
, p4 � p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

,

p5 � p1 p10

p6
, p9 � p4 p6

p1
, p11 � (p2

1 + p2
6)(p2

1 + p2
7)

(α − γ1)p2
7

, α �� γ1, p7 �� 0 . (94)

Finally, we utilize Eq. (92) and Eq. (94) to replace Eq. (20) in order to obtain the lump solution of Eq. (3).
Figure 5 depicts the propagation of the lump wave through various visual representations, including 3D plot, contour plot and

density plot, considering the parameter values α � 3, β � 1, γ1 � γ2 � 1.5, p1 � 2, p6 � 1, p7 � 4, p8 � 1.5, p10 � 1.5 .

123



  389 Page 16 of 23 Eur. Phys. J. Plus         (2025) 140:389 

9 Lump-multi-kink solutions

We have utilized the following two sets of test functions to compute lump-multi-kink solutions for Eq. (3).

(i) 𝒽 � h2
1 + h2

2 + d1 +
n∑

i�1

eχi , (95)

(i i) 𝒽 � h2
1 + h2

2 + d1 +
n∑

i�1

cosh χi . (96)

The following relations between the parameters can be obtained by substituting Eq. (95) into Eq. (22).

p2 � − p6 p7

p1
, p3 � p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)
, p4 � p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

,

p5 � p1 p10

p6
, p9 � p4 p6

p1
, p11 � (p2

1 + p2
6)(p2

1 + p2
7)

(α − γ1)p2
7

, ωi � −a2
2 + a2

2b2 + αb2 + β(b2 + c2) + γ1 + γ2b2
2

1 + b2
, (i � 1, 2, . . . , n),

α �� γ1, p7 �� 0. (97)

Substituting Eq. (95) and Eq. (97) into Eq. (20) produces the lump-multi-kink solution of Eq. (3) as

𝓊 � 2

[
2p1h1 + 2p6h2 +

∑n
i�1 ai e

χi

h2
1 + h2

2 + d1 +
∑n

i�1 e
χi

]
, (98)

with

h1 � p1x −
(
p6 p7

p1

)
y +

[
p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)

]
z

+

[
p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

]
t +

p1 p10

p6
, (99a)

h2 � p6x + p7y + p8z +

(
p4 p6

p1

)
t + p10, (99b)

χi � ai

{
x + bi y + ci z − a2

i + a2
i bi + αbi + β(bi + ci ) + γ1 + γ2b2

i

(1 + bi )
t

}
+ χ0

i , (i � 1, 2, . . . , n). (99c)

In similar way, we substitute Eq. (96) into Eq. (22) and obtain the same relation between the parameters as Eq. (97) and the
corresponding lump-multi-kink solution of Eq. (3) can be obtained as

𝓊 � 2

[
2p1h1 + 2p6h2 +

∑n
i�1 ai sinh χi

h2
1 + h2

2 + d1 +
∑n

i�1 cosh χi

]
, (100)

with

h1 � p1x −
(
p6 p7

p1

)
y +

[
p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)

]
z

+

[
p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

]
t +

p1 p10

p6
, (101a)

h2 � p6x + p7y + p8z +

(
p4 p6

p1

)
t + p10 , (101b)

χi � ai

{
x + bi y + ci z − a2

i + a2
i bi + αbi + β(bi + ci ) + γ1 + γ2b2

i

(1 + bi )
t

}
+ χ0

i , (i � 1, 2, . . . , n) . (101c)

9.1 Lump-multi-kink solutions using test function I

9.1.1 Lump-one-kink solution

Lump-one-kink solution can be obtained by choosing n � 1 in Eq. (98) as

𝓊 � 2

[
2p1h1 + 2p6h2 + a1eχ1

h2
1 + h2

2 + d1 + eχ1

]
, (102)
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Fig. 6 Progression of the lump-one-kink solution for Eq. (3) at various time points: a t � −2.5, b t � −0.5, c t � −0.1, d t � 0.4, e t � 1, f 2.5

with

h1 � p1x −
(
p6 p7

p1

)
y +

[
p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)

]
z

+

[
p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

]
t +

p1 p10

p6
, (103a)

h2 � p6x + p7y + p8z +

(
p4 p6

p1

)
t + p10 , (103b)

χ1 � a1

{
x + b1y + c1z − a2

1 + a2
1b1 + αb1 + β(b1 + c1) + γ1 + γ2b2

1

(1 + b1)
t

}
+ χ0

1 . (103c)

Figure 6 showcases the interaction dynamics between a lump wave and a kink wave, describing their evolutionary behavior across
various time frames for the parametric values as α � β � 1, γ1 � γ2 � −1.5, a1 � 0.8, b1 � 1.2, c1 � 1.3, p1 � −2.5,
p6 � −1, p7 � 3, p8 � 1, p10 � 1.5, χ0

1 � 0. At t � −2.5, the solution features a kink wave. By t � 0, a lump wave begins to
emerge from the kink. As time progresses to t � 1, the lump wave fully detaches from the kink and propagates independently.

9.1.2 Lump-two-kink solution

Lump-two-kink solution can be obtained by choosing n � 2 in Eq. (98) as

𝓊 � 2

[
2p1h1 + 2p6h2 + a1eχ1 + a2eχ2

h2
1 + h2

2 + d1 + eχ1 + eχ1

]
, (104)

with

h1 � p1x −
(
p6 p7

p1

)
y +

[
p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)

]
z

+

[
p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

]
t +

p1 p10

p6
, (105a)
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Fig. 7 Progression of the lump-two-kink solution for Eq. (3) at various time points: a t � −2, b t � 0.8, c t � 1.9, d t � 3, e t � 4.5, f t � 10

h2 � p6x + p7y + p8z +

(
p4 p6

p1

)
t + p10 (105b)

χi � ai

{
x + bi y + ci z − a2

i + a2
i bi + αbi + β(bi + ci ) + γ1 + γ2b2

i

(1 + bi )
t

}
+ χ0

i , (i � 1, 2). (105c)

Figure 7 presents the interaction phenomena between a lump wave and a two-kink wave, narrating their evolutionary behavior over
different time frames for the parametric values as α � β � 1, γ1 � γ2 � −1.5, a1 � 0.8, b1 � 1.2, c1 � 1.3, a2 � 2, b2 � 1.7,
c2 � 1.8, p1 � −2.5, p6 � −1, p7 � 3, p8 � 1, p10 � 3.5, χ0

i � 0, (i � 1, 2). At t � −2, there is only one kink wave. At
t � 0.8, lump wave start originating from kink wave. At t � 1.9, lump wave completely separates from kink wave. Consequently,
at t � 0, kink wave start splitting into two-kink wave and at t � 10, kink wave completely splits into two distinct kink waves.

9.1.3 Lump-three-kink solution

Lump-three-kink solution can be obtained by choosing n � 3 in Eq. (98) as

𝓊 � 2

[
2p1h1 + 2p6h2 + a1eχ1 + a2eχ2 + a3eχ3

h2
1 + h2

2 + d1 + eχ1 + eχ2 + eχ3

]
, (106)

with

h1 � p1x −
(
p6 p7

p1

)
y +

[
p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)

]
z

+

[
p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

]
t +

p1 p10

p6
, (107a)

h2 � p6x + p7y + p8z +

(
p4 p6

p1

)
t + p10 (107b)

χi � ai

{
x + bi y + ci z − a2

i + a2
i bi + αbi + β(bi + ci ) + γ1 + γ2b2

i

(1 + bi )
t

}
+ χ0

i , (i � 1, 2, 3). (107c)
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Fig. 8 Progression of the lump-three-kink solution for Eq. (3) at various time points: a t � −3, b t � 1, c t � 3, d t � 5, e t � 8, f t � 15

Figure 8 presents the intricate interaction dynamics between a lump wave and a three-kink wave, capturing their evolution across
various time frames. This progression is mapped out according to the specific parametric values α � β � 1, γ1 � γ2 � −1.5,
a1 � 0.8, b1 � 1.2, c1 � 1.3, a2 � 2, b2 � 1.7, c2 � 1.8, a3 � 2.5, b3 � 1.5, c3 � −1.5, p1 � −2.5, p6 � −1, p7 � −3,
p8 � 1, p10 � 1.5, χ0

i � 0, (i � 1, 2, 3). At t � −3, there is only one kink wave. At t � 3, kink wave start splitting into two
kink wave and in the same time lump wave start originating from kink wave. At t � 5, lump wave completely separates from kink
wave. At t � 8, another kink wave originates and consequently separates from other kink waves.

9.2 Lump-multi-kink solutions using test function II

9.2.1 Lump-one-kink solution

We derive lump-one-kink solution by choosing n � 1 in Eq. (100) as

𝓊 � 2

[
2p1h1 + 2p6h2 + a1 cosh χ1

h2
1 + h2

2 + d1 + cosh χ1

]
, (108)

with

h1 � p1x −
(
p6 p7

p1

)
y +

[
p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)

]
z

+

[
p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

]
t +

p1 p10

p6
, (109a)

h2 � p6x + p7y + p8z +

(
p4 p6

p1

)
t + p10 (109b)

χ1 � a1

{
x + b1y + c1z − a2

1 + a2
1b1 + αb1 + β(b1 + c1) + γ1 + γ2b2

1

(1 + b1)
t

}
+ χ0

1 . (109c)

In Fig. 9, we showcase the evolutionary dynamics of the lump-one-kink solution of Eq. (3), as derived from Eq. (108), across distinct
time frames. This phenomena is observed under the corresponding parametric values outlined as α � 1, β � 2, γ1 � γ2 � −1.5,
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Fig. 9 Progression of the lump-one-kink solution for Eq. (3) at various time points: a t � −1.5, b t � −0.5, c t � 0, d t � 0.5, e t � 1.5

a1 � 0.8, b1 � −2.5, c1 � −2.1, p1 � 1, p6 � 1.7, p7 � 1.9, p8 � −1.6, p10 � −1, χ0
1 � 0 . Initially, there is only one kink

solution, then lump solution start originating and reach its peak. Consequently, lump solution disappear in kink solution with time.

9.2.2 Lump-two-kink solution

We derive lump-two-kink solution by choosing n � 2 in Eq. (100) as

𝓊 � 2

[
2p1h1 + 2p6h2 + a1 cosh χ1 + a2 cosh χ2

h2
1 + h2

2 + d1 + cosh χ1 + cosh χ2

]
, (110)

with

h1 � p1x −
(
p6 p7

p1

)
y +

[
p1{βp8(p2

1 + p2
7) + p7(α − γ1)(p2

1 + p2
6)}

βp6(p2
1 + p2

7)

]
z

+

[
p1{βp8(p2

1 + p2
7) + (α − γ1)p2

1 p7 + p6(αp2
7 + γ1 p2

1)}
p6(p2

1 + p2
7)

]
t +

p1 p10

p6
, (111a)

h2 � p6x + p7y + p8z +

(
p4 p6

p1

)
t + p10 (111b)

χi � ai

{
x + bi y + ci z − a2

i + a2
i bi + αbi + β(bi + ci ) + γ1 + γ2b2

i

(1 + bi )
t

}
+ χ0

i , (i � 1, 2). (111c)

In Fig. 10, we showcase the evolutionary dynamics of the lump-two-kink solution of Eq. (3), as derived from Eq. (110), across
distinct time frames. This phenomena is observed under the corresponding parametric values outlined as α � β � 1, γ1 � γ2 �
−1.5, a1 � 0.5, b1 � 1.8, c1 � −1.9, a2 � −.8, b2 � 1.1, c2 � −1.5, p1 � 2, p6 � .5, p7 � −3, p8 � 1.4, p10 � 1.2,
χ0
i � 0, (i � 1, 2). At t � −2, there is only one kink wave. At t � 0.8, lump wave start originating from kink wave. At t � 1.9,

lump wave completely separates from kink wave. Consequently, at t � 0, kink wave start splitting into two-kink wave and at t � 10,
kink wave completely splits into two distinct kink waves.
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Fig. 10 Progression of the lump-two-kink solution for Eq. (3) at various time points: a t � −1.5, b t � −0.5, c t � 0, d t � 0.5, e t � 1.5

10 Graphical illustrations

In Fig. 1, we depict a 3D figure, a density plot, and a 2D plot corresponding to the one-kink solution of Eq. (3). In Fig. 2, we
showcase the same visualizations for the two-kink solution and in Fig. 3, we illustrate them for the three-kink solution. In Fig. 4,
we present Wronskian-multi-soliton solutions. Figure 5 showcases the 3D representation of the lump solution described by Eq. (3)
across various times, illustrating its characteristic localization in all directions. Additionally, contour and density plots of the lump
solution are provided at t � 0, corresponding to specific parameter values, with α � 3, β � 1, γ1 � γ2 � 1.5, p1 � 2, p6 � 1,
p7 � 4, p8 � 1.5, p10 � 1.5. Figure 6, depicts the evolution of a lump solution emerging from a one-kink wave, with parameter
values as α � β � 1, γ1 � γ2 � −1.5, a1 � 0.8, b1 � 1.2, c1 � 1.3, p1 � −2.5, p6 � −1, p7 � 3, p8 � 1, p10 � 1.5, χ0

1 � 0
. Initially, only a single kink wave is present. Over time, a lump solution gradually emerges from the kink wave, eventually separating
entirely from it as the kink wave continues to propagate. In Fig. 7, we illustrate the entire evolutionary process of lump-two-kink
solution from a single kink wave, corresponding to the parametric values as α � β � 1, γ1 � γ2 � −1.5, a1 � 0.8, b1 � 1.2,
c1 � 1.3, a2 � 2, b2 � 1.7, c2 � 1.8, p1 � −2.5, p6 � −1, p7 � 3, p8 � 1, p10 � 3.5, χ0

i � 0, (i � 1, 2). Initially, only one
kink wave is present. Subsequently, a lump wave emerges from the kink wave and completely separate from it. Following this, the
kink wave bifurcates into two distinct kink waves. Figure 8, showcases the complete evolutionary journey of the lump-three-kink
solution, originating from a singular kink wave with parameter values as α � β � 1, γ1 � γ2 � −1.5, a1 � 0.8, b1 � 1.2,
c1 � 1.3, a2 � 2, b2 � 1.7, c2 � 1.8, a3 � 2.5, b3 � 1.5, c3 � −1.5, p1 � −2.5, p6 � −1, p7 � −3, p8 � 1, p10 � 1.5,
χ0
i � 0, (i � 1, 2, 3) . Initially, a solitary kink wave appears. Over time, a lump wave emerges from this kink wave, leading to its

division into two separate kink waves. Subsequently, the lump wave detaches entirely from the kink wave, which then further divides
into three distinct kink waves, eventually propagating forward. In Fig. 9 we depict the evolution of lump-kink wave, illustrating how
the lump wave originates from the kink wave and eventually dissipates back into it over time. In Fig. 10, we portray the progression
of a lump-two-kink wave, demonstrating how the lump wave emerges from the two-kink wave and eventually diminishes back into
it as time progresses.

11 Conclusions

This article thoroughly investigates the integrability properties of a (3+1)-dimensional extended BK equation. Utilizing relations
between Hirota D-operator and binary Bell polynomials, we directly derive the Hirota bilinear form and achieve the bilinear
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Bäcklund transformation by decoupling the two-field condition. By incorporating the Cole–Hopf transformation within the bilinear
Bäcklund transformation and subsequently linearizing it, we establish a Lax pair formulation. Additionally, Our analysis also
explores the integrability of the model equation, leading to the discovery of an infinite sequence of conservation laws. The Hirota
bilinear form’s analytical power enables us to derive one-, two-, and three-soliton solutions, which we illustrate with detailed by
presenting 3-dimensional plot, 2-dimensional plot and density plot. We establish the Wronskian condition for the (3+1)-dimensional
extended BK equation, employing the Plücker relation to ensure that the N-soliton solutions of the equation can be represented as
Wronskian determinants. Additionally, by applying a transformation to our considered model, we obtain a specific type of (2 + 1)-
dimensional combined Hirota bilinear equation (3.10) as described in [53]. Moreover, through the use of the obtained Wronskian
determinant condition, we successfully derive the (1+1)-dimensional KdV equation. As a result, Theorem A leads to a solution of the
KdV equation, which notably holds significant recognition. Also, rational Wronskian solutions are obtained by selecting a specific
coefficient matrix in the resulting Wronskian formulation. Furthermore, explicit one-, two-, and three-soliton solutions in Wronskian
form are derived and their soliton dynamics are visually depicted using Mathematica by selecting appropriate parameters. We also
present a Grammian determinant solution, utilizing the Jacobi relation for the (3 + 1)-dimensional extended BK equation. These
aspects collectively ensure the complete integrability of our model. Additionally, we acquire the lump solution by considering the
test function in quadratic form and present it’s localized characteristic in all directions at various times. Moreover, we present a new
method that utilizes a combination of an exponential function and a quadratic function as a test function, resulting lump-multi-kink
solutions. This depicts that the lump solution originates from a single kink wave and over time separates from the kink wave as the
kink wave propagates.

Additionally, a new set of lump-multi-kink solutions is obtained by using a quadratic function and hyperbolic cosine function as
test functions. This demonstrates that the lump wave emerges from the kink wave, reaches its peak, and then gradually diminishes
back into the kink wave. Notably, these revelations advance our insight into nonlinear wave phenomena spanning a multitude of
disciplines, such as nonlinear optics, fluid mechanics, shallow water dynamics, plasma physics and oceanography.

In future, our focus remain towards exploring Lie symmetry analysis to derive diverse types of invariant solutions. Another avenue
for our future research entails computing higher-order breather solutions and investigating their interaction phenomena with other
exact waves.
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