Eur. Phys. J.Plus  (2025) 140:389 THE EUROPEAN
https://doi.org/10.1140/epjp/s13360-025-06273-5 PHYSICAL JOURNAL PLUS

Regular Article

Check for
updates

Integrability aspects, Wronskian solution, Grammian solution, lump
and lump-multi-Kkink solutions of an extended (3 + 1)-dimensional
Bogoyavlensky-Konopelchenko equation

Uttam Kumar Mandal'?, Sukanya Dutta?®, Wen-Xiu Ma>*--6, Amiya Das?-

! Department of Mathematics, School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana 506371, India

2 Department of Mathematics, University of Kalyani, Kalyani 741235, India

3 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

4 Department of Mathematics, King Abdulaziz University, 21589 Jeddah, Saudi Arabia

5 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA

6 Material Science Innovation and Modelling, North-West University Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

Received: 17 November 2024 / Accepted: 27 March 2025
© The Author(s), under exclusive licence to Societa Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract In this article, we examine an extended (3 + 1)-dimensional Bogoyavlensky-Konopelchenko equation, which models the
interaction between a Riemann wave and a long wave in a fluid. This equation has significant applications in the study of shallow-
water waves, ion-acoustic waves, and water propagation in liquids. We explore the integrability of this model through various
approaches. First, we derive the Hirota bilinear form using the Bell polynomial theory. By decoupling the two-field condition, we
calculate the bilinear Bicklund transformation. Subsequently, through the Cole—Hopf transformation and the linearization of the
Bicklund transformation, we obtain the Lax pair. Additionally, we derive infinitely many conservation laws using Bell polynomial
theory. We compute one-, two-, and three-soliton solutions directly from the Hirota bilinear form and present their 3-D plot, density
plot and 2D plot graphically. We establish the Wronskian condition by employing the Pliicker relation, ensuring that the N-soliton
solutions of the equation can be represented as Wronskian determinants. Additionally, the use of a suitable transformation and the
Wronskian determinant condition in our model establishes the widely known Wronskian solution to the (1 + 1)-dimensional KdV
equation. We derive a rational Wronskian solution by selecting a specific coefficient matrix in the resulting Wronskian formulation.
Furthermore, we calculate one-, two-, and three-soliton solutions in Wronskian form and visually depict their soliton dynamics using
Mathematica with appropriately chosen parameters. Additionally, we present a Grammian determinant solution, utilizing the Jacobi
relation. To obtain the lump solution, we employ a quadratic function as a test function within the Hirota bilinear form. Furthermore,
we calculate two sets of lump-multi-kink solutions employing two distinct test functions. We provide a visual comparison of the
evolutionary dynamics of the lump-multi-kink solutions corresponding to two distinct test functions.

1 Introduction

In recent decades, researchers worldwide have increasingly directed their focus towards nonlinear partial differential equations
(PDEs) rather than linear models, driven by major advancements in science and computer technology. A significant motivation for
studying nonlinear models lies in their ability to describe virtually every phenomenon encountered in daily life. Nonlinear evolution
equations (NLEEs) are particularly vital across numerous scientific and engineering domains, capturing real-life phenomena observed
in fields like oceanography [1], nonlinear optics [2], fluid mechanics [3], chemical physics, solid-state physics [4], geochemistry,
plasma physics [5] and wave propagation in shallow water [6]. The quest for exact solutions of nonlinear models is arduous yet
essential for accurately understanding their characteristics. The integrability of a nonlinear PDE holds immense importance as it
ensures the exact solvability of such equations. Over the past decades, various sophisticated methods have been devised for checking
the integrability of NLEESs, including the Inverse scattering transform method [7], Painleve analysis [8], Hirotas bilinear method [9],
Lax pair, KP hierarchy reduction method, residual neural network method [10], Bécklund transformation [11], Wronskian technique
[12], Darboux transformation [13], Lie symmetry analysis [14] and bilinear neural network method [15]. Notably, the Hirota bilinear
method distinguishes itself as both the most straightforward and the most efficient approach among them. To apply the Hirota bilinear
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method, the problem needs to be transformed into Hirota bilinear form, enabling the derivation of lump solutions, multi-soliton
solutions, Wronskian solutions, periodic solutions, breather solutions, Grammian solutions, rogue wave solutions, and various types
of rational solutions. Gilson et al. [16], Lambert and Springael [17] pioneered a revolutionary method for deriving the Hirota bilinear
form of NLEEs using Bell polynomial theory, allowing for the direct deduction of the bilinear Bécklund transformation and Lax
pair from Hirota bilinear form. This method was extended by E. Fan to calculate infinitely many conservation laws directly from
the bilinear Bicklund transformation [18]. Recently, researchers have checked the integrability of various NLEEs using this method
[19-22].The Wronskian technique also emerges as an uncomplicated and highly effective approach for determining exact solutions
of integrable systems. In 1979, Satsuma [23] pioneered the derivation of the N-soliton solution through the Wronskian expression,
followed by Freeman and Nimmo in 1983, who introduced a systematic methodology for confirming the existence of Wronskian
solutions for equations such as the Kadomtsev—Petviashvili (KP) equation and the Korteweg-de Vries (KdV) equation [12]. Hirota
et al. subsequently broadened the scope of Wronskian solutions to discrete systems by substituting the Wronskian determinant with
the Casorati determinant [24]. Several nonlinear evolution equations, such as, the KdV equation, sine-Gordon equation, Boussinesq
equation, KP equation, and mKdV equation have been demonstrated to exhibit solutions through the Wronskian formalism [12,
25]. In recent years utilizing this method, researchers have derived a range of solutions including rational solutions, solitons,
complexitons, positons, and negatons [26—-30]. Researchers have increasingly explored the fascinating dynamical properties of exact
solutions to NLEEs, with a particular emphasis on phenomena such as rogue wave, soliton, breather wave, and lump wave. When
waves travel through nonlinear media, their amplitudes and widths typically fluctuate. Nevertheless, under certain conditions, a
balance between nonlinearity and dispersion can lead to the formation of stable, localized waves known as solitons. Lump waves
are a class of rational function solutions that display localization in all spatial directions. They were initially discovered in 1977 by
Manakov et al. [31] and have since been observed in various research areas such as soliton theory, optical media, plasma, and shallow
water waves [32—-34]. Several methods, including the long wave limit of N-soliton solutions [35], inverse scattering transformation
[7], Darboux transformation [36], Lie symmetry method [37], and Bécklund transformation [38] have been employed to derive
exact lump solutions of NLEEs. In 2015, Ma [39] introduced an innovative approach to computing lump waves. This technique
has enabled researchers worldwide to derive effective lump solutions for various NLEEs. The exploration of the dynamic interplay
among lump solutions and other exact solutions, such as rogue waves and solitons, breathers, stripes, kinks etc., has opened up new
frontiers in our understanding of wave phenomena [40-44]. Recently, Mandal et al. [45] introduced a comprehensive criterion for
identifying lump and lump-multi-kink solutions of NLEEs manifesting a special type of Hirota bilinear form. Additionally, Mandal
et al. [46] presented the interaction phenomena of kink waves with higher-order breather waves for an extended B-type KP equation.
A (2 + 1)-dimensional Bogoyavlensky-Konopelchenko equation [47] can be written as

Uyt + A1 U4y + A2U3xy + Q32U U, + A4t Uyy + a5ttty = 0, (1)

which is the generalized form of (2 + 1)-dimensional KdV equation and have practical applications in elucidating the dynamics of
internal waves within deep water. A generalized (2 + 1)-dimensional Bogoyavlensky-Konopelchenko equation can be present as

Uyt + A1 Usyx + A2 U3y + A3UX U + A4l U gy + A5UI Uy + P1UIX + P2rUyy + P322y = 0. (2)

Equations (1) and (2) have been extensively explored in the literature [48—50], with investigations into Lie symmetry analysis,
conservation laws, soliton solutions, and lump solutions provided.
Recently, Wazwaz et al. extended Eq. (2) into a novel (3 + 1)-dimensional Bogoyavlensky-Konopelchenko equation [51]

Uxt Uyt + Uxxxx + Uxxxy + 61t yteyy + 3uxuxy + 3ufxxuy totyy + Beexs + ﬂu/yz T Yitxx T V2tlyy = 0, 3)

which describes the three-dimensional interaction of a long wave and a Riemann wave in nonlinear media. The equation holds
significance across a multitude of scientific domains, encompassing plasma physics, nonlinear optics, fluid dynamics, biological
systems, and even differential geometry. In [51], the authors demonstrated that Eq. (3) successfully passes the Painleve integrability
test and obtained lump and multi-soliton solutions.

However, we observe that aspects of integrability such as the Hirota bilinear form, bilinear Béacklund transformation, Lax pair,
infinitely many conservation laws, Wronskian solution and various types of exact solutions like kink solution, lump solution and
their interactions have not been explored yet. This observation has motivated our investigation into these aspects in the present
article.

The structure of our article is as follows. In Sect. 2, a brief introduction of the multi-dimensional Bell polynomials is given. In
Sect. 3, we extensively investigate the Hirota bilinear form, bilinear Bécklund transformation and the related Lax pair formulation
for the model under consideration, utilizing Bell polynomial theory respectively. Section 4 is dedicated to deriving an infinite array
of conservation laws. Section 5 delves into the computation and visual representation of one-, two-, and three-soliton solutions. In
Sect. 6, we thoroughly investigate the Wronskian condition, Wronskian rational solution, and multi-soliton solutions in Wronskian
form. Section 7 is dedicated to deriving the Grammian determinant solution. Section 8 focuses on investigating the lump solution.
Section 9 is devoted to computing two sets of lump-multi-kink solutions. In Sect. 10, the obtained solutions are presented, with a
thorough discussion of their propagation and their nonlinear interaction with other solutions. Finally, in Sect. 11, conclusions are
drawn based on the findings.
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2 Multi-dimensional Bell polynomials

In this section, we present a concise overview of the fundamental principles and representations of Bell polynomials [16, 17]. Let’s
assume that ¢ is a C* function of x. The one-dimensional Bell polynomial [16] can be represented as

Ynx(@) = Yﬂ(wl»QZs e v@nx) = eiwaxnewa n= 1’2a37 s (4)
The definition above leads to a variety of one-dimensional Bell polynomials
Y, = Px» Yoo = P2x +§0x2’ Y3, = P3x +3(/7x(/72x + (PXS, cee e (5)

The one-dimensional Bell polynomials described in Eq. (5) can be obtained using the following formula

Yuelp) = al!a:!!...an! (%)al (%)@(?)a : ©

where the sum run over all partitions of n = aj + 2ap + - -+ + na,. Assuming ¢ = ¢(x1, x2, ..., Xg) as a C> multi-variable
function, we have the opportunity to expand the dimension of the Bell polynomial, allowing for a more comprehensive and powerful
representation. This extension results in the multi-dimensional Bell polynomial, which can be elegantly expressed as follows

Yn1x1 ..... nsxs((p) = Yn] ,,,,, ns((/)mlxl ..... mjxs) = e‘Wa)’ZIl 3;1“ e(/)’ (7)

where @m,x,,..mox, = Ox) 0@, mi = 0,1, ...,n; i =1,2,...,5). Here Y,,x,, ..n.x (¢) denotes the multi-variable Bell
polynomial with respect to @, x,,....m,x,- In the specific case where we choose a function ¢(x, y), the associated lower-order
two-dimensional Bell polynomials can be obtained through the following derivation.

Yor(p) = @ox + 92, Y3r(o) = ¢35 + 302,01 + 3, 8)

Yiz=¢xz+oxe:, Y2u2(9) = @oxz + 02207 + 205 05 + ‘P)%(ﬂz’ cee 9

From the previously mentioned one-dimensional Bell polynomials in Eq. (7), we can also represent multi-dimensional binary Bell
polynomials in the following way.

%lxl ,,,,, nsxs(/ag):Ynlxl ..... nSxS(W)s (10)

where

/mm ’’’’ mexg> M1+ +mg is odd,
mi+---+mg iS even.

Pmyxy,...mgxg = { (11)

gmlxl ..... MgXs?

Two-dimensional binary Bell polynomials that can be derived from the previously mentioned statement include
%N =Fo Pl =gn+li Yillo®) =0t Fato
Doello ) = Frog ¥ oo ¥ 20t Fif o Pox = Frot 30t frn o (12)
By leveraging the identity
(@Y) ' DY DB =Py e, (£ =100/, g =1n @y), (13)

a relationship can be established between the conventional Hirota bilinear expression Dﬁl‘ ...D,’fj ¢.¥ and binary Bell polynomials.
Here, the D-operator is elucidated by Hirota [9] as follows

DD = (B — 0 )" By, — 0x)) @1, s X)W XDy, - (14)

The identity Eq. (13) becomes in the scenario where ¢ = ¥

—2 i s _ . . 0, ny+---+ng is odd,
((p) DXl .”DXS(/).(/) N %IXI“”JL“‘XX(/ N O’Q =2l (/)) o { gnlxl ..... nsxs(ﬁ), ny+---+ng is even. (15)
Here, even-ordered % -polynomials are represented by &-polynomials. Below are a few of the lower-order % -polynomials.
Do) = 2oy Pue(@) = Pas Prne() = Pax 437252205 Pax(2) = 24y + 3725, (16)

A linear combination of Z7-polynomials and Bell polynomials Y, x,, .. n,x,(£) is employed to express the binary Bell polynomial
%IXI s ey Mg Xg (/s g) as

= ixromsx (f> £+ 2), where £ =1Ing/¢ and 2 =2Iny
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ni ng

= Z o Z 1_[<th >(@m|x1,...,m.yxx (7) Yiui—m)x e (g —my)x, - (17

m1=0 my=0i=1

Utilizing the Hopf-Cole transformation £ = In v, the binary Bell polynomial can be expressed as follows
Vnixi..... s
Yiixi,ngxs (f=Iny)= REQL LA s (18)

which enables us to rewrite Eq. (17) as

n ng

s
—1 s —1 nj
() ' DD g = Z...Zﬂ<m’i>%m ..... o (72) W=y 1 e ), - (19)

mi=0 my=0i=1

The methodology outlined in Eq. (19) furnishes the most straightforward and systematic framework for the explicit construction of
the corresponding Lax pair associated with the relevant nonlinear evolution equation.

3 Hirota bilinear form, bilinear Béicklund transformation and Lax pair

A new potential field 2 is introduced by setting
w = p, (20)
to achieve the Hirota bilinear form of Eq. (3). After replacing Eq. (20) to Eq. (3) and integrating with regard to x, we get
E(12) = /2y, + 72y + Pay + 7230y + 3725, + 3720, Py + @72,y + B2y + Vi 20, + Vapiny =0, @21

Furthermore, by setting » = 2log 7, we obtain the Hirota bilinear form of Eq. (3) employing the relationship between the
P-polynomial and the Hirota D-operator as described in Eq. (15) as

(DyD; + DyD; + D+ DDy +aD Dy + DD, + Dy D, + y1 D? + 2D} % - /3 = 0. (22)

To calculate bilinear Bicklund transformation, we take 7z’ = 2 log %’ as another solution of Eq. (3). Additionally, we introduce two
new variables v = 252 and w = Z72 . Consequently, the two-field condition can be written as

E(/j/) —E(pn)= 2|:th F Vyr + V4x +V3xy + 6vo oy + 3(w2xvxy + VZXQ)xy) +oVyy + By + Vyz) + ViV + V2V2y] =0

d d
= 2[5{@4@) + AT )+ L)+ NIL0) + T 0} + 5 {F0) + B0, BT+ Vz%(v)}}
+6 Wronskian [#, %] + 6 Wronskian [%y, %] =0. (23)

Finally, the bilinear Béacklund transformation of Eq. (3) can be derived by decoupling the two-field condition in Eq. (23) as

Z(v) +aZy(v) + BY(V) + 1% (V) + D (v, ) —c1 =0, (24a)
Z(v) + BLLV) + 2@y (V) + D (v, ) —c2 =0, (24b)
(v, w) +8%,(v) =0, (24¢)
Dy, 0) +n%(v) =0. (24d)
Bilinear Bicklund transformation Eq. (24) can also be expressed in terms of the Hirota D-operator as follows
(% - %) D/ +aDy+BD,+y Dy + D} —c 114 - %) =0, (25a)
(# - /) D, +BD. + 2Dy + D; —ol(# -%)=0, (25b)
(%' - %) [DX+8Dy\A - %) =0, (25¢)
(#' - #)"'[D, Dy +nDyJ(#" - %) =0. (25d)

By employing the Cole-Hopf transformation + = log X and linearizing the Bell polynomial system in Eq. (24), we successfully
establish the Lax pair for Eq. (3) as outlined below.

A+ BA+ar+ A (Y1 +3725,)+A3, —c1A =0, (26a)

Ar+BA+yah+3h7,, + A3y —c2A =0, (26b)
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Aox + Ay, +8A, =0, (26¢)

Ay + A7z Ay = 0. (26d)

4 Infinitely many conservation laws

In order to establish infinite conservation laws of Eq. (3), we take n = § and rewrite the two-field condition Eq. (23) as

Wy + v)% +@yy +Vxvy + 280, =0 27
d d 3 d 3 d
E[V" +vyl+ a[avy + Y1Vx + V3 + 3wo vy + V5] + @[V&r + 3w vy + vy +y2vy] + a—z[ﬁvx + Bvy]. (28)
We introduce a novel potential function o = Z x ;7] X which yields
ve=0, vy =08, (0y), v; =08, (00), wr=p, +o. (29)

Substituting Eq. (29) in both Eq. (27) and Eq. (28) results
Py +Ox+ 02+ 2 +oy+00; (o)) +280 =0, (30)
Olo +9; (0] + 3o 37 (o)) + Y10 + 02 + (729, + 0:)0 + 071+ Dy (02 + 3(129, +02)0 + 07 + 123 ' (0y)]
+3.[Bo +3,  (0,)]1 =0. (31
We adopt the infinite series form of o as

o0
0= L. 22 s - )T (32)

n=1

By substituting Eq. (32) into Eq. (30) and equating all similar powers of §, we derive the recursion relations that govern the conserved
densities as

1
A = —5(7-?2)( + ﬂxy) > (33)
1 1

L ==L+ L1y) = (3 + 2700y + 222y) (33b)

1 _
L= _E{XQ’X +f12 + Dy + 40, l(fl,y)} > (33¢)

1 - S
Ll = -5 {,Zn,x + ka Lk +Lny + Z‘fk 3;1($1—k)} ‘ (3

k=1 k=1

Again, replacing Eq. (32) into Eq. (31) yields

o0 o0 o0 o0 o0
3 [Z L8+ 07! (Z fn,ya—"ﬂ +0, |:oz 3! (Z z,,,ya—"> +y1 (Z fna—”) + (Z zn,zxa—")
n=1 n=1 n=1 n=1 n=1
o0 o0 o0 3 o0 o0
+3 (/.?ZX +>° fn,xa—"> <Z .z,,(s—”> + (Z .z,,a”l) +9, [Z L+ 3(;% +> fn,xa—")
n=1 n=1

n=l1 n=1 n=1
[o¢] oo 3 o.¢] o0 o0
(Z z,,a”) + (Z ,sﬂna") +y 0! (Z .,2”,,8") +0, |:ﬂ: (Z z,la") +97! (Z z,,,ya") ” =0. (34)
n=1 n=1 n=1 n=1 n=1
Finally, we compare the coefficient of all similar powers of § from Eq. (3) to obtain the conservation rules for Eq. (34).
%l,l + ?/n,x + %,y + %,z =0, (35)
where,
_ 1
21 = 21+ 0, (LVoost) = 2 (o, + 27,y + 722,). (36a)

@ Springer
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_ 1
2 =L+ (Lvest) = 2 P3x 4300y 4 3200+ 13y (36b)
Dy =Lp+0x" L0y, (36¢)
U = ad; (L)) + V1A + Lo + 3L 120y (37a)
1
= _E{a(ﬂxy + 722y) + V(0 + 200) + 224 + 23y — 3725, + 37200 + 37205 20 (37b)
U = ad; (L)) + Lo+ Lrox + 3L L x +3L2 720, (37¢)
Uy = a0, (Loy) ¥ V1 La+ Lpoe 43 Y LBy +3 L+ Y. LL %, (37d)
i+j=n i+j+k=n
P = Aox + 3L 2y + 100 L1y (38a)
1
=3 {Lax + Lany + 3125, + 2ay22) + 1220y + 22))} 5 (38b)
P = Lrox + 30 L10x + 3L 120 + 120y (Za.y), (38¢)
L= Lo +3 Y LBl 3L+ Y LLi L+ Ly (38d)
i+j=n i+j+k=n
and
_ B
W= BA+ B0 (L10) = =5 (00 + 220 + 122) (39a)
Wy = BLy+Bo; (Lay), (39b)
W = BLy+ BO(Ly). (39¢)

The values of ., are given via recursion relations Eq. (33).

5 Soliton solutions
5.1 One-soliton solution
To calculate one-soliton solution of Eq. (3), we adopt the following expression for /4
%=1+eX, (40)

where x; = aj(x+b1y+ciz+wit)+ X? and ay, by, cq, X? are arbitrary constants. By substituting Eq. (40) into Eq. (22) and setting
each exponential function to zero, we derive the dispersion relation as

al2 +a]2b1 +aby +B(b1 +c1)+y1 + J/zb%

= 41
. 1+by @b
Finally, the one-soliton solution for Eq. (3) is obtained by substituting Eq. (40) along with Eq. (41) into Eq. (22) as
w =2[log (1+e™)] . (42)

In Fig. 1, we present 3-dimensional plot, density plot and 2-dimensional plot of one-soliton solution Eq. (42), corresponding to
parametric valuesasae =B =y =y =1, a1 =1,b1 =12, c; = 1.3, X10 =0.

@ Springer
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(a) (b) (c)

Fig. 2 The two-soliton solution of Eq. (3), represented by Eq. (45) a 3D surface plot, b density map, ¢ 2D projection

5.2 Two-soliton solution

To derive the two-soliton solution for Eq. (3), we consider / in the following form
fo=1+eM +eX2 + CrpeX1r2, (43)
where x; = a;(x +b;jy +ciz + wit) + Xzo’ (i =1, 2)anda;, b;, c;, Xio, (i =1, 2) are arbitrary constants. Substitution of Eq. (43)

into Eq. (22) yields dispersion relation and Ci; as

2, 2 2

a: +a:b; +ab; + B +c;)+y1 +yib:
= AT IR = 12) (440)

i

(a1w) — aawy)(a) — az + a1by — azby) + (a1 — ax)* + (a1 — @2)*(a1by — azby) + a(ay — ax)(arby — azby)

c +B{(a1 — ax)(arc — azea) + (a1by — azba)(ajcr — azen)} + yi(ar — a2)* + ya(arby — azby)? (44b)
2= .
(a1w) + aawn)(@) +az + arby + azba) + (a1 + a2)* + (a1 + a2)*(a1by + axby) + a(ay + az)(a1by + axby)

+B{(a1 + ax)aicy +azc2) + (arby + axbo)aicy + azc2)} + yi(ar +az)* + ya(arby + azbn)?
Again substituting Eq. (43) with Eq. (44) into Eq. (22), we have obtained two-soliton solution of Eq. (3) as
w=2[log(1+eX +eX + B]geX“'XZ)]X . (45)

Figure 2 illustrates a 3-dimensional plot, a density plot, and a 2-dimensional plot of the two-soliton solution given by Eq. (45),
corresponding to parametric valuesas o = 8 =y =y =1, a1 =1, a0 =2, by =12, by =24c1 =13, ¢ =25,
=03G=1,2).

5.3 Three-soliton solution

Following a similar approach, we can derive the three-soliton solution of Eq. (3) by selecting # in the following form

B =1+eXl X2 4% 4 C126X1+X2 + C13€X1+X3 + C23e)(2+)(3 + C123eX1+X2+X3, (46)

@ Springer



389 Page 8 of 23 Eur. Phys. J. Plus (2025) 140:389

(b) (c)

Fig. 3 The three-soliton solution of Eq. (3), represented by Eq. (92) a 3D surface plot, b density map, ¢ 2D projection

where x; = a;(x + by + ciz + w;t) + Xl.o, (i =1,2,3)and g;, b;, ¢;, Xl-o, (i =1, 2, 3) are arbitrary constants. Substituting Eq.
(46) into Eq. (22), we derive dispersion relation and C;; as
a% + a%bz +aby+ B(by+c2)+y1 + yzb%
1+b

(ajw; —ajw;j)a; —aj +aib; —a;jb;)+ (a; —aj)4 + (a; — aj)S(aibi —ajb;)+ala; —aj)ajbi —ajbj)

w; = , (i =123), (47a)

+B{(ai — aj)aici — ajc;) +(aib; — ajbj)aic; —ajc)} + yi(ai — a;)* +ya(aib; — ajb;)?

Cia = 7 3 ;. (47b)
(a,-w,- + ajwj)(ai +aj;+ a,‘bi + ajbj) + (a,- + a.,-) + (a[ + a.,-) (a,'b,‘ + ajbj) + Ol(a,' + aj)(a,-b,- + ajbj)
+ﬂ{(a,- + aj)(aicl- + ajcj) + (a,'b,' + ajbj)(a,-c,- + ajcj)} + v (a; + aj)z + yz(aib,' + ajbj)z
Ci2z = C12C13Cx3. (47c¢)
Finally substituting Eq. (46) with Eq. (47) into Eq. (22), we derive three soliton solution of Eq. (3) as
u = 2[ log (1 +eXl +eX2 +eX3 + 3126X1+X2 + B13eXl+X3 + Bz3eX2+X3 + B123eXl+X2+X3)]x . (48)

In Fig. 3, we illustrate three soliton solution Eq. (48) graphically, corresponding to the parametric valuesaso = 8 =y} = y» =1,
ar=1,ay=2,a3 =35, b1 =12, bp =24, b3=4, c; =1.3, co =2, ¢3 =3.3, )(io =03 =1,2,3).
6 Wronskian solution

To achieve .4 order Wronskian solution for Eq. (3), firstly, we adopt the .4 order Wronskian determinant notation proposed
by Freeman and Nimmo [12, 25] as follows

©0) (1) N —1)
A TS Y
b5 b5 By -
W =W (P, P2, .. Ox) =1 . . =l A —1] (49)
0 i . s
oy oy e oY
where .4 > 1, an arbitrary integer and ¢ = (¢1, ¢2, ..., d.x Yoa sequence of smooth polynomial functions defined as ¢l.(0) =

¢, oV =L 1<i<H, 0<j<(¥ -1
Employing the Hirota operator mentioned in Eq. (14) into the bilinear form Eq. (22), the Hirota bilinear form can be expressed
as

ﬁ(ﬁxxxx + ﬁxxxy +V1 ﬁxx + )/Zﬁyy +aﬁxy + ﬁﬁxz + ,Bﬁyz + ﬁxt + ﬁyt) - 4ﬁxﬁxxx + 37%)2()5 - ﬁ/xxxﬁy - 3ﬁxﬁxxy
+3hcxtoxy — N1y — Vol — Qistoy — Bhichy — Bliyhy — Foxhiy — foyloy =0 (50)

A sufficient condition that the bilinear equation Eq. (50) of the (3 + 1)-dimensional extended BK equation Eq. (3) has Wronskian
determinant solutions is mentioned below.
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Theorem A: Consider a set of functions ¢; = ¢;(x, y, z, 1), | < i < .4 that meet the subsequent linear partial differential
conditions

N
Gixx = Z?»iﬂﬁj , (51a)

j=1
iy = T Pix, (51b)
Giz = @qbi,xxx s (51c)
¢i,t = (g(lsi,xxx P (51d)

where
—a + 2_4
dz( - ; 7/17/2)’ C=—4— BB, 2 —at, /a4y #0 (52)
V2

and 4 is a free parameter. Then, Wronskian determinant 2 = 4 _y = # (¢1, ¢2, ..., ¢y ) yields a solution « = 2[log /], to the

extended BK equation Eq. (3).
Before starting the proof, we introduce some lemmas to achieve the result.
Lemma A.1: For Wronskian determinant, the Pliicker relation [9] is defined as follows

| Z.¢.6|| Z,¢.d | —| P, a,c|| .6, d|+| P, ad|| P bc|=0, (53)

where & is an A X (. — 2) matrix and @, ¥, ¢, < represents the column vectors of .4 '-dimension.
Lemma A.2: Let ¢; in the Wronskian determinant fulfill the condition specified in Eq. (51a), then the following equalities [52]
hold
N
S AN A —VI=| F =2, 41| = | F =34 =LA, (54)

—
2 J

N
S| | = N =5l =3 N =2 — LN | = | N — gV =2, — 1, N +1 ]
j=I

S\ BN = L, N +2| 42| N =B, N N +1 | +| N -2, N +3] . (55)
By virtue of these identities the following equality holds
- N N o N o 2
| A =11 a0 Do a1 A =11 =D a4 =11 . (56)

Jj=1 J=1 Jj=1

Proof: Utilizing the differential conditions Eq. (51) and the properties of the determinant, we are able to derive the following results

Ay =| N —1], (57a)

Bya=| N =241, (57b)

hyy=dhyy, (57¢)
hyo=BUN =N =2 N =1 N | = | N =B N =L, N+ |+ N =2, +2]}, (57d)
Bys=CUN =8N =2 N — L, N | = | N =B, N =L, N+ |+| N =2,/ +2]}, (57¢)
By =| N BN =L, N | +| N -2, N +1], (57f)

ey xy =Gl y xx» (572)

By oy =Sl rxs (57h)

ogo= BUN =S, N =3 =2 — LN | = | N =B N N1 +| N —2, 4 +3]}, (57i)
Bt yz =D Vy xzs (57

Fd =CUN =5 N =3, N =2 =L, N | — | N BN N+ |+| N =2,/ +3]}, (57k)
B = APy ai s (571

@ Springer



389  Page 10 of 23 Eur. Phys. J. Plus (2025) 140:389

Bgxx =| N =8N =2 N =1L, N 42| N =B, N =1L, N+ |+ N —2, 4 +2], (57m)

By xxy =DV y xxx (57n)

Bt vexx =| N =S, N =3 =2 N — LN | 43| N — BN =2 N — L, N | 43| N =B, N =1,/ +2|  (570)
YN BN N+ |+ | N =2, 4 +3], (57p)

ot xxxy = DBy xxxx s (57q)

Combining the bilinear form Eq. (50) with Eq. (57) and using the Lemma A.1 and Lemma A.2 we obtain
By (Bey xxxx + Bt xxxy ¥ VIR xx ¥+ V2loy yy +Qly xy+ Bloy xz+ Bl ye+ Vo xi+ 1w yi) — 4%y xFoy xxx
+ 3?’?24/,“ — By xxx oy =35y 3B xxy + 3% xxBon xy — Vlf‘i,zy,x - Vzﬁa/,y —aly xhoy,y—Bly xfor,;
—Blw yly o=ty o —ln vy,
=120+ N =3, N =2, N =1 || N =3, N, N +1|
N BN 2NN BN =L, N+l | +| N -3, N =1L, N || N =3, N =2, ¥+1]]
=0.
This demonstrates that Z_y =| =1 | resolves the bilinear extended BK Eq. (20). In the consequence, « = 2[log Z 4 ], is a

solution of Eq. (3).
Reflecting the transformation

t' = 3 + % (58)
into Eq. (3) delivers
Uy + Uy + Uxxx + Uxxxy T OUxtoxy +3tbyteyy +3teyytey + Atlyy + Y1txy + V2tbyy =0 59)
and transforms Hirota bilinear form Eq. (22) into
(DyDy + DyDy + Dy + DDy +aDy Dy +y1 D} +y, D)) - /i = 0. (60)

Equation (60) is the Hirota bilinear form of the (2 + 1)-dimensional combined equation (3.10) presented in [53] corresponding to
the specific values a; = 1, a» = 1, a3 = y1, as = «, as = y». By considering the polynomial P(x, y, t’) = xt’ + yt’ + x* + x3y +
axy + y1x2 + y»y* associated with the bilinear equation Eq. (60), it can be demonstrated that Eq. (60) satisfies Hirota’s N-soliton
condition [53].

Further, by employing the condition Eq. (51b) into the Wronskian determinant solution %2 = 7%Z_y = # (¢1, ¢2, ..., by ), We
perceive that

a
ﬁy - @W(¢19¢2’ .. ’¢J\/)

N

= ) ¢, 62 iy PN
i=1
N

= Y 1p1. b2 o T i PN
i=1

N
= szzw)l,(ﬁz, ..-,¢i,x~-"¢N|

i=1

= dViy. (61)
Consequently, Eq. (60) with the help of Eq. (61) and Eq. (52) reduces to
(DyDy +DH% -/ =0, (62)

the Hirota bilinear form of the (1 + 1)-dimensional KdV equation and the solution presented in Theorem A reduces to a well-known
solution of the KdV equation [54]. A broad set of sufficient conditions for the Wronskian determinant solution of the Korteweg-de
Vries equation and various type of exact solutions including rational solutions, solitons, positons, negatons, breathers, complexiton
are briefly discussed in [27]. By choosing the polynomial P(x, t') = xt’ + x* associated with the bilinear equation Eq. (62), it can
be shown that Eq. (62) satisfies Hirota’s N-soliton condition [55]. This demonstrates the validity of our obtained result.
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6.1 Wronskian rational solution

In the subsequent discussion, we are going to explore lower-order rational Wronskian solutions to the extended (3 + 1)-dimensional
BK equation Eq. (3) through the revealed Wronskian formulation. We are familiar if a similar transformation is used on the coefficient
matrix 7,

o0 --- 00
1 0 0 0
00 - 1L 0], 4
the soliton equations have identical Wronskian solutions. So for erecting Wronskian rational solution to the equation Eq. (3), we
only emphasize different states of the coefficient matrix _#. We denote the Wronskian solution z = 2[ log # (¢1, ¢2, ..., ¢.» )]«
o0 --- 00
1 0 --- 0 0
corresponding to each £Z > 1, in relation to the Jordan block o1 .- 00 as a rational Wronskian solution of order
o0 --- 10 x|
# — 1. To attain Wronskian rational solutions for Eq. (3), we presume A; = 0 in Eq. (51) which yields the condition
¢1,xx = O’ ¢i+l,xx = ¢i, ¢i,y = d(ﬁi,x’ ¢i,z = <@¢i,xxx’ ¢i,t = (g(bi,xxx’ i = 1. (64)

In the subsequent discussion, we will reveal several rational Wronskian solutions of lower order for the generalized (3+1)-dimensional
BK equation Eq. (3).

6.1.1 Zero order

Taking ¢1 = c1(x +97y)+c2, we obtain associated Wronskian determinant as #Z = #(¢1) = c1(x +.2/y) + ¢, and the corresponding
rational solution of Eq. (3) as
2cy

w = 2[log ¥ (¢1)]lx = m . (65)

More specifically, considering ¢ = x + o/ produces Wronskian solution of Eq. (3) as « = ; +§y S

6.1.2 First order

2,2
Setting ¢1 = 1, a direct computation leads to ¢, = % + Xy + Q/Ty Then the associated first order Wronskian determinant is
% =W (1, $2) = x + &y and the corresponding first order Wronskian rational solution of Eq. (3) is given by

w = 2[log(# (p1,$2)]x =

Ty (66)

. _ . _ ﬁ ,Q{)C2y ’Q{ZXyZ 'Q{B)'S 4 .
Next taking ¢1 = x + &y, we arrive at ¢ = ¢ + —5= + —5— + —— + Bz + €’t. Therefore, the corresponding first order

Wronskian determinant and it s associated Wronskian rational solution of Eq. (3) is presented respectively by Z = # (¢1, ¢2) =
2y + a2y + LY~ Bz — %rand
2x% +24xy + M 2)

=2[log ¥ (1, $2)1x = — (67)
L+ dx2y + o xy? + L gt

6.1.3 Second order

. . . 2oy a2
and by a dlrect computation gives ¢3 = 77 + —¢= + —5— + Bxz + Ext,

Q/v

As the choice of ¢y = 1 yields ¢ = % +.o/xy + ‘Q{;Vz

the second order Wronskian determinant Z2 = # (¢1, ¢2, ¢3) = 2y dx%y + o xy? +
order Wronskian rational solution is expressed as

— Bz — &'t and associated second

2x% +24x +,5z/2 2)
w = 20log W (1,2, )l = — Y (68)
L+ dxly + o %xy? + D g
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x3 (Qfxzy O.ﬂxyz + o3y3

Moreover, the choice of ¢ = x + &y delivers ¢ = & + —5= + —; ¢ + Pz + €t which offers
5 o3y of xty o Y xy* o 2x3y? o7 3x2y3 72 RBy* 26y | B & x2 .
_ X o>y o/ X7y o/ " xy o “x°y o °x7y k y°z 4 y Bxz 6 x°t
B=Igt ot ot Tttt Tt T+ 55+ 5 + I Bxyz + FCxyt. This offers the

third order Wronskian detergninalgté s s s s us s NP R X s, s s
_ _xb IO 2o/ x°y , 29/7xy’ | A “x"y o xtyd | A CxCyY Bxdz  Ext AP RBYz  ACCYt g2 0
=W, ¢2$3) =+~ + T3ttt T3t 3 3 3 3 Az
2% — A BxPyz — ACx vt — A Bxy s — A>Exy*t — 2%zt and corresponding third order Wronskian rational solution

2llog # (b1, b2 63)] 2 | 2x° . 247 x*y .\ 2477 y3 .\ 47%x3y? .\ 244 xy*t .\ 473x2y3
= (o) B B = 2| ==
“ R S N T 3 15 3 3 3

—Bx*z — Cx*t — 2o/ Bxyz — 2 Cxyt — A By z — A*Cy*t]. (70)

(69)

6.2 Soliton solutions

To construct soliton solutions, it is imperative to select precise forms of ¢/s within .4 th_order analytic solutions. Considering the
special form of A;; = J; in Eq. (51), where J;’s are real constants,

¢i,xx = S%¢is ¢i,y = e5j¢i,x s ¢i,z = gg¢i,xxx s ¢i,t - <g¢’i,x,wc s 1 <i< N (71)

These partial differential conditions concede the solutions such as

i . i
i =exp? +(=Dlexp 2, 0 =Jix+ Ay + Bz +E, 1<i< N (72)
and simply written as
¢; = cosh(J;x + ZJ;y + %S?Z + %S?t), i odd; (73a)
¢i = sinh(J;x + /3y + BI 2+ €331, i even. (73b)

6.2.1 One-soliton solution

For i = 1, we obtain the Wronskian determinant as Z = # (¢1) = cosh(J1x + Iy + @S?Z + ‘@”S?t) and related one soliton
solution of Eq. (3)

w = 2[log # (¢p1)]y = 23 tanh(J1x + ZJ1y + BI 2+ EX1). (74)

6.2.2 Two-soliton solution

i = 2 provides the Wronskian determinant Z = # (¢, ¢»), in presence of ¢; = cosh(J1x + Iy + %3?2 + %Ts?t), ¢ =
sinh(Jox + A Joy + %S%z + %S%t) and corresponding two soliton solution of Eq. (3)

w = 2[log(# (1, $2))]x - (75)

6.2.3 Three-soliton solution

In case of i = 3, ¢1 = cosh(J1x + 1y + BI}z + €I31), ¢o = sinh(Jnx + ANy + B3z + €I31) and ¢3 = cosh(J3zx +
A3I3y + %’ng +% %gt), delivers the three soliton solution of Eq. (3)

w = 2[log(# (p1, P2, $3)]x (76)

accompanied by the Wronskian determinant 2 = # (¢1, ¢2, ¢3).

7 Grammian solution

In this section, we present a Grammian condition for Eq. (3) and derive its .4 -soliton solution in terms of a Grammian determinant.
For that, at first we define Grammian determinant[9] as follows

X
By = det(a,-j), 1<i,j<N, @ij = Cijj +/ r‘idjdx,
71 =7(x,y,2,1), i =3(x,y,2,t) and <¢;; = constant. 7

A sufficient condition for the existence of the Grammian solution is given below
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(a) (b)

Fig. 4 a Wronskian one- soliton Eq. (74), b Wronskian two- soliton Eq. (75) and ¢ Wronskian three- soliton Eq. (76)

21093

1.4093

07093

0.0093

06907

13907

-2.0007

(d)

Fig. 5 Lump solution of Eq. (3) at different time framesa ¢t = —1.5,bt =0, ¢t = 1.5, d contour plot, e density plot

Theorem B: If both »(x, y, z, t) and 4(x, y, z, t) fulfil the conditions mentioned below
iy = JZ{7"1',x s iz = %fi,xxx s Pip = <g"i,)«:x}c , 1<i<y, (78a)

djy = ﬂdj,x’ Jjz = @Jj,xxx’ Ijt Z%Jj,xxx, I<j=, (78b)

where

—a+Ja2 -4
o — o \/Ol—)/l)’z ’%:_4_/&%)’ 2y2—otﬂ:\/(¥2—74)/1)’2750 (79)

2y»
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and 4 is free parameter, then the Grammian determinant Eq. (77) provides a solution for the bilinear form Eq. (50) and solution for
Eq. (3) is obtainable as « = 2(log 7 4 ).

Proof For simplicity, at first we recast #_4 as a Pfaffian in which i and j are integers and to distinguish j and j*, we employ the
superscript *

oy =2, ..., N N 25 1) = (o), (80)
X
(i, ") = aij = ¢ij +/ ridjdx, (i,j)=(0"j)=0, (81
in conjunction with the Pfaffian entries defined by
-k "3 * * . "7 . * ek 2
(dn!.] ) = W7 (dmsdn) = 0’ (d;pl) = ﬁ7 (ﬂ{n’l) = (‘dm’.] ) = 0’ (8 )
where &, and ,, are Pfaffian characters and the derivatives of «;; are articulated as
d .
aﬁ/ij:%idj:(d(),dé,l,]*), (83)
8 X
5@,’] = .Qf/ (f‘i,xdj + #idj,x)dx = sz?‘l’dj = &f(d(),dg,i,j*), (84)
8 X
EZ@U = ﬂ/ (fi,xxxfjj + fid,j,xxx)dx = %(#i,xxdj —#ixdjxt Vidij,xx)
:ﬂ[(d2’d35i7j*)_(dlv Tai’j*)"'(d()ad;sisj*)]r (85)
8 X
gﬁ/ij = Cg/ (fi,xxxdj + #id./’,xxx)dx = (g(#i,xxdj —7ixdjx+ 7(i'jj,xx)
= C(da, 25,1, j°) — (&1, 47,1, j%) + (Lo, @5, 1, j)]. (86)
To begin the proof, we will consider some lemmas as follows. ]

Lemma B.1: For Grammian determinant, the Jacobi relation [9] defined as follows
(@1, 47, do, &j, 8)(8) — (1,1, 8)(do, djy, ) + (1, A, 8)( 2o, 27, 0) = 0. 87)
Lemma B.2: By leveraging the properties of determinants, we can easily derive the following identity

2(dl’ dT’ d(], da’ .)(.) + (dS’ d(#;’ .)(.) + (d07 >3k’ .)(.) - ({le 43’ .)(.) - (@/2’ dT’ .)(.) = [(dh dé, .) - (d()’ de .)]2 .
(88)

Computing various states derivatives of the Grammian determinant /Z 4 = «;; regarding the variables x, y, z, t as listed below

Yoy = (o), (892)

hy x = (do, 4§, 0), (89b)

loyy=dky x, (89¢)

Yoy . = Bl(o, &5, 0) — (&1, >lk,o)+(d2,d3,o)], (89d)
ley 1 = Cl(do, d5,0) = (d1,d7],0) + (22,45, )], (8%¢)
By xx = (o, &7, 0) + (&1, &5, @), (89f)

Bty = Al y xx (39¢)

By yy =S Ry xxs (89h)

ley xz = Bl(do, 45, 0) — (d1, 4], do, 2, ) + (23,45, )], (391)
By ye =D Voy xz (89))

By xt = Cl(Lo, 43, 0) — (&1, 4T, do, 4§, 0) + (&3, &, 0)], (89k)
eyt =Ahy xts (891)

foy xxx = (o, d5,0) + 221, A7, 0) + (2, &5, 0), (839m)
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ﬁ(/V,xxy = dﬁ«/i/,xxx, (8911)
%oy xxxx = (do, @3, 0) + 2(d1, AT, do, A, 8) + (1, 5, 0) + 3(dr, &7, 0) + (&3, g, ), (890)
ﬁJV,xxxy = «QfﬁL/V,xxxm (89p)

By combining Egs. (89) and (50), along with the support of the Lemma B.1 and Lemma B.2,

)%,/V (ﬁ’/l/ xxxx t ﬁ’,/V,xxxy + Vlﬁ’./l/,xx + V2ﬁe/V,yy +0”%./V,xy + ,Bﬁ(/V,XZ + ﬂﬁa/V,yz + ﬁ/,/V,xI + ﬁ«/V,yt) - 4ﬁ,/1/,x)%,/1/,xxx
+ 3)%/1/ xx )%(A/,xxxﬁa/V,y - 3ﬁa/V,xﬁa/V,xxy + 3ﬁe/V,xxﬁ(/V,xy - yl)%iV,x - sziiy,y - aﬁ/%’,xﬁ/%’,y - ,3)%1/1/,):)%1/1/,1
—Blw yhow o= low xVow s —Bw yhon s
= 12(1 + (&1, 41, 4o, &5, o)(e) — (1, ], &)( o, &, &)+ (1, &, &)(Zo, 2], e)]
=0.
This indicates the function 4_s given by Eq. (77) is a Grammian determinant solution for the bilinear equation Eq. (50) and
consequently, « = 2[log(1, 2, ..., A, A, ..., 2%, 1%)]; is a solution of Eq. (3).

Upon incorporating the condition Eq. (84) into the solution for the Grammian determinant # = % 4y = det(a;;), 1 < i,
Jj <, we can discern that

d a .
Yoy = gdet(@zj) = Z @@iinj , Aj;jis the cofactor of «;;

1<i,j<A¥
ad
= Y. drisjNij=o Y risjAij = Z @,, ij = 5 - det(i))
1<i,j<A¥ I<i,j<AN 1<1]</V
=l Vi (90)

Utilizing the relation Eq. (90), along with Eq. (79) in previously obtained Hirota bilinear form of (2+1)-dimensional combined Eq.
(60), we obtain

(DyDy+DHA -/ =0, o1

the Hirota bilinear form of the (1 + 1)-dimensional KdV equation.

8 Lump solution

To determine the lump solution [39, 51] of Eq. (3), we consider the test function in the following quadratic form

A= h?+h3+my, (92)
where
hi = p1x + pay + p3z + pat + ps, (93a)
ha = pex + p7y + psz + pot + p1o, (93b)
where my, p;, (i =1, 2, ..., 10) are arbitrary constants that to be calculated later and the constants p;(i = 1, 2, 3, 6, 7, 8) satisfy

the condition (p1, p2, p3) If (pe, p7. Ps)- By setting ¥ = y» and substituting Eq. (92) into Eq. (22), then equating coefficients of
different powers of x%y?z¢¢? to zero, we form a system of equations. Solving this system yields the following constraint between
the parameters.

pepr PU{BPs(pT + p7) + pr(a — y1)(pi + pg)} by — puiBps(pt + p7) + (@ — y1)pip7 + pe(aps + lel)}

pr=—
Pl Brs(p} + p3) po(p? + p?)
P1P10 P4P6 (P} +p2)(pl+p )
= , Py = cpin = LT sy, pr #£0. (%94)
P6 14 (@ —y1)p3

Finally, we utilize Eq. (92) and Eq. (94) to replace Eq. (20) in order to obtain the lump solution of Eq. (3).
Figure 5 depicts the propagation of the lump wave through various visual representations, including 3D plot, contour plot and
density plot, considering the parameter valuesa =3, =1, y1 =y =15, p1=2, pe=1, p;=4, ps =15, pio=1.5.
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9 Lump-multi-kink solutions
We have utilized the following two sets of test functions to compute lump-multi-kink solutions for Eq. (3).
n
() A=hi+hy+d +) ek, (95)
i=1

n
(ii) # =hi+h3+di+ Yy cosh ;. (96)
i=1

The following relations between the parameters can be obtained by substituting Eq. (95) into Eq. (22).
psp1 . _ PU{BPs(pT + p7) + pr(a — yD)(p} + pe)} pa = PU{BPs(p} + p3) + (@ — y))pi p7 + ps(@p3 + v1 p7 )}

pr=—

P Bre(p} + p3) pe(p? + p3)
P1P10 P4P6 (P} + p2)(p? + p) a3 +a3by +aby + Bbr+c2) +y1 + b3
= b 9: 9’ 11: b a)l: (121,2,...,’1),
Pe P1 (o — yl)p7 1+by
a # y1, p7 #0. o7

Substituting Eq. (95) and Eq. (97) into Eq. (20) produces the lump-multi-kink solution of Eq. (3) as

2pih1 +2pshy + > aieki
- |: h3+h3+di+3 0 ek :| ©8)
with
by = pux — <P6P7)y . |:P1{,3P8(P12 + )+ prle — yD(p} +p§)}]Z
Bpe(p? + p3)

. |:P1{5P8(P1 + p7) + (@ — y1)pip7 + pelaps + ylpl)}} yavaly (99)

pe(p? + p3) Pé
hy = pex + p7y + psz + <p47§76>l + P10, (99b)
Xi = a,-{x +hiy+ciz— ai +aibi +abi :]’i(l;)";c"“m * yzbizt} 20 G =12 ....n). (99¢)

i

In similar way, we substitute Eq. (96) into Eq. (22) and obtain the same relation between the parameters as Eq. (97) and the
corresponding lump-multi-kink solution of Eq. (3) can be obtained as

2p1hy +2pehy + > ', a; sinh y;
Y P121 2176 2 Zrlal Xi | (100)
hi+h5+d; +Y ;_ cosh x;
with
2
+ + p7(a — +
hy = prx — (p5p7>y+ P1BPs(pi + p7) + pr(a — yD)(pi + Pp)) .
P1 ,3176(P1 +P7)
N p1{ﬁp8(p1+p7)+(a—Vl)p1p7+p6(ap7+y1p1)} L P1pio (1012)
pe(pi + p7) pe
46
hy = pex + pry + psz + %)leo, (101b)
2,2 2
a: +a:b; +ab; + B(b; +c;)+ y1 + 2b;
X,-:a,-{x+biy+c,-z— i T l(lli(z;) DA N yzlt}+ 0 =12 ....n. (101¢)
L
9.1 Lump-multi-kink solutions using test function I
9.1.1 Lump-one-kink solution
Lump-one-kink solution can be obtained by choosing n = 1 in Eq. (98) as
2pi1hy + 2pehy + ajeX!
-9 pini peh2 +aje (102)
h? +h3 +d; +ex
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(d) (e) (e)

Fig. 6 Progression of the lump-one-kink solution for Eq. (3) at various time points: at = —2.5,bt = —-0.5,¢ct = —-0.1,dt =04,et = 1,f 2.5

with

B = prx — (pm)y . [m{ﬁps(p% +p))+ prle = y)(pi + ”g)}}

pi Bpe(p? + p?)

pi{Bps(pi + p3) + (@ — y)pip7 + pslaps + vipD} | pip1o
+ 7o t+ , (103a)
pe(pi + p7) D6
4 D6
hy = pex + p7y + psz + %)t+p10, (103b)
2 2 2
+aiby +aby + b1 +c1) +y1 + b
X1 =a1{x+b1y+clz—al aionra l(li(bl) c+y+y 1t}+x?~ (1030)
1

Figure 6 showcases the interaction dynamics between a lump wave and a kink wave, describing their evolutionary behavior across
various time frames for the parametric values aso = 8 =1, y1 = y» = —1.5, a1 = 0.8, b1 = 1.2, ¢ = 1.3, p1 = -2.5,
pe=—1,p7=3,ps=1, p10=1.5, X? = 0. At = —2.5, the solution features a kink wave. By t = 0, a lump wave begins to
emerge from the kink. As time progresses to ¢ = 1, the lump wave fully detaches from the kink and propagates independently.

9.1.2 Lump-two-kink solution

Lump-two-kink solution can be obtained by choosing n = 2 in Eq. (98) as

2p1hy +2pehy + areX! + are’?
w=2 P1 ; 12!76 2tae axe (104)
hi+h3 +d; +eXl + eXi
with
2, .2 _ 2, .2
i P6p7 pu{Bps(py + p7) + pr(a — yi)(py + pe}
1= p1Xx — y+ 2 2 Z
P1 Bps(p1 + p7)
pU{BPs(p? + pH) + (@ — y1)p? p7 + pe(ap? + y1ph)} P1P10
+ s t+ , (105a)
pe(py + p7) 129
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(d) (e) (e)

Fig. 7 Progression of the lump-two-kink solution for Eq. (3) at various time points: at = —2,b¢t =0.8, ¢t =19,d¢t =3,et =45,ft =10

4 D6
hy = pex + p7y + psz + (%)t + P10 (105b)

a? +a’b; +ab; + B(b; +¢;) + y1 + y2b}
(1+b;)

Xi :ai[x+biy+ciz— t} +)(l-0, (i=12). (105¢)
Figure 7 presents the interaction phenomena between a lump wave and a two-kink wave, narrating their evolutionary behavior over
different time frames for the parametric valuesasae = =1,y =y =—15,a1 =08, b1 =12, c1 =13, a0 =2, b = 1.7,
cy =18, p1 = -25, pe =—1, p7 =3, pg =1, p10 =35, X,-O =0, (i =1, 2). Att = —2, there is only one kink wave. At
t = 0.8, lump wave start originating from kink wave. At = 1.9, lump wave completely separates from kink wave. Consequently,
att = 0, kink wave start splitting into two-kink wave and at ¢ = 10, kink wave completely splits into two distinct kink waves.

9.1.3 Lump-three-kink solution

Lump-three-kink solution can be obtained by choosing n = 3 in Eq. (98) as

2p1hy +2pehs + ajeX! + azeX? + azeX3
= 2.2 (106)
hi +h; +dy +eXl +eX2 + X3
with
B P67 pi{Bps(p + p3) + pr(a — y)(p} + pP)}
hy = p1x — v+ = 5 z
Bps(pi + p7)
pU{BPs(PT + PP +(a — ypip7+ pelaps +vipD} | pipio
+ 5 5 t+ , (107a)
pe(pi + p7) P6
4 D6
hy = pex + p7y + psz + %)mmo (107b)
2 2 2
a: +a:b; +ab; + (b +c;)+ y1 + 2b;
Xi :a,-[x+b,-y+ciz— e e (1ﬁ+(bl) DryE b t} +x% G =1,2,3). (107¢)
i
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(d) (e) (e)

Fig. 8 Progression of the lump-three-kink solution for Eq. (3) at various time points:at = —3,br=1,ct =3,dr=5,et =8,fr =15

Figure 8 presents the intricate interaction dynamics between a lump wave and a three-kink wave, capturing their evolution across
various time frames. This progression is mapped out according to the specific parametric values o = g = 1, y; = y» = —1.5,
a1 =08,b=12,c1=13,a0=2,bp =17, ¢ =18,a3 =2.5,b3 =1.5,¢c3 = —1.5, py = =25, ps = —1, p; = =3,
ps =1, p10 = 1.5, Xio =0, (i =1,2,3). Att = —3, there is only one kink wave. At r = 3, kink wave start splitting into two
kink wave and in the same time lump wave start originating from kink wave. At# = 5, lump wave completely separates from kink
wave. At t = 8, another kink wave originates and consequently separates from other kink waves.

9.2 Lump-multi-kink solutions using test function II
9.2.1 Lump-one-kink solution

We derive lump-one-kink solution by choosing n = 1 in Eq. (100) as

2p1hy +2peha + h
w2 P121 2176 2 +ajcosh xi ’ (108)
hi+h3 +d; +cosh x;
with
2, 2 . 2, 2
P6D7 pilBps(py + p7) + pr(e — y1)(p7 + pg)t
hy = p1x — y+ ) z
1 Bpes(pi + p7)
. pUUBPS(P? + p2) + (@ — y1)p?p7 + polap? + y1 p)} L, PP (109)
pe(p} + p?) ps
4 D6
hy = pex + p7y + psz + <pp+?>t + P10 (109b)
2 2 2
ai +ayby +aby+ B +c1)+y1 + b
x1=a1{x+b1y+c1z— L1 450 Lt 0. (109¢)

In Fig. 9, we showcase the evolutionary dynamics of the lump-one-kink solution of Eq. (3), as derived from Eq. (108), across distinct
time frames. This phenomena is observed under the corresponding parametric values outlined asa =1, 8 =2, y; = y» = —1.5,
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Fig. 9 Progression of the lump-one-kink solution for Eq. (3) at various time points:at = —1.5,bt = —0.5,¢r =0,dr=0.5,er = 1.5

a;=08,b1=-25c1=-21,p1=1,ps =17, p7 =19, pg = —1.6, pjp = —1, x? = 0 . Initially, there is only one kink
solution, then lump solution start originating and reach its peak. Consequently, lump solution disappear in kink solution with time.

9.2.2 Lump-two-kink solution

We derive lump-two-kink solution by choosing n = 2 in Eq. (100) as

2p1hy +2peho + aj cosh x1 + ap cosh xo
w=2 > R (110)
hi + h35 +dy + cosh xi +cosh x2

with

Iy = prx— (pam)y . [pl{ﬂps(pf + )+ pr(@ = yD(pi + pé)}}Z

Bps(pi + p7)
. | PUBPs(E + pD) + (@ = y0Pip1 + Po(apT + vipDY | pipio (11a)
Pe(pi +p?) 1 P
P4Ds
hy = pex + p7y + psz + (T)HPIO (111b)
2 2 2
a: +a:b; +ab; + (b +c;)+y1 + b:
Xi Zai[x+biy+cl'z— Sl A l(lfi(bl) Dyt vb, +x2, G =1,2). (111c)
i

In Fig. 10, we showcase the evolutionary dynamics of the lump-two-kink solution of Eq. (3), as derived from Eq. (110), across
distinct time frames. This phenomena is observed under the corresponding parametric values outlined asa = 8 =1, y1 = y» =
—1.5a; =05,b1 =18, c1 =—-19,a0 =-8, by =11,cp =—15 p1 =2, ps=.5 p1 = -3, pg = 14, pj0 =12,
Xio =0, (i =1, 2). Att = —2, there is only one kink wave. At t = 0.8, lump wave start originating from kink wave. At = 1.9,
lump wave completely separates from kink wave. Consequently, at f = 0, kink wave start splitting into two-kink wave and att = 10,
kink wave completely splits into two distinct kink waves.
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\\ 3
50 -50

(d) (e) (e)

Fig. 10 Progression of the lump-two-kink solution for Eq. (3) at various time points:at = —1.5,bt = —-0.5,¢t =0,dt =0.5,et = 1.5

10 Graphical illustrations

In Fig. 1, we depict a 3D figure, a density plot, and a 2D plot corresponding to the one-kink solution of Eq. (3). In Fig. 2, we
showcase the same visualizations for the two-kink solution and in Fig. 3, we illustrate them for the three-kink solution. In Fig. 4,
we present Wronskian-multi-soliton solutions. Figure 5 showcases the 3D representation of the lump solution described by Eq. (3)
across various times, illustrating its characteristic localization in all directions. Additionally, contour and density plots of the lump
solution are provided at ¢ = 0, corresponding to specific parameter values, witha =3, =1, yy =y =15, p1 =2, ps =1,
p7 =4, ps = 1.5, p1o = 1.5. Figure 6, depicts the evolution of a lump solution emerging from a one-kink wave, with parameter
valuesasa =B =1, y1 =y =—-15,a1 =08, b1 =12,c1 =13, p1=-25,ps=—1,p7=3, ps =1, p10 = 1.5, x? =0
. Initially, only a single kink wave is present. Over time, a lump solution gradually emerges from the kink wave, eventually separating
entirely from it as the kink wave continues to propagate. In Fig. 7, we illustrate the entire evolutionary process of lump-two-kink
solution from a single kink wave, corresponding to the parametric valuesasa = 8 =1, y; = y» = —1.5, a1 = 0.8, by = 1.2,
ci=13,a0=2,bp=17,¢cp =18, p1 =-25, pe =—1, p7 =3, ps =1, p10=3.5, X,-O =0, (i =1, 2). Initially, only one
kink wave is present. Subsequently, a lump wave emerges from the kink wave and completely separate from it. Following this, the
kink wave bifurcates into two distinct kink waves. Figure 8, showcases the complete evolutionary journey of the lump-three-kink
solution, originating from a singular kink wave with parameter values as@ = 8 =1, y1 = y» = —1.5, a1 = 0.8, by = 1.2,
ci=13,a0=2,bp =17, ¢ =18,a3 =25,b3=15,¢c3 = —-15, p1 = -25,ps =—1, pr = -3, pg =1, p10 =15,
Xio =0, (i =1, 2, 3). Initially, a solitary kink wave appears. Over time, a lump wave emerges from this kink wave, leading to its
division into two separate kink waves. Subsequently, the lump wave detaches entirely from the kink wave, which then further divides
into three distinct kink waves, eventually propagating forward. In Fig. 9 we depict the evolution of lump-kink wave, illustrating how
the lump wave originates from the kink wave and eventually dissipates back into it over time. In Fig. 10, we portray the progression
of a lump-two-kink wave, demonstrating how the lump wave emerges from the two-kink wave and eventually diminishes back into
it as time progresses.

11 Conclusions

This article thoroughly investigates the integrability properties of a (3+1)-dimensional extended BK equation. Utilizing relations
between Hirota D-operator and binary Bell polynomials, we directly derive the Hirota bilinear form and achieve the bilinear
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Bécklund transformation by decoupling the two-field condition. By incorporating the Cole—-Hopf transformation within the bilinear
Bécklund transformation and subsequently linearizing it, we establish a Lax pair formulation. Additionally, Our analysis also
explores the integrability of the model equation, leading to the discovery of an infinite sequence of conservation laws. The Hirota
bilinear form’s analytical power enables us to derive one-, two-, and three-soliton solutions, which we illustrate with detailed by
presenting 3-dimensional plot, 2-dimensional plot and density plot. We establish the Wronskian condition for the (3+ 1)-dimensional
extended BK equation, employing the Pliicker relation to ensure that the N-soliton solutions of the equation can be represented as
Wronskian determinants. Additionally, by applying a transformation to our considered model, we obtain a specific type of (2 + 1)-
dimensional combined Hirota bilinear equation (3.10) as described in [53]. Moreover, through the use of the obtained Wronskian
determinant condition, we successfully derive the (1+1)-dimensional KdV equation. As a result, Theorem A leads to a solution of the
KdV equation, which notably holds significant recognition. Also, rational Wronskian solutions are obtained by selecting a specific
coefficient matrix in the resulting Wronskian formulation. Furthermore, explicit one-, two-, and three-soliton solutions in Wronskian
form are derived and their soliton dynamics are visually depicted using Mathematica by selecting appropriate parameters. We also
present a Grammian determinant solution, utilizing the Jacobi relation for the (3 + 1)-dimensional extended BK equation. These
aspects collectively ensure the complete integrability of our model. Additionally, we acquire the lump solution by considering the
test function in quadratic form and present it’s localized characteristic in all directions at various times. Moreover, we present a new
method that utilizes a combination of an exponential function and a quadratic function as a test function, resulting lump-multi-kink
solutions. This depicts that the lump solution originates from a single kink wave and over time separates from the kink wave as the
kink wave propagates.

Additionally, a new set of lump-multi-kink solutions is obtained by using a quadratic function and hyperbolic cosine function as
test functions. This demonstrates that the lump wave emerges from the kink wave, reaches its peak, and then gradually diminishes
back into the kink wave. Notably, these revelations advance our insight into nonlinear wave phenomena spanning a multitude of
disciplines, such as nonlinear optics, fluid mechanics, shallow water dynamics, plasma physics and oceanography.

In future, our focus remain towards exploring Lie symmetry analysis to derive diverse types of invariant solutions. Another avenue
for our future research entails computing higher-order breather solutions and investigating their interaction phenomena with other
exact waves.
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