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ABSTRACT

In this article, we consider a new (3þ 1)-dimensional evolution equation, which can be used to interpret the propagation of nonlinear waves
in the oceans and seas. We effectively investigate the integrable properties of the considered nonlinear evolution equation through several
aspects. First of all, we present some elementary properties of multi-dimensional Bell polynomial theory and its relation with Hirota bilinear
form. Utilizing those relations, we derive a Hirota bilinear form and a bilinear B€acklund transformation. By employing the Cole–Hopf trans-
formation in the bilinear B€acklund transformation, we present a Lax pair. Additionally, using the Bell polynomial theory, we compute an infi-
nite number of conservation laws. Moreover, we obtain one-, two-, and three-soliton solutions explicitly from Hirota bilinear form and
illustrate them graphically. Breather solutions are also derived by employing appropriate complex conjugate parameters in the two-soliton
solution. Choosing the generalized algorithm for rogue waves derived from the N-soliton solution, we directly obtain a first-order center-
controllable rogue wave. Lump solutions are formulated by employing a well-established quadratic test function as a solution to the Hirota
bilinear form. Further taking the test function in a combined form of quadratic and exponential functions, we obtain lump-multi-stripe solu-
tions. Furthermore, a combined form of quadratic and hyperbolic cosine functions produces lump-multi-soliton solutions. The fission and
fusion effects in the evolution of lump-multi-stripe solutions and lump-soliton-solutions are demonstrated pictorially.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0195378

I. INTRODUCTION

In the past few decades, there has been a noticeable shift among
researchers toward nonlinear models, driven by the rapid advance-
ments in science and computer technology. Nonlinear evolution equa-
tions (NLEEs) play a pivotal role in describing a myriad of phenomena
across various scientific disciplines, including physics, engineering,
biology, and finance. These equations capture the complexity inherent
in many natural processes, allowing for a more accurate representation
of real-world dynamics like fluid mechanics,1 optical fibers,2 oceanog-
raphy,3 solid-state physics,4 geochemistry,5 plasma physics,6 nonlinear

optics,7 and wave propagation in shallow water.8 In recent years, there
has been a notable focus on the exploration of constructing exact solu-
tions for these nonlinear evolution equations (NLEEs) to enhance our
understanding of their dynamical properties with greater accuracy.
Due to the growing interest in nonlinear partial differential equations
(NLPDEs), researchers are actively exploring a broader range of ana-
lytical and numerical methods to study them, leading to the computa-
tion of various novel types of exact solutions.9–14 Studies on the
integrability of nonlinear evolution equations become crucial for
researchers, as it ensures the existence of exact solutions. While a
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precise definition of integrability is elusive, indicators such as the
Hirota bilinear form,15 inverse Scattering method,16 Painlev�e analy-
sis,17–19 bilinear neural network method,20 bilinear B€acklund transfor-
mation,21 bilinear residual network method,22 Lax pair,23 Darboux
transformation method,24 Lie symmetry analysis,25–27 infinite conser-
vation laws,28 etc. can effectively characterize integrability. Utilizing a
Lax pair for a nonlinear system, a series of integrable properties,
including Hamiltonian structures29 and an infinite number of con-
served quantities,30 can be demonstrated. Among them, the Hirota
bilinear method is one of the most conventional methods and recog-
nized as a powerful approach for analyzing NLEEs. A pivotal aspect of
this method involves expressing the original equation in a bilinear
form. Upon formulating the bilinear representation of nonlinear evo-
lution equations (NLEEs), one can directly acquire quasi-periodic
wave solutions, rational solutions, multi-soliton solutions, and various
other exact solutions through the utilization of the bilinear struc-
ture.31–39 Kumar and Mohan recently proposed a systematic computa-
tional method to ascertain the bilinear form of nonlinear partial
differential equations.40 Using this method, it becomes straightforward
to derive the Hirota bilinear form by employing symbolic computa-
tional software such as Mathematica, Maple, and Matlab. Lambert
et al.41–43 introduced an innovative approach for obtaining the Hirota
bilinear form of nonlinear evolution equations (NLEEs) through the
application of Bell polynomial theory. Through this approach, the
bilinear B€acklund transformation and Lax pair can be directly derived
from the Hirota bilinear form. Fan44 expanded upon this method to
directly derive infinite conservation laws from the bilinear B€acklund
transformation. Lately, numerous researchers have utilized this
approach to study the integrability of diverse types of nonlinear evolu-
tion equations (NLEEs) and have yielded a variety of exact solu-
tions.45–51 Researchers have shown a growing interest in the intriguing
dynamical properties of exact solutions of nonlinear evolution equa-
tions (NLEEs), especially in phenomena such as solitons, lumps,
breathers, and rogue waves. While waves travel through nonlinear
media, variations in their amplitudes and widths are typically occur.
Nevertheless, under specific conditions, the interaction between non-
linearity and dispersion can give a rise to the creation of enduring and
localized waves, commonly referred to as solitons. A rogue wave also
known as a giant wave is an exceptionally high wave that can manifest
abruptly and vanish without a trace. These waves are localized both in
space and time and were initially observed in the oceans.52 The phe-
nomenon of rogue waves has been experimentally verified in nonlinear
optics, generated by the generalized nonlinear Schr€odinger equation.53

In recent years, rogue waves have been observed in various scientific
research fields such as Bose–Einstein condensates,54 superfluids,55

plasma physics,56 capillary flow,57 nonlinear optical fibers,58 and even
in finance.59 There are only a few methods available for computing
rogue waves, and among them, the Darboux transform method60–62

and the Hirota bilinear method63–65 have been gaining significant pop-
ularity. Recently, Zhaqilao66 proposed a systematic approach for com-
puting higher-order center-controlled rogue waves based on the
N-soliton solution. Utilizing this methodology, researchers have
derived higher-order center controlled rogue waves for a variety of
nonlinear evolution equations.67–71 A breather solution is a type of
partially localized solution characterized by a periodic structure in a
specific direction. Breather solutions can be categorized into three

types: Akhmediev breathers, Kuznetsov–Ma breathers, and Peregrine
solitons. Breather of NLEEs can be obtained by using some standard
methods like the Darboux transform method,72 the Riemann–Hilbert
approach,30,73 and the Hirota bilinear method.64 Lump solution is also
a rational type solution and localized in all direction. Lump solution74

of NLLEEs can be obtained directly by taking the quadratic function as
a solution into the Hirota bilinear form of that equation. Numerous
researchers worldwide have successfully obtained lump solutions for
various nonlinear evolution equations using this method.75–78

Recently, Ma et al. obtained a new type of lump solution using the
Hirota bilinear method for the generalized Calogero–Bogoyavlenskii–
Schiff equation.76 The exploration of the dynamic interplay between
lump solutions and various exact solutions such as soliton, kink,
breather, etc. has emerged as a highly active area of research among
researchers.79,80 L€u and Chen81 establish a necessary and sufficient
condition for obtaining lump-multi-stripe and lump-multi-soliton
solution with the help of Hirota bilinear form. Utilizing these theorem,
they briefly analyze the dynamical behavior of lump-multi-stripe solu-
tion and lump-multi-soliton solution of three different (2þ 1)-dimen-
sional nonlinear evolution equations. L€u and Chen82 additionally
establish a necessary and sufficient condition for determining lump-
multi-kink solutions of nonlinear evolution equations (NLEEs) that
exhibit a specific type of Hirota bilinear form. Furthermore, Mandal
et al.83 generalize the L€u’s theorem and illustrate the evolution of
lump-multi-kink solution for (3þ 1)-dimensional negative order
KdV–CBS equation.

Recently, Akinyemi proposed a new (2þ 1)-dimensional evolu-
tion equation84

Auxt þ auxx þ b ðu2Þxx þ cuxxxx þ duyy ¼ 0; (1)

where a, b, and c are arbitrary real constants. Equation (1) describes
the motion of water characterized by small-amplitude and long waves.
Additionally, this mathematical model emphasizes few real life phe-
nomenon such as tsunamis and tidal oscillations. Akinyemi shown
that Eq. (1) is Painlev�e integrable and derived various exact solutions.
Wazwaz extend Eq. (1) to the following new (3þ 1)-dimensional
equation:85

uxt þ auxx þ b ðu2Þxx þ cuxxxx þ duyy þ auxy

þ buxz þ cuyz þ duzz ¼ 0; (2)

where a; b; c; d; a; b; c; and d are arbitrary real constants. Equation
(2) finds utility in the representation and analysis of the intricate
dynamics governing wave propagation in oceans and seas, offering
noteworthy prospects for applications in fluid mechanics, plasma
physics, and allied fields. In Ref. 85, Wazwaz shown that Eq. (2) also
passes the Painlev�e integrability test and studied multiple soliton solu-
tions and lump solutions.

We observed a gap in the existing literature regarding the investi-
gation of the bilinear B€acklund transformation, Lax pair, and infinite
conservation laws for Eq. (2). This observation motivated us to study
these aspects in the current exposition. Our primary objective in this
article is to explore the integrability and exact solutions of the nonlin-
ear evolution described by Eq. (2).

The organization of our article is as follows. In Sec. II, we present
some elementary properties of Bell polynomial theory and their rela-
tion with Hirota D-operator. Section III is entirely dedicated to
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examining the Hirota bilinear form, bilinear B€acklund transformation,
and associated Lax pair formulation of Eq. (2) through the utilization
of Bell Polynomial theory. In Sec. IV, we derive infinitely many conser-
vation laws. In Sec. V, we calculate one-, two-, and three-soliton solu-
tion and present their evolution graphically. In Sec. VI, we derive first
order breather solution. In Sec. VII, we explore first order center con-
trolled rogue wave of Eq. (2). In Sec. VIII, we obtain lump solution of
the considered equation. Sections IX and X are exclusively focused on
computing the lump-multi-stripe solution and lump-multi-soliton
solution as well as analyzing their dynamic behavior. In Sec. XI, we
have depicted the obtained solutions and discussed their propagation
and nonlinear interaction with other solutions elaborately. Finally, in
Sec. XII, we draw conclusions based on our work.

II. MULTI-DIMENSIONAL BELL POLYNOMIALS

In this section, we provide a brief overview of the fundamental
principles and representations of Bell polynomials.41,42 Assume g is a
C1 function of t. The one-dimensional Bell polynomial, as defined in
Ref. 41, is expressed as

YntðgÞ ¼ Ynðg1; g2;…; gntÞ ¼ e�g@t
neg; n ¼ 1; 2; 3;…: (3)

Several one-dimensional Bell polynomials can be derived from the
aforementioned statement as

Yt ¼ gt; Y2t ¼ g2t þ gt
2; Y3t ¼ g3t þ 3gtg2t þ gt

3;…: (4)

We use the formula

YntðgÞ ¼
X n!

a1!a2!…an!
gt
1!

� �a1 g2t
2!

� �a2

� � � gnt
n!

� �an

; (5)

where the sum runs over all partitions of n ¼ a1 þ 2a2 þ � � � þ nan
and obtains the aforementioned expressions, Eq. (4). Assuming
g ¼ gðt1; t2;…; tsÞ as a C1 multi-variable function, we can extend the
dimension of the Bell polynomial. The multi-dimensional Bell polyno-
mial can then be expressed as follows:

Yn1t1 ;…;nstsðgÞ � Yn1 ;…;nsðgm1t1 ;…;mstsÞ ¼ e�g@n1
t1 …@ns

ts e
g; (6)

where gm1t1 ;…;msts ¼ @m1
t1 …@ms

ts g;mi ¼ 0; 1;…; ni; and i ¼ 1; 2;…; s.
Here, Yn1t1 ;…;nstsðgÞ denotes the multi-variable Bell polynomial with
respect to gm1t1 ;…;msts . Specifically, if we select g as a function of both t
and z, the corresponding lower-order two-dimensional Bell polyno-
mials can be derived as follows:

Y2tðgÞ ¼ g2t þ g2t ; Y3tðgÞ ¼ g3t þ 3g2tgt þ g3t ; (7)

Yt;z ¼ gt;z þ gtgz ; Y2t;zðgÞ ¼ g2t;z þ g2tgz þ 2gt;zgt þ g2t gz;…:

(8)

According to the aforementioned one-dimensional Bell polynomials,
Eq. (6), we can depict multi-dimensional binary Bell polynomials as
follows:

Y n1t1 ;…;nstsðf;gÞ ¼ Yn1t1 ;…;nstsðgÞ; (9)

where

gm1t1;…;msts ¼
fm1t1;…;msts ; m1 þ � � � þms is odd;

gm1t1 ;…;msts ; m1 þ � � � þms is even:

(
(10)

The following are a few two-dimensional binary Bell polynomials that
can be derived from the above-mentioned statement:

Y tðfÞ ¼ ft ;Y 2tðf;gÞ ¼ g2t þ f2
t ;

Y t;zðf;gÞ ¼ gt;z þ ftfz ;

Y 2t;zðf;gÞ ¼ f2t;z þ g2tfz þ 2gt;zft þ f2
tfz;

Y 3t ¼ f3t þ 3g2tft þ f3
t ;…:

(11)

With the help of the identity

ðgwÞ�1Dn1
t1 …Dns

ts g:w ¼ Y n1t1;…;nstsðf ¼ ln g=w; g ¼ ln gwÞ; (12)

we can establish a relation between the conventional Hirota bilinear
expression Dn1

t1 …Dns
ts g:w and binary Bell polynomials, where the

D-operator is presented by Hirota15 as follows:

Dn1
t1 …Dns

ts g:w ¼ ð@t1 � @t01Þ
n1…ð@ts � @t0sÞnsgðt1;…; tsÞ

� wðt01;…t0sÞjt01¼t1 ;…;t0s¼ts :

In case when g ¼ w, the identity Eq. (12) becomes

ðgÞ�2Dn1
t1 …Dns

ts g:g¼Y n1t1;…;nstsðf¼ 0;g¼ 2 lngÞ

¼ 0; n1þ���þns isodd;
Pn1t1 ;…;nstsðpÞ; n1þ���þns iseven:

�
(13)

Here, the P-polynomials refer to the even-ordered Y -polynomials,
and a few of the initial ones are listed as follows:

P2tðpÞ ¼ p2t ; Pt;zðpÞ ¼ pt;z;

P3t;zðpÞ ¼ p3t;z þ 3pt;zp2t ; P4tðpÞ ¼ p4t þ 3p2
2t:

(14)

The binary Bell polynomial Y n1t1;…;nstsðf;gÞ can be written as a lin-
ear combination of P-polynomials and Bell polynomials
Yn1t1;…;nstsðfÞ as

ðgwÞ�1Dn1
t1 …Dns

ts g:w ¼ Y n1t1 ;…;nstsðf;gÞ;
where

f ¼ ln g=w and g ¼ ln gw ¼ Y n1t1 ;…;nstsðf;fþpÞ;
where

f ¼ ln g=w and p ¼ 2 lnw

¼
Xn1
m1¼0

:::
Xns
ms¼0

Ys
i¼1

ni
mi

 !
Pm1t1 ;…;mstsðpÞYðn1�m1Þt1 ;…;ðns�msÞtsðfÞ:

(15)

Using Hopf–Cole transformation f ¼ lnw, binary Bell polynomial
can be expressed in the following form:

Yn1t1;…;nstsðf ¼ lnwÞ ¼ wn1t1;…;nsts

w
; (16)

through which, Eq. (15) can be reexpressed as

ðgwÞ�1Dn1
t1 …Dns

ts g:w

¼ w�1
Xn1
m1¼0

:::
Xns
ms¼0

Ys
i¼1

ni
mi

 !
Pm1t1 ;…;mstsðpÞwðn1�m1Þt1 ;…;ðns�msÞts :

(17)
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Equation (17) provides the most straightforward approach to con-
structing the associated Lax pair for the relevant nonlinear evolution
equation. The Bell polynomial theory concepts mentioned earlier will
be further employed to establish the bilinear form, bilinear B€acklund
transformation, and the Lax pair formulation of Eq. (2).

III. HIROTA BILINEAR FORM, BILINEAR B€ACKLUND
TRANSFORMATION, AND LAX PAIR

In order to achieve Hirota bilinear form of Eq. (2), we introduce a
new potential field q by setting

u ¼ 3c
b
qxx: (18)

Substituting Eq. (18) in Eq. (2) and integrate twice it with respect to x
yields

EðqÞ ¼ qxt þ aq2x þ cðq4x þ 3q2
2xÞ þ dq2y

þ aqxy þ bqxz þ cqyz þ dq2z ¼ 0: (19)

Furthermore, we choose q ¼ 2 log f , and we deduce the Hirota bilin-
ear of Eq. (2) by using the relation between P-polynomial and Hirota
D-operator as

ðDxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz

þ cDyDz þ dD2
zÞf � f ¼ 0: (20)

To formulate bilinear B€acklund transformation, we choose
q0 ¼ 2 log f 0 as a distinct solution of Eq. (2). Furthermore, we intro-
duce two new variables v ¼ q0�q

2 and v ¼ q0þq
2 . Then, the correspond-

ing two-field condition can be written as

Eðq0Þ � EðqÞ ¼ 2½vxt þ av2x þ cðv4x þ 6v2xw2xÞ þ dv2y
þ avxy þ bvxz þ cvyz þ dv2z�

¼ 2
@

@x
Y tðvÞ þ cY 3xðvwÞ þ bY zðvÞ½ � þ 2Rðv;wÞ;

(21)

where Rðv;wÞ ¼ av2x þ dv2y þ avxy þ cvyz þ dv2z þ 3c Wronskisan
½Y 2xðv;wÞ;Y xðvÞ�. In order to write Rðv;wÞ in the expression of Y
polynomials, we introduce a constraint as follows:

Y 2xðv;wÞ þ AY zðv;wÞ ¼ g; (22)

where A is an undetermined constant and g is an arbitrary parameter.
Taking 3cA2 ¼ d; Rðv;wÞ can be written as

Rðv;wÞ ¼ @

@x
ð3cgþ aÞY xðvÞ � 3cAY xzðv;wÞ½ �

þ @

@y
aY xðvÞ þ cY zðvÞ þ dY yðvÞ
� �

: (23)

Finally, Eq. (21) can be written as

Eðq0Þ � EðqÞ ¼ 2
@

@x
½Y tðvÞ þ cY 3xðv;wÞ þ bY zðvÞ

þ ð3cgþ aÞY xðvÞ � 3cAY x;zðv;wÞ�

þ 2
@

@y
½aY xðvÞ þ dY yðvÞ þ cY zðvÞ�: (24)

Decoupling Eq. (24), we obtain the bilinear B€acklund transformation
of Eq. (2) as follows:

Y 2xðv;wÞ þ AY zðv;wÞ ¼ g; (25a)

Y tðvÞþcY 3xðv;wÞþbY zðvÞþð3cgþaÞY xðvÞ�3cAY x;zðv;wÞ¼g1;

(25b)

aY xðvÞ þ dY yðvÞ þ cY zðvÞ ¼ g2: (25c)

With the help of Eq. (12), the aforesaid bilinear B€acklund transforma-
tion Eq. (25) also can be written in terms of Hirota D-operator as
follows:

ðf 0 � f Þ�1 D2
x þ ADz � g

� �ðf 0 � f Þ ¼ 0; (26a)

ðf 0 �f Þ�1 DtþcD3
xþbDzþð3cgþaÞDx�3cADxDz�g1

� �ðf 0 �f Þ¼0;

(26b)

ðf 0 � f Þ�1 aDx þ dDy þ cDz � g2
� �ðf 0 � f Þ ¼ 0: (26c)

Using the Cole–Hopf transformation v ¼ log f and linearizing the
Bell polynomial system, Eq. (25), we derive the Lax pair of Eq. (2) as

f2x þ Afz þ ðq2x � gÞf ¼ 0; (27a)

ft þ bfz þ cðfxz þ f3x � 3AÞ þ ðaþ 3cgþ 3cq2xÞfx
� 3cAqxzf� g1f ¼ 0; (27b)

afx þ dfy þ cfz � g2f ¼ 0: (27c)

IV. INFINITELY MANY CONSERVATION LAWS

To construct infinite conservation laws of Eq. (2), we rewrite Eqs.
(22) and (24) in following form:

v2x þ Avz � g ¼ 0; (28)

@

@t
ðvxÞþ @

@x
cðv3x þ 3vxw2x þ v3xÞþ ð3cgþ aÞvx � 3cAvxvz
� �

þ @

@y
ðavx þ dvy þ cvzÞþ @

@z
ð�3cAgþ dvz þ 3cAv2x þbvzÞ ¼ 0 :

(29)

We present a novel potential function n ¼ q0
x�qx
2 , which yields

vx ¼ n; vy ¼ @�1
x ðnyÞ; vz ¼ @�1

x ðnzÞ; wx ¼ qx þ n: (30)

Substitution of Eq. (30) into Eq. (28) and Eq. (29) yields a Riccati type
equation and a divergence type equation as

n2 þq2x þ nx þ A@�1
x ðnzÞ � g ¼ 0; (31)

nt þ @x cn2x þ 6cng� 2cn3 � 6cAn@�1
x ðnzÞ þ an

� �
þ @z �3cAgþ d@�1

x nz þ 3cAn2 þ b@�1
x ðnzÞ

� �
þ @y anþ d@�1

x ðnyÞ þ c@�1
x ðnzÞ

h i
¼ 0: (32)

Setting g ¼ n2 and n ¼ n0 þ � in Eq. (31), we obtain

q2x þ n0x þ 2n0�þ n02 þ A@�1
x ðn0zÞ � �2 ¼ 0: (33)

We choose infinite series form of n0 as

n0 ¼
X1
n¼1

Knðq;qx;q2x;…Þ��n: (34)
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Substituting Eq. (34) into Eq. (33) and equating all the like powers of �,
finally, we derive the recursions relations for the conserved densities as

K1 ¼ � 1
2
q2x; (35a)

K2 ¼ � 1
2

K1;x þ A @�1
x ðK1;zÞ

� � ¼ 1
4
ðq3x þ Aqx;zÞ; (35b)

K3¼�1
2
K2;xþA@�1

x ðK2;zÞþK2
1

� �¼�1
8
q4xþ2Aðq2xzþq2zÞq2

2x

� �
;

� � � � � �
(35c)

Knþ1 ¼ � 1
2

Kn;x þ A @�1
x Kn;z þ

Xn�1

i¼1

KiKn�i

 !
: (35d)

Again substituting Eq. (34) with g ¼ n2 and n ¼ n0 þ � into Eq. (32),
we have

X1
n¼1

Kn;t�
�n þ @x c

X1
n¼1

Kn;2x�
�n þ 4c�3 � 2c

X1
n¼1

Kn�
�n

 !3
2
4

� 6c�
X1
n¼1

Kn�
�n

 !2

� 6cA
X1
n¼1

Kn�
�n

 !
@�1
x

X1
n¼1

Kn;z�
�n

 !

þ a
X1
n¼1

Kn�
�n þ �

 !#
þ @y a �þ

X1
n¼1

Kn�
�n

 !"

� 6c�þ d@�1
x

X1
n¼1

Kn;y�
�n

 !
þ c@�1

x

X1
n¼1

Kn;z�
�n

 !#

þ @z 3cA
X1
n¼1

Kn�
�n

 !2

þ 6cA
X1
n¼1

Kn�
�n

 !
�

2
4

þðdþ bÞ@�1
x

X1
n¼1

Kn;z�
�n

 !#
¼ 0: (36)

Comparing the coefficient of all the like powers of � from Eq. (36), we
obtain the conservation laws of Eq. (2) as

Kn;t þL n;x þM n;y þN n;z ¼ 0; (37)

where

L 1 ¼ cK1;2x þ aK1 � 6cK2
1 � 6cA@�1

x K2;z ; (38a)

L 2 ¼ cK2;2x þ aK2� 12cK1K2 � 6cAð@�1
x K3;z þK1@

�1
x K1;zÞ; � � � � � �

(38b)

L n ¼ aKn þ c Kn;2x � 6
Xn
i¼1

KiKn�iþ1 � 2
X

i1þi2þi3¼n

Ki1Ki2Ki3

 !

� 6cA @�1
x Knþ1;z þ

Xn
n¼1

Ki@
�1
x Kn�i;y

 !
; (38c)

M 1 ¼ aK1 þ d@�1
x K1;y þ c@�1

x K1;z ; (39a)

M 2 ¼ aK2 þ d@�1
x K2;y þ c@�1

x K2;z ; (39b)

� � � � � �
M n ¼ aKn þ d@�1

x Kn;y þ c@�1
x Kn;z;

(39c)

and

N 1 ¼ 6cAK2 þ ðbþ dÞK1;z; (40a)

N 2 ¼ 6cAK3 þ 3cAK2
1 þ ðbþ dÞK2;z ; (40b)

� � � � � �
N n ¼ 6cAKnþ1 þ 3cA

Xn�1

i¼1

KiKn�i þ ðbþ dÞ@�1
x Kn;z:

(40c)

The recursion relations Eq. (35) provide the values of Kn.

V. SOLITON SOLUTIONS
A. One-soliton solution

To formulate one soliton solution of Eq. (2), we assume f in the
following form:

f ¼ 1þ e!1 ; (41)

where !1 ¼ k1ðx þ p1y þ q1z þ w1tÞ þ !0
1 and k1; p1; q1;!

0
1 are

arbitrary constants. Substituting Eq. (41) into Eq. (20) and equating all
exponential functions to zero, we obtain dispersion relation as

w1 ¼ �ðaþ c k21 þ d p21 þ a p1 þ b q1 þ c p1q1 þ d q21Þ: (42)

Finally, we obtain one-soliton solution of Eq. (2) by substituting Eq.
(41) along with Eq. (42) into Eq. (20) as

u ¼ 6c
b

logð1þ e!1Þ
� �

2x: (43)

In Fig. 1, we present 3D plot, density plot, and 2D plot of one soliton
solution Eq. (43), corresponding to parametric values as a ¼ c ¼ d
¼ a ¼ b ¼ c ¼ d ¼ 1; k1 ¼ 0:4; p1 ¼ 1:2; q1 ¼ 1:3; !0

1 ¼ 0.

B. Two-soliton solution

In order to obtain two soliton solution of Eq. (2), we choose f in
the following form:

f ¼ 1þ e!1 þ e!2 þ B12e
!1þ!2 ; (44)

where !i ¼ kiðx þ piy þ qiz þ witÞ þ !0
i ; ði ¼ 1; 2Þ and

ki; pi; qi;!
0
i ; ði ¼ 1; 2Þ are arbitrary constants. Substituting Eq. (44)

into Eq. (20), we derive dispersion relation and B12 as

wi ¼ �ðaþ c k2i þ d p2i þ a pi þ b qi þ c piqi þ d q2i Þ; ði ¼ 1; 2Þ;
(45a)

B12 ¼
ðk1 � k2Þðk1w1 � k2w2Þ þ ðk1 � k2Þ2 þ ðk1 � k2Þ4 þ ðk1p1 � k2p2Þ2 þ ðk1 � k2Þðk1p1 þ k1q1 � k2p2 � k2q2Þ
þðk1p1 � k2p2Þðk1q1 � k2q2Þ þ ðk1q1 � k2q2Þ2

ðk1 þ k2Þðk1w1 þ k2w2Þ þ ðk1 þ k2Þ2 þ ðk1 þ k2Þ4 þ ðk1p1 þ k2p2Þ2 þ ðk1 þ k2Þðk1p1 þ k1q1 þ k2p2 þ k2q2Þ
þðk1p1 þ k2p2Þðk1q1 þ k2q2Þ þ ðk1q1 þ k2q2Þ2

2
6664

3
7775: (45b)
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Further substitution of Eq. (44) with Eq. (45) into Eq. (20) yields two
soliton solution of Eq. (2) as

u ¼ 6c
b

logð1þ e!1 þ e!2 þ B12e
!1þ!2Þ

� �
2x: (46)

In Fig. 2, we demonstrate 3D plot, density plot, and 2D plot of two sol-
iton solution Eq. (46), corresponding to parametric values as
a ¼ c ¼ d ¼ a ¼ b ¼ c ¼ d ¼ 1, k1 ¼ 0:9, p1 ¼ 1:2, q1 ¼ 1:3,
k2 ¼ �1:3, p2 ¼ 0:7, q2 ¼ 2, and!0

i ¼ 0 ði ¼ 1; 2Þ.

C. Three-soliton solution

In similar way, we can derive three soliton solution of Eq. (2) by
choosing f in the following form:

f ¼ 1þ e!1 þ e!2 þ e!3 þ B12e
!1þ!2 þ B13e

!1þ!3

þ B23e
!2þ!3 þ B123e

!1þ!2!3 ; (47)

where !i ¼ kiðx þ piy þ qiz þ witÞ þ !0
i ; ði ¼ 1; 2; 3Þ and

ki; pi; qi;!
0
i ; ði ¼ 1; 2; 3Þ are arbitrary constants. Substituting Eq.

(47) into Eq. (20), we derive dispersion relation and Bij as

wi ¼ �ðaþ c k2i þ d p2i þ a pi þ b qi þ c piqi þ d q2i Þ;
ði ¼ 1; 2; 3Þ; (48a)

Bij ¼
ðki � kjÞðkiwi � kjwjÞ þ ðki � kjÞ2 þ ðki � kjÞ4 þ ðkipi � kjpjÞ2 þ ðki � kjÞðkipi þ kiqi � kjpj � kjqjÞ
þðkipi � kjpjÞðkiqi � kjqjÞ þ ðkiqi � kjqjÞ2

ðki þ kjÞðkiwi þ kjwjÞ þ ðki þ kjÞ2 þ ðki þ kjÞ4 þ ðkipi þ kjpjÞ2 þ ðki þ kjÞðkipi þ kiqi þ kjpj þ kjqjÞ
þðkipi þ kjpjÞðkiqi þ kjqjÞ þ ðkiqi þ kjqjÞ2

2
66664

3
77775: (48b)

FIG. 1. One soliton solution of Eq. (2) given by Eq. (43). (a) 3D plot, (b) density plot, and (c) 2D plot at different times.

FIG. 2. Two soliton solution of Eq. (2) given by Eq. (46). (a) 3D plot, (b) density plot, and (c) 2D plot at different times.
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Finally, substituting Eq. (47) with Eq. (48) into Eq. (20), we derive
three soliton solution of Eq. (2) as

u ¼ 6c
b

logð1þ e!1 þ e!2 þ e!3 þ B12e
!1þ!2 þ B13e

!1þ!3
�

þB23e
!2þ!3 þ B123e

!1þ!2!3Þ�2x (49)

In Fig. 4, we illustrate three soliton solution graphically corresponding
to the parametric values as a ¼ c ¼ d ¼ a ¼ b ¼ c ¼ d ¼ 1,
k1 ¼ 0:9, p1 ¼ 1:2, q1 ¼ 1:3, k2 ¼ �1:3, p2 ¼ 0:7, q2 ¼ 2, k3 ¼ 1:7,
p3 ¼ 1, q3 ¼ 1:7, and!0

i ¼ 0 ði ¼ 1; 2; 3Þ.

VI. BREATHER SOLUTION

Utilizing the criteria outlined in prior studies86,87 for acquiring
breather solutions, one can derive an analytical expression for breather
solutions by selecting appropriate parameters within the framework of
the two-soliton solution. In order to derive the first-order breather
solution, it is necessary to express the parameters in Eq. (44) in the fol-
lowing complex conjugate form:

k1 ¼ k�2 ¼ aþ ib; p1 ¼ p�2 ¼ cþ id; q1 ¼ q�2 ¼ eþ if : (50)

In particular, taking k1 ¼ k�2 ¼ i; p1 ¼ p�2 ¼ 1; q1 ¼ q�2 ¼ 2þ i,
and a ¼ b ¼ c ¼ d ¼ a ¼ b ¼ c ¼ d ¼ 1, Eq. (44) can be written as

f ¼ 1þ 2 cos ðx þ 2y þ z þ 6tÞðcoshð�2z � 10tÞ
þ sinhð�2z � 10tÞÞ � 2coshð�2z � 12tÞ � 2sinhð�2z � 12tÞ:

(51)

Substituting Eq. (51) into Eq. (20), we can obtain the first order
breather solution of Eq. (2) as

u¼ 6 logð1þ 2cos ðxþ 2yþ zþ 6tÞðcoshð�2z� 10tÞ½
þ sinhð�2z� 10tÞÞ� 2coshð�2z� 12tÞ� 2sinhð�2z� 12tÞÞ�xx

(52)

VII. ROGUE WAVE SOLUTION

In order to derive rogue wave solution of Eq. (2), we use the
transformation q ¼ x þ y � t, which converts Eq. (2) into

FIG. 3. Time evolution of two soliton solution of Eq. (2) for the same parameters as in Fig. 2.

FIG. 4. Three soliton solution of Eq. (2) given by Eq. (49). (a) 3D plot, (b) density plot, and (c) 2D plot at different times.
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ðaþdþa�1Þu2qþbðu2Þ2qþ cu4qþðbþ cÞuqzþu2z ¼ 0: (53)

Using the depending variable transformation

uðq; zÞ ¼ 3c
b

2 log g½ �qq; (54)

along with c¼�1 and integrating twice with respect to q, we obtain
Hirota bilinear equation corresponding to Eq. (53) as

½ðaþ d þ a� 1ÞD2
q � D4

q þ ðbþ cÞDqDz þ dD2
z �g � g

¼ ðaþ d þ a� 1Þðg g2q � g2qÞ � ðg4q g � 4gq g2q þ 3g22qÞ
þ ðbþ cÞðg gqz � gq gzÞ þ dðg g2z � g2z Þ ¼ 0: (55)

The generalized form of center controlled rogue wave solution67 can
be considered as

gðq;zÞ¼ ~gnðq;z;c1;c2Þ

¼
Xnðnþ1Þ

2

j¼0

Xj
i¼0

bnðnþ1Þ�2j;2i ðz� c2Þ2i ðq� c1Þnðnþ1Þ�2j; (56)

where bp;q ðp; q ¼ 0; 2; 4;…; jðjþ 1ÞÞ are constants that will be found
later and c1 and c2 are real center controlling parameters of rogue
wave.

For first order rogue wave solution, the auxiliary function gðq; zÞ
can be considered in the following form:

gðq; zÞ ¼ b0;0 þ b0;2z
2 þ b2;0q

2: (57)

By substituting Eq. (57) into Eq. (55) and equating the coefficient of
different powers of qi zj to zero, we obtain a system of equations as

2a b2;0 b0;2 � 2d b20;2 þ 2d b2;0 b0;2 þ 2a b2;0 b0;2 � 2b2;0 b0;2 ¼ 0;

(58a)

�2a b22;0 � 2d b22;0 þ 2d b0;2 b2;0 � 2a b22;0 þ 2b22;0 ¼ 0; (58b)

2b0;0 b2;0ðaþ aþ d � 1Þ þ 2db0;0 b0;2 � 12b22;0 ¼ 0: (58c)

Furthermore, solving system of equation Eq. (58), we derive paramet-
ric values as

FIG. 6. Evolution of first order breather solution of Eq. (2) given by Eq. (52) at (a) t¼ 0, (b) t¼ 0.165, and (c) t¼ 0.3.

FIG. 5. Time evolution of three soliton solution of Eq. (2) for the same parameters as in Fig. 4.
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b2;0 ¼ b2;0; b0;2 ¼ b2;0ðaþ aþ d � 1Þ
d

;

b0;0 ¼ 3b2;0
aþ aþ d � 1

:

(59)

With the parametric values in Eq. (59), Eq. (57) becomes

gðq;zÞ ¼ ~g1ðq;z; c1; c2Þ

¼ b2;0
ðaþ aþ d� 1Þ

d
ðz� c2Þ2þðq� c1Þ2þ 3

aþ aþ d� 1

� �
:

(60)

Finally, substitution of Eq. (60) into Eq. (54) yields first order rogue
wave of Eq. (2) as

uðq; zÞ ¼ � 6
b

log b2;0
ðaþ aþ d � 1Þ

d
ðz � c2Þ2 þ ðq� c1Þ2

���

þ 3
aþ aþ d � 1

���
qq

: (61)

In Fig. 7, we demonstrate evolution of rogue wave solution of Eq. (2)
corresponding to the parametric values a ¼ 0:5; d ¼ 0:3; a ¼ 0:5;
b ¼ 1; c ¼ �1; d ¼ 0:3; and b2;0 ¼ 1.

VIII. LUMP SOLUTION

The lump solution74,85 of Eq. (2) can be constructed by choosing
the test function in the following form:

f ¼ h21 þ h22 þm1; (62)

where

h1 ¼ d1x þ d2y þ d3z þ d4t þ d5; (63a)

h2 ¼ d6x þ d7y þ d8z þ d9y þ d10; (63b)

where m1; di; ði ¼ 1; 2;…; 10Þ are constants that will be determined
later, and the constants diði ¼ 1; 2; 3; 6; 7; 8Þ satisfy the condition
ðd1; d2; d3Þ6 kðd6; d7; d8Þ. Substituting Eq. (61) into Eq. (20) and setting
all the coefficient of different powers of xpyqzrts to zero, we obtain a
system of equations. After solving the obtained system of equations
with c ¼ 1; d ¼ 1

4d, we derive the following restriction between the
parameters:

FIG. 7. First order rogue wave of Eq. (2) given by Eq. (61) with center controlling parameters as (a) c1 ¼ �20; c2 ¼ �16, (b) c1 ¼ 0; c2 ¼ 0, (c) c1 ¼ 12; c2 ¼ 12, (d) con-
tour plot, and (e) density plot.
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d2 ¼ d6d7
d1

; d3 ¼ � d6d8
d1

; d4 ¼ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28
4d d1

;

m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

;
(64a)

d9 ¼ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

;

d10 ¼ d5d6
d1

; d8 6¼ �2d d7; c < 0:
(64b)

Finally, substituting Eq. (61) along with Eq. (64) into Eq. (20), we can derive lump solution of Eq. (2).
In Fig. 8, we demonstrate evolution of negative lump wave solution of Eq. (2) corresponding to the parametric values a ¼ b ¼ d ¼ a

¼ b ¼ 1; c ¼ �2; d1 ¼ 1; d5 ¼ 2; d6 ¼ 2; d7 ¼ 1; and d8 ¼ 2:5.

IX. LUMP-MULTI-STRIPE SOLUTION

To construct lump-multi-stripe solution from Hirota bilinear form Eq. (20) of Eq. (2), we can consider the test function f in a combined form
of quadratic function and exponential function as

f ¼ h21 þ h22 þm1 þ
Xn
i¼1

e!i ; (65)

where !i ¼ kiðx þ piy þ qiz þ witÞ þ !0
i ; ði ¼ 1; 2; 3; nÞ; m1 > 0 and h1 and h2 are defined in Eq. (63).

The test function f in Eq. (65) can provide lump-multi-stripe solution81 of Eq. (2) if and only if

ðDxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

zÞðh21 þ h22 þm1Þ � ðh21 þ h22 þm1Þ ¼ 0; (66a)

DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

z

	 

ðh21 þ h22 þm1Þ � e!i ; ði ¼ 1; 2;…; nÞ; (66b)

DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

z

	 

ðki � kj; pi � pj; qi � qj;wi � wjÞ ¼ 0; ði 6¼ j; i; j ¼ 1; 2;…; nÞ: (66c)

Setting c ¼ 1; d ¼ 1
4d and solving system of equations Eq. (66), we derive relation between parameters m1; di; ði ¼ 1; 2;…; 10Þ and

ki; pi; qi;wi ði ¼ 1; 2;…; nÞ as

d2 ¼ d6d7
d1

; d3 ¼ � d6d8
d1

; d4 ¼ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28
4d d1

; m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

; (67a)

d9 ¼ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

; d10 ¼ d5d6
d1

; d8 6¼ �2d d7; c < 0; (67b)

wi ¼� aþ ck2i þ dp2i þ api þbqiþ piqiþ 1
4d

q2i

� �
; ði¼ 1;2;…;nÞ: (67c)

Then, the lump-multi-stripe solution of Eq. (2) is obtained as

FIG. 8. Evolution of negative lump wave of Eq. (2) at (a) t ¼ �1:5, (b) t¼ 0, and (c) t¼ 1.
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u ¼ 6c
b

log h21 þ h22 þm1 þ
Xn
i¼1

e!i

 !" #
xx

; (68)

where

h1 ¼ d1x þ d6d7
d1

� �
y þ � d6d8

d1

� �
z þ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28

4d d1

� �
t þ d5; (69a)

h2 ¼ d6x þ d7y þ d8z þ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

 !
t þ d5d6

d1
; (69b)

m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

; (69c)

!i ¼ ki x þ piy þ qiz � aþ c k2i þ d p2i þ a pi þ b qi þ piqi þ 1
4d

q2i

� �
t

� �
þ !0

i ; ði ¼ 1; 2;…; nÞ: (69d)

A. Lump-one-stripe solution

For lump-one-stripe solution of Eq. (2), we take i¼ 1 in Eq. (68) and obtain lump-one-stripe solution as

u ¼ 6c
b

log h21 þ h22 þm1 þ
Xn
i¼1

e!1

 !" #
xx

; (70)

where

h1 ¼ d1x þ d6d7
d1

� �
y þ � d6d8

d1

� �
z þ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28

4d d1

� �
t þ d5; (71a)

h2 ¼ d6x þ d7y þ d8z þ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

 !
t þ d5d6

d1
; (71b)

m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

; (71c)

!1 ¼ k1 x þ p1y þ q1z � aþ c k21 þ d p21 þ a p1 þ b q1 þ p1q1 þ 1
4d

q21

� �
t

� �
þ !0

1: (71d)

In Fig. 9, we demonstrate interaction phenomena of negative lump wave with stripe wave and their evolution at different time frames correspond-
ing to the parametric values as a ¼ b ¼ d ¼ a ¼ b ¼ 1, c ¼ �1, d1 ¼ 1, d5 ¼ 1, d6 ¼ 2, d7 ¼ 1, d8 ¼ 1:2, k1 ¼ 2, p1 ¼ 2, q1 ¼ 0:25, and
!0

1 ¼ 0. At t ¼ �1:5, there is only one stripe wave. Lump wave originates from stripe wave at t¼ 0. Then, at t¼ 0.5, lump wave separates from
stripe wave and move on.

B. Lump-two-stripe solution

For lump-two-stripe solution of Eq. (2), we take i¼ 2 in Eq. (68) and obtain lump-two-stripe solution as

u ¼ 6c
b

log h21 þ h22 þm1 þ e!1 þ e!2

	 
h i
xx
; (72)

where

h1 ¼ d1x þ d6d7
d1

� �
y þ � d6d8

d1

� �
z þ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28

4d d1

� �
t þ d5; (73a)

h2 ¼ d6x þ d7y þ d8z þ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

 !
t þ d5d6

d1
; (73b)

m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

; (73c)
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!i ¼ ki x þ piy þ qiz � aþ c k2i þ d p2i þ a pi þ b qi þ piqi þ 1
4d

q2i

� �
t

� �
þ !0

i ; ði ¼ 1; 2Þ: (73d)

In Fig. 10, we demonstrate evolution of lump-two-stripe solution of Eq. (2) corresponding to the parametric values as a ¼ b ¼ d ¼ a ¼ b ¼ 1,
c ¼ �1, d1 ¼ 1, d5 ¼ 1, d6 ¼ 2, d7 ¼ 1, d8 ¼ 1:2, k1 ¼ 2, p1 ¼ 2, q1 ¼ 0:25, k2 ¼ 1, p2 ¼ 1, q2 ¼ 0:25, and !0

i ¼ 0; ði ¼ 1; 2Þ. At t ¼ �1:5,
there is only one stripe wave, and lump wave originates from stripe wave at t¼ 0. Lump wave completely isolates from stripe wave at t¼ 2. At
t¼ 3.5, stripe wave splits into two distinct stripe waves and then move on.

X. LUMP-MULTI-SOLITON SOLUTION

To construct a lump-multi-soliton solution from Hirota bilinear form Eq. (20) of Eq. (2), we can consider the test function f in a combined
form of quadratic function and hyperbolic cosine function as

f ¼ h21 þ h22 þm1 þ
Xn
i¼1

cosh!i þm2; (74)

where !i ¼ kiðx þ piy þ qiz þ witÞ þ !0
i ; ði ¼ 1; 2; 3; nÞ; m1;m2 > 0, and h1 and h2 are defined in Eq. (63).

The test function f in Eq. (74) can provide lump-multi-soliton solution81 of Eq. (2) if and only if

DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

zÞðh21 þ h22 þm1

	 

� ðh21 þ h22 þm1Þ ¼ 0; (75a)

DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

z

	 

ðh21 þ h22 þm1Þ � e!i ; ði ¼ 1; 2;…; nÞ; (75b)

DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

zÞðh21 þ h22 þm1

	 

�m2

þ
Xn
i¼1

1
4

DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

z

	 

ð2ki; 2pi; 2qi; 2wiÞ ¼ 0; (75c)

FIG. 9. Evolution of negative lump-one-stripe solution of Eq. (2) at (a) t ¼ �1:5, (b) t ¼ �0:5, (c) t¼ 0, (d) t¼ 0.5, and (e) t¼ 1.5.
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DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

z

	 

ðki � kj; pi � pj; qi � qj;wi � wjÞ ¼ 0;

ði 6¼ j; i; j ¼ 1; 2;…; nÞ;
(75d)

DxDt þ aD2
x þ cD4

x þ dD2
y þ aDxDy þ bDxDz þ cDyDz þ dD2

z

	 

ðki þ kj; pi þ pj; qi þ qj;wi þ wjÞ ¼ 0;

ði 6¼ j; i; j ¼ 1; 2;…; nÞ:
(75e)

Setting c ¼ 1; d ¼ 1
4d and solving system of equations Eq. (75), we derive same relations between parameters m1; di; ði ¼ 1; 2;…; 10Þ and

ki; pi; qi;wi ði ¼ 1; 2;…; nÞ as in Eq. (67).
Then, the lump-multi-soliton solution of Eq. (2) is obtained as

u ¼ 6c
b

log h21 þ h22 þm1 þ
Xn
i¼1

cosh!i þm2

 !" #
xx

; (76)

where

h1 ¼ d1x þ d6d7
d1

� �
y þ � d6d8

d1

� �
z þ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28

4d d1

� �
t þ d5; (77a)

h2 ¼ d6x þ d7y þ d8z þ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

 !
t þ d5d6

d1
; (77b)

m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

; (77c)

!i ¼ ki x þ piy þ qiz � aþ c k2i þ d p2i þ a pi þ b qi þ piqi þ 1
4d

q2i

� �
t

� �
þ !0

i ; ði ¼ 1; 2;…; nÞ: (77d)

FIG. 10. Evolution of negative lump-two-stripe solution of Eq. (2) at (a) t ¼ �1:5, (b) t ¼ �0:5, (c) t¼ 0, (d) t¼ 2, (e) t¼ 3.5, and (f) t¼ 4.5.
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A. Lump-one-soliton solution

For lump-one-soliton solution of Eq. (2), we take i¼ 1 in Eq. (76) and obtain lump-one-soliton solution as

u ¼ 6c
b

log h21 þ h22 þm1 þ cosh!1 þm2

� �� �
xx; (78)

where

h1 ¼ d1x þ d6d7
d1

� �
y þ � d6d8

d1

� �
z þ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28

4d d1

� �
t þ d5; (79a)

h2 ¼ d6x þ d7y þ d8z þ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

 !
t þ d5d6

d1
; (79b)

m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

; (79c)

!1 ¼ k1 x þ p1y þ q1z � aþ c k21 þ d p21 þ a p1 þ b q1 þ p1q1 þ 1
4d

q21

� �
t

� �
þ !0

1: (79d)

In Fig. 11, we illustrate the evolution of negative lump-one-soliton solution of Eq. (2) at different time frames corresponding to the parametric val-
ues as a ¼ b ¼ d ¼ a ¼ b ¼ 1, c ¼ �1, d1 ¼ 1, d5 ¼ 1, d6 ¼ 2, d7 ¼ 1, d8 ¼ 1:3, k1 ¼ 1:5, p1 ¼ 1, q1 ¼ 0:25,m2 ¼ 0, and !0

1 ¼ 0. At t¼�4,
there are two solitary waves w1 and w2. Lump wave originates from w2 at t¼�1 and then disappears into wave w1 with time.

B. Lump-two-soliton solution

For lump-two-soliton solution of Eq. (2), we take i¼ 2 in Eq. (76) and obtain lump-two-soliton solution as

FIG. 11. Evolution of negative lump-one-soliton solution of Eq. (2) given by Eq. (78) at (a) t¼�4, (b) t¼�1, (c) t ¼ �0:3, (d) t¼ 1, (e) t¼ 2.3, and (f) t¼ 4.8.
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FIG. 12. Evolution of negative lump-two-soliton solution of Eq. (2) given by Eq. (80) at (a) t ¼ �6:7, (b) t¼�5, (c) t ¼ �3:6, (d) t ¼ �2:6, (e) t ¼ �0:5, (f) t¼ 0, (g) t¼ 1,
(h) t¼ 2.7, (i) t¼ 3.3, (j) t¼ 4.3, and (k) t¼ 6.5.
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u ¼ 6c
b

log h21 þ h22 þm1 þ cosh!1 þ cosh!2 þm2

� �� �
xx; (80)

where

h1 ¼ d1x þ d6d7
d1

� �
y þ � d6d8

d1

� �
z þ 4dd6ðad7 þ bd8Þ � 4dðad21 � d d27Þ þ 4d d8d7 þ d28

4d d1

� �
t þ d5; (81a)

h2 ¼ d6x þ d7y þ d8z þ � 4d d21ðad7 þ bd8Þ þ 4d d6ðad21 � dd27Þ � ð4d d6d7d8 þ d6d28Þ
d21

 !
t þ d5d6

d1
; (81b)

m1 ¼ � 12d cd21ðd21 þ d26Þ
ð2d d7 þ d8Þ2

; (81c)

!i ¼ ki x þ piy þ qiz � aþ c k2i þ d p2i þ a pi þ b qi þ piqi þ 1
4d

q2i

� �
t

� �
þ !0

i ; ði ¼ 1; 2Þ: (81d)

In Fig. 12, we illustrate the evolution of negative lump-two-soliton solu-
tion of Eq. (2) corresponding to the parametric values as
a ¼ b ¼ d ¼ a ¼ b ¼ 1, c ¼ �1, d1 ¼ 1, d5 ¼ 1, d6 ¼ 2, d7 ¼ 1,
d8 ¼ 1:3, k1 ¼ 1:5, p1 ¼ 2, q1 ¼ 0:25, k2 ¼ 1, p2 ¼ 1, q2 ¼ 0:25,
m2 ¼ 0, and !0

i ¼ 0 ði ¼ 1; 2Þ. Evolution of lump-two-soliton solu-
tion is more sophisticated due to the presence of various fissions and
fusions of waves. At t ¼ �6:7, exactly two waves w1 and w2 are
appeared. Then, at t¼�5, wave w2 starts splitting to w3 and w4, and at
t ¼ �3:6, it completely splits because of the fission effect. At t ¼ �2:6,
wave w5 appears as a result of the fusion effect of waves w1 and w3. At
t ¼ �0:5, lump wave originates from w4 and completely disappears
into wave w5 at t¼ 2.7. Then, wave w4 splits into w6 and w7. Finally,
because of the fusion effect of w5 and w6, wave w8 generates.

XI. GRAPHICAL ILLUSTRATION, RESULTS,
AND DISCUSSION

In Fig. 1, we depict 3D plot, density plot, and 2D plot of one soli-
ton solution of Eq. (2) corresponding to the parametric values as
a ¼ c ¼ d ¼ a ¼ b ¼ c ¼ d ¼ 1, k1 ¼ 0:4, p1 ¼ 1:2, q1 ¼ 1:3, and
!0

1 ¼ 0. Similarly, in Figs. 2 and 4, we present a 3D plot, density plot,
and 2D plot of two soliton solutions and three soliton solution of Eq.
(2), choosing parametric values as a ¼ c ¼ d ¼ a ¼ b ¼ c ¼ d ¼ 1,
k1 ¼ 0:9, p1 ¼ 1:2, q1 ¼ 1:3, k2 ¼ �1:3, p2 ¼ 0:7, q2 ¼ 2, and !0

i ¼
0 ði ¼ 1; 2Þ and a ¼ c ¼ d ¼ a ¼ b ¼ c ¼ d ¼ 1, k1 ¼ 0:9,
p1 ¼ 1:2, q1 ¼ 1:3, k2 ¼ �1:3, p2 ¼ 0:7, q2 ¼ 2, k3 ¼ 1:7, p3 ¼ 1,
q3 ¼ 1:7, and !0

i ¼ 0 ði ¼ 1; 2; 3Þ, respectively. Figures 3 and 5 show
the propagation of two soliton solution and three soliton solution of
the model equation. Notably, larger solitary waves collide elastically
with smaller waves, and after the nonlinear interaction, all waves retain
their shapes asymptotically. The larger waves continue moving ahead
of the smaller ones, demonstrating that the soliton solutions maintain
their original shape and size with only a phase change during interac-
tion. In Fig. 6, we illustrate the dynamical behavior of the solution
given by Eq. (52) at different time frames. At the outset, waves appear
from a constant state and progressively transform into periodic line
waves. These periodic line waves maintain parallelism and indepen-
dence from each other, yet their behaviors evolve consistently over
time. In Fig. 7, we demonstrate 3D plots of first order rogue wave solu-
tion corresponding to the different center controlling parameters
as c1 ¼ �20; c2 ¼ �16; c1 ¼ 0; c2 ¼ 0; and c1 ¼ 12; c2 ¼ 12.

In Fig. 8, we present evolution of lump solution corresponding to the
parametric values as a ¼ b ¼ d ¼ a ¼ b ¼ 1, c ¼ �2, d1 ¼ 1,
d5 ¼ 2, d6 ¼ 2, d7 ¼ 1, and d8 ¼ 2:5. Figure 9 depicts the evolution-
ary process of a lump solution emerging from a stripe solution. In the
lump-one-stripe solution, a lump wave generates from a stripe wave
and gradually separates from the stripe wave over time. Figure 10 illus-
trates the evolutionary process and fission effect of lump and stripe sol-
utions. In the lump-two-stripe solution, a lump wave originates from
the stripe wave, and subsequently, the lump and stripe waves separate
after a certain duration. Following this separation, the stripe wave fur-
ther divides into two distinct stripe waves. In Fig. 11, we illustrate the
evolutionary process of a lump solution arising from a soliton solution,
along with their interaction dynamics. In the lump-one-soliton solu-
tion, a lump wave emanates from one of the solitary waves, gradually
detaches from that solitary wave and interacts with another solitary
wave. After that, lump wave fades away entirely and transforms into
another solitary wave over time. This indicates that the interaction
between lump and one-soliton is entirely inelastic. Figure 12 depicts
the occurrence of multiple fission and fusion effects in the evolution of
a lump solution from soliton solutions. Within the lump-two-soliton
solution, various instances of fission and fusion phenomena occur.
Initially, there are only two solitary waves, denoted as w1 and w2.
Subsequently, w2 divides into two solitary waves, w3 and w4. Following
this, w3 interacts with w1, giving rise to the formation of a new solitary
wave, w5. A lump wave originates from w4, gradually separates from it,
interacts with w5, and eventually dissipates completely within w5.
Following this, w5 splits into two solitary waves, w6 and w7. Again, w6

interacts with w5, resulting in the emergence of a new solitary wave,
w8. This suggests that the interaction between the lump and the two-
soliton is also completely nonelastic.

XII. CONCLUSION

In this article, we have delved into the intricacies of the integrabil-
ity characteristics inherent in a novel (3þ 1)-dimensional nonlinear
evolution equation. Our approach commences with the elucidation of
fundamental properties rooted in Bell polynomial theory. Leveraging
this theoretical framework, we derive both the Hirota bilinear form
and a bilinear B€acklund transformation. By employing the Cole–Hopf
transformation within the bilinear B€acklund transformation and sub-
sequently linearizing it, we arrive at the formulation of a Lax pair.
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Furthermore, our exploration extends to the integrability aspect of the
model equation, involving the derivation of an infinite sequence of
conservation laws. The analytical effectiveness of the Hirota bilinear
form facilitates the derivation of one, two, and three soliton solutions,
vividly portrayed through graphical representations. Beyond solitons,
we delve into the realm of breather solutions, introducing complex
conjugate parameters into the two-soliton solution and visually depict-
ing their evolutionary patterns. Our exploration takes an intriguing
turn as we derive a first-order center-controlled rogue wave solution,
dynamically illustrating its behavior across varying center-controlling
parameter values. Expanding the scope of our inquiry, we employ the
well-established quadratic function as a test function within the Hirota
bilinear form, resulting in the deduction of the lump solution.
Furthermore, a novel approach utilizing a combined form of a qua-
dratic function and an exponential function as a test function yields
lump-multi-stripe solutions, capturing their evolutionary phenomena
through graphical representations. Pushing the boundaries of our
investigation, we delve into the synthesis of lump-multi-soliton solu-
tions through the combined application of a quadratic function and
hyperbolic cosine function as test functions. The visually compelling
depictions of their evolutionary phenomena add another layer to our
understanding of these complex nonlinear wave dynamics.
Significantly, these discoveries enhance our understanding of nonlin-
ear wave phenomena across diverse fields, including shallow water
dynamics, oceanography, and nonlinear optics. The results derived
from this analytical framework offer a valuable and precise method for
interpreting and describing various intricate phenomena within these
scientific domains. In future endeavors, our goal is to apply the linear
superposition principle to the Hirota bilinear form within a complex
field. This approach seeks to extract solutions in the form of complex
exponential wave functions, giving rise to phenomena such as com-
plexitons, resonant solitons, and related effects. Additionally, another
avenue of our research will involve exploring symmetry reductions of
exact solutions through Lie symmetry analysis.
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