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ABSTRACT

In this article, we consider a new (3 + 1)-dimensional evolution equation, which can be used to interpret the propagation of nonlinear waves
in the oceans and seas. We effectively investigate the integrable properties of the considered nonlinear evolution equation through several
aspects. First of all, we present some elementary properties of multi-dimensional Bell polynomial theory and its relation with Hirota bilinear
form. Utilizing those relations, we derive a Hirota bilinear form and a bilinear Backlund transformation. By employing the Cole-Hopf trans-
formation in the bilinear Backlund transformation, we present a Lax pair. Additionally, using the Bell polynomial theory, we compute an infi-
nite number of conservation laws. Moreover, we obtain one-, two-, and three-soliton solutions explicitly from Hirota bilinear form and
illustrate them graphically. Breather solutions are also derived by employing appropriate complex conjugate parameters in the two-soliton
solution. Choosing the generalized algorithm for rogue waves derived from the N-soliton solution, we directly obtain a first-order center-
controllable rogue wave. Lump solutions are formulated by employing a well-established quadratic test function as a solution to the Hirota
bilinear form. Further taking the test function in a combined form of quadratic and exponential functions, we obtain lump-multi-stripe solu-
tions. Furthermore, a combined form of quadratic and hyperbolic cosine functions produces lump-multi-soliton solutions. The fission and
fusion effects in the evolution of lump-multi-stripe solutions and lump-soliton-solutions are demonstrated pictorially.
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optics,” and wave propagation in shallow water.” In recent years, there
has been a notable focus on the exploration of constructing exact solu-
tions for these nonlinear evolution equations (NLEESs) to enhance our
understanding of their dynamical properties with greater accuracy.
Due to the growing interest in nonlinear partial differential equations
(NLPDEs), researchers are actively exploring a broader range of ana-

I. INTRODUCTION

In the past few decades, there has been a noticeable shift among
researchers toward nonlinear models, driven by the rapid advance-
ments in science and computer technology. Nonlinear evolution equa-
tions (NLEEs) play a pivotal role in describing a myriad of phenomena
across various scientific disciplines, including physics, engineering,
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biology, and finance. These equations capture the complexity inherent
in many natural processes, allowing for a more accurate representation
of real-world dynamics like fluid mechanics,' optical fibers,” oceanog-
raphy,” solid-state physics,” geochemistry,” plasma physics,” nonlinear

lytical and numerical methods to study them, leading to the computa-
tion of various novel types of exact solutions.” '* Studies on the
integrability of nonlinear evolution equations become crucial for
researchers, as it ensures the existence of exact solutions. While a
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precise definition of integrability is elusive, indicators such as the
Hirota bilinear form,'” inverse Scattering method,'® Painleve analy-
sis,'” "' bilinear neural network method,”” bilinear Backlund transfor-
mation,”’ bilinear residual network method,”” Lax pair,l3 Darboux
transformation method,”* Lie symmetry analysis,”” * infinite conser-
vation laws,” etc. can effectively characterize integrability. Utilizing a
Lax pair for a nonlinear system, a series of integrable properties,
including Hamiltonian structures’” and an infinite number of con-
served quantities,”’ can be demonstrated. Among them, the Hirota
bilinear method is one of the most conventional methods and recog-
nized as a powerful approach for analyzing NLEEs. A pivotal aspect of
this method involves expressing the original equation in a bilinear
form. Upon formulating the bilinear representation of nonlinear evo-
lution equations (NLEEs), one can directly acquire quasi-periodic
wave solutions, rational solutions, multi-soliton solutions, and various
other exact solutions through the utilization of the bilinear struc-
ture.”" ”” Kumar and Mohan recently proposed a systematic computa-
tional method to ascertain the bilinear form of nonlinear partial
differential equations.”’ Using this method, it becomes straightforward
to derive the Hirota bilinear form by employing symbolic computa-
tional software such as Mathematica, Maple, and Matlab. Lambert
et al.""* introduced an innovative approach for obtaining the Hirota
bilinear form of nonlinear evolution equations (NLEEs) through the
application of Bell polynomial theory. Through this approach, the
bilinear Bicklund transformation and Lax pair can be directly derived
from the Hirota bilinear form. Fan"* expanded upon this method to
directly derive infinite conservation laws from the bilinear Backlund
transformation. Lately, numerous researchers have utilized this
approach to study the integrability of diverse types of nonlinear evolu-
tion equations (NLEEs) and have yielded a variety of exact solu-
tions.”” ' Researchers have shown a growing interest in the intriguing
dynamical properties of exact solutions of nonlinear evolution equa-
tions (NLEEs), especially in phenomena such as solitons, lumps,
breathers, and rogue waves. While waves travel through nonlinear
media, variations in their amplitudes and widths are typically occur.
Nevertheless, under specific conditions, the interaction between non-
linearity and dispersion can give a rise to the creation of enduring and
localized waves, commonly referred to as solitons. A rogue wave also
known as a giant wave is an exceptionally high wave that can manifest
abruptly and vanish without a trace. These waves are localized both in
space and time and were initially observed in the oceans.”” The phe-
nomenon of rogue waves has been experimentally verified in nonlinear
optics, generated by the generalized nonlinear Schrodinger equation.”
In recent years, rogue waves have been observed in various scientific
research fields such as Bose-FEinstein condensates,”” superfluids,’”
plasma physics,” capillary flow,”” nonlinear optical fibers,”® and even
in finance.”” There are only a few methods available for computing
rogue waves, and among them, the Darboux transform method®
and the Hirota bilinear method®”* have been gaining significant pop-
ularity. Recently, Zhaqilao®® proposed a systematic approach for com-
puting higher-order center-controlled rogue waves based on the
N-soliton solution. Utilizing this methodology, researchers have
derived higher-order center controlled rogue waves for a variety of
nonlinear evolution equations.”” ”' A breather solution is a type of
partially localized solution characterized by a periodic structure in a
specific direction. Breather solutions can be categorized into three
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types: Akhmediev breathers, Kuznetsov—-Ma breathers, and Peregrine
solitons. Breather of NLEEs can be obtained by using some standard
methods like the Darboux transform method,”” the Riemann-Hilbert
approach,”””” and the Hirota bilinear method.”* Lump solution is also
a rational type solution and localized in all direction. Lump solution”*
of NLLEEs can be obtained directly by taking the quadratic function as
a solution into the Hirota bilinear form of that equation. Numerous
researchers worldwide have successfully obtained lump solutions for
various nonlinear evolution equations using this method.”” "
Recently, Ma et al. obtained a new type of lump solution using the
Hirota bilinear method for the generalized Calogero-Bogoyavlenskii-
Schiff equation.” The exploration of the dynamic interplay between
lump solutions and various exact solutions such as soliton, kink,
breather, etc. has emerged as a highly active area of research among
researchers.””*’ Lii and Chen®' establish a necessary and sufficient
condition for obtaining lump-multi-stripe and lump-multi-soliton
solution with the help of Hirota bilinear form. Utilizing these theorem,
they briefly analyze the dynamical behavior of lump-multi-stripe solu-
tion and lump-multi-soliton solution of three different (2 + 1)-dimen-
sional nonlinear evolution equations. Lii and Chen®” additionally
establish a necessary and sufficient condition for determining lump-
multi-kink solutions of nonlinear evolution equations (NLEEs) that
exhibit a specific type of Hirota bilinear form. Furthermore, Mandal
et al”’ generalize the Lii’s theorem and illustrate the evolution of
lump-multi-kink solution for (3 + 1)-dimensional negative order
KdV-CBS equation.

Recently, Akinyemi proposed a new (2 + 1)-dimensional evolu-

. . 84
tion equation

Ay +at, +b (uz)xx + Ctbyxxx + d 1Ly, =0, (1)

where a, b, and c are arbitrary real constants. Equation (1) describes
the motion of water characterized by small-amplitude and long waves.
Additionally, this mathematical model emphasizes few real life phe-
nomenon such as tsunamis and tidal oscillations. Akinyemi shown
that Eq. (1) is Painleve integrable and derived various exact solutions.
Wazwaz extend Eq. (1) to the following new (3 + 1)-dimensional
equation:””

Uyt + Aty + b (uz)xx F Ctbypnr +d ey, + oy,
+ Pt + 1ty Fouz =0, (2)

where a, b, ¢, d, o, f5, 7, and ¢ are arbitrary real constants. Equation
(2) finds utility in the representation and analysis of the intricate
dynamics governing wave propagation in oceans and seas, offering
noteworthy prospects for applications in fluid mechanics, plasma
physics, and allied fields. In Ref. 85, Wazwaz shown that Eq. (2) also
passes the Painleve integrability test and studied multiple soliton solu-
tions and lump solutions.

We observed a gap in the existing literature regarding the investi-
gation of the bilinear Backlund transformation, Lax pair, and infinite
conservation laws for Eq. (2). This observation motivated us to study
these aspects in the current exposition. Our primary objective in this
article is to explore the integrability and exact solutions of the nonlin-
ear evolution described by Eq. (2).

The organization of our article is as follows. In Sec. II, we present
some elementary properties of Bell polynomial theory and their rela-
tion with Hirota D-operator. Section III is entirely dedicated to
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examining the Hirota bilinear form, bilinear Backlund transformation,
and associated Lax pair formulation of Eq. (2) through the utilization
of Bell Polynomial theory. In Sec. IV, we derive infinitely many conser-
vation laws. In Sec. V, we calculate one-, two-, and three-soliton solu-
tion and present their evolution graphically. In Sec. VI, we derive first
order breather solution. In Sec. VII, we explore first order center con-
trolled rogue wave of Eq. (2). In Sec. VIII, we obtain lump solution of
the considered equation. Sections IX and X are exclusively focused on
computing the lump-multi-stripe solution and lump-multi-soliton
solution as well as analyzing their dynamic behavior. In Sec. XI, we
have depicted the obtained solutions and discussed their propagation
and nonlinear interaction with other solutions elaborately. Finally, in
Sec. XII, we draw conclusions based on our work.

Il. MULTI-DIMENSIONAL BELL POLYNOMIALS

In this section, we provide a brief overview of the fundamental
principles and representations of Bell polynomials."** Assume 7 is a
C> function of t. The one-dimensional Bell polynomial, as defined in

Ref. 41, is expressed as

Ynt(n) = Yﬂ(’/llvnb "'7nnt) = e*i’/atnei17 n= 172737 (3)

Several one-dimensional Bell polynomials can be derived from the
aforementioned statement as

Y=, Yor =1 + 'Itzv Y3 = 13 + 3040y + ’7t3> (4)
We use the formula

_ n! AN Mt \
Y”‘(")_Zallazl...an! (F) 20) T\ ) )

where the sum runs over all partitions of n = a; + 2a, + - - - + na,
and obtains the aforementioned expressions, Eq. (4). Assuming
n=n(t, t, ..., t;) as a C* multi-variable function, we can extend the
dimension of the Bell polynomial. The multi-dimensional Bell polyno-
mial can then be expressed as follows:

Ynlh«,m,ﬂsfs(’/’) = Ynl,uuﬂs(nmltl mStS) = 6717821 825 e”v (6)

.....

where #,, oy = 0000, m =0,1,...,m,and i =1,2,...,5.
Here, Y4, u (1) denotes the multi-variable Bell polynomial with
respect t0 1,1, .- Specifically, if we select i as a function of both ¢
and z, the corresponding lower-order two-dimensional Bell polyno-
mials can be derived as follows:

Yorp) = Mae + Vlfv Yaip) = N3 + 30001 + ’7:37 (7)
Yie =+ 0 Yarz(n) = Napp + Mgl + 20,0, + 171,
(8)

According to the aforementioned one-dimensional Bell polynomials,
Eq. (6), we can depict multi-dimensional binary Bell polynomials as
follows:

pubs.aip.org/aip/pof

The following are a few two-dimensional binary Bell polynomials that
can be derived from the above-mentioned statement:

Y f)=F 0 Pulfig) =g “'f?:
Y (fog)=qi.+ Fif e
@ZM(/, ﬁ) = /72t4,z +guf.+ zﬁt,z/t + /f/z:
Ysi=Ff3+3gul i+ i
With the help of the identity

(11)

we can establish a relation between the conventional Hirota bilinear
expression Dp'...Di"n.Y and binary Bell polynomials, where the
D-operator is presented by Hirota' as follows:

DZIDZ)VIl// = (an - at;)nl"'(af; - 6[;)”517(t17 ceey ts)

: '//(tllv "'tsl)|ti:t1,m,ts’:t5'

= 13)

0, ni -+ nsisodd,
Pyt (72), 1+ -+ ngiseven.

44444

Here, the &-polynomials refer to the even-ordered % -polynomials,
and a few of the initial ones are listed as follows:

Pu(r) = py, Piz(2) = 72,2, (14)
Psuo(7) = Pz T 370220 Pulp) = g + 3725,

The binary Bell polynomial %/, ;, . . ( £, ¢) can be written as a lin-
ear combination of Z?-polynomials and Bell polynomials

Yotynt,(£) as
()" DDy = D ni (£ 0),
where
f=Inn/Yy and g=lnny =% wi(f,f+ 1),

where

f=Inn/y and p=2Iny

(15)
Using Hopf-Cole transformation £ = Ini), binary Bell polynomial
can be expressed in the following form:

Yoty (£ = 1nth) J’Tf (16)

through which, Eq. (15) can be reexpressed as

gnlth.“,ngtg(/vg) = Yn1t1,4.4,nst5(77)7 (9) _
()~ DD

where " s [

— ! i
/mltl ..... mtsr M1 + e is 0dd7 - lp ZO Z:()H ( m; ) gamlflmwmxfs (7]) lp(nl—ml)tl‘.”,(nj—ms)t_"

Moy ty,.... St — ’ . (10) m=e M
" " gmltl,“umstg my + -+ 4 ms iseven. (17)
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Equation (17) provides the most straightforward approach to con-
structing the associated Lax pair for the relevant nonlinear evolution
equation. The Bell polynomial theory concepts mentioned earlier will
be further employed to establish the bilinear form, bilinear Backlund
transformation, and the Lax pair formulation of Eq. (2).

lIl. HIROTA BILINEAR FORM, BILINEAR BACKLUND
TRANSFORMATION, AND LAX PAIR

In order to achieve Hirota bilinear form of Eq. (2), we introduce a
new potential field g by setting

3c
= 18
u="-9 (18)

Substituting Eq. (18) in Eq. (2) and integrate twice it with respect to x
yields
E(g) = gx + a9 + (g4 +393,) +dg,,
+oaqy + B + 79, + gy, =0. (19)

Furthermore, we choose ¢ = 2log f, and we deduce the Hirota bilin-
ear of Eq. (2) by using the relation between P-polynomial and Hirota
D-operator as

(DyDy + aD? + cD? + dDj + aDyD, + BD.D,
+9D,D, + SD2)f - f = 0. (20)

To formulate bilinear Backlund transformation, we choose
¢/ = 2log f’ as a distinct solution of Eq. (2). Furthermore, we intro-
duce two new variables v = #5Zand v = g. Then, the correspond-
ing two-field condition can be written as
E(q') — E(q) = 2[vx + avay + c(vay + 602cwax) + dvyy

+ way + ﬁvxz + Vvyz + 5”27,]

= 2%[6’4(1}) + 5 (vw) + B (V)] + 2% (v, w),

21

where Z(v, w) = avay, + dvay + vy, + Y0y + 00y + 3¢ Wronskisan
(% 2(v, W), +(v)]. In order to write Z(v, w) in the expression of %
polynomials, we introduce a constraint as follows:

(v, w) + AY (v, w) =1, (22)

where A is an undetermined constant and # is an arbitrary parameter.
Taking 3cA? = §, % (v, w) can be written as

R(v,w) = % [(Ben + a)# «(v) — 3cAY . (v, w)]

0 ) a0 @

Finally, Eq. (21) can be written as

Bg/) ~ E(9) =2,

+ (Ben+ a)# (v) — 3cAY . (v, w)]

(%1 (v) + ¢ ¥ 35 (v, w) + Y . (v)

v z% 6D (0) + dY,(0) + 97, (0)]. (24)

pubs.aip.org/aip/pof

Decoupling Eq. (24), we obtain the bilinear Backlund transformation
of Eq. (2) as follows:

Yo, w) + A (v, w) =1, (25a)

Y 1(0)+c¥ 5x(0,w) +BY 2 (0) + (Ben+a) «(v) = 3cAY o (v,w) =1y,
(25b)

o (v) +d¥,(v) + 9% . (v) = n,. (25¢)

With the help of Eq. (12), the aforesaid bilinear Backlund transforma-
tion Eq. (25) also can be written in terms of Hirota D-operator as
follows:

(f"- )" D} + AD. —n](f' - f) = 0, (26a)

(f'f) " [De+cD3+BD.+ (3cn+a) Dy —3cAD D, — 1, (f'-f ) =0,
(26b)
(f'-f) "' [aDs +dDy + 9D, — 1] (f - ) = 0. (26¢)

Using the Cole-Hopf transformation v = log { and linearizing the
Bell polynomial system, Eq. (25), we derive the Lax pair of Eq. (2) as

CZx + Aiz + (QZx - 1”)4’ = 07 (273)

Ct + B(z + C(gxz + C3x - 3A) + (a + 367’ + 3Cq2x)Cx
- 3CA‘szC - ’714/ = 07 (27b)
ol +di, +70 —m{=0. (27¢)

IV. INFINITELY MANY CONSERVATION LAWS

To construct infinite conservation laws of Eq. (2), we rewrite Eqs.
(22) and (24) in following form:

vfc + Av, —n =0, (28)
7] 7] 5
En (ve) + p [c(v3x +3v,wo +03) + (Ben + a)v, — 3cAvxvz]
0 0 .
+ o (owy + dvy 4 yv;) +& (=3cAn + Sv, + 3cAv: + fv,) =0.

(29)
We present a novel potential function & = @, which yields
ve=¢& 0 =0(8), v.=0(&), m=g,+E (30)

Substitution of Eq. (30) into Eq. (28) and Eq. (29) yields a Riccati type
equation and a divergence type equation as

EF gat+ &+ AITNE)—n=0, 31
&+ Oy [clyy + 60En — 208> — 6cAZD N (E,) + al]
+ 0, [—3cAn + 00,1, + 3cAE + O (E,)]

+dy [aé +do (&) + ya;l(g“z)] =0. (32)
Setting 7 = &% and & = & + € in Eq. (31), we obtain
G+ &+ 2 e+ P+ AN (E) - € =0. (33)

We choose infinite series form of &’ as

él = ZKH(¢7¢x7{}2x7"')67”' (34)

n=1
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Substituting Eq. (34) into Eq. (33) and equating all the like powers of ¢,
finally, we derive the recursions relations for the conserved densities as

1
Ky =- 542)& (35a)
1 1
K== [Kie + A0 (Kio)] = 1 (g0 +Agna),  (35D)

1 _ 1
K3 = _E [KZ,X +A8x ! (KZZ) +K12] = _g [¢4x +2A(¢2xz +¢22)¢§x} ’

(35¢)
1 n—1
K1 = =5 | Kus A0 e + ) KK ). (35d)

i=1

Again substituting Eq. (34) with 7 = Eand ¢ = ¢ + e into Eq. (32),
we have

oo oo oo 3
ZKMK" + Oy CZKMX(” +4ce® — 2¢ ZKne’”
n=1 n=1 n=1
o0 2 o0 oo
e (ZK) e (Zmen>axl (ZK)
n=1 n=1 n=1

o0 oo
+a (ZKHEH + e) o (6 + Kne”>
n=1 n=1
o0 o0
—6ce +do ! (ZKME"> + 0, ! (ZKME”H
n=1 n=1

o 2 oo
+0,|3cA (EKne"> + 6cA< K,,e") €

n=1 n=1

+(3 + B)o; ! <iKme_”>:| =0. (36)
n=1

Comparing the coefficient of all the like powers of € from Eq. (36), we
obtain the conservation laws of Eq. (2) as

+9,

pubs.aip.org/aip/pof
My = oKy +dI; 'Ky, + 90, 'K, (39a)
%2 = OCKz + dB;IKz_}, + “/8;11('272, (39b)
My = 9Ky + A0 Kpy + 90K, 2, (39¢)
and
N1 = 6cAK; + (B + 0)Ki, (40a)
N3 = 6cAKs + 3cAK? + (B + 6)Kaz, (40b)

n—1
N = 6cAK, 1+ 3cAS KKy + (B + )0, 'Ky (409)

i=1
The recursion relations Eq. (35) provide the values of K,,.
V. SOLITON SOLUTIONS
A. One-soliton solution

To formulate one soliton solution of Eq. (2), we assume f in the
following form:

f=1+¢", (41)

where Yy = ky(x+ p1y + q1z + wit) + Y(l) and kl,pl,ql,Y? are
arbitrary constants. Substituting Eq. (41) into Eq. (20) and equating all
exponential functions to zero, we obtain dispersion relation as

wi=—(atcki+dpi+op+Bq+rpg +oq).  (42)
Finally, we obtain one-soliton solution of Eq. (2) by substituting Eq.

(41) along with Eq. (42) into Eq. (20) as
u = log(1 + "), 43)

In Fig. 1, we present 3D plot, density plot, and 2D plot of one soliton
solution Eq. (43), corresponding to parametric values as a = c=d
=g=f=y=0=1k =04, py=12, g =13, Y =0.

K¢ + zn,x + %n,y + C/Vn,z =0, (37) B. Two-soliton solution
where In order to obtain two soliton solution of Eq. (2), we choose f in
the following form:
31 = CK],Zx + aKl — 6CK12 — 6CA(9;1K2’Z7 (38a) T T Yoy
=1 ! 24+ Bpe T2, 44
Ly =Ky gy +aKy — 12cK, Ky — 6¢A(07 Kz, + K107 Ky L)y - - f +e't +e' + Bpe , (44)
(38b) where Y; = ki(x +piy + qiz +wit) + XV, (i=1,2) and
; ki, pi, @i, X9, (i = 1,2) are arbitrary constants. Substituting Eq. (44)
L =aK, +¢ ( Ko — 62 KiKy_ji1 — 2 Z K, K, Ki3> into Eq. (20), we derive dispersion relation and By, as
I:In L wi=—(a+cki +dp} +opi+pai+ypgi+oq), (i=1.2),
— 6¢cA <8;1K,,+11Z + ZKia;lK,,_,,y), (38¢) (45a)
n=1
|
(ky — ko) (kywy — kows) + (ky — ka)* + (ky — k22)4 + (kipr — kopa)? + (ki — ko) (kapy + ki — kapy — ko)
b= +(kip1 — kopa) (kg1 — kagqz) + (kiq1 — kag2) (45b)
(kl + kz)(klwl -+ szz) + (kl + kz)z + (k1 + k224 + (klpl + kzpz)z + (kl + kz)(klpl + kl‘]l + k2p2 + kzqz)
+(kipr + kapa)(kiqr + kaqz) + (kiqy + kaqa)
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(a) (b)

i 0,00 ==
i -40 -20 0 20 40

FIG. 1. One soliton solution of Eq. (2) given by Eq. (43). (a) 3D plot, (b) density plot, and (c) 2D plot at different times.

&5 i
20 ” l"”‘|| =
: A
. AN
- ‘ SN
40 7 -40 -30 -20 -10 0 10 20 30 40
(a) (c)
FIG. 2. Two soliton solution of Eq. (2) given by Eq. (46). (a) 3D plot, (b) density plot, and (c) 2D plot at different times.
Further substitution of Eq. (44) with Eq. (45) into Eq. (20) yields two f=1+ e+ e 4 el 4 Bpelt T2 4 Bett
soliton solution of Eq. (2) as 4 Byt Ys Byttt (47)
w = % [log(l +e pel 4 BlzeY1+Y2)]2x. (46)
where =ki(x+py + gz +wit) + X, (i=1,2,3) and

In Fig. 2, we demonstrate 3D plot, density plot, and 2D plot of two sol-
iton solution Eq. (46), corresponding to parametric values as
a=c=d=oa=f=y=0=1, k=09, p =12, q =13,
ky=—-13,p, =07, =2,and Y} =0 (i = 1,2).

C. Three-soliton solution

In similar way, we can derive three soliton solution of Eq. (2) by
choosing fin the following form:

ki, pi,qi, Y5, (i =1,2,3) are arbitrary constants. Substituting Eq.
(47) into Eq (20), we derive dispersion relation and Bj; as

wi = —(a+ckj +dp; +opi+ g+ 7pgi+0q),
(l = 1727 3)7 (483)

(ki — k) (kiw; — kgwy) + (ki — kj)* + (ki — ')4 + (kipi = kipy)” + (ki — k) (kips + kigs — Kip; — Kigy)
B — +(kips — kip) (kigi — Kigy) + (kigs — kigy)° (48b)
! (ki + k) (kiw; + kgwy) + (ki + k;)? + (ki + K5)* + (kipi + kipy)* + (ki + k) (Kips + Kiqs + kip; + kig;)
+(kipi + kipy) (kigqi + kig;) + (kigi + k;q)*
36, 037151-6
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t=-35 t=-25

-40 -30 -20 -10 -30 -20 -10

5 10 15 1 10 20 30

(a) (b)

FIG. 4. Three soliton solution of Eq. (2) given by Eq. (49). (a) 3D plot, (b) density plot, and (c) 2D plot at different times.

Finally, substituting Eq. (47) with Eq. (48) into Eq. (20), we derive
three soliton solution of Eq. (2) as

6¢ .
u= E [log(l + erl + erz + 3r3 + BlzeY1+Yz + Bl3ell+Y3

+ Byze™ T Bpgel1 T2 )] (49)

2x

In Fig. 4, we illustrate three soliton solution graphically corresponding
to the parametric values as a=c=d=o0=f=7y=0=1,
k] = 0.9,p1 =1.2, 91 = 1.3, kz = 71.3,p2 =0.7, 9 = 2, k3 =1.7,
ps=1gs=17and Y’ =0 (i =1,2,3).

VI. BREATHER SOLUTION

Utilizing the criteria outlined in prior studies"®” for acquiring
breather solutions, one can derive an analytical expression for breather
solutions by selecting appropriate parameters within the framework of
the two-soliton solution. In order to derive the first-order breather
solution, it is necessary to express the parameters in Eq. (44) in the fol-
lowing complex conjugate form:

86,

ky=k=a+ib, py=p,=c+id, g =q, =e+if. (50)

In particular, taking k; =kl =i, pi=p5=1, q1 =¢q, =2+1,
anda=b=c=d=ua=f=y=0=1,Eq. (44) can be written as

f=1+2cos(x+ 2y + z + 6t)(cosh(—2z — 10¢)
-+ sinh(—2z — 10t)) — 2cosh(—2z — 12t) — 2sinh(—2z — 12¢).
(51)
Substituting Eq. (51) into Eq. (20), we can obtain the first order
breather solution of Eq. (2) as
u = 6[log(1+ 2cos (x + 2y +z + 6t)(cosh(—2z — 10¢)
+sinh(—2z — 10¢)) — 2cosh(—2z — 12t) — 2sinh(—2z — 12t))] .,
(52)

VIl. ROGUE WAVE SOLUTION

In order to derive rogue wave solution of Eq. (2), we use the
transformation p = x + y — t, which converts Eq. (2) into

Phys. Fluids 36, 037151 (2024); doi: 10.1063/5.0195378
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4.
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3 3 3
2 2 2
1 1 1
t= | t=.5 | t=15I ‘t=2.5
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FIG. 5. Time evolution of three soliton solution of Eq. (2) for the same parameters as in Fig. 4.

-1500
-1000

u

(a)

FIG. 6. Evolution of first order breather solution of Eq. (2) given by Eq. (52) at (a) t=0, (b) t=0.165, and (c) {=0.3.

(a+d+oa—1)usy+b(e?)y, +cteay+ (f+7)tepe + 2. =0. (53)

Using the depending variable transformation
3c

u(p,z) - b [210g g}pp7 (54)

along with ¢= —1 and integrating twice with respect to p, we obtain
Hirota bilinear equation corresponding to Eq. (53) as
[(a+d+a—1)D; — D)+ (f+7)D,D, +D}Jg - g
=(a+d+o—1)(gg, —&) — (88 — 48 &0 +38,)
+(B+7)(g8: — 8 8) + (8. — &) = 0. (55)

The generalized form of center controlled rogue wave solution®” can
be considered as

8(p,2) =gu(p,z,c1,02)
n+1)

3 J ) )
= bu(ni1)-2j2i (z— 52)21 (p— Cl)n(n+l)72]v (56)
=0 i=0

=

(©)

where b, 4 (p,q = 0,2,4, ..., j(j + 1)) are constants that will be found
later and ¢; and c, are real center controlling parameters of rogue
wave.

For first order rogue wave solution, the auxiliary function g(p, z)
can be considered in the following form:

g(p,2) = bop + bo22" + brop*. (57)

By substituting Eq. (57) into Eq. (55) and equating the coefficient of
different powers of p Z/ to zero, we obtain a system of equations as

20 bz,() b()’z —20 bgz +2d bz,o bo(z + 2a b2,0 b0,2 — sz,o bo‘z =0,
(58a)
20k, —2d by, +25bos byo —2abj, +2b5, =0,  (58b)
Zb()’() bz)o(ﬂ —+ o+ d — 1) + 25[7010 bo)z — 121’);0 =0. (58C)

Furthermore, solving system of equation Eq. (58), we derive paramet-
ric values as

Phys. Fluids 36, 037151 (2024); doi: 10.1063/5.0195378
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1.37503
132503
127503
1.22503
1.17503
112503
1.07503

— 102503

T r———
097503
n

(b)

(e)

FIG. 7. First order rogue wave of Eq. (2) given by Eq. (61) with center controlling parameters as (a) ¢y = —20, ¢, = —16, (b) c1 =0, ¢; = 0, (c) ¢4 = 12, ¢, = 12, (d) con-

tour plot, and (e) density plot.

bz’o(aJrOC‘Fd* 1)

byo = byp, bop= 5 ;

3b0 (59)

bopg=—"+—.
00 rd—1

With the parametric values in Eq. (59), Eq. (57) becomes

g(paz) =g~1(,D,Z,C1,CZ)

- (a+o+d—1) ) ) 3 >
sz,o(f(z_cﬁ +p—a) +m ’

(60)

Finally, substitution of Eq. (60) into Eq. (54) yields first order rogue
wave of Eq. (2) as

u(p,z) = —g {log(bz,o <W z—a)+(p—a)

———E
at+o+d—1 op

In Fig. 7, we demonstrate evolution of rogue wave solution of Eq. (2)
corresponding to the parametric values o = 0.5, 6 = 0.3, a = 0.5,
b=1 c¢=-1,d=03, and b,p = 1.

VIII. LUMP SOLUTION

The lump solution”**” of Eq. (2) can be constructed by choosing

the test function in the following form:

f=h+h+m, (62)

where
hy = dix 4+ dyy + dsz + dyt + ds, (63a)
hy = dex + dyy + dsz + doy + dho, (63b)

where my, d;, (i =1,2,...,10) are constants that will be determined
later, and the constants d;(i =1,2,3,6,7,8) satisfy the condition
(dy, dy, ds3) {(ds, dy, dg). Substituting Eq. (61) into Eq. (20) and setting
all the coefficient of different powers of x”y9z"#* to zero, we obtain a
system of equations. After solving the obtained system of equations
with y =1, 6 = é, we derive the following restriction between the
parameters:
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FIG. 8. Evolution of negative lump wave of Eq. (2) at (a) t = —1.5, (b) t=0, and (c) t=1.

d6d7 d5d8 4dd6(06d7 + ﬁds) — 4d(adf — dd%) + 4d d3d7 + d%
d2:7a d3:777 d4: )
d, dy 4dd, (64a)
12d cd}(d} + d?)
m=—————
(2d dy + ds)
2 )
oy d (64b)
dio :%, dy #—2dd,, c<0.
1

Finally, substituting Eq. (61) along with Eq. (64) into Eq. (20), we can derive lump solution of Eq. (2).
In Fig. 8, we demonstrate evolution of negative lump wave solution of Eq. (2) corresponding to the parametric values a =b =d =«
:ﬁ:l’ C:—Z, dlzl, d5:2, d6:2, d7:1,and d3:2.5.

IX. LUMP-MULTI-STRIPE SOLUTION

To construct lump-multi-stripe solution from Hirota bilinear form Eq. (20) of Eq. (2), we can consider the test function fin a combined form
of quadratic function and exponential function as

n
f=hW+m+m+> e, (65)
i=1
where Y; = ki(x + piy + qiz + wit) + Y?, (i=1,2,3,n), m > 0and h, and h, are defined in Eq. (63).
The test function fin Eq. (65) can provide lump-multi-stripe solution”’ of Eq. (2) if and only if
(DxD; + aD} + ¢Dy + dD} + aD.D, + DD, + yD,D; + 6D?)(h} + b3 + my) - (b + b3 + my) = 0, (66a)
(Dth +aD? + D} + dD? + aD,D, + fD,D; + yD,D; + 5D§) (B4R +m) e (i=1,2,...n), (66b)
(Dth +aD? + D} + dD? + aD,D, + fD,D; + 7D, D; + 5D§)

(k,v—kj,p,-—pj,qi—qj,w,-—wj) :07 (l?é], l,]: 1,2,...,”). (66C)

Setting 7y =1, ¢ :i and solving system of equations Eq. (66), we derive relation between parameters my, d;, (i = 1,2,...,10) and
ki,piyqi,wi (i=1,2,...,n)as

_ deds dedy , _ 4ddg(od; + pdy) — 4d(ad? — d d2) + 4d dyd; + d2 | L2ded}(d} + &)

d , di=———, d , my = ) 67
a0 T T ™ add, 1 (2d d; + ds)? 7
4d d? 4 2 _ dd?) — (4 2
dy = — dd(ody + ) + ddé(ad‘liz ddy) = (4d dodyds + dody) , do = %, dg # —2dd;, ¢<0, (67b)
1 1
1
wi=— (a+ck,.2 +dp; +ap; +ﬁqi+p,-qi+aqf>, (i=1,2,...,n). (67¢)
Then, the lump-multi-stripe solution of Eq. (2) is obtained as
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uz% [log(hf+h§+rn1+§n:en)} , (68)

where

ded ded addg(ody + Bds) — 4d(ad? — d &2) + 4d dsdy + d2
hlzdlx+(6—7)y+(—;—8)z+( slody 1 pds) gfld; 7) T 4ddudy + 8)t+ds,
1 1

d
_ 4d d}(ody + Bds) + 4d de(ad} — dd?) — (4d dedyds + dsdy) 4 e
d dy '
 12dcdi(d} + d7)
(2d d; + ds)*

hz—d6x—|—d7y+dgz+<

m; = ’

1
Y :k,»(x+p,»y+q,-z— (ﬂJer?+dP?+°‘Pi+ﬂqz'+Piqx‘+qug)f) +Y), (i=1,2,...,n).

A. Lump-one-stripe solution
For lump-one-stripe solution of Eq. (2), we take i =1 in Eq. (68) and obtain lump-one-stripe solution as

6¢ -
w= [10g<hf+h§+m1 +;e“)] :

where

4 —4d(ad} —dd}) +4 3
b= dix s (%), deds Z+<dd6(ocd7+ﬁd8) d(ad} —dd?) + ddgdy—i—ds)terS’
d, d 4d d,

4d & (od; + Bds) + 4d de(ad® — dd2) — (4d dedyds + d6d§)> 4 dedl
& dy

h2 = d6x+d7y+dgz+ (-

 12dcdi(d} + d7)
(2dd; +dg)*

m; =

1
Y, :kl(x—i-ply—i-qlz— (a+ckf+dpf+ap1 +ﬁq1+p1q1+aqf>t) + 9.

(69a)

(69b)

(69¢)

(69d)

(70)

(71a)

(71b)

(71¢)

(71d)

In Fig. 9, we demonstrate interaction phenomena of negative lump wave with stripe wave and their evolution at different time frames correspond-
ing to the parametric values as a =b=d=oa=f=1,c=-1,d =1, ds=1,de =2,d;, =1,dg =12, k; =2, py =2, q =0.25, and
Y? = 0. At t = —1.5, there is only one stripe wave. Lump wave originates from stripe wave at t=0. Then, at = 0.5, lump wave separates from

stripe wave and move on.

B. Lump-two-stripe solution
For lump-two-stripe solution of Eq. (2), we take i =2 in Eq. (68) and obtain lump-two-stripe solution as

e
b

22

[log(h% + R+ m + el + en)] ,

XX

where

4 —4 2 _ 2 4 2
i (), (s Z+(dd6(ocd7+[>’d8) d(ad? —dd2) + dd8d7+d8>t+d5’
d d 4d d,

4 2 4, 2 2\ 4 2
by = e+ dig + dh + (_ A di (o -+ o) + 4 dolodk — dd) — dd6d7dg+d6d8)>t+dsdé’
di d
 12dcd}(d} + dg)

(2d d; + dg)*

m )

(72)

(73a)

(73b)

(73¢)
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FIG. 9. Evolution of negative lump-one-stripe solution of Eq. (2) at (a) t = —1.5, (b) t = —0.5, (c) t=0, (d) t=0.5, and (e) t=1.5.

1
Yi:k,-(x—i-p,»y—l—qiz— (a—l—ck?—o—dp?+ocpi+[5qi+piqi+gq?)t) +YY (i=1,2).

(73d)

In Fig. 10, we demonstrate evolution of lump-two-stripe solution of Eq. (2) corresponding to the parametric valuesasa =b=d =a = f =1,
c = 71, d1 = 1, d5 = 1, d(, = 2, d7 = 1, dg = 12, kl = 2,p1 = 2, q1 = 025, k2 = l,pz = 1, 1 = 025, andT? = 0, (1: 1,2) Att = 715,
there is only one stripe wave, and lump wave originates from stripe wave at t=0. Lump wave completely isolates from stripe wave at t=2. At

t = 3.5, stripe wave splits into two distinct stripe waves and then move on.

X. LUMP-MULTI-SOLITON SOLUTION

To construct a lump-multi-soliton solution from Hirota bilinear form Eq. (20) of Eq. (2), we can consider the test function fin a combined

form of quadratic function and hyperbolic cosine function as

f=h+1+m+> coshY;+m,

i=1

where Y; = ki(x + p;iy + qiz + wit) + Y?, (i=1,2,3,n), my, my > 0,and h, and h, are defined in Eq. (63).
The test function fin Eq. (74) can provide lump-multi-soliton solution®' of Eq. (2) if and only if

(Dth +aD? + cD! + dD? + aDyD, + fD:D; + yD,D; + D) (2 + 2 + ml) (R4 my) =0,
(Dth +aD? + D} + dD? + oD,D, + fDyD; + yD,D; + 6D§) (B +h+m) e, (i=1,2,...,n),

(DXDt +aD? + cD} + dDj + aDDy + DD, + yD,D, + 6D2)(hi + h; + ml) -y

n
1
+ ZZ (Dth +aD? + D! + dD? + aD,D, + fD,D + yD,D; + 5D§) (2ki, 2pi, 25, 2w;) = 0,
-

(74)

(75a)

(75b)

(75¢)
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FIG. 10. Evolution of negative lump-two-stripe solution of Eq. (2) at (a) t = —1.5, (b) t = —0.5, (c) t=0, (d) =2, (¢) t=3.5, and (f) t=4.5.

(Dth + LIDJZC + CDi + dDi + OCDny + ﬁDxDz + '})DyDZ + 5D§) (k, — kj,p,' — pj, qi — g, Wi — Wj) =0,

(75d)
(i#]’7 i7j:1’27"'7n)7
(Dth +aD? + cD} + dD, + aDyD, + pDxD; + yD,D; + 5D§) (ki + ki, pi + Py @i + G Wi+ wj) = 0, 50
(i#], ij=1,2,...,n).

Setting 7 = 1, d = 5 and solving system of equations Eq. (75), we derive same relations between parameters m,, d;, (i = 1,2,...,10) and

ki, pi,qi,wi (i=1,2,...,n) asin Eq. (67).

Then, the lump-multi-soliton solution of Eq. (2) is obtained as
6¢ s s :
w = 5 log| hi + h; + m; + Zcosth + my , (76)
i=1 xx
where
ded ded 4dds (od dgy) — 4d(ad? — d d2) + 4d dgd; + d2
h=dix+ (=L )y+ -2 z+( s(ody + fids) — 4d(ad] 7) +4d dudy + 8)t+d5, (77a)
d d 4d d,
4 2 4, 2 2\ 4 2
b oty et ( dd2(ady + ) + dds(adzlz dd2) — (4d dedyds + d(,dg)> - % | o7
1 1
2042 4 32
S 12d cd; (d} + rié) ’ (770)
(2d d; + ds)
1

Y = k,(x +piy + qiz — (a +ckt+dp? +opi+ Bqi+ pigi +Eq§)t) +Y, (i=1,2,...,n). (77d)
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FIG. 11. Evolution of negative lump-one-soliton solution of Eq. (2) given by Eq. (78) at (a) t=—4, (b) t=—1, (c) t = —0.3, (d) t=1, (¢) {=2.3, and (f) t=4.8.

A. Lump-one-soliton solution

For lump-one-soliton solution of Eq. (2), we take i =1 in Eq. (76) and obtain lump-one-soliton solution as

6
w = Zc [log(hf + hg + my + cosh Y| + mz)hx, (78)
where
ded ded, 4dds(od ds) — 4d(ad? — d d> 4d dgd; + d?
hy=dx+ (22 )y 4+ (-2 z+( o(ad; + pds) = 4d(ad) — dd;) + 4d dydy + 8)t+d5, (79a)
d; d 4d d,
4d d?(ad d 4d dg(ad? — dd?) — (4d dgdrdg + dgd? dsd,
hz—d5x+d7y+dgz+<— 1oy + Pe) + G(azp 7) — (4d ddrds 68)>t+;6, (79b)
1 1
2( 32 2
= 12d cd} (d} + azlé) ’ (790)
(2dd; + ds)
1
Y1=k1(x+p1y+qlz—(a+ckf+dpf+ocp1+ﬁq1+p1q1+aqf>t>+Y?. (79d)

In Fig. 11, we illustrate the evolution of negative lump-one-soliton solution of Eq. (2) at different time frames corresponding to the parametric val-
wesasa=b=d=a=f=1c=-1,d =1,ds=1,ds =2,d, =1,dg =13,k; =1.5p; =1,q; = 0.25,m, :0,andY(1’ =0.Att=—4,
there are two solitary waves w; and w,. Lump wave originates from w; at t = —1 and then disappears into wave w; with time.

B. Lump-two-soliton solution

For lump-two-soliton solution of Eq. (2), we take i = 2 in Eq. (76) and obtain lump-two-soliton solution as
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FIG. 12. Evolution of negative lump-two-soliton solution of Eq. (2) given by Eq. (80) at (a) ¢
(h)t=2.17, () t=323, () t=4.3, and (k) t=6.5.

—6.7, (b) t=—5, (0) t
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w

where

[log(h? + hg + my + cosh Y| + cosh Y, + mz)]
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(80)

xx’

b s (@)y . (_ %)Z . (4dd6(ocd7 + Bds) — ad(ad? — d d2) + 4d dsd; + &2
1

di

4dd1 )t‘i‘ds, (813)

2 2 2\ _ 2
hz=d5x+d7y+dgz+(—4dd1(ad7+ﬁ d”)HddG(adjiz ) (4dd6d7d*+d6d8)>t+%, (81b)
1 1
2( 32 2
S 12d cd? (2 +0216)’ (819)
(2d d; + dg)
1
Y; :k,-(x+piy+qiz— (a—l—ckf+dp?+ocpi+ﬁqi+piqi+@q?)t) +YY, (i=1,2). (81d)

In Fig. 12, we illustrate the evolution of negative lump-two-soliton solu-
tion of Eq. (2) corresponding to the parametric values as
a=b=d=a=p=1c=-1,di=1ds=1,ds =2, dy =1,
dg = 13, k] = 15, Pl = 2, q = 025, kz = 1, pz = 1, Q= 025,
my =0, and Y = 0 (i = 1,2). Evolution of lump-two-soliton solu-
tion is more sophisticated due to the presence of various fissions and
fusions of waves. At t = —6.7, exactly two waves w; and w, are
appeared. Then, at = —5, wave w, starts splitting to w; and w,, and at
t = —3.6, it completely splits because of the fission effect. At t = —2.6,
wave ws appears as a result of the fusion effect of waves w; and w;. At
t = —0.5, lump wave originates from w, and completely disappears
into wave ws at ¢t=2.7. Then, wave w, splits into ws and w. Finally,
because of the fusion effect of w5 and we, wave wg generates.

XI. GRAPHICAL ILLUSTRATION, RESULTS,
AND DISCUSSION

In Fig. 1, we depict 3D plot, density plot, and 2D plot of one soli-
ton solution of Eq. (2) corresponding to the parametric values as
a=c=d=o0==y=0=1,k =04, p =12, q = 1.3, and
T(l) = 0. Similarly, in Figs. 2 and 4, we present a 3D plot, density plot,
and 2D plot of two soliton solutions and three soliton solution of Eq.
(2), choosing parametric values asa =c=d=a=f=y=90=1,
ki=09,p =129 =13,k =—-13,p,=0.7,¢ =2,and Y} =
0(i=1,2) and a=c=d=a=f=y=0=1, k =009,
P = 1.2, 9 = 1.3, k2 = —1.3, P2 = 0.7, 9 = 2, k3 =1.7, p3 = 1,
g5 = 1.7,and Y? = 0 (i = 1,2, 3), respectively. Figures 3 and 5 show
the propagation of two soliton solution and three soliton solution of
the model equation. Notably, larger solitary waves collide elastically
with smaller waves, and after the nonlinear interaction, all waves retain
their shapes asymptotically. The larger waves continue moving ahead
of the smaller ones, demonstrating that the soliton solutions maintain
their original shape and size with only a phase change during interac-
tion. In Fig. 6, we illustrate the dynamical behavior of the solution
given by Eq. (52) at different time frames. At the outset, waves appear
from a constant state and progressively transform into periodic line
waves. These periodic line waves maintain parallelism and indepen-
dence from each other, yet their behaviors evolve consistently over
time. In Fig. 7, we demonstrate 3D plots of first order rogue wave solu-
tion corresponding to the different center controlling parameters
as ¢ =-20, o =-16; ¢ =0, a=0; and ¢, =12, ¢ = 12.

In Fig. 8, we present evolution of lump solution corresponding to the
parametric values as a=b=d=oa=f=1, c=-2, d =1,
ds =2,d¢ =2,d; = 1, and dg = 2.5. Figure 9 depicts the evolution-
ary process of a lump solution emerging from a stripe solution. In the
lump-one-stripe solution, a lump wave generates from a stripe wave
and gradually separates from the stripe wave over time. Figure 10 illus-
trates the evolutionary process and fission effect of lump and stripe sol-
utions. In the lump-two-stripe solution, a lump wave originates from
the stripe wave, and subsequently, the lump and stripe waves separate
after a certain duration. Following this separation, the stripe wave fur-
ther divides into two distinct stripe waves. In Fig. 11, we illustrate the
evolutionary process of a lump solution arising from a soliton solution,
along with their interaction dynamics. In the lump-one-soliton solu-
tion, a lump wave emanates from one of the solitary waves, gradually
detaches from that solitary wave and interacts with another solitary
wave. After that, lump wave fades away entirely and transforms into
another solitary wave over time. This indicates that the interaction
between lump and one-soliton is entirely inelastic. Figure 12 depicts
the occurrence of multiple fission and fusion effects in the evolution of
a lump solution from soliton solutions. Within the lump-two-soliton
solution, various instances of fission and fusion phenomena occur.
Initially, there are only two solitary waves, denoted as w; and w,.
Subsequently, w, divides into two solitary waves, w; and w,. Following
this, w; interacts with w;, giving rise to the formation of a new solitary
wave, ws. A lump wave originates from w, gradually separates from it,
interacts with ws, and eventually dissipates completely within ws.
Following this, ws splits into two solitary waves, ws and w,. Again, wg
interacts with ws, resulting in the emergence of a new solitary wave,
wg. This suggests that the interaction between the lump and the two-
soliton is also completely nonelastic.

XIl. CONCLUSION

In this article, we have delved into the intricacies of the integrabil-
ity characteristics inherent in a novel (3 + 1)-dimensional nonlinear
evolution equation. Our approach commences with the elucidation of
fundamental properties rooted in Bell polynomial theory. Leveraging
this theoretical framework, we derive both the Hirota bilinear form
and a bilinear Backlund transformation. By employing the Cole-Hopf
transformation within the bilinear Backlund transformation and sub-
sequently linearizing it, we arrive at the formulation of a Lax pair.
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Furthermore, our exploration extends to the integrability aspect of the
model equation, involving the derivation of an infinite sequence of
conservation laws. The analytical effectiveness of the Hirota bilinear
form facilitates the derivation of one, two, and three soliton solutions,
vividly portrayed through graphical representations. Beyond solitons,
we delve into the realm of breather solutions, introducing complex
conjugate parameters into the two-soliton solution and visually depict-
ing their evolutionary patterns. Our exploration takes an intriguing
turn as we derive a first-order center-controlled rogue wave solution,
dynamically illustrating its behavior across varying center-controlling
parameter values. Expanding the scope of our inquiry, we employ the
well-established quadratic function as a test function within the Hirota
bilinear form, resulting in the deduction of the lump solution.
Furthermore, a novel approach utilizing a combined form of a qua-
dratic function and an exponential function as a test function yields
lump-multi-stripe solutions, capturing their evolutionary phenomena
through graphical representations. Pushing the boundaries of our
investigation, we delve into the synthesis of lump-multi-soliton solu-
tions through the combined application of a quadratic function and
hyperbolic cosine function as test functions. The visually compelling
depictions of their evolutionary phenomena add another layer to our
understanding of these complex nonlinear wave dynamics.
Significantly, these discoveries enhance our understanding of nonlin-
ear wave phenomena across diverse fields, including shallow water
dynamics, oceanography, and nonlinear optics. The results derived
from this analytical framework offer a valuable and precise method for
interpreting and describing various intricate phenomena within these
scientific domains. In future endeavors, our goal is to apply the linear
superposition principle to the Hirota bilinear form within a complex
field. This approach seeks to extract solutions in the form of complex
exponential wave functions, giving rise to phenomena such as com-
plexitons, resonant solitons, and related effects. Additionally, another
avenue of our research will involve exploring symmetry reductions of
exact solutions through Lie symmetry analysis.
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