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Abstract. This paper aims to compute lump solutions to a combined fourth-order equa-
tion involving three types of nonlinear terms in (2+1)-dimensions via symbolic compu-
tations. The combined nonlinear equation contains all second-order linear terms and
it possesses a Hirota bilinear form under two logarithmic transformations. Two classes
of explicit lump solutions are determined, which are associated with two cases of the
coefficients in the model equation. Two illustrative examples of the combined nonlin-
ear equation are presented, along with lump solutions and their representative three-
dimensional plots, contour plots and density plots.
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1. Introduction

The Hirota bilinear method [3, 14] is effective in constructing soliton solutions to in-
tegrable equations generated from zero curvature equations [1, 46]. Soliton solutions are
analytic, and usually exponentially localised in space and time. Assume that a polynomial
P defines a Hirota bilinear differential equation

P(Dx , Dy , Dt) f · f = 0
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in (2+1)-dimensions. Here Dx , Dy and Dt are Hirota’s bilinear derivatives [14]. An asso-
ciated partial differential equation (PDE) with a dependent variable u is often determined
by some logarithmic transformation of u = 2(ln f )x and u = 2(ln f )x x . Within the Hirota
bilinear formulation, the N -soliton solution — cf. [13], can be presented through

f =
∑

µ=0,1

exp

 

N
∑

i=1

µiξi +
∑

i< j

µiµ jai j

!

,

where
∑

µ=0,1 is the sum over all possibilities for µ1,µ2, . . . ,µN taking either 0 or 1, and
the wave variables and the phase shifts are defined by

ξi = ki x + li y −ωi t + ξi,0, 1≤ i ≤ N ,

and

eai j = −
P(ki − k j , li − l j ,ω j −ωi)

P(ki + k j , li + l j ,ω j +ωi)
, 1≤ i < j ≤ N ,

in which ki, li and ωi, 1 ≤ i ≤ N satisfy the associated dispersion relation and the phases
shifts ξi,0, 1≤ i ≤ N are arbitrary.

Recent studies show the remarkable richness of lump solutions to integrable equa-
tions, which describe various dispersive wave phenomena. Lumps are rational solutions,
which are analytic and localised in all directions in space [42, 43, 49] and they can also
be derived from taking long wave limits of soliton equations [47]. The KPI equation pos-
sesses diverse lump solutions [24] and its special lump solutions are generated from soli-
ton solutions [44]. Other integrable equations which have lump solutions include the
three-dimensional three-wave resonant interaction [17], the Davey-Stewartson II equa-
tion [47], the BKP equation [10, 64], the Ishimori-I equation [16], the KPI and mKPI
equation with a self-consistent source [71, 72]. Moreover, non integrable equations can
have lump solutions, and such equations contain the generalised KP, BKP, KP-Boussinesq,
Sawada-Kotera, Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko equa-
tions in (2+1)-dimensions [4, 21, 31, 37, 39, 74]. It is worth noting that the second KPI
equation exhibits a new kind of lump solutions with higher-order rational dispersion re-
lations [41]. The starting point in constructing lump solutions is to determine positive
quadratic function solutions to Hirota bilinear equations [42]. Then from positive quadratic
function solutions, lump solutions to nonlinear PDEs are constructed by using the logarith-
mic transformations.

In this paper, we would like to discuss a combined fourth-order equation in (2+1)-
dimensional dispersive waves and determine its diverse lump solutions. The Hirota bilinear
form plays a crucial role in our analysis [23,42,43,82]. The combined nonlinear equation
includes three types of fourth-order nonlinear terms and all second-order linear terms. To
conduct symbolic computation of lump solutions with Maple, we will analyze two cases
of the coefficients in the model equation. Illustrative examples of the considered model
equation will be made, together with specific lump solutions and their three-dimensional
plots, contour plots and density plots. A few concluding remarks will be given in the final
section.
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2. An Equation Involving Three Types of Nonlinear Terms

We would like to consider a combined fourth-order nonlinear equation:

P(u) =α1(6uxux x + ux x x x ) +α2[3(ux uy)x + ux x x y]

+α3(4uyux y + uxuy y + ux x v + ux x y y )

+δ1uy t +δ2ux x +δ3ux t +δ4ux y +δ5uy y +δ6ut t = 0, (2.1)

where vx = uy y , and the constants αi, 1 ≤ i ≤ 3 and δi , 1 ≤ i ≤ 6 are generally arbitrary.
The coefficients αi, 1≤ i ≤ 3 correspond to three types of nonlinear terms.

It is direct to show that the above combined nonlinear equation (2.1) possesses a Hirota
bilinear form

B( f ) =
�

α1D4
x + α2D3

x Dy +α3D2
x D2

y +δ1Dy Dt +δ2D2
x

+δ3Dx Dt +δ4Dx Dy +δ5D2
y + δ6D2

t

�

f · f = 0 (2.2)

under the logarithmic transformations

u = 2(ln f )x =
2 fx

f
, v = 2(ln f )y y =

2
�

f y y f − f 2
y

�

f 2
. (2.3)

Precisely, we can have the connection between the combined nonlinear and bilinear equa-
tions: P(u) = (B( f )/ f 2)x , when u, v and f satisfy the link (2.3). The combined bilinear
equation (2.2) contains three types of fourth-order derivative terms and all second-order
derivative terms, and it reduces to the standard bilinear KP equation, when α1 = δ3 = 1,
δ5 = −1 and all other coefficients are zero.

Moreover, on one hand, upon taking α2 = 1, δ3 = δ5 = 1 and all other coefficients as
zero, the combined nonlinear equation (2.1) gives a generalised Calogero-Bogoyavlenskii-
Schiff equation [4]:

3(uxuy)x + ux x x y + ux t + uy y = 0,

which also possesses a Hirota bilinear form
�

D3
x Dy + Dx Dt + D2

y

�

f · f = 0,

under u = 2(ln f )x , and whose lump solutions have been computed in [4].
On the other hand, upon taking α1 = α2 = 1, δ2 = δ3 = δ5 = 1 and all other coeffi-

cients as zero, the combined nonlinear equation (2.1) gives a generalised Bogoyavlensky-
Konopelchenko equation [5]:

6uxux x + ux x x x + 3(uxuy)x + ux x x y + ux t + ux x + uy y = 0

whose Hirota bilinear form is given by
�

D4
x + D3

x Dy + Dx Dt + D2
x + D2

y

�

f · f = 0

under u = 2(ln f )x . This equation has lump solutions, too [5].
When α3 6= 0, the combined nonlinear equation (2.1) presents a new model, due to the

fourth-order term D2
x
D2

y
f · f in the corresponding bilinear form.



Symbolic Computation of Lump Solutions to a Combined Equation 735

3. Computing Lump Solutions

In this section, we would like to compute lump solutions to the combined fourth-order
nonlinear equation (2.1), through symbolic computations with Maple.

A general ansatz on lump solutions in (2+1)-dimensions [24] is to start to determine
positive quadratic solutions

f = (a1 x + a2 y + a3 t + a4)
2 + (a5 x + a6 y + a7t + a8)

2 + a9 (3.1)

for the combined Hirota bilinear equation (2.2). The job is to compute the involved constant
parameters ai, 1 ≤ i ≤ 9 by trial and error. In the following, we present two sets of such
constant parameters, which correspond to two cases of the coefficients.

3.1. The case of δ6 = 0

Let us first consider the case of δ6 = 0 for the combined nonlinear equation (2.1).
A straightforward symbolic computation tells a set of solutions for the parameters, where

a3 = −
b1

(a2δ1 + a1δ3)
2 + (a6δ1 + a5δ3)

2
,

a7 = −
b2

(a2δ1 + a1δ3)
2 + (a6δ1 + a5δ3)

2
,

a9 = −
3(a2

1 + a2
5)(α1 b3 +α2 b4) +α3 b5

(a1a6 − a2a5)
2(δ2

1δ2 −δ1δ3δ4 +δ
2
3δ5)

,

(3.2)

and all other ai are arbitrary. The involved five constants bi, 1≤ i ≤ 5 are given by

b1 =
��

a2
1a2 + 2a1a5a6 − a2a2

5

�

δ2 + a1

�

a2
2 + a2

6

�

δ4 + a2

�

a2
2 + a2

6

�

δ5

�

δ1

+
�

a1

�

a2
1 + a2

5

�

δ2 + a2

�

a2
1 + a2

5

�

δ4 +
�

a1a2
2 + 2a2a5a6 − a1a2

6

�

δ5

�

δ3,

b2 =
��

−a2
1a6 + 2a1a2a5 + a2

5a6

�

δ2 + a5

�

a2
2 + a2

6

�

δ4 + a6

�

a2
2 + a2

6

�

δ5

�

δ1

+
�

a5

�

a2
1 + a2

5

�

δ2 + a6

�

a2
1 + a2

5

�

δ4 +
�

−a2
2a5 + 2a1a2a6 + a5a2

6

�

δ5

�

δ3,

b3 =
�

a2
1 + a2

5

� �

(a2δ1 + a1δ3)
2 + (a6δ1 + a5δ3)

2
�

,

b4 =(a1a2 + a5a6)
�

(a2δ1 + a1δ3)
2 + (a6δ1 + a5δ3)

2
�

,

b5 =
�

3a2
1a2

2+a2
1a2

6+4a1a2a5a6+a2
2a2

5 + 3a2
5a2

6

� �

(a2δ1 + a1δ3)
2 + (a6δ1+a5δ3)

2
�

.

(3.3)

The above expressions of a3 and a7 generate abundant dispersion relations in (2+1)-dimen-
sional dispersive waves.

3.2. The case of δ5 = 0

Let us second consider the case of δ5 = 0 for the combined nonlinear equation (2.1).
A similar straightforward symbolic computation determines a set of solutions for the pa-
rameters, where
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a2 =−
c1

(a3δ1 + a1δ4)
2 + (a7δ1 + a5δ4)

2
,

a6 =−
c2

(a3δ1 + a1δ4)
2 + (a7δ1 + a5δ4)

2
,

a9 =−
3(a2

1 + a2
5)(α1c3 −α2c4)

(a1a7 − a3a5)
2(δ2

1δ2 −δ1δ3δ4 +δ
2
4δ6)

−
α3c5

(a1a7 − a3a5)
2(δ2

1δ2 −δ1δ3δ4 +δ
2
4δ6)[(a3δ1 + a1δ4)

2 + (a7δ1 + a5δ4)
2]

,

(3.4)

and all other ai ’s are arbitrary. The involved five constants ci , 1 ≤ i ≤ 5, are given by

c1 =
��

a2
1a3 + 2a1a5a7 − a3a2

5

�

δ2 + a1

�

a2
3 + a2

7

�

δ3 + a3

�

a2
3 + a2

7

�

δ6

�

δ1

+
�

a1

�

a2
1 + a2

5

�

δ2 + a3

�

a2
1 + a2

5

�

δ3 +
�

a1a2
3 + 2a3a5a7 − a1a2

7

�

δ6

�

δ4,

c2 =
��

−a2
1a7 + 2a1a3a5 + a2

5a7

�

δ2 + a5

�

a2
3 + a2

7

�

δ3 + a7

�

a2
3 + a2

7

�

δ6

�

δ1

+
�

a5

�

a2
1 + a2

5

�

δ2 + a7

�

a2
1 + a2

5

�

δ3 +
�

−a2
3a5 + 2a1a3a7 + a5a2

7

�

δ6

�

δ4,

c3 =
�

a2
1 + a2

5

� �

(a1δ4 + a3δ1)
2 + (a5δ4 + a7δ1)

2
�

,

c4 =
�

a2
1 + a2

5

� �

a1a3 + a5a7

��

δ1δ2 +δ3δ4

�

+
�

a2
1 + a2

5

� �

a2
3 + a2

7

�

δ1δ3

+
�

a2
1 + a2

5

�2
δ2δ4 +

�

a2
3 + a2

7

� �

a1a3 + a5a7

�

δ1δ6

+
�

(a1a3 + a5a7)
2 − (a1a7 − a3a5)

2
�

δ4δ6,

(3.5)

and

c5 =
�

�

a2
1 + a2

5

�2
p1δ

2
3 + 3

�

a2
1 + a2

5

�4
δ2

2

�

δ2
4

+ 6
�

a2
1 + a2

5

�3 �
a1a3 + a5a7

�

δ2

�

δ1δ2δ4 +δ3δ
2
4

�

+ 6
�

a2
3 + a2

7

� �

a2
1 + a2

5

�2 �
a1a3 + a5a7

�

δ1

�

δ1δ2δ3 +δ
2
3δ4

�

+ 3
�

a2
3 + a2

7

�2 �
a2

1 + a2
5

�2
δ2

1δ
2
3 +

�

a2
1 + a2

5

�2
p1δ

2
1δ

2
2

+ 4
�

a2
1 + a2

5

�2
p1δ1δ2δ3δ4

+
¦�

2
�

a2
1 + a2

5

� �

a1a3 + a5a7

�

p2δ3 + 6
�

a2
1 + a2

5

�2
p3δ2

�

δ2
4

+
�

4
�

a2
3 + a2

7

� �

a2
1 + a2

5

�

p2δ1δ3 + 4
�

a2
1 + a2

5

� �

a1a3 + a5a7

�

p2δ1δ2

�

δ4

+ 6
�

a2
3 + a2

7

�2 �
a2

1 + a2
5

� �

a1a3 + a5a7

�

δ2
1δ3 + 2

�

a2
3 + a2

7

� �

a2
1 + a2

5

�

p2δ
2
1δ2

©

δ6

+
�

�

a2
3 + a2

7

�2
p1δ

2
1 + 2

�

a2
3 + a2

7

� �

a1a3 + a5a7

�

p2δ1δ4 + p4δ
2
4

�

δ2
6, (3.6)

where

p1 =3a2
1a2

3 + a2
1a2

7 + 4a1a3a5a7 + a2
3a2

5 + 3a2
5a2

7,

p2 =3a2
1a2

3 − a2
1a2

7 + 8a1a3a5a7 − a2
3a2

5 + 3a2
5a2

7,

p3 =(a1a3 + a1a7 − a3a5 + a5a7)(a1a3 − a1a7 + a3a5 + a5a7), (3.7)
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p4 =3a4
1a4

3 − 2a4
1a2

3a2
7 + 3a4

1a4
7 + 16a3

1a3
3a5a7 − 16a3

1a3a5a3
7

− 2a2
1a4

3a2
5 + 44a2

1a2
3a2

5a2
7 − 2a2

1a2
5a4

7 − 16a1a3
3a3

5a7

+ 16a1a3a3
5a3

7 + 3a4
3a4

5 − 2a2
3a4

5a2
7 + 3a4

5a4
7.

We point out that all the above formulas for wave frequencies and wave numbers in (3.2)-
(3.7) have been presented through direct simplifications with Maple. Based on those solu-
tion formulas, we require the following two basic conditions:

�

δ2
1 +δ

2
3

� �

δ2
1δ2 −δ1δ3δ4 +δ

2
3δ5

�

6= 0

in the case of δ6 = 0, and

�

δ2
1 +δ

2
4

� �

δ2
1δ2 −δ1δ3δ4 +δ

2
4δ6

�

6= 0 (3.8)

in the case of δ5 = 0, to generate lump solutions to the combined nonlinear equation (2.1).
In the case of δ6 = 0, we can work out

a1a7 − a3a5

=
(a1a6 − a2a5)[(a

2
1 + a2

5)(δ1δ2 − δ3δ4)− (a
2
2 + a2

6)δ1δ5 − 2(a1a2 + a5a6)δ3δ5]

(a2δ1 + a1δ3)
2 + (a6δ1 + a5δ3)

2
,

and in the case of δ5 = 0 we can get

a1a6 − a2a5

=
(a1a7 − a3a5)[(a

2
1 + a2

5)(δ1δ2 − δ3δ4)− (a
2
3 + a2

7)δ1δ6 − 2(a1a3 + a5a7)δ4δ6]

(a3δ1 + a1δ4)
2 + (a7δ1 + a5δ4)

2
.

Therefore, we can see that in the case of δ5 = 0, the condition a1a6 − a2a5 6= 0, ensuing
the existence of lumps, is equivalent to the following two conditions:

a1a7 − a3a5 6= 0,
�

a2
1 + a2

5

� �

δ1δ2 −δ3δ4

�

−
�

a2
3 + a2

7

�

δ1δ6 − 2
�

a1a3 + a5a7

�

δ4δ6 6= 0

besides (3.8). Along with a9 > 0, those three conditions guarantee that the set of the
associated parameters yields lump solutions.

4. Equivalence Between Two Classes of Lumps

When δ5 = δ6 = 0, we can have two sets of the parameters, which yield lump solutions,
determined via symbolic computation in the last section. Below, we show an equivalence
between those two classes of associated lump solutions.

While δ5 = δ6 = 0 is taken, the combined Hirota bilinear equation (2.2) becomes
�

α1D4
x +α2D3

x Dy +α3D2
x D2

y +δ1Dy Dt +δ2D2
x +δ3Dx Dt +δ4Dx Dy

�

f · f = 0.
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Two classes of lump solutions defined by (3.2) with (3.3) and (3.4) with (3.5)-(3.7) are
equivalent to each other. In another word, the one can be obtained from the other.

The first set of the parameters by (3.2) with (3.3) reads

a3 =−
(a2

1a2 + 2 a1a5a6 − a2a2
5)δ1δ2 + a1(a

2
2 + a2

6)δ1δ4 + (a
2
1 + a2

5)(a1δ2 + a2δ4)δ3

(a1δ3 + a2δ1)
2 + (a5δ3 + a6δ1)

2
,

a7 =−
(−a2

1a6 + 2a1a2a5 + a2
5a6)δ1δ2 + a5(a

2
2 + a2

6)δ1δ4 + (a
2
1 + a2

5)(a5δ2 + a6δ4)δ3

(a1δ3 + a2δ1)
2 + (a5δ3 + a6δ1)

2
,

a9 =−
3(a2

1 + a2
5)(αb3 +α2 b4) +α3 b5

(a1a6 − a2a5)
2δ1(δ1δ2 −δ3δ4)

,

where b3, b4 and b5 are defined as in (3.3).
The second set of the parameters by (3.4) with (3.5) and (3.6) reads

a2 =−
(a2

1a3 + 2a1a5a7 − a3a2
5)δ1δ2 + a1(a

2
3 + a2

7)δ1δ3 + (a
2
1 + a2

5)(a1δ2 + a3δ3)δ4

(a3δ1 + a1δ4)
2 + (a7δ1 + a5δ4)

2
,

a6 =−
(−a2

1a7 + 2 a1a3a5 + a2
5a7)δ1δ2 + a5(a

2
3 + a2

7)δ1δ3 + (a
2
1 + a2

5)(a5δ2 + a7δ3)δ4

(a3δ1 + a1δ4)
2 + (a7δ1 + a5δ4)

2
,

a9 =−
3 (a2

1 + a2
5)(α1d3 −α2d4)

(a1a7 − a3a5)
2δ1(δ1δ2 −δ3δ4)

−
α3d5

(a1a7 − a3a5)
2δ1(δ1δ2 −δ3δ4)[(a3δ1 + a1δ4)

2 + (a7δ1 + a5δ4)
2]

,

where

d3 =
�

a2
1 + a2

5

�

�

�

a1δ4 + a3δ1

�2
+
�

a5δ4 + a7δ1

�2
�

,

d4 =
�

a2
1 + a2

5

� �

a1a3 + a5a7

� �

δ1δ2 +δ3δ4

�

+
�

a2
1 + a2

5

� �

a2
3 + a2

7

�

δ1δ3 +
�

a2
1 + a2

5

�2
δ2δ4,

d5 =
�

�

a2
1 + a2

5

�2
p1δ

2
3 + 3

�

a2
1 + a2

5

�4
δ2

2

�

δ2
4

+ 6
�

a2
1 + a2

5

�3 �
a1a3 + a5a7

�

δ2

�

δ1δ2δ4 +δ3δ
2
4

�

+ 6
�

a2
3 + a2

7

� �

a2
1 + a2

5

�2 �
a1a3 + a5a7

�

δ1

�

δ1δ2δ3 +δ
2
3δ4

�

+ 3
�

a2
3 + a2

7

�2 �
a2

1 + a2
5

�2
δ2

1δ
2
3 +

�

a2
1 + a2

5

�2
p1δ

2
1δ

2
2

+ 4
�

a2
1 + a2

5

�2
p1δ1δ2δ3δ4

with pi , 1≤ i ≤ 4 given by (3.7).
A direct symbolic computation can show that these two sets of the parameters are the

same, since they can be solved from each other. Moreover, one has

a1a7 − a3a5 = −
(a2

1 + a2
5)(δ1δ2 −δ3δ4)(a1a6 − a2a5)

(a1δ3 + a2δ1)
2 + (a5δ3 + a6δ1)

2
,
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and therefore, when
δ1(δ1δ2 −δ3δ4) 6= 0,

the two sets determine the exactly same values for all the parameters and thus the same
classes of associated lump solutions.

5. Two Illustrative Examples

Let us first consider the case of δ6 = 0 and take

α= 1, α2 = 2, α3 = −3, δ1 = 1, δ2 = 0, δ3 = 2, δ4 = 2, δ5 = 5,

which leads to a specific combined nonlinear equation

ux x x x + 6uxux x + 2
�

3(uxuy)x + ux x x y

�

− 3
�

4uyux y + ux uy y + ux x v + ux x y y

�

+ uy t − 2ux t + 2ux y + 5uy y = 0, (5.1)

where vx = uy y . This has a Hirota bilinear form
�

D4
x + 2D3

x Dy − 3D2
x D2

y + Dy Dt − 2Dx Dt + 2Dx Dy + 5D2
y

�

f · f = 0

under the logarithmic transformations in (2.3). Upon further taking

a1 = 2, a2 = −2, a4 = 2, a5 = 2, a6 = 6, a8 = 5

the transformations in (2.3) with (3.1) present a pair of lump solutions to the first specific
combined nonlinear equation (5.1):

u1 =
4(−110t + 5x + 10y + 12)

(−26t + x − 2y + 2)2 + (−42t + 2x + 6y + 5)2 + 55/8
,

v1 =
160

(−26t + x − 2y + 2)2 + (−42t + 2x + 6y + 5)2 + 55/8

−
32(−100t + 5x + 20y + 13)

[(−26t + x − 2y + 2)2 + (−42t + 2x + 6y + 5)2 + 55/8]2
.

Three three-dimensional plots and contour plots of the lump solution u1 at three different
times are made by using Maple in Fig. 1.

Let us second consider the case of δ5 = 0 and take

α= 1, α2 = 2, α3 = −3, δ1 = 1, δ2 = 0, δ3 = 2, δ4 = 2, δ5 = 5,

which leads to another specific combined nonlinear equation

2(ux x x x + 6uxux x )− 3[3(uxuy)x + ux x x y]

− 2(4uyux y + uxuy y + ux x v + ux x y y )

+ uy t + 2ux t + ux y + ut t = 0, (5.2)
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where vx = uy y . This has a Hirota bilinear form

�

2D4
x − 3D3

x Dy − 2D2
x D2

y + Dy Dt + 2Dx Dt + Dx Dy + D2
t

�

f · f = 0

under the logarithmic transformations in (2.3). Upon further taking

a1 = 1, a3 = 2, a4 = 10, a5 = 3, a7 = −2, a8 = 5

the transformations in (2.3) with (3.1) present a pair of lump solutions to the second spe-
cific combined nonlinear equation (5.2):

u2 =
4(−4t + 10x + 25)

(2t + x − (24/5)y + 10)2 + (−2t + 3x + (8/5)y + 5)2 + 55/4
,

v2 =
512

5[(2t + x − (24/5)y + 10)2 + (−2t + 3x + (8/5)y + 5)2 + 55/4]

−
512(−(8/5)t + (16/5)y − 5)2

[(2t + x − (24/5)y + 10)2 + (−2t + 3x + (8/5)y + 5)2 + 55/4]2
.

Similarly, three three-dimensional plots and density plots of the lump solution v2 at three
different times are made through Maple in Fig. 2.

6. Concluding Remarks

With Maple symbolic computation, we have computed two classes of lump solutions
to a combined fourth-order nonlinear equation involving three types of nonlinear terms
in (2+1)-dimensions. The computed lump solutions were explicitly presented in terms of
the coefficients in the combined model equation. The presented results provide one new
example of nonlinear equations in dispersive waves, which possess lump solutions. A few
three-dimensional plots, contour plots and density plots of two specific lumps were made
by using Maple plot tools.

We remark that the adopted ansatz on lump solutions is increasingly being used in
computations, and all such obtained solutions provide valuable insights into related stud-
ies on soliton solutions and dromion-type solutions in soliton theory, generated through
effective techniques including the Wronskian technique — cf. [40,60], the generalised bi-
linear approach — cf. [22], Darboux transformations — cf. [61,63,69], — cf. [20,29], the
Riemann-Hilbert technique — cf. [28], symmetry reductions — cf. [8, 53], and symmetry
constraints — cf. [19,38] for the continuous case and [6,35] for the discrete case.

We also remark that on one hand, many recent studies exhibit the striking richness of
lump solutions to linear PDEs [29, 30, 33], besides nonlinear PDEs in (2+1)-dimensions
[36, 45, 54, 56, 73, 80] and (3+1)-dimensions [7, 9, 12, 26, 48, 55, 65, 77, 78]. Based on
the Hirota bilinear form and the generalised bilinear forms, some general formulations
have also been established for lump solutions [2, 42, 43]. Different lump solutions also
supplement the existing theories of solutions through other kinds of combinations [34,52,
62, 81] and rogue wave ansätze [11, 57–59, 76], and can yield meaningful Lie-Bäcklund
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Figure 1: Profiles of u1 when t = 0, 1, 2: 3d plots (top) and contour plots (bottom).

Figure 2: Profiles of v2 when t = 0, 5, 10: 3d plots (top) and density plots (bottom).
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symmetries, from taking derivatives with respect to some involved parameters. Further
using those symmetries, one can formulate interesting conservation laws by working with
adjoint symmetries [15,25,27]. On the other hand, various classes of interaction solutions
between lumps and other kinds of dispersive waves [32, 39, 51, 70] have been computed
for integrable equations in (2+1)-dimensions, and they can be classified into homoclinic
interaction solutions [66–68] and heteroclinic interaction solutions [18,50,75,79].
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