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a b s t r a c t 

In this paper, an N -fold Darboux transformation is constructed for the discrete complex 

modified Korteweg-de Vries equation of focusing type, in terms of determinants. Through 

the obtained one-fold and two-fold Darboux transformations, a variety of new exact solu- 

tions, including an anti-dark soliton solution, a breather solution, a periodic solution, and 

a two-soliton solution, are derived from a nonzero constant and plane-wave seed solution. 

Via numerical simulation, a new kind of dynamical behavior of the two-soliton solution 

is exhibited, which tells that the two-soliton solution includes an anti-dark solitary wave 

and a w-shaped solitary wave. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

The complex modified Korteweg-de Vries (cmKdV) equation 

q τ = q xxx ± 6 | q | 2 q x , (1.1)

has a wide range of physical applications in the propagation transverse-magnetic waves in nematic optical fibers [1] and

few-cycle optical pulses [2] . There are many other achievements for this model (1.1) including the inverse scattering trans-

form, conserved quantities, stability of solitary wave solutions, numerical simulations, symmetry constraints, Darboux trans-

formation (DT), and various kinds of solutions (see, e.g., [2–11] ). Recently, the following discrete version of (1.1) , proposed

in Refs. [12,13] , 

dq n 

dt 
= (1 + ε| q n | 2 ) 

[
q n +2 − q N−2 + 2 q N−1 − 2 q n +1 + εq n (q ∗N−1 q n +1 − q N−1 q 

∗
n +1 ) 

+ εq ∗n (q 2 n +1 − q 2 N−1 ) + ε| q n +1 | 2 q n +2 − ε| q N−1 | 2 q N−2 

]
, (1.2)

has attracted a great deal of attention. Here q n is a complex-valued function of a spatial integer variable n ∈ Z and a tempo-

ral continuous variable t ∈ R , and q ∗ denotes the complex conjugate of q n . The cases of ε = ±1 correspond to the focusing
n 
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and defocusing cases, respectively. One can check that under the transformation 

x = nh, τ = 2 h 

3 t , q n (t ) = hq (x, τ ) , (1.3) 

the discrete cmKdV Eq. (1.2) yields the cmKdV Eq. (1.1) with the 2-nd order preecision O ( h 2 ) as h → 0. 

The discrete cmKdV Eq. (1.2) can be viewed as the discrete coupled mKdV system researched in [14] by setting q n =
a n + ib n . Indeed, Eq. (1.2) is integrable in the sense of discrete Lax pairs obtained by using Ablowitz-Ladik’s formulation

[15] . For the discrete cmKdV 

+ equation, namely, (1.2) with ε = 1 , the authors of Ref. [16] have studies some types of exact

solutions derived by an one-fold DT. When the spectrum parameter λ is a double eigenvalue, a w-shaped rational soliton and

a rogue wave solution are obtained from a nonzero seed solution. For other cases of λ, a space-periodic breather solution

has also been constructed. 

DT is a powerful tool for constructing exact solutions to integrable systems, both in the continuous and discrete cases.

Usually, N -soliton solutions can be presented in terms of particular determinants (see, e.g., [17] ), including the Wronskian

and Grammian determinants, through iterating a DT. In this paper, we will construct an N -fold DT in terms of determinants

for the discrete cmKdV 

+ Eq. (1.2) . Through the obtained one-fold and two fold DTs, with a nonzero constant and plane-wave

solution as a seed, a variety of new exact solutions including an anti-dark soliton, a breather solution, a periodic solution

and a two-soliton solution, are derived. Via numerical simulation, a new dynamical property of the two-soliton solution

generated from the two-fold DT is explored. 

2. Darboux transformation in terms of determinants 

In this section, we construct an N -fold DT by virtue of determinants for the discrete cmKdV 

+ Eq. (1.2) . Eq. (1.2) admits

the following Lax pair 

Eϕ n = U n ϕ n , ϕ n,t = V n ϕ n , ϕ n = (ϕ n, 1 , ϕ n, 2 ) 
T , (2.1) 

where the shift operator E is defined by Eϕ n = ϕ n +1 , and the matrices U n and V n take the forms 

U n = 

( 

λ q n 
−εq ∗n λ−1 

) 

, 

V n = 

( 

A n (λ, λ−1 , q n ) B n (λ, λ−1 , q n ) 
−εB n (λ−1 , λ, q ∗n ) A n (λ−1 , λ, q ∗n ) 

) 

, (2.2) 

with 

A n (λ, λ−1 , q n ) = 

λ4 − λ−4 

2 

+ λ2 (εq n q 
∗
N−1 − 1) − λ−2 (εq ∗n q N−1 − 1) − 2 εq n q 

∗
N−1 + q 2 n q 

∗2 
N−1 

+ ε(1 + ε| q N−1 | 2 ) q n q ∗N−2 + ε(1 + ε| q n | 2 ) q n +1 q 
∗
N−1 , 

B n (λ, λ−1 , q n ) = λ3 q n + λ−3 q N−1 + λ
[
(1 + ε| q n | 2 ) q n +1 + εq 2 n q 

∗
N−1 − 2 q n 

]
+ λ−1 

[
(1 + ε| q N−1 | 2 ) q N−2 + εq ∗n q 

2 
N−1 − 2 q N−1 

]
. 

One can directly verify that the discrete zero curvature condition U n,t = (EV n ) U n − U n V n of the linear spectral equations

(2.1) yields (1.2) . 

The N -fold DT can be written as 

ϕ n [ N] = T n [ N] ϕ n , (2.3) 

where the Darboux matrix T n [ N ] is 

T n [ N] = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

λN + 

N ∑ 

k =1 

T (N−2 k ) 
n, 1 

λN−2 k 
N ∑ 

k =1 

T (N−2 k +1) 
n, 2 

λN−2 k +1 

(−1) N+1 
N ∑ 

k =1 

T (N−2 k +1) ∗
n, 2 

λ−N+2 k −1 (−1) N 
(

λ−N + 

N ∑ 

k =1 

T (N−2 k ) ∗
n, 1 

λ−N+2 k 

)
⎞ 

⎟ ⎟ ⎟ ⎠ 

. (2.4) 

Assuming that q n is a solution of the discrete cmKdV 

+ Eq. (1.2) and for j = 1 , 2 , . . . , N, ϕ 

( j) 
n = (ϕ 

( j) 
n, 1 

, ϕ 

( j) 
n, 2 

) T is an eigenfunction

of the linear problems (2.1) with λ = λ j , one can check that ψ 

( j) 
n ) = (ϕ 

( j) ∗
n, 2 

, −ϕ 

( j) ∗
n, 1 

) T is also the eigenfunction when λ =
(λ∗

j 
) −1 . Furthermore, two column vectors in T n [ N](λ j )(ϕ 

( j) 
n , ψ 

( j) 
n ) are linearly dependent when det T n [ N](λ j ) = 0 . Therefore,

T (N−2 k ) 
n, 1 

and T (N−2 k +1) 
n, 2 

can be determined by ( 

λN 
j + 

N ∑ 

k =1 

T (N−2 k ) 
n, 1 

λN−2 k 
j 

) 

ϕ 

( j) 
n, 1 

+ 

( 

N ∑ 

k =1 

T (N−2 k +1) 
n, 2 

λN−2 k +1 

) 

ϕ 

( j) 
n, 2 

= 0 , 
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( 

(λ∗
j ) 

−N + 

N ∑ 

k =1 

T (N−2 k ) 
n, 1 

(λ∗
j ) 

−N+2 k 

) 

ϕ 

( j) ∗
n, 2 

−
( 

N ∑ 

k =1 

T (N−2 k +1) 
n, 2 

(λ∗
j ) 

−N+2 k −1 

) 

ϕ 

( j) ∗
n, 1 

= 0 . (2.5)

Under the above transformation (2.3) , one can prove that the new linear problems 

Eϕ n [ N] = U n [ N ] ϕ n [ N ] , ϕ n,t [ N ] = V n [ N ] ϕ n [ N ] , (2.6)

where 

U n [ N] = T n +1 [ N] U n T 
−1 

n [ N] , V n [ N] = (T n,t [ N] + T n [ N] V n ) T 
−1 

n [ N] , (2.7)

has the same form as the linear eigenfunction Eq. (2.1) , except that q n , q 
∗
n in U n , V n are replaced by q n [ N] , q ∗n [ N] in U n [ N ],

V n [ N ], respectively. 

The relation between a new potential q n [ N ] and the old potential q n is 

q n [ N] = −q n T 
(−N) 

n +1 , 1 
− T (−N+1) 

n +1 , 2 
, (2.8)

where 

T (−N) 
n, 1 

= −�1 [ N] 

�[ N] 
, T (−N+1) 

n, 2 
= −�2 [ N] 

�[ N] 
, (2.9)

with 

�[ N] = 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ−N 
1 

ϕ 

(1) 
n, 1 

λ−N+1 
1 

ϕ 

(1) 
n, 2 

λ−N+2 
1 

ϕ 

(1) 
n, 1 

λ−N+3 
1 

ϕ 

(1) 
n, 2 

· · · λN−2 
1 

ϕ 

(1) 
n, 1 

λN−1 
1 

ϕ 

(1) 
n, 2 

λ−N 
2 

ϕ 

(2) 
n, 1 

λ−N+1 
2 

ϕ 

(2) 
n, 2 

λ−N+2 
2 

ϕ 

(2) 
n, 1 

λ−N+3 
2 

ϕ 

(2) 
n, 2 

· · · λN−2 
2 

ϕ 

(2) 
n, 1 

λN−1 
2 

ϕ 

(2) 
n, 2 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

λ−N 
N 

ϕ 

(N) 
n, 1 

λ−N+1 
N 

ϕ 

(N) 
n, 2 

λ−N+2 
N 

ϕ 

(N) 
n, 1 

λ−N+3 
N 

ϕ 

(N) 
n, 2 

· · · λN−2 
N 

ϕ 

(N) 
n, 1 

λN−1 
N 

ϕ 

(N) 
n, 2 

(λ∗
1 ) 

N ϕ 

(1) ∗
n, 2 

−(λ∗
1 ) 

N−1 ϕ 

(1) ∗
n, 1 

(λ∗
1 ) 

N−2 ϕ 

(1) ∗
n, 2 

−(λ∗
1 ) 

N−3 ϕ 

(1) ∗
n, 1 

· · · (λ∗
1 ) 

−N+2 ϕ 

(1) ∗
n, 2 

−(λ∗
1 ) 

−N+1 ϕ 

(1) ∗
n, 1 

(λ∗
2 ) 

N ϕ 

(2) ∗
n, 2 

−(λ∗
2 ) 

N−1 ϕ 

(2) ∗
n, 1 

(λ∗
2 ) 

N−2 ϕ 

(2) ∗
n, 2 

−(λ∗
2 ) 

N−3 ϕ 

(2) ∗
n, 1 

· · · (λ∗
2 ) 

−N+2 ϕ 

(2) ∗
n, 2 

−(λ∗
2 ) 

−N+1 ϕ 

(2) ∗
n, 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

(λ∗
N ) 

N ϕ 

(N) ∗
n, 2 

−(λ∗
N ) 

N−1 ϕ 

(N) ∗
n, 1 

(λ∗
N ) 

N−2 ϕ 

(N) ∗
n, 2 

−(λ∗
N ) 

N−3 ϕ 

(N) ∗
n, 1 

· · · (λ∗
N ) 

−N+2 ϕ 

(N) ∗
n, 2 

−(λ∗
N ) 

−N+1 ϕ 

(N) ∗
n, 1 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. 

It is noted that, here, the expression of �1 [ N ] and �2 [ N ] can be gotten easily, if one replaces (λN 
1 
ϕ 

(1) 
n, 1 

, λN 
2 
ϕ 

(2) 
n, 1 

, · · ·,
λN 

N 
ϕ 

(N) 
n, 1 

, (λ∗
1 
) −N ϕ 

(1) ∗
n, 2 

, (λ∗
2 
) −N ϕ 

(2) ∗
n, 2 

, · · ·, (λ∗
N 
) −N ϕ 

(N) ∗
n, 2 

) T for the first and second column in �[ N ], respectively. 

Let us first give the one-, two-fold DT of the discrete cmKdV 

+ Eq. (1.2) . As N = 1 , the one-fold Darboux matrix T n [1] is

written as 

T n [1] = 

⎛ 

⎝ 

λ1 + T (−1) 
n, 1 

λ−1 
1 

T (0) 
n, 2 

T (0) ∗
n, 2 

−(λ−1 
1 

+ T (−1) ∗
n, 1 

λ1 ) 

⎞ 

⎠ , (2.10)

where 

T (−1) 
n, 1 

= −

∣∣∣∣ λ1 ϕ 

(1) 
n, 1 

ϕ 

(1) 
n, 2 

(λ∗
1 ) 

−1 ϕ 

(1) ∗
n, 2 

−ϕ 

(1) ∗
n, 1 

∣∣∣∣∣∣∣∣λ−1 
1 

ϕ 

(1) 
n, 1 

ϕ 

(1) 
n, 2 

λ∗
1 ϕ 

(1) ∗
n, 2 

−ϕ 

(1) ∗
n, 1 

∣∣∣∣
, T (0) 

n, 2 
= −

∣∣∣∣∣∣
λ−1 

1 
ϕ 

(1) 
n, 1 

λ1 ϕ 

(1) 
n, 1 

λ∗
1 ϕ 

(1) ∗
n, 2 

(λ∗
1 ) 

−1 ϕ 

(1) ∗
n, 2 

∣∣∣∣∣∣∣∣∣∣∣∣
λ−1 

1 
ϕ 

(1) 
n, 1 

ϕ 

(1) 
n, 2 

λ∗
1 ϕ 

(1) ∗
n, 2 

−ϕ 

(1) ∗
n, 1 

∣∣∣∣∣∣
. 

Suppose q n is a solution and ϕ 

(1) 
n = (ϕ 

(1) 
n, 1 

, ϕ 

(1) 
n, 2 

) T is an eigenfunction of the linear problems (2.1) with λ = λ1 . Then

ψ 

(1) 
n = (ϕ 

(1) ∗
n, 2 

, −ϕ 

(1) ∗
n, 1 

) T is also the eigenfunction when λ = (λ∗
1 
) −1 . Assume that det T n [1](λ1 ) = 0 , then two column vec-

tors in T n [1](λ1 )(ϕ 

(1) 
n , ψ 

(1) 
n ) are linearly dependent. So q n [1] is exactly expressed as 



34 L.-Y. Ma et al. / Commun Nonlinear Sci Numer Simulat 68 (2019) 31–40 

 

 

q n [1] = −q n T 
(−1) 

n +1 , 1 
− T (0) 

n +1 , 2 
= 

λ1 (| ϕ 

(1) 
n, 1 

| 2 + | λ1 | 2 | ϕ 

(1) 
n, 2 

| 2 ) 
λ∗

1 
(| λ1 | 2 | ϕ 

(1) 
n, 1 

| 2 + | ϕ 

(1) 
n, 2 

| 2 ) q n + 

λ1 (| λ1 | 4 − 1) ϕ 

(1) 
n, 1 

ϕ 

(1) ∗
n, 2 

λ∗2 
1 

(| λ1 | 2 | ϕ 

(1) 
n, 1 

| 2 + | ϕ 

(1) 
n, 2 

| 2 ) . (2.11) 

By means of (2.8) in the form of fourth-order determinant as N = 2 , we have 

q n [2] = −q n T 
(−2) 

n +1 , 1 
− T (−1) 

n +1 , 2 
(2.12) 

where 

T (−2) 
n, 1 

= −�1 [2] 

�[2] 
, T (−1) 

n, 2 
= −�2 [2] 

�[2] 
, (2.13) 

with 

�[2] = 

∣∣∣∣∣∣∣∣∣∣

λ−2 
1 

ϕ 

(1) 
n, 1 

λ−1 
1 

ϕ 

(1) 
n, 2 

ϕ 

(1) 
n, 1 

λ1 ϕ 

(1) 
n, 2 

λ−2 
2 

ϕ 

(2) 
n, 1 

λ−1 
2 

ϕ 

(2) 
n, 2 

ϕ 

(2) 
n, 1 

λ2 ϕ 

(2) 
n, 2 

λ∗2 
1 ϕ 

(1) ∗
n, 2 

−λ∗
1 ϕ 

(1) ∗
n, 1 

ϕ 

(1) ∗
n, 2 

−(λ∗
1 ) 

−1 ϕ 

(1) ∗
n, 1 

λ∗2 
2 ϕ 

(2) ∗
n, 2 

−λ∗
2 ϕ 

(2) ∗
n, 1 

ϕ 

(2) ∗
n, 2 

−(λ∗
2 ) 

−1 ϕ 

(2) ∗
n, 1 

∣∣∣∣∣∣∣∣∣∣
, 

and 

�1 [2] = 

∣∣∣∣∣∣∣∣∣∣

λ2 
1 ϕ 

(1) 
n, 1 

λ−1 
1 

ϕ 

(1) 
n, 2 

ϕ 

(1) 
n, 1 

λ1 ϕ 

(1) 
n, 2 

λ2 
2 ϕ 

(2) 
n, 1 

λ−1 
2 

ϕ 

(2) 
n, 2 

ϕ 

(2) 
n, 1 

λ2 ϕ 

(2) 
n, 2 

(λ∗
1 ) 

−2 ϕ 

(1) ∗
n, 2 

−λ∗
1 ϕ 

(1) ∗
n, 1 

ϕ 

(1) ∗
n, 2 

−(λ∗
1 ) 

−1 ϕ 

(1) ∗
n, 1 

(λ∗
2 ) 

−2 ϕ 

(2) ∗
n, 2 

−λ∗
2 ϕ 

(2) ∗
n, 1 

ϕ 

(2) ∗
n, 2 

−(λ∗
2 ) 

−1 ϕ 

(2) ∗
n, 1 

∣∣∣∣∣∣∣∣∣∣
, 

�2 [2] = 

∣∣∣∣∣∣∣∣∣∣

λ−2 
1 

ϕ 

(1) 
n, 1 

λ2 
1 ϕ 

(1) 
n, 1 

ϕ 

(1) 
n, 1 

λ1 ϕ 

(1) 
n, 2 

λ−2 
2 

ϕ 

(2) 
n, 1 

λ2 
2 ϕ 

(2) 
n, 1 

ϕ 

(2) 
n, 1 

λ2 ϕ 

(2) 
n, 2 

λ∗2 
1 ϕ 

(1) ∗
n, 2 

(λ∗
1 ) 

−2 ϕ 

(1) ∗
n, 2 

ϕ 

(1) ∗
n, 2 

−(λ∗
1 ) 

−1 ϕ 

(1) ∗
n, 1 

λ∗2 
2 ϕ 

(2) ∗
n, 2 

(λ∗
2 ) 

−2 ϕ 

(2) ∗
n, 2 

ϕ 

(2) ∗
n, 2 

−(λ∗
2 ) 

−1 ϕ 

(2) ∗
n, 1 

∣∣∣∣∣∣∣∣∣∣
. 

3. Exact solutions from one-fold DT 

In this section, we construct a few types of exact solutions through the one-fold DT obtained in Section 2 . 

3.1. Solutions with a constant background 

For the seed solution q n = ρ, ρ ∈ R , solving the linear spectral equations (2.2) yields 

ϕ 

(1) 
n, 1 

= e 
− a 	( 1+ λ2 

1 ) t 
2 λ4 

1 

+3 ρ4 t 

( 

A 

n + e 

a 	( 1+ λ2 
1 ) t 

λ4 
1 B 

n 

) 

, (3.1) 

ϕ 

(1) 
n, 2 

= 

1 

2 λ1 ρ
e 

− a 	( 1+ λ2 
1 ) t 

2 λ4 
1 

+3 ρ4 t 

( 

A 

n (1 − 	 − λ2 
1 ) + e 

a 	( 1+ λ2 
1 ) t 

λ4 
1 B 

n (1 + 	 − λ2 
1 ) 

) 

, (3.1) 

where 

A = 

1 − 	 + λ2 
1 

2 λ1 

, B = 

1 + 	 + λ2 
1 

2 λ1 

, 

	 = 

√ 

(λ2 
1 

− 1) 2 − 4 ρ2 λ2 
1 
, a = (λ2 

1 − 1) 2 + 2 ρ2 λ2 
1 . 

(3.2) 

To illustrate the dynamical behavior of q n [1], we consider the following special cases. 

Case 1: Anti-dark soliton and breather solution 

Suppose that | λ2 
1 

− 1 | > 2 | ρλ1 | . As A > 0, B > 0, λ1 ∈ R , inserting (3.1) into Eq. (2.11) , we get an anti-dark soliton solution

q n [1] = −ρ
(λ2 

1 + 1)(	2 + 2 ρ2 λ2 
1 ) + (λ2 

1 − 1) 
(
(λ2 

1 + 2 ρ2 λ2 
1 − 1) cosh ξ − 	 sinh ξ

)
2 ρ2 λ2 

1 
(λ2 

1 
+ 1) + (λ2 

1 
− 1) 

(
(λ2 

1 
+ 2 ρ2 λ2 

1 
− 1) cosh ξ − 	 sinh ξ

) , (3.3) 

where ξ = n ln 

B 
A 

+ 

a 	(1+ λ2 
1 
) 

λ4 
1 

t . This means that q n [1] is a solitary wave with the velocity v = − a 	(1+ λ2 
1 
) 

λ4 
1 

ln B 
A 

, which travels to the

left. The amplitude is | q n [1] | max = 

(λ4 
1 
−1) 

√ 

1+ ρ2 −ρ(λ4 
1 
+1) 

2 λ2 
1 

. The dynamical profile of this anti-dark soliton solution is described 

in Fig. 1 (a) when λ = 

√ 

3 , ρ = 1 / 2 . 
1 
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Fig. 1. (a): Anti-dark soliton solution (3.3) with λ1 = 

√ 

3 , ρ = 1 / 2 ; (b): Breather solution (3.4) with λ1 = 2 i, ρ = 1 / 2 . 

Fig. 2. Periodic solution (3.5) with λ1 = 

√ 

2 , ρ = 1 / 2 . 

 

 

 

 

 

 

As λ1 ∈ C and Im A > 0. Let λ1 = il (l � = 0 , 1) . By using (2.11) and (3.1) , a breather solution is given by 

q n [1] = ρ
(l 2 − 1)((	2 − 2 l 2 ρ2 ) cos (nπ) + i (l 2 + 1)	 sin (nπ)) − (l 2 + 1)(δ cosh ξ + 	 sinh ξ ) 

2 ρ2 l 2 (l 2 − 1) cos (nπ) + (l 2 + 1)(δ cosh ξ + 	 sinh ξ ) 
, (3.4)

where ξ = n ln | B 
A 
| + 

a 	(1+ λ2 
1 
) 

λ4 
1 

t and δ = l 2 + 2 ρ2 l 2 + 1 . The dynamical profile of this breather solution (3.4) is shown in

Fig. 1 (b) for the parameter λ1 = 2 i, ρ = 1 / 2 . We can see that when n is odd, i.e., n = 2 m + 1 , m ∈ Z , we get | q n [1] | max =
(b 4 −1) 

√ 

1+ ρ2 + ρ(b 4 +1) 

2 b 2 
. When n is even, i.e., n = 2 m, there exist a local maximum values | q n [1] | = 

−(b 4 −1) 
√ 

1+ ρ2 + ρ(b 4 +1) 

2 b 2 
and

two local minimum values that approach zero. 

Case 2: Periodic solution 

Suppose that | λ2 
1 

− 1 | < 2 | ρλ1 | and λ1 ∈ R . For this case, let 	 = i �, where � = 

√ 

4 ρ2 λ2 
1 

− (λ2 
1 

− 1) 2 , η = n arg A −
a �(1+ λ2 

1 
) 

2 λ4 
1 

t and arg A = − arctan 

�
1+ λ2 

1 

. Using (2.11) and (3.1) , we obtain a periodic solution 

q n [1] = ρ
(λ2 

1 + 1)(�2 − 2 ρ2 λ2 
1 ) + (λ2 

1 − 1) 
(
(λ2 

1 + 2 ρ2 λ2 
1 − 1) cos (2 η) − 	 sin (2 η) 

)
2 ρ2 λ2 

1 
(λ2 

1 
+ 1) + (λ2 

1 
− 1) 

(
(λ2 

1 
+ 2 ρ2 λ2 

1 
− 1) cos (2 η) − 	 sin (2 η) 

) , (3.5)

with the period T space = 

π
| arg A | and T time = 

2 λ4 
1 
π

a �(λ2 
1 
+1) 

in space and time, respectively. When λ1 = 

√ 

2 , ρ = 1 / 2 , the dynamical

profile of periodic solution (3.5) is shown in Fig. 2 . T space = π/ arctan 

1 ≈ 9 . 76406 , T time = 

4 π ≈ 4 . 18879 . 
3 3 
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Fig. 3. (a): Breather solution of discrete cmKdV + Eq. (1.2) with k = π/ 2 , λ1 = 1 + i, ρ = 1 / 2 , α1 = 1 , β1 = 1 ; (b): Anti-dark soliton solution with k = π, λ1 = 

2 i, ρ = 1 / 2 , α1 = 1 , β1 = 1 ; (c) Periodic solution with k = π, λ1 = 2 i, ρ = 1 , α1 = 1 , β1 = 1 . 

 

 

 

 

 

 

3.2. Solutions with a plane-wave background 

Let us start with a plane-wave solution q n = ρe i (kn + wt) , where the dispersion relation satisfies w = 4(1 + ρ2 )[ −1 + (3 ρ2 +
1) cos k ] sin k, ρ ∈ R . Solving the linear spectral equations (2.2) , we get eigenfunctions 

ϕ 

(1) 
n, 1 

= e 
− c(a 	−λ4 

1 
b) 

2 λ4 
1 

t 
(

α1 A 

n + β1 e 
ac	

λ4 
1 

t 
B 

n 

)
, 

ϕ 

(1) 
n, 2 

= 

1 

2 λ1 ρ
e 

−ikN− c(a 	+ λ4 
1 

d) 

2 λ4 
1 

t 
(

α1 A 

n (e ik − 	 − λ2 
1 ) + β1 e 

ac	

λ4 
1 

t 
B 

n (e ik + 	 − λ2 
1 ) 

)
, 

(3.6) 

where 

A = 

e ik − 	 + λ2 
1 

2 λ1 

, B = 

e ik + 	 + λ2 
1 

2 λ1 

, 	 = 

√ 

(λ2 
1 

− e ik ) 2 − 4 ρ2 λ2 
1 
e ik , 

a = e ik 
(
1 − 2 λ2 

1 

)
+ e 2 ik λ4 

1 

(
−2 + λ2 

1 

)
+ λ2 

1 

(
1 + 2 ρ2 

)
(1 + λ2 

1 e 
3 ik ) , 

b = e 4 ik (1 + 6 ρ2 + 6 ρ4 ) − (1 + 2 e 3 ik )(1 + 2 ρ2 ) + 2 e ik , c = e −2 ik , 

d = e ik (1 + 2 ρ2 )(2 + e 3 ik ) − 2 e 3 ik − (1 + 6 ρ2 + 6 ρ4 ) . 

Then, substituting (3.6) into (2.11) , we can derive q n [1] of the discrete cmKdV 

+ equation. Here we omit the expres-

sion because it is too long and complicated. For this case, assume that � = (λ2 
1 

− e ik ) 2 − 4 ρ2 λ2 
1 
e ik . When �> 0, i.e.,

| λ2 
1 

− e ik | > 2 | ρλ1 e 
ik/ 2 | , if we choose k = π/ 2 , λ1 = 1 + i, ρ = 1 / 2 , α1 = 1 , β1 = 1 , a breather solution of the discrete cmKdV 

+

Eq. (1.2) is obtained. If the parameters is given by k = π, λ1 = 2 i, ρ = 1 / 2 , α1 = 1 , β1 = 1 , we get an anti-dark soliton solu-

tion. When �< 0, i.e., | λ2 
1 − e ik | < 2 | ρλ1 e 

ik/ 2 | , if we take k = π, λ1 = 2 i, ρ = 1 , α1 = 1 , β1 = 1 , a periodic solution is derived.

The dynamical profiles of these two solutions are displayed in Fig. 3 . 

Remark 1. We also can construct rogue wave solutions by the Darboux transformation. For example, we have 

q n [1] = ρe i (kn + wt+ k ) 

( 

1 − 2 ρ3 

ρ + 

√ 

1 + ρ2 

A n 

B n 

) 

, (3.7) 
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Fig. 4. The rogue wave solution q n [1] with the parameters ρ = 2 , k = 1 , s = − 2+ √ 5 
4 

. 

 

 

 

 

 

 

 

 

 

 

 

where 

A n = 2 n ((1 + ρ2 )(1 + 4(s + 1) ρ2 ) + ρ
√ 

1 + ρ2 (1 + 2(s + 1)(1 + 2 ρ2 ))) + (1 + ρ2 )(1 + 2 ρ(ρ + (1 + 

√ 

1 + ρ2 )) 

+ 2 ρ( 
√ 

1 + ρ2 + 2 ρ(1 + ρ2 + ρ
√ 

1 + ρ2 ))(n 

2 + s 2 ) + 2 s (ρ(3 + 4 ρ2 ) 
√ 

1 + ρ2 + (1 + ρ2 )(1 + 4 ρ2 )) 

+ 8(1 + ρ2 ) 
[ 
((1 + ρ2 )(1 + 4(n + s + 1) ρ2 ) + ρ

√ 

1 + ρ2 (1 + 2(n + s + 1)(1 + 2 ρ2 ))) 

(− cos k + (1 + 3 ρ2 cos 2 k )) − iρ( 
√ 

1 + ρ2 + 2 ρ(1 + ρ2 + ρ
√ 

1 + ρ2 ))(−1 + 2(2 + 3 ρ2 ) cos k ) sin k 

] 
t 

+ 16 ρ(1 + ρ2 )( 
√ 

1 + ρ2 + 2 ρ(1 + ρ2 + ρ
√ 

1 + ρ2 )) 
[
−2(1 + 6 ρ2 (1 + ρ2 )) cos k + cos 2 k 

+(1 + 2 ρ2 )(2 + 9 ρ2 (1 + ρ2 ) − 2 cos 3 k ) + (1 + 3 ρ2 (1 + ρ2 )) cos 4 k 
]
t 2 , 

B n = (1 + 2 ρ2 (n + s + 1) 2 )(1 + ρ2 ) + 2(n + s + 1) ρ
√ 

1 + ρ2 (1 + (n + s + 1) ρ2 ) 

+ 8 ρ(1 + ρ2 ) 
(√ 

1 + ρ2 + 2 ρ(1 + ρ2 + ρ
√ 

1 + ρ2 )(n + s + 1) 
)
((1 + 3 ρ2 ) cos 2 k − cos k ) t 

+ 16 ρ2 (1 + ρ2 )(1 + ρ2 + ρ
√ 

1 + ρ2 ) 
[
−2(1 + 6 ρ2 (1 + ρ2 )) cos k + cos 2 k 

+(1 + 2 ρ2 )(2 + 9 ρ2 (1 + ρ2 ) − 2 cos 3 k ) + (1 + 3 ρ2 (1 + ρ2 )) cos 4 k 
]
t 2 . 

If we choose the parameters ρ = 2 , k = 1 , s = − 2+ √ 

5 
4 , this rogue wave solution is exhibited in Fig. 4 . The hight peak is

| q n [1] | max = ρ(3 + 4 ρ2 ) = 38 and the lowest is | q n [1] | min = 0 . 352941 . The peak amplitude of the rogue wave solution is at

least three times the background ρ . 

4. Two-soliton solution from two-fold DT 

In this section, we study the dynamical behavior of the exact solution q n [2] (2.12) of the discrete cmKdV 

+ Eq. (1.2) via

numerical simulations. Because the expression of q n [2] is very long and complicated, we consider a constant background,

i.e., a seed solution q n = ρ, ρ ∈ R . We take the eigenfunctions ϕ 

( j) 
n,k 

(k, j = 1 , 2) as follows 

ϕ 

( j) 
n, 1 

= e 
−

a j 	 j ( 1+ λ2 
j ) t 

2 λ4 
j 

+3 ρ4 t 

( 

α j A 

n 
j + β j e 

a j 	 j ( 1+ λ2 
j ) t 

λ4 
j B 

n 
j 

) 

, 

ϕ 

( j) 
n, 2 

= 

1 

2 λ j ρ
e 

−
a j 	 j ( 1+ λ2 

j ) t 
2 λ4 

j 

+3 ρ4 t 

( 

α j A 

n 
j (1 − 	 j − λ2 

j ) + β j e 

a j 	 j ( 1+ λ2 
j ) t 

λ4 
j B 

n 
j (1 + 	 j − λ2 

j ) 

) 

, 

(4.1)

where A j , B j , 	j , a j is given by (3.2) with the corresponding spectrum parameter λj . Then, upon inserting (4.1) into (2.12) and

(2.13) , the obtained exact solution q n [2] of the discrete cmKdV 

+ equation presents a two-soliton solution. 

As the parameters are λ1 = 

√ 

3 , λ2 = 2 , ρ = 1 / 2 , α1 = 1 , β1 = 1 , α2 = 1 , β2 = 1 , the discrete two-soliton solution q n [2]

contains a anti-dark solitary wave ( ξ 1 wave) and a w-shaped solitary wave ( ξ 2 wave), which is depicted in Fig. 5 . This

is a new and interesting property of the discrete nonlinear cmKdV 

+ equation. It is shown that q n [2] consists of two left

travelling solitary waves with the velocities v j = − a j 	 j (1+ λ2 
j 
) 

λ4 
j 

ln 
B 1 
A 1 

( j = 1 , 2) . For the above parameters, the velocities of the soli-

tary waves ξ and ξ are v ≈ 4 . 785 and v ≈ 7 . 987 . Fig. 6 describes the evolution of the two-soliton solution | q n [2]| of the
1 2 1 2 



38 L.-Y. Ma et al. / Commun Nonlinear Sci Numer Simulat 68 (2019) 31–40 

Fig. 5. Two-soliton solution q n [2] with λ1 = 

√ 

3 , λ2 = 2 , ρ = 1 / 2 , α1 = 1 , β1 = 1 , α2 = 1 , β2 = 1 . 

Fig. 6. Evolution plot of two-soliton solution | q n [2]| with parameters λ1 = 

√ 

3 , λ2 = 2 , ρ = 1 / 2 , α1 = 1 , β1 = 1 , α2 = 1 , β2 = 1 . It consist of two left travelling 

waves, keeping velocities and amplitudes unchanged. 

Fig. 7. Two-soliton solution q n [2] with λ1 = 

2 
3 
, λ2 = 2 , c (1) 

1 
= 1 , c (1) 

2 
= 

2 
3 
, c (2) 

1 
= 1 , c (2) 

2 
= 2 . 

 

 

 

 

discrete cmKdV 

+ Eq. (1.2) . We can see that it presents an elastic collision. The amplitudes of the solitary wave ξ 1 and ξ 2 

are | ξ1 | = 

(λ4 
1 
−1) 

√ 

1+ ρ2 −ρ(λ4 
1 
+1) 

2 λ2 
1 

≈ 0 . 657 and | ξ 2 | ≈ 2.733. 

Suppose that ρ = 0 , and the eigenfunction ϕ 

( j) 
n,k 

(k, j = 1 , 2) in (4.1) reduces to 

ϕ 

( j) 
n, 1 

= c ( j) 
1 

e ξ (λ j ) , ϕ 

( j) 
n, 2 

= c ( j) 
2 

e −ξ (λ j ) , (4.2) 

where ξ (λ j ) = n ln (λ j ) + W (λ j ) t, W (λ j ) = 

λ4 
j 
−λ−4 

j 

2 − λ2 
j 
+ λ−2 

j 
. By using the two-fold DT, we get the two-soliton solution

q n [2]. If we choose parameters λ1 = 

2 
3 , λ2 = 2 , c (1) 

1 
= 1 , c (1) 

2 
= 

2 
3 , c 

(2) 
1 

= 1 , c (2) 
2 

= 2 , where c 
( j) 
2 

= λ j c 
( j) 
1 

, the two-soliton solu-

tion q n [2] is shown in Fig. 7 . The velocities are v j = −W (λ j ) 

ln (λ j ) 
( j = 1 , 2) , which implies that this two-soliton consists of two

left travelling waves. We can see it possesses an elastic interaction property. Fig. 8 describes the evolution of the two-soliton

solution | q n [2]| of the discrete cmKdV 

+ Eq. (1.2) . 
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Fig. 8. Evolution plot of two-soliton solution | q n [2]|. 

Fig. 9. Three-soliton solution q n [3] with λ1 = 

2 
3 
, λ2 = 2 , λ3 = 3 , c (1) 

1 
= 1 , c (1) 

2 
= 

2 
3 
, c (2) 

1 
= 1 , c (2) 

2 
= 2 , c (3) 

1 
= 1 , c (3) 

2 
= 2 . 

Fig. 10. Evolution plot of three-soliton solution | q n [3]|. 

 

 

Remark 2. Similarly, we can analyze the the dynamic property of three-soliton solution by the Darboux transformation.

However, the exact expression of q n [3] is omitted due to its complexity. For example, we can see that the three-soliton
solution displayed in Figs. 9 and 10 is a left travelling wave and keeps elastic collision. 
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5. Conclusions and discussions 

In this paper, we have constructed the N -fold DT in terms of determinants for the integrable discrete cmKdV 

+ equation.

The obtained N -fold DT (2.9) amends the results in Ref. [16] . Through one-fold DT, we have derived a few kinds of new

exact solutions, including the anti-dark soliton solutions, the breather solutions and the periodic solutions, from a nonzero

constant and plane-wave seed solution. We have also studied the dynamical property of the two-soliton solution via nu-

merical simulation, and showed that the two-soliton solution includes an anti-dark solitary wave and a w-shaped solitary

wave, a new and interesting solution phenomenon for the discrete nonlinear cmKdV 

+ equation. Through some complicated

and tedious computation, we can present higher-order soliton solutions in terms of determinants analogously. 
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